
Towards a Framework for Constructing
Context-Specific Migration Methods for Test Cases

Ivan Jovanovikj, Stefan Sauer
s-lab – Software Quality Lab, Paderborn University

Zukunftsmeile 1, 33102 Paderborn
{ivan.jovanovikj, sauer}@s-lab.uni-paderborn.de

Abstract
Test case reuse in migration projects brings double
benefit: reuse of valuable knowledge as well as time
and cost savings. Due to system changes, a direct
reuse of test cases might be impossible. To facilitate
reuse, the migration context, from both system migra-
tion as well as testing perspective, has to be consid-
ered. For example, system changes need to be detected,
understood and then reflected to the test cases or the
characteristics of the target testing framework have to
be identified. In this paper, we present a novel frame-
work that enables construction of context-specific mi-
gration methods for test cases.

1 Introduction
Software migration is a process of transferring soft-
ware systems into new environments without chang-
ing their functionality. In legacy migration, for ex-
ample, a legacy system still having some value is mi-
grated into a new environment. Another use case is
when a system is migrated to another platform, thus a
multi-platform provision is enabled (often seen in mo-
bile app development today). Software testing is an
important activity in software migration as it verifies
whether the migrated system still provides the same
functionality as the source system. Since software mi-
gration is established to reuse existing systems, we
want to reuse test cases as well. The reuse of test
cases can be beneficial, not just from economical per-
spective, but also from practical perspective: the ex-
isting test cases contain valuable information about
the functionality of the source system.

However, in some migration scenarios a direct
reuse of test cases might be impossible due to sys-
tem changes. Since the test cases are coupled with
the system they are testing, the system changes need
to be detected, understood and then reflected on the
test cases to facilitate reuse. In other words, the test
cases need to be co-evolved. However, co-evolving
test cases is far from being trivial since several chal-
lenges need to be addressed [5], like quality assess-
ment, refactoring or reflection of system changes.

In this paper, we present a novel framework for the
construction of context-specific migration methods for
test cases. The resulting migration methods enable
automated co-evolution of test cases for a specific mi-
gration context. Firstly, the system migration and

testing contexts are characterized. Then, based on
the context information, a reference migration method
gets tailored. Following the idea of model-driven soft-
ware migration, the reference migration method ex-
tracts a test model out of the existing test cases, re-
flects the system changes with the help of the con-
text model, and at the end, in a model-based testing
manner, generates test cases for the migrated system.
We present a case study from an industrial project in
which a migration of an existing modeling framework
from Java to C# was performed.

2 Construction of Context-Specific
Migration Methods for Test Cases
from a Reference Method

Situational method engineering (SME) deals with
the construction of methods which are adapted to
a specific situation. Regarding the degree of flexi-
bility, different SME approaches exist [3]. Our ap-
proach relies on the techniques of method tailoring.
As shown in Fig. 1, the overall approach consists
of three main phases: Pre-Migration, Migration, and
Post-Migration.

In Pre-Migration, the migration context is analyzed
from both testing perspective and system migration
perspective. This initial analysis of the context shall
answer the question whether eventual reuse of test
cases would be beneficial or not. If yes, the results of
the context analysis are used in the migration phase,
namely in the adaptation of the reference migration
method.

Migration is the main phase which actually per-
forms the migration itself. Motivated by the work
presented in [3], we rely on method tailoring to en-
able development of context-specific test case migra-
tion methods which support co-evolution of test cases.

Migration
Method
Tailoring

Tool
Implementation

Migration
Method

Enactment

Adapted
Method

Context
Model

Context
Specific
Tools

Migration
Context

Characterization

Migration
Validation

Reference
Method

Migration Post-MigrationPre-Migration

Figure 1: Approach Overview.

50 Softwaretechnik-Trends 37:2, Mai 2017



The Migration phase involves the following activi-
ties: method tailoring, method implementation, and
method enactment. Having the context information
collected, the reference migration method gets tai-
lored. Through a sequence of adaptations, like mod-
ification, deletion or addition of actions and/or arti-
facts, the reference method gets adapted so that it is
suitably applicable in the particular context. Hence,
the resulting adapted method may not contain all of
the steps or some of the steps may be modified in a
specific way with regards to the context characteris-
tics. Then, in the implementation step, the situation-
specific toolchain is developed. At the end, the enact-
ment of the developed migration method takes place.

In Post-Migration, the migration of the test cases
needs to be validated. This validation involves check-
ing whether certain requirements have been met, e.g.,
some test quality criteria like test coverage.

3 Reference Migration Method
Following the idea of model-driven software migration,
our reference migration method shown in Fig. 2 con-
sists of the following activities: Reverse Engineering,
Restructuring, and Forward Engineering [2]. On a
technical level, the reference method is an instance
of the well-known horseshoe model. Our method in-
cludes also an additional activity, Refactoring.

Reverse Engineering can be seen as a combina-
tion of Model Discovery and Model Understanding
[1]. Model Discovery is an automatic text-to-model
transformation activity which results in a model of
the test case source code. Model Understanding
is a model-to-model transformation activity, which
takes a platform-specific model and transforms it to
a platform-independent test model. This transforma-
tion performs a semantic mapping and results in a
test model of higher level of abstraction.

Then, in Refactoring, we analyze our test model to
identify eventual inconsistencies with the model of the
system, which could be a consequence of obsolete or
erroneous test cases.

Restructuring comes as a consequence from the
changes that happen in the system during its restruc-
turing phase as well as the changes in the target test-
ing environment, e.g., new testing framework.

During Forward Engineering, the restructured
platform-independent test model is firstly refined
to a platform-specific test model applying a model-to-
model transformation. This step is called Test Case
Concretization. In Code Generation, the test model
is further used as input for the model-to-text trans-
formation which at the end generates the test code
into the desired target environment [4]. As shown in
Fig. 2, the last two steps can be combined in one.

4 Preliminary Results
Our method was applied in an industrial project which
main goal was to migrate parts of the well known
Eclipse Modeling Framework (EMF) along with the

Model of
Test Code

Test Model

Model of
Migrated
Test Code

Model
Discovery

Test Case
Understanding

Reimplementation

Language
Transformation

Code
Generation

Test Case
Concretization

Refactoring Restructuring

Migrated
Test
Code

Pl
at
fo
rm

-
In
de
pe

nd
en

t
La
ye
r

Pl
at
fo
rm

-
Sp
ec
ifi
c

La
ye
r

Sy
st
em

La
ye
r

Test
Code

Figure 2: Reference Migration Method.
Object Constraint Language (OCL) from Java to C#.
EMF and OCL are stable and well-tested and all test
cases are available on public code repositories. Our
goal in this particular case study was to reuse the OCL
test cases in order to validate the OCL functionality
in the target environment. All in all, 13 different test
suites were processed, each of them addressing differ-
ent functional aspects of OCL. The source environ-
ment was JUnit and MS Unit Test Framework was
selected as a target testing environment for the test
cases. The main change that has been performed in
the system migration was the change from just-in-time
(JIT) compilation to ahead-of-time (AOT) compila-
tion. Since the test cases were implemented in JIT-
fashion, a change to AOT was necessary. On the base
of this context information, the reference migration
method was adapted. The adapted method included
Model Discovery and Test Case Understanding, which
resulted in a platform-independent test model. Then,
a direct Code Generation was selected as a last step.
Corresponding tooling in terms of parsers and genera-
tors was developed and the method was enacted. The
overall result was automated migration of over 92%
out of 4000 existing test cases.

References
[1] H. Bruneliere, J. Cabot, F. Jouault, and F. Ma-

diot. Modisco: A generic and extensible frame-
work for model driven reverse engineering. 2010.

[2] E. J. Chikofsky and J. H. Cross II. Reverse engi-
neering and design recovery: A taxonomy. 1990.

[3] M. Grieger, M. Fazal-Baqaie, G. Engels, and
M. Klenke. Concept-based engineering of
situation-specific migration methods. 2016.

[4] A. Z. Javed, P. A. Strooper, and G. N. Watson.
Automated generation of test cases using model-
driven architecture. 2007.

[5] I. Jovanovikj, M. Grieger, and E. Yigitbas. To-
wards a model-driven method for reusing test cases
in software migration projects. 2016.

Softwaretechnik-Trends 37:2, Mai 2017 51




