
Comparing Pre Commit Reviews and Post Commit Reviews
Using Process Simulation

Tobias Baum1 Fabian Kortum2 Kurt Schneider3 Arthur Brack4 Jens Schauder5

Abstract: Previous studies found that two variations of change-based code review are used in in-
dustry: Pre commit review and post commit review. Which one is better in a given situation is not
obvious. So we asked: Are there practically relevant performance differences between pre and post
commit reviews? How are these differences influenced by contextual factors? To assess these ques-
tions, we designed and validated a parametric discrete event simulation model of certain agile devel-
opment processes. Our analysis indicates that the best choice does depend on the context, but also
that there are many situations with no practically relevant difference between both choices. We iden-
tified the main influencing factors and underlying effects and condensed our findings into heuristic
rules.

Keywords: Pre- and Post Commit Review, Agile Software Development, Discrete Event Simulation

In recent years, “change-based” or “modern” [RB13] code review has become the domi-
nant style of code review, especially in open source and agile development. It can be per-
formed before the changes are integrated into the main development branch/trunk (“pre
commit review”) or afterwards (“post commit review”) [Ba16b]. Pre commit review has
recently gained popularity [RB13], especially in the form of “pull requests”. This sparks
discussions about the preferable way to perform reviews. So we asked: Are there practi-
cally relevant performance differences between pre- and post commit reviews? How are
these differences influenced by contextual factors? To answer these questions and derive
simple heuristics that can help teams to decide whether a variant is adequate in a con-
crete situation, we used a simulation model. This model allowed us to study a massive
number of different development situations. Methodologically, we started with qualitative
empirical observations, induced a simulation model and used this model to deduce quan-
titative data. We then used this data to validate the model, but also as the starting point
of another cycle, inducing heuristics and checking them against the simulation results.
Our research question and the design of large parts of the discrete event model is based
on recent studies about review processes [RB13, Ba16b]. It was checked in detail by two
experienced industrial practitioners. To holistically compare the review process variants,
we evaluated them with regard to the three classic target dimensions of software projects:
quality, cost/efficiency and time to market. The ensure the adequacy of our measures, we
performed a survey among 15 industrial software developers. While creating the model
we observed several best-practice guidelines, among others those by Ali, Petersen and

1 Leibniz Universität Hannover, FG Software Engineering, Hannover, tobias.baum@inf.uni-hannover.de
2 Leibniz Universität Hannover, FG Software Engineering, Hannover, fabian.kortum@inf.uni-hannover.de
3 Leibniz Universität Hannover, FG Software Engineering, Hannover, kurt.schneider@inf.uni-hannover.de
4 SET GmbH, Hannover, arthur.brack@set.de
5 T-Systems on site services GmbH, Wolfsburg, jens@schauderhaft.de

Jan Jürjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 117



Wohlin [APW14]. The model is implemented as a discrete event simulation model using
the DESMO-J simulation framework [PK05]. After some iterations for verification and re-
finement, we started to generate data with the simulation model. We used exploratory data
analysis and local sensitivity analysis to identify the main effects and to extract heuristics
for the choice between pre and post commit review.

The largest difference between pre and post commit reviews exists in terms of cycle time:
When there are dependencies between tasks so that one task has to be committed before
another can be started, this leads to longer cycle times for pre commit reviews. This differ-
ence in cycle time is also the only practically relevant difference for the majority of cases.
Other effects that lead to differences with regard to quality and efficiency are connected to
task-switch overhead and to the possibility that other developers can find issues as soon as
they reach the trunk.

Based on our results, we can summarize our heuristics for practitioners as: If you are
currently doing code reviews and feel you have no problem with cycle time or developers
being held back by issues that would be found in reviews, don’t bother switching from
post to pre or vice versa. If you don’t have an existing process yet, use pre commit reviews
if your team is rather large and cycle time doesn’t matter much to you or you can arrange
review so that no dependent task waits for the review to be finished. Use post commit
reviews if your team is rather small or you have dependencies between tasks that would
otherwise increase cycle time. For pre commit reviews in the form of pull requests, also
keep in mind the benefits that were out of the scope of our study: Pull requests allow
easier contribution to (open source) projects by outsiders [GPD14], and they enforce more
process discipline and are an easy way to keep unreviewed changes from being delivered
to the customer [Ba16b]. Further information on this study can be found in [Ba16a].

References
[APW14] Ali, Nauman Bin; Petersen, Kai; Wohlin, Claes: A systematic literature review on the

industrial use of software process simulation. Journal of Systems and Software, 97:65–
85, 2014.

[Ba16a] Baum, Tobias; Kortum, Fabian; Schneider, Kurt; Brack, Arthur; Schauder, Jens: Com-
paring Pre Commit Reviews and Post Commit Reviews Using Process Simulation. In:
Software and System Process (ICSSP), 2016 International Conference on. 2016.

[Ba16b] Baum, Tobias; Liskin, Olga; Niklas, Kai; Schneider, Kurt: A Faceted Classification
Scheme for Change-Based Industrial Code Review Processes. In: Software Quality, Re-
liability and Security (QRS), 2016 IEEE International Conference on. IEEE, 2016.

[GPD14] Gousios, Georgios; Pinzger, Martin; Deursen, Arie van: An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International Conference
on Software Engineering. ACM, pp. 345–355, 2014.

[PK05] Page, Bernd; Kreuzer, Wolfgang: The Java Simulation Handbook – Simulating Discrete
Event Systems with UML and Java. Shaker, 2005.

[RB13] Rigby, Peter C; Bird, Christian: Convergent contemporary software peer review practices.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, pp. 202–212, 2013.

118 Tobias Baum et al.




