
Capture-Avoiding Program Transformations with name-fix

Sebastian Erdweg
1

Tijs van der Storm
2,3

Yi Dai
4

1
TU Darmstadt, Germany

2
CWI, Amsterdam, The Netherlands

3
INRIA Lille, France

4
University of Marburg, Germany

Abstract: We present an algorithm called name-fix that automatically eliminates
variable capture from a generated program by systematically renaming variables. name-
fix is guided by a graph representation of the binding structure of a program, and
requires name-resolution algorithms for the source language and the target language of
a transformation. name-fix is generic and works for arbitrary transformations in any
transformation system that supports origin tracking for names.

Program transformations find ubiquitous application in compiler construction to realize

desugarings, optimizers, and code generators. While traditionally the implementation of

compilers was reserved for a selected few experts, the current trend of domain-specific

and extensible programming languages exposes developers to the challenges of writing

program transformations. In our paper [EvdSD14], we address one of these challenges:

capture avoidance.

A program transformation translates programs from a source language to a target language.

In doing so, many transformations reuse the names that occur in a source program to identify

the corresponding artifacts generated in the target program. This bears the danger of variable

capture where variables from the source program are captured by synthesized variable

declarations or vice versa. In a study of current language workbenches, we found that

developers in 8 out of 9 workbenches failed to address variable capture when implementing

a simple domain-specific language [EvdSD14]. However, a general solution is difficult to

obtain. Existing approaches either rely on naming conventions and fail to guarantee capture

avoidance, or they require a specific transformation engine and affect the implementation

of transformations [SB99, SPG03, LE13].

We propose a generic solution called name-fix that guarantees capture avoidance and does

not affect the implementation of transformations. name-fix compares the name graph of the

source program with the name graph of the generated program to identify variable capture.

If there is variable capture, name-fix systematically and globally renames variable names to

differentiate the captured variables from the capturing variables, while preserving intended

variable references among original variables and among synthesized variables, respectively.

name-fix requires name analyses for the source and target languages, which often exists or

are needed anyway (e.g., for editor services, error checking, or refactoring), and hence can

be reused. name-fix treats transformations as a black box and is independent of the used

transformation engine as long as it supports origin tracking for names [VvdSE14, vDKT93].

name-fix enables developers of transformations to focus on the actual translation logic

and to ignore variable capture. In particular, name-fix enables developers to use simple

naming schemes for synthesized variables in the transformation and to produce intermediate

open terms. Transformations of this kind fall into the class of transformations for which

93



name-fix guarantees hygiene, that is, α-equivalent source programs are always mapped to

α-equivalent target programs.

Our current definition of name-fix renames not only synthesized names but also names that

originate from the source program. This may break the expected interface of the generated

code. Accordingly, name-fix currently is a whole-program transformation that does not

support linking of generated programs against previously generated libraries, because

names in these libraries cannot be changed. In order to apply name-fix in the context of

our extensible programming language SugarJ [Erd13, ER13], we currently investigate a

modular variant of name-fix that supports separate compilation.

Finally, the current implementation of name-fix requires repeated execution of the name

analysis of the target language. As a result, name-fix can be expensive in terms of run-

time performance. When a compiler is run continuously in an IDE, this penalty can

be an impediment to usability. Fortunately, incrementality [MEK
+

14] and in particular

incremental name analysis [RTD83, WKV
+

13] are well-studied topics that are likely to

yield benefits for name-fix because (i) we know the delta induced by name-fix (renamed

variables) and (ii) new variable capture can only occur in references that have changed.

References

[ER13] Sebastian Erdweg and Felix Rieger. A Framework for Extensible Languages. In GPCE,
pages 3–12. ACM, 2013.

[Erd13] Sebastian Erdweg. Extensible Languages for Flexible and Principled Domain Abstrac-
tion. PhD thesis, Philipps-Universiät Marburg, 2013.

[EvdSD14] Sebastian Erdweg, Tijs van der Storm, and Yi Dai. Capture-Avoiding and Hygienic
Program Transformations. In ECOOP, pages 489–514. Springer, 2014.

[LE13] Florian Lorenzen and Sebastian Erdweg. Modular and Automated Type-Soundness
Verification for Language Extensions. In ICFP, pages 331–342. ACM, 2013.

[MEK
+

14] Ralf Mitschke, Sebastian Erdweg, Mirko Köhler, Mira Mezini, and Guido Salvaneschi.
i3QL: Language-Integrated Live Data Views. In OOPSLA, pages 417–432. ACM, 2014.

[RTD83] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-dependent
analysis for language-based editors. TOPLAS, 5(3):449–477, 1983.

[SB99] Yannis Smaragdakis and Don S. Batory. Scoping Constructs for Software Generators.
In GCSE, volume 1799 of LNCS, pages 65–78. Springer, 1999.

[SPG03] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: Programming
with Binders Made Simple. In ICFP, pages 263–274. ACM, 2003.

[vDKT93] Arie van Deursen, Paul Klint, and Frank Tip. Origin tracking. Symbolic Computation,
15:523–545, 1993.

[VvdSE14] Pablo Inostroza Valdera, Tijs van der Storm, and Sebastian Erdweg. Tracing Model
Transformations with String Origins. In ICMT, pages 154–169. Springer, 2014.

[WKV
+

13] Guido Wachsmuth, Gabriël D. P. Konat, Vlad A. Vergu, Danny M. Groenewegen, and
Eelco Visser. A Language Independent Task Engine for Incremental Name and Type
Analysis. In SLE, volume 8225 of LNCS, pages 260–280. Springer, 2013.

94


