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Abstract:
Members of the agile programming and formal methods communities do not al-

ways see eye-to-eye. These two communities often do not talk to or learn from each
other. Only recently, as highlighted by the September 2009 issue of IEEE Software,
the IFIP workshop on balancing agility and formalism in software engineering, and the
first edition of the international workshop for formal methods and agile methods, ideas
from the two communities begun synthesize. While the problem-solving approaches
and psychological attitudes of members of the two communities differ widely, we
exploit this clash of viewpoints, creating a new development processes that actually
blends, rather than mashes together, best practices from the two worlds. This pa-
per summarizes our process and a supporting complex case study, showing that it is
not only possible, but tasty, to combine the “chili pepper” of formal methods and the
“chocolate” of agile programming, thus producing a tasty “Mole” (as in the highly-
spiced Mexican sauce) of software engineering practices.

1 Introduction

Agile and formal development methodologies usually do not blend together well. This is

because of several reasons, the most important of which is often characterized as a radical

difference in psychological attitudes about software development.

Formal methodologists often favour an in-depth, think-first approach, where the problem

is understood, formalized, and solved; usually, but not always, adopting a waterfall-style

of development. Once a formalization is developed, development and verification proceed

in an automated and interactive fashion. Consequently, projects that use formal method-

ologies (FMs) typically focus on critical systems with fixed requirements and somewhat

flexible deadlines (“We will ship it when it is right.”).

Agile methodologists favour an highly incremental and iterative approach, specifically tai-

lored to cope with changing requirements and precise deadlines. In projects that use agile

methodologies (AMs), it is often the case that the problem is only partially understood,

and there is a focus only on the aspects that must be implemented in the current develop-
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ment iteration. The solution initially developed is usually not optimal, but as it is refined

through continuous code refactorings, its quality and validity improve. Test suites are used

for several purposes, the most important are system verification, system documentation,

and requirement specification, and they are strictly handmade. AMs are typically used in

development settings where changing requirements and rapid delivery of the product are

paramount.

The two worlds seem irreconcilable. Nevertheless, problems exist that would greatly ben-

efit from both of them [BBB+09]. The problem class in which we have particular interest

have unstable requirements, are constrained by deadlines that cannot be postponed, but

also have subsystems that must be formally specified and verified.

Terminology In this paper the IEEE 610 [JM90] standard terminology for validation

and verification is used. Paraphrasing the standard, verification is the process of evalu-

ating software to determine whether the products of a given development phase satisfy

the conditions imposed, according to the specifications (“you build the system in the right

way”); validation is the process of evaluating software to determine whether it satisfies

specified requirements ensuring it meets the user’s needs (“you build the right system”).

Within the FMs community, verification and validation have different meanings than in

the IEEE 610 standard. Loosely verification (in the paper formal verification) means the

use of formal methods to formally, statically verify that a system conforms to its speci-

fication; validation (in the paper formal validation) means the use of traditional software

engineering practices to check, statically or dynamically, that a system conforms to its

specification (whether in the form of tests, requirements, etc.) by hand or via execution

under some execution scenarios. In the present paper both perspectives are respected and

acknowledged.

Tests are usually classified by dichotomies: unit vs. functional, black-box vs. white-box,

testing vs. design, tester vs. coder. Yet testing does not always fit into these dichotomies,

especially in the case of agile testing approaches [Bec07]. The black-box vs. white-box

dichotomy is particularly problematic, since box boundaries change one’s perspective. In

this paper, functional tests are always black-box tests, coverage tests are always white-box

tests, generated tests are always black-box tests (the box is the module specified); other

strict rules do not hold.

Additionally, “...development of a system,” more precisely means “...analysis, design, de-

velopment, verification, formal validation of a system.”

1.1 Case Study

Proposing new practices with no supporting evidence is an uninteresting proposition. A

complex case study is mandatory to test-bench the proposed practices. Our case study

focuses on the development of a device driver to control and communicate with an embed-

ded custom circuit board equipped with more than a dozen sensors. The communication

protocol with the board is asynchronous and packet-based and the board is novel and
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custom-designed. The protocol is focused on controlling the board and reporting sensor

measurements and board status.

This software driver has been developed using our process while satisfying seemingly

contradictory requirements: (1) the protocol implementation must be thoroughly verified;

(2) parts of the protocol must be formally specified; (3) a board simulator must be de-

signed, implemented, and verified to match the specifications of, and actual behaviour of,

the physical circuit board; (4) if board components change during development, the associ-

ated formal specifications and the simulator whose behavior reflects such changes must be

updated accordingly; (5) there are strict software delivery deadlines. Consequently, these

process requirements constitute an environment that benefits from both agile and formal

approaches to software development.

A novel development process has been drafted to cope with the contrasting requirements

of the case study, blending agile and formal practices. In the following, the development

process and the practices are summarized, and their successful application to the case study

is reported, yielding several promising results.

1.2 Formal and Agile Integration

To enable the integration of the two worlds, the highly iterative and incremental approach

found in most of the AMs must be maintained, and formal validation methodologies, tradi-

tionally used in a waterfall development process (formally specify the system, implement

the system, validate the implementation against the specification) must be adapted to a

highly iterative one.

The most common software verification practices in AMs must be considered when try-

ing to integrate FMs and AMs since they are a fundamental part of the development

process. The most significant verification related practice is Test Driven Development

(TDD) [Bec03]. TDD is a software development technique, originally defined in the Ex-

treme Programming (XP) [BA04] methodology and is characterized by a process that focus

on writing unit tests of a module before writing the code of said module.

The test driven approach relies on writing tests before implementations. It is applicable

to a very small scale and large scale cycles In the former case, TDD yields to activity

cycles as short as a few minutes. In the latter, requirements are immediately translated

into functional tests resultin in activity cycles as long as a full delivery iteration, which

is usually no longer than a couple of months. The test driven approach is a cornerstone

of XP, but it is so popular that has been adopted in many other AMs as well. It is also

considered a good software development technique when used on its own, regardless of

the enclosing development process.

Some tentative attempts to reconcile FMs and AMs have been developed by others. The

reoccuring theme of these attempts is that idea that handmade test suites are no longer

used, but instead are replaced by different kinds of automated formal validation based on

a system level formal specification. Automated validation can be as simple as enabling

runtime checking of assertions or automatically generating a test suite based on the sys-
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tem properties, or as complex as proving the whole system’s behaviour through formal

verification.

Eleftherakis and Cowling in [EC03] propose XFun, an iterative and incremental process

to generate X-Machines models, an extension of Finite State Machines. The develop-

ment process impose a complete specification of the system, and its verification is done

exclusively using the tools provided by the X-Machines FM. The development process

proposed by Herranz and Moreno-Navarro [HM03] is quite similar. They propose an itera-

tive process to model a system using SLAM-SL, an object-oriented specification language

supported by tools. Some XP practices are fully adopted or considered compatible, like

pair-programming, iterative and incremental development and system refactoring; while

tests are completely replaced by the verification tools provided by the SLAM suite. A

different FM, but similar approach, is found also in the work of Suhaib [SMSB05] where

XFM methodology is introduced.

As already mentioned, in all these attempts, the test suites are automatically generated

using system formal specification, or are completely replaced by formal verification, typ-

ically through the use of theorem provers and/or static checkers. The major precondi-

tion on the use of these approaches is, at the minimum, a specification of all the relevant

aspects of the system under development. Such a specification enables simple verifica-

tion techniques such as runtime checking (via assertions and design by contract [Mey97]

using preconditions, postconditions and invariants) and the automatic generation of test

suites [CL02a, CL04, CKP05]. Via a complete and sound system specification, supported

by an appropriate formal language (to specify the system model and its properties) cou-

pled with a (possibly restricted) programming language, one can statically prove properties

about the system using a variety of tools and techniques [CH02, DNS05, KC05].

The underlying idea of this approach is simple: what was once the purpose of handwritten

tests (verification, documentation and requirement specification) are now the respnsability

of the formal specifications, and a complete formal specification of the system under de-

velopment is needed to apply these methodologies. The problem is that this requirement

is very difficult to fulfill since the effort required to write a complete formal specifica-

tion of the system in most real world complex cases is usually greater than writing a suite

of tests [Gla02]. If a complete formal specification is not available, all of the previous

methodologies share a common problem: the parts informally specified are not verified

at all. These parts os the system are consequently verified with traditional methods, but

the connections between development artifacts and related activities (code, tests, design,

refactoring) are neither detailed nor enforced. This is problematic as the loops and rela-

tions between the different development artifacts are the inner engine of many AMs, as

they impose an iterative and incremental pace to the development process.

Liu takes a different approach wherein the SOFL methodology [Liu04] is merged into

agile processes [Liu10]. The SOFL methodology is based on a three step specification

approach: (1) informal specification, (2) semi-formal specification, (3) formal specifica-

tion. The agile adaptation consists mainly in introducing shorter loops between activities

and reducing the size of the set of formal specifications. The formal specifications are

used only to help understand ambiguous statements in the semi-formal specification and

are not maintained while the system evolves. Testing and inspections are based on the
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semi-formal specification. The formal specification are partial and are only used for doc-

umentation purposes and than discarded—they are not used at all in the verification of the

system.

I contrast our objective is to formally specify only parts of the system (in order to cope

with constrained resources and unstable requirements) and to develop and refine a highly

iterative and incremental development process that blends formal and agile practices.

The main open problem unaddressed in the literature is how to connect development ar-

tifacts of the two worlds of AMs and FMs together. To answer this challenge we define

activity cycles, similar to what is found in AMs (especially in XP), to solve this problem

in an highly iterative development process. We show how tests drive the formal specifica-

tion, how the formal specifications drive tests and code development, how handmade and

automated tests coexist and support each other, how the unspecified parts of the system are

incrementally specified. That is, we show how to blend, and not just tack together, formal

validation and agile verification practices: a “Mole” of verification practices1.

2 A Real and Complex Case Study:

Rapid Development in Small-scale Hardware Software Co-design

“Mole” practices are applied in the context of a real world case study that matches the

problem requirements previously detailed: unstable requirements and development arti-

facts that need to be formally specified and validated.

2.1 The UCD CASL SenseTile System

The UCD CASL SenseTile System is a large-scale, general-purpose sensor system devel-

oped at the University College Dublin in Dublin, Ireland. The facility provides a scalable

and extensible infrastructure for performing in-depth investigation into both the specific

and general issues in large-scale sensor networking. This system integrates a sensor plat-

form, a datastore, and a compute farm. The sensor platform is a custom-designed but in-

expensive sensor platform (called the SenseTile) paired with general-purpose small-scale

compute nodes, including everything from low-power PDAs to powerful touchscreen-

based portable computers. Besides containing over a dozen sensors packaged on the

SenseTile itself, the board is expandable as well, as new sensors are added to it easily.

The case study is focused in building the sensor board and its software driver concurrently.

Because of hard time constraints and the initial unavailability of the custom board, we must

progress concurrently with all the development tasks, including: (1) specification of the

communication protocol; (2) specification of the physical sensor board; (3) development

and fabrication of the physical board; (4) development of the embedded software for the

1A mole (’mōlā) is a highly spiced Mexican sauce made chiefly from chili peppers (agile) and chocolate

(formal), served with meat (working system).
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board; (5) development of the communication protocol software driver of the board; and

(6) development of software simulators of the board.

The development of the physical board, along with its embedded software (development

tasks 2, 3, 4), is carried out by a third party under our guidance, thus it is not directly

taken into account here. The specification of the communication protocol (development

task 1) is a joint effort between ourselves and the third party, while the remaining tasks (5,

6) are performed in isolation. Dependencies are straightforward: the specification of the

communication protocol (1) is the most stable element, but it still depends on the sensor

board (2, 3, 4): large changes in the latter affect the former. Additionally, the driver and

the simulator depends directly on the communication protocol.

Communication and synchronization with the external manufacturer is frequent but not

optimal. The main synchronization artifact is the protocol specification, which remains

stable at high-level, but is changed frequently in the low-level details. A common domain

language has been found and agreed upon, but the FMs and programming platforms differs

widely. Consequently the informal specification of the communication protocol is the most

reliable source of information.

Related Methodologies There exist various approaches in literature addressing this kind

of development constraints (rapid development in hardware software co-design), but all are

focused on large-scale systems.

The hardware-software formal co-design methodologies usually have several common de-

velopment artifacts [SDMH00, HKM01] including a high-level specification of the system,

a translation (refinement) of the high-level specification to low-level ones (hardware and

software counterparts), the possibility to generate software code from the low-level spec-

ifications, a hardware simulator capable of simulating an hardware component based on

hardware specification, the hardware component developed.

When considering the development of the device and of its software driver as separate

entities that possibly have to be developed concurrently, the existing approaches are similar

to the ones seen in the case of hardware-software co-design [Val95, SM02, RCKH09], all

of which focus on a specification that aims to be as complete as possible. A complete

specification is neither feasible nor convenient in our case. The protocol specification

must be enhanced incrementally and its complete specification cannot be provided. This

makes the problem an ideal candidate to test our “Mole” of practices.

2.2 The Chosen Formal Methodology: Formal Specifications with JML

An appropriate FM must be chosen. It must be able to support a specification that is

built incrementally, consequently formal methods that demand a complete specification

must be avoided. It must be able to automatically generate tests. And finally the formal

method must be complemented by tools that support the verification of system properties

at runtime.
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The Java programming language and platform are chosen for the implementation, the Java

Modeling Language (JML) [LBR01] is used to write formal specifications, and JML2 [LPC+04]

tool suite is used as supporting tool [BCC+05]. The JML2 tool suite includes runtime as-

sertion checker [CL02b] and a unit test generator [CL02a]. A complete specification is not

required to use JML2 tool suite effectively.

JML is a rich behavioural interface specification language (BISL) and focuses on the

modular specification of classes and objects [LBR99]. JML includes standard specifica-

tion constructs like assumptions, assertions, axioms, and pre- and postconditions, framing

clauses, and invariants. It also includes a rich model-based specification layer that includes

mathematical models, data refinements, datagroups, and many other advanced object-

oriented specification features [Cha06]. Many tools, ranging from compilers to static

checkers to full-functional verification systems support the JML language [BCC+05].

JML is sometimes used in a Design-by-Contract style, where a specification is written

from scratch, reusing existing APIs that have specifications of their own, and then an

implementation is written conforming to that specification [Mey92]. At other times an

existing piece of implemented and tested code is annotated with specifications after-the-

fact.

The two tools used most frequently to check the correctness of implementations are the

JML Runtime Assertion Checker (RAC) and the Extended Static Checker for Java, version

2 (ESC/Java2) [CL02b, BCC+05, KC05]. The former compiles executable assertions into

runtime checks. The latter tool performs automated modular semantic static analysis to

attempt to prove that the program under analysis does not misbehave and conforms to its

specification (lightweight functional correctness).

3 Blending Formal And Agile Development: the “Mole” Practices

AMs are all based on a highly iterative and incremental process. They share a common ap-

proach on team management, customer relation, simplification and removal of unnecessary

artifacts and activities, they rate working solutions and customers satisfaction as the most

important indicators considered during development. The Agile Manifesto [BBvB+01]

summarizes the philosophy and principles shared by all AMs.

The Agile Manifesto does not suggest any specific development techniques, it describes

AMs from a very high abstraction level. Nevertheless, most AMs share a similar approach

to artifact verification. Functional test suites, used as precise requirements or user stories

definition, are applied in DSDM [Sta97], XP and Crystal Clear [Coc04]. Unit tests and

TDD are mentioned, and often included, in most of the AMs defined so far.

High level test suites, composed of functional tests, describe requirements and bind to-

gether requirement documentation and system behaviour: an informal requirement is sup-

ported by a set of functional tests. The associated development cycle is one iteration long.

Low level test suites, composed of unit tests, describe the module behaviour and bind

together code documentation, code and the contract imposed on the module: unit tests

represent the contract and the documentation. The associated development cycle is less
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than one day (as short as a few minutes).

Continuous refactoring [FBB+99] enables iterative and incremental development, since

the system architecture and design, whether explicitly specified or not, must be cleaned

up and modified, to accommodate new requirements, services and modules. Refactoring

is possible and feasible because of the safety nets provided by the test suites, used as

regression test suites.

Our objective is to formally specify only parts of the system under development, in an

incremental iterative process. Formal artifacts must coexist with informal ones: require-

ments, expressed as functional tests or as formal specifications, handmade and generated

tests, documentation, source code. The development process needs to guarantee consis-

tency over all the involved artifacts.

Both Test Driven Development (TDD) and classical Formal specification Driven Devel-

opment (FDD) guarantee consistency on all the involved artifacts. Both TDD and FDD

support iterative development. The development cycle adopted in TDD is shown in Figure

1 and the one adopted in classic FDD is shown in Figure 2. Unit tests used in TDD are

substituted in FDD by formal specifications supported by the verification environment; in

our case the verification environment is the generated unit test suite. Formal specifications

replace unit tests: they specify, document and verify the system under development.

Figure 1: TDD development cycle. Figure 2: FDD classic development cycle.

FDD is used for the formal specified parts of the system, whether TDD is used for the

remaining ones: a “composition” of formal and agile verification practices. Yet there

are several problems that still need to be addressed. No communication between the two

worlds is permitted, it is not defined how to formally specify a module after it has been

implemented and verified in a non formal way. A module only partially specified is a sort

of hybrid that must be treated accordingly. Finally, in the FDD cycle shown in Figure 2,

the implicit assumption is that it is always possible to identify the correct formal specifi-

cations of the system, but this is not always straighforward. Identifying the correct formal

specification is a difficult task, it has to be supported and verified by the development

process.
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A partially specified module cannot be verified properly only through automatically gen-

erated tests. Handmade tests have to be used together with generated ones. Handmade

tests verify complex behaviours that are informally specified, or complex behaviours that

are formally specified but cannot be replicated by the formal verification tools, because of

the limits of the verification tools themselves. The constraints imposed by formal verifica-

tion tools [Gla02] must be taken into account when deciding whether supporting the code

with handmade tests, and verification tools based on automatically generated tests are not

an exception. The development cycle able to blend formal specifications, handmade tests

and code development is shown in Figure 3: the formal specification drives the handmade

tests. Both handmade tests and the formal specification drive the code development.

Figure 3: FDD development cycle with hand-
made tests. Figure 4: TDF development cycle.

The opposite path still needs to be covered, moving incrementally from a tested code to a

formally specified code. In this case, new handmade tests and existing working code drives

the formal specification, this is what we call Test Driven Formal specification (TDF). The

resulting development cycle code is shown in Figure 4, TDF is used to incrementally add

formal specifications to an existing working system.

When the “Mole” verification practices are used together the initial objectives are achieved:

an incremental and iterative process, where development pace is defined by very short

development cycles similar to TDD; the complete freedom to decide what is formally

specified; the development cycles and the associated verification practices maintain the

corresponding artifacts involved consistent, the correct development cycle is determined

by the formality of the artifacts involved, ranging from pure development cycles, shown in

Figure 1 and 2, to blended ones, shown in Figure 3 and 4.
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4 “Mole” Verification Practices Applied

4.1 Data Stream, Protocol Description and Protocol Specification

The Sensor Board protocol is asynchronous and packet-based; the packets have a fixed

length. The protocol is separated in multiple layers to ease its implementation in the driver.

The layers identified are the following: (1) packet byte structure: the internal representa-

tion of the packet; (2) packet info structure: the meaningful fields contained in the packets;

(3) single packet rules: the content acceptable values, and how they influence each other;

(4) packet sequence rules: the content acceptable values, based on values of previously re-

ceived packets; (5) packet input output asynchronous rules: the content acceptable values

and reaction constraints on output packets, based on previously transmitted input packets.

The first three layers are analyzed in the case study, considering only the output sensor

data packet.

The packet byte and info structure of the output sensor data packet reflect the board ca-

pabilities and built in sensors. A single packet has to accommodate various types of data:

fast, medium and slow data rate streams, together with metadata describing the sensors

and the board state. The internal structure of the packet is strictly fixed.

A packet is internally composed by 82 frames. A frame accommodates data from the

fast and medium data rate streams (4 fast data rate stream and 8 medium data rate stream

channels) and theirs associated metadata.

The single packet rules delimit the boundaries of the values obtainable from the packet:

each defined sensor represented in the packet, as well as the metadata describing the

SenseTile Sensor Board and the packet and frame contents, are constrained by a range

of acceptable values. There are also rules affecting more than one value, and rules speci-

fying a correct sequence of frames.

The specifications of the protocol are distilled and refined incrementally. The protocol is

divided in various (thin) layers, and each of the layer is verified with a different approach:

some of the layers are specified formally.

Packet byte structure specification Verification is obtained through an handmade test

suite, composed of unit and integration tests; the tests specifies the behaviours of the im-

plementation, which is capable of recognizing the proper packet structure in a binary data

stream. The packet byte structure is not stable: the internal byte structure changed several

times during development. Therefore, packet byte structure is informally specified.

The test suites are used to verify board simulators (low-level), but they cannot be used to

check properties at runtime. Code and tests are implemented using TDD.

Packet info structure specification Verification is provided by handmade test suite,

JML annotations and generated unit test suite. It has been built starting from handmade

tests only (TDD development cycles). Later on JML annotations have been added in-

crementally, using a mix of “Mole” practices: to move from handmade tests to formal
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specifications, TDF have been initially used; than all the “Mole” practices have been used

according to the artifacts involved.

The test suites are used to verify board simulators (high-level), RAC and JML annotations

are used to check the formally specified properties at runtime. Code and tests have been

initially implemented using TDD, than using all the “Mole” verification practices.

Single packet rules The verification is provided exclusively by the formal specification

with JML language, combined with the generated unit test suite and handmade test suite

to verify the most complex behaviour. It is built starting from JML annotations, supported

by handmade tests when needed.

The test suites are used to verify board simulators (high-level), RAC and JML annotations

are used to check most of the rules at runtime. Code and tests are implemented using both

forms of FDD.

On simulators Simulators are used to test parts of the system minimizing dependencies:

a simulator can be used by upper layers, with no need to provide the functionalities of the

lower layers.

The layer structure is not matched by the corresponding simulators. The driver API is

splitted in two abstraction layers: the general high-level interface, that exposes the main

functionalities of the board and the main contents of the packets, and the lower level imple-

mentation that parses the data streams in and out the board, meant to translate the higher

level instructions and data in properly formed packets. The simulators are built according

to these abstraction layers. The high-level simulator implements the interfaces providing

the methods to deal with an abstracted Sensor Board. The low-level simulator is capable

to rebuild the Sensor Board data streams: the in and out data streams are built exactly as

the sensor board is expected to parse or generate.

4.2 JML Specification Examples

The JML specifications are of varying complexities. Some of them are rather simple,

focusing on constraints that should hold when calling a method (the preconditions) and

constraints on the return value (the very basic form of postconditions). In listing 1 a

simple JML specification example is shown, the method getTemperature is declared

/*@ pure @*/, which means that it cannot change the state of any object (a postcon-

dition); the specification also constraints the return value with a lower and upper bound

(another postcondition).

The complex specifications usually focus on properties regarding the behaviour of a whole

object. In listing 2 a complex invariant example is shown; an invariant is a property main-

tained during the life cycle of an object, more precisely, an invariant is assumed on en-

try and guaranteed on exit of each method of an object. The invariant is constraining

the number of samples for each medium data rate streams: the total number of streams
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Listing 1: A simple specification with JML annotation: simple postconditions.

/∗@

ensures \ r e s u l t >= −880;

ensures \ r e s u l t <= 2047 ;

@∗ /

/∗@ pure @∗ / s h o r t g e t T e m p e r a t u r e ( ) ;

is Frame.ADC_CHANNELS, the total number of frames is FRAMES, the constant con-

straining the number of samples is FRAMES/Frame.ADC_CHANNELS+1, meaning that

the samples contained in a frame are fairly distributed on the channels. The valid samples

are counted parsing all the frames contained in a packet, selecting only the matching valid

samples. A medium data rate stream sample is considered valid when isADCActive()

method returns true.

Listing 2: A complex specification with JML annotation: invariant constraining the number of sam-
ples for medium data rate streams.

/∗@

i n v a r i a n t (

\ f o r a l l i n t c h a n n e l ;

0 <= c h a n n e l &&

c h a n n e l < Frame . ADC CHANNELS; (

\num of i n t i ;

0 <= i &&

i < (FRAMES−1); (

( ge tFrame ( i ) . isADCActive ( ) ) &&

( ge tFrame ( i ) . getADCChannel ( ) == c h a n n e l )

)

) <= (FRAMES / Frame . ADC CHANNELS + 1)

) ;

@∗ /

4.3 Test Cases

The unit test cases that verify the protocol driver are of two kinds: handmade unit tests and

automatically generated unit tests based on JML specifications; they are complementary

and built to be used together.

The test effectiveness is evaluated for each test suite; the evaluation is carried out in sec-

tion 5. The test effectiveness evaluation considers three elements: effective results on

piloting the real board (quantitative), code coverage (quantitative), development help and

usefulness (qualitative).
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Handmade tests The package structure of the driver is shown in Figure 5: two inde-

pendent packages are defined (Stream and Driver). The packages are abstract, that is,

they mainly contain abstractions; in Java language this is translated into a package which

contains mainly abstract classes or interfaces. The dependency between the two abstract

packages is not direct, it is realized through an implementation (StreamDriver). This

is needed to maintain a high decoupling of the packages, and is the result of applying the

dependency inversion principle [Mar96].

package Structure Main[ ]

SyntheticSimulatorStream SyntheticSimulatorDriverFileSimulatorStream FileSimulatorDriver

SimulatorStream SimulatorDriverStreamDriverBoardStream

Stream Driver

<<use>>

Figure 5: Main packages class diagram.

The test package structure, shown in Figure 6, reflects and mimics the code structure;

the tests for an abstract package are abstract, and implemented by the package that tests

a corresponding system implementation. This is a well known test pattern (the Abstract

Test Pattern [Tho04]) used to test that the contracts defined in the abstractions are re-

spected in all the implementations. For instance, package DriverT contains abstract

tests for the abstractions of package Driver, package StreamDriverT inherits the

abstractions of DriverT and makes them concrete, to test the corresponding implementa-

tion StreamDriver; package StreamDriverT also contains stand alone tests written

specifically for the implementation StreamDriver.

Generated tests The JML specifications are used to generate tests. The resulting test

package structure is closely related and reflects the overall package structure; each package

have a corresponding generated test package.

On simulators Simulators are adopted in the handmade test suits as stubs. The resulting

structure is shown in Figure 7. For instance, in Figure 7 the test suite StreamDriverT is

using the SimulatorStream to properly simulate the Stream parsed by StreamDriver,

which is the system under test.

The simulators are adopted in both the handmade and the generated test suite; both the

suites need a proper set of stubs in order to be executed.
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package Structure Test[ ]

SimulatorDriverT

SimulatorDriver

StreamDriverT

StreamDriver

DriverT

UtilityT

Utility

Driver

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 6: Test packages class diagram.

StreamDriverTpackage Structure [ ]

SyntheticSimulatorStream

SimulatorStream

StreamDriverT

StreamDriver

Stream

<<use>>

<<use>>

<<use>>

Figure 7: StreamDriver test packages class diagram: use of the stream simulator.

4.4 Test Cases on the Job

The handmade test suite is composed by over 140 tests, while the generated one is 100

times bigger, totalling over 14000 tests. The large number of generated tests are explained

looking closely at how the generated tests are created by the JML framework. The gen-

erated tests explore the possible input combinations on public methods, combining the

type data ranges that are specified for the test suite (see [CL02c] for more details on how

the JML framework works on generating unit tests). For instance, let’s suppose a method

m(int p1, int p2) must be tested in a class C; the data ranges specified for type

int are {1,2,3} and for type C are the instances {c1,c2,c3,c4}. The JML frame-

work generates 24 = 3× 3× 4 tests, since they are the combination of the data ranges in-

volved (the data range of the parameters and the data range of the type owning the method

under test). Nevertheless, not all the generated tests are executed: a generated test is not
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executed, unless the preconditions of the called method are satisfied. Thus, depending on

the preconditions specified for a method, the number of the generated tests that are ac-

tually executed in the test suite are significantly smaller compared to the total number of

generated tests.

Test suites execution time are different: the handmade test suite, with the runtime assertion

checking active, runs completely in less than one minute on an average PC, while the

generated test suite runs in more than 20 minutes (the rough ratio is 1 : 60). Most of the

time is spent on setting up the suite; only considering the real execution of the tests, with

no suite setup, the execution time reduces to less than 4 minutes (the rough ratio is 1 : 10).

Code coverage metrics (white-box testing) are used to compare in a quantitative way the

effectiveness of the test suites. This is only an indicator, since it is accepted that code

coverage alone cannot asses the quality of a test suite[Mar99, CKV06]. Various coverage

metrics exist, the test suites are analyzed with statement code coverage (one of the sim-

plest types)2: statement coverage reports whether each statement is encountered during

execution. The coverage results are reported in the Table 1.

Table 1: Statement code coverage result, categorized by source package.

hand generated total
Driver 15.9% 6.3% 15.9%

StreamDriver 76% 79.7% 88.5%
SimulatorDriver 64.9% 44.2% 71.2%

Utility 98.1% 74.5% 98.1%

The coverage measures reported in Table 1 do not reach 100%. This is because of the

effects of both non public utility methods, and abstract methods in interfaces. The effect

of non public methods (package Java visibility) is that these methods are taken into account

as public and protected ones are, during code coverage calculation; these methods are not

part of the interface, the system does not depend on them, they are only used in object

initialization or in object setups performed during unit tests. The effect is mainly seen in

low SimulatorDriver code coverage figures: the SimulatorDriver package has

many utility non public methods.

Regarding interfaces, an interface contains no statements, so when an interface method

is called, it is the method of the implementation class used that is actually covered. This

effect is visible in Driver coverage figures: Driver package contains interfaces (that

are not counted at all) and some very simple real class (exceptions) that are not thoroughly

tested.

The statement code coverage figures show that the test suites do a good job on the most

important package, the StreamDriver. The generated test suite reaches almost 80%,

while the handmade tests have only a slightly lower coverage ratio: 76%. The combination

of test suites raise the coverage ratio to 88.5%. This is a clear indication that one test suite

2The tool used to obtain statement code coverage metrics is Emma.
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is not completely overlapping the other: the intuition that test suites are not alternatives, but

have to be used together to achieve the higher benefits, is confirmed. A similar indication

is provided by SimulatorDriver package as well.

The qualitative difference of the two test suites are understood observing how the suites are

built. An handmade unit test usually requires objects initialization, one or more method

calls to the modules under test, and the following assertions to verify the expected state

change on the modules involved. A generated unit test has a more focused and limited

scope: only one method call is performed in each test, therefore it is difficult to explore

complex behaviours. The test suites give their best when used in a combined approach:

the generated test suite, checking simpler and formalized behaviours, and the handmade,

checking the more complex ones, whether formalized or not.

Effectiveness on board delivery The first SenseTile Sensor Board prototype builds

packets with no data, but the packets are built in a way not consistent with the specification.

The board errors are detected by using the driver implementation, the StreamDriver

package.

The second prototype builds packets with values taken from real sensors installed on the

board. The only sensors that are not working are the sensors devoted to the fast rate data

streams (audio sensors). One error needed to be corrected in the driver implementation,

because of a (rare) combinations of conditions not initially covered by the test cases, but

that occasionally showed up during real use.

The second prototype respected the packet byte structure specification, but was not fully

compliant to the packet info structure specification and the single packet rules. It also

randomly generated completely invalid packets when overheated. The formal JML spec-

ifications and the runtime assertion checker correctly identified these errors. 4 protocol

errors regarding the packet info structure specification, and 2 protocol errors regarding the

single packet rules were found, as well as the invalid packets.

5 Retrospective on “Mole” Practices Effectiveness

We believe that “Mole” practices are relatively easy to introduce and use. Many kinds of

projects could benefit from these practices, not only those that have unstable requirements

but also demands for a certain level of formality. Even projects with no requirements for

formal specification at all benefit from these practices, since some system properties are

easy to specify and, through their introduction, there is a corresponding reduction in the

test suite development effort.

The cornerstone of the practices is the formal methodology and its supporting tools, and

the precondition on the tools’ utility is not always easily fulfilled. Methodologies that

require a complete formalization are nearly impossibile to apply. In addition, it is not clear

if a tool suite that does not provide a runtime verification, either via runtime checking or

simulation, can be broadly used succesfully, nor it is clear whether formal methods that are
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not based on the contract paradigm are useful in this context. These are open questions that

will need to be addressed in the future to determine the broad applicability of the “Mole”

practices.

There are no strict rules to determine which of the “Mole” practices to use when facing a

specific problem. Since experience trumps cookbooks, we can only give some advice. We

suggest using TDD if there is no need for any specifications at all, FDD with generated

tests if the specification are not too difficult and execution scenarios are simple enough to

be covered by generated tests, FDD with hand made tests if the scenarios are complex, and

TDF when the specification is complex. We feel that the experience we have gathered is

not yet enogh to distill richer idioms or patterns—such is future work.

Upon reflect, we find that the end result obtained via combining FDD with hand made

tests is remarkable, as it is as natural to work with as TDD. FDD with generated tests is

sometimes annoying because of the time needed to run the full test suite, thus often only

part of the test suite is executed so that the development loops do not take too long. TDF is

great for complex preconditions, but really difficult with postconditions, especially if the

specification is written for existing code. When writing after code, the corresponding test

is not expected to fail, hence the feedback is limited and the contract is often not as strong

as needed. In this specific case, TDF effectiveness is limited.

6 Conclusions

In this paper we focus on a specific set of development challenges with which neither

AMs nor FMs are completely confortable. The challenges are characterized by unstable

requirements combined with artifacts that must be formally specified and verified all while

the developmemnt team is constrained by deadlines that cannot be postponed. We propose

a blend of agile and formal engineering practices, enclosed by an iterative and incremental

development process: the “Mole” development process.

The verification practices described in this paper recreate the fast feedback development

environment we find in Test Driven Development in the presence of both formal and in-

formal artifacts. A total of four practices are presented—two of them are conservative,

following closely the development practices of FMs and AMs, while the other pair are

innovative, blending together elements from both worlds.

The practices have been applied succesfully to develop a driver for a custom embedded

sensor board equipped with board simulators and protocol verifiers. And while the proto-

col and the board specifications were informal and unstable, a working software product

was needed as soon as possible, with incrementally added functionality, and ensuring that

the software and hardware products were linked via the last specifications of the protocol

and the board. “Mole” verification practices enabled us to keep in sync formal specifica-

tions (JML annotations), informal specifications (test suites) and source code through very

fast and short development cycles. We developed handmade test suites and JML annota-

tions, and generated test suites, all of wich succesfully supported the verification of the

software driver and the simulators as well as the hardware board when it was delivered.
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In fact, the resulting system had no flaws, as it worked correctly the very first time it was

plugged in to the prototype hardware.

The practices we describe are general, and are applicable to different development lan-

guages and FMs. One important constraint is on the FM, since it must cope with partial

specifications. Another constraint is on the tools available, which must verify the sys-

tem properties at runtime and partially automate the verification process of the formalized

properties.
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