Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2015

Agile Synchronization between a
Software Product Line and its
Products

Bernhard Rumpe !Christoph Schulze ! Johannes Richenhagen > Axel SchloBer 2

Abstract:

Establishing and maintaining a software product line for a series of similar applications is a complex
and time-intensive process, which can only pay back its cost if the provided software components
achieve a high degree of reuseablity. Furthermore, in many domains, including automotive, stabil-
ity will always be prioritized over reusability. Integrating a set of existing similar but individually
developed products into a reusable product line is often very time-intensive. It is better, but still
time-consuming, to feed the result of a new product back into an already existing software prod-
uct line. Due to resource constraints for the next product, necessary resources are rarely provided.
As a consequence, a product line is often endangered by becoming outdated and thus less usable.
Therefore, the establishment and maintenance of a software product line needs to be supported by
processes and techniques which allow to derive necessary information from running projects with
only minor or ideally non-manual effort. In this paper, an agile and semi-automated process to extract
and maintain a software product line during the parallel evolvement of several products is proposed.
This process is based on PERSIST, an industrially used approach which combines agile techniques
and sustainable, long-term architecture development. At the end of this paper, the current status
and achievements of PERSIST are discussed, already implemented techniques are evaluated in the
context of the automotive powertrain, and further potentials are highlighted.

1 Introduction and Motivation

In the automotive domain, the complexity of software functions and the demanded quality
standards, e.g. CMMI, ISO 26262, are still growing, while in the meantime the expected
release cycles get shorter and shorter [Br06]. In addition, the vehicle starts to turn into a
smart device which is able to interact with its environment and to react autonomously. As
a consequence, further aspects, such as security or privacy, receive a higher prioritization
[PrO7]. Features, e.g. connectivity, which seem to be of no importance in the automotive
domain, may become mandatory for the customer, while main selling points of the past,
e.g. driveability, could switch to secondary priority if not connected to the digital world
properly. In parallel the complexity of the general required functionality of the automotive
powertrain is increased, as more and more standards have to be fulfilled.

' Software Engineering, RWTH Aachen, Ahornstrae 55, 52074 Aachen, http://www.se-rwth.de
2 FEV GmbH, NeuenhofstraBe 181, 52078 Aachen, http://www.fev.com

1687

Bernhard Rumpe et. al.

This up-to-date scenario is a great example for the frequently changing and hardly pre-
dictable demands in today’s automotive industry. Who can ensure that features which are
identified as necessary today will be required in a similar form tomorrow? What is the ad-
equate time frame for long-term strategies in the context of shorter and shorter release pe-
riods? How can already established software structures be connected to new sub-domains
and thereby keep a maximum degree of reusability?

In [RPS14], PERSIST (powertrain control architecture enabling reusable software devel-
opment for intelligent system tailoring) has been established to give first answers to these
questions in the context of an engineering service supplier. This approach introduces agile
methods to be able to react flexibly on requirement changes and to reduce the duration of
one development cycle and project quality risks due to continuous integration. In addition
standards like AUTOSAR and the ISO 25010 have been taken into consideration during
the development of PERSIST to ensure a high degree of quality and to be able to comply to
requested formats in todays automotive industry. PERSIST focuses on small development
cycles in which a small amount of software components are planned, realized and veri-
fied. These components are verifed automatically by the nightly build server mostly. The
approach was successfully applied first in the context of a two-stage turbocharged gaso-
line engine [RPS14]. Based on this experience, further applications have been performed
[VRP15, Ril5].

Nevertheless, the establishment and maintenance of a Software Product Line (SPL) in the
context of the daily work of a supplier has to face several ongoing projects in parallel. Each
of these projects have similar demands, but different customers. Often these customers are
only interested in the development of a product rather than in the establishment of reusable
software components or a complete software product line, at least not in the degree it would
be sufficient for the supplier.

As a consequence, an approach is required which allows the project teams to focus on the
implementation of the required product, while it is possible to continuously establish and
maintain a SPL in parallel with minimized effort. Therefore, it is necessary to further ex-
tend the collaboration between Agile Software Development (ASD) and Software Product
Line Engineering (SPLE), resulting in Agile Software Product Line Engineering (APLE).

In this paper, we propose such an approach based on the already established fundament of
PERSIST. The paper is structured as follows: in Section 2 we give a short overview about
SPLE and ASD to be able to give a more detailed overview of the current status in the
research field of APLE. The section finishes with summarizing metrics which build the
foundation for the proposed approach. Section 3, describes the proposed approach in all
detail, while in Section 4, its application is evaluated. Section 5 summarizes related work
and in Section 6 open points are discussed and future work is derived.

2 Foundations

SPLE [PBLO5] focuses on establishing a reusable platform for a specific domain which
allows to derive several customized products in an efficient manner (Figure 1). The SPLE

1688

Agile Synchronization of Software Product Lines

paradigm divides the development into two separate phases: During the Domain Engi-
neering (DE) phase the most common aspects of the domain are identified and based on
this analysis a software platform is derived. During this step, the commonality and vari-
ability of the product line are defined. One important step is the definition of a reference
architecture which represents the common high-level structure of the product line.

Based on this established platform, domain artifacts are reused and open variation points
are bound to extract a specific product during the Application Engineering (AE) phase
[PBLOS]. To express variability in domain artifacts different annotative, compositional,
and transformational variability modeling approaches have been proposed [Sc12].

A SPL can be established either in a proactive, reactive or extractive manner [Kr02]. The
proactive approach derives the whole product line from scratch, while the reactive ap-
proach derives the product line in an incremental manner. In many cases, the initial product
line is derived from a given set of products, therefore an extraction is performed.

ASD unites a set of methods which are build upon the Agile Manifesto ': priorizing

individuals and interactions, working software, customer collaboration and responding

to change over processes and tools, comprehensive documentation, contract negotiation

and following a plan. This is achieved by performing small development cycles which

are driven by related acceptance criteria. Long-term analysis and development plans are

avoided as frequent changes are expected. SCRUM [Sc04] or extreme Programming [BA04]
are popular software development processes in the context of ASD, while Test Driven De-

velopment (TDD) [Be02] and continuous integration are two of the most common agile

methods [GPMOS].

SPLE and ASD both pursue at the same targets: customer satisfaction and reduced time-to-
market [Di11]. It has already been demonstrated that both approaches are able to achieve
the specified goals [CNO2a, Li04]. In addition, both approaches suggest to manage fre-

! The Agile Manifesto. http://www.agilemanifesto.org

Domain Engineering

B0 e S53 b (H) 4

Requirements Tests Architecture Components

o4 o0 Nl o0

Application N — Artifacts and Variability Model
Application 1 — Artifacts and Variability Model

D - R e) e TEC

Requirements Tests Architecture Components

Application Engineering

Fig. 1: Domain and application engineering (based on [PBL0S5]).

1689

Bernhard Rumpe et. al.

quent requirement changes efficiently [TCO06]. In the context of APLE, it is tried to es-
tablish a hybrid of both approaches. Different researches state conflicts between ASD and
SPLE [MRS10, HF08]: the nature of ASD enforces short development cycles with a short
planning period, while the establishment of a SPL requires the prediction of upcoming
requirements by an intensive requirement analysis phase.

Reducing the long-term investment during the DE phase is one of the main reasons for
combining SPLE and ASD. Enforcing the performance of DE before the AE has been
identified as very cost-intensive and risky [Dil1]. Establishing and maintaining a SPL
leads to significant coordination overhead and slower release cycles [Bo10]. In the context
of frequently changing demands, the threat of losing long-term investments becomes even
more realistic. For a supplier traditionally dealing with frequent change requests from cus-
tomers and with having low interest for long-term investments, these aspects are of even
higher importance. In addition, [Ca08] highlights the importance of an intensive feedback
from AE teams to the DE team. One posibility to avoid long-term integration could be en-
forcing a short-term integration, which would move the effort to smaller but more frequent
system integrations [Bo10].

Very important for an iterative extraction of a product line based on established products is
the necessity to identify the most applicable parts of a product for an extraction. Therefore
it is inevitable to derive related metrics. In [Be10, BRR10], a set of metrics to measure
such an ability is defined. These metrics are based on three levels of component similarity:
first, the components’ names are compared (extrinsically equal) afterwards their interfaces
(syntactically identical) and finally their behavior (semantically identical). While the inter-
face similarity is derived on the basis of ids and signatures only, the behavioral similarity
is evaluated by applying given test sequences. In [BRR10], the metrics have been adapted
to also measure gradual similarities between components. This kind of relationship model
has been applied to identify components which are, to a specific degree, either similar to
all other products, just to one or to none. By applying this model, different signatures are
matched based on their related output only.

3 Application Engineering focused Software Product Line Develop-
ment

Recapitulating the statements from Section 2, a SPL development method is required
which provides essential feedback for DE during AE, but reduces the additional effort
for AE to a minimum. A method which does not require long-term decisions and which
keeps the SPL up-to-date and identifies new potential for reusable components is needed.

In the following section, such a method is described which is shown in Figure 2. The
coloured activities represent activities which are performed by DE, while the white ones
are performed during AE. The main important development artifacts used during this pro-
cess are the reference architecture, project architecture, component specification, test cases
and the component implementation (not shown). In general, the developers from the AE
have access to the reference architecture of the SPL, while the developers from DE have

1690

Agile Synchronization of Software Product Lines

1 Specification of
new component

J
2 Comparison with
reference architecture

Component part [no]
of the reference A
architecture ? [yes]

3 Assign component
to project architecture

6 Comparison with components
of the product line
and other projects

of assignment

‘ 4 Reevaluation

es J& [no]
% Lesl [yes] Found already
Similar existing
candidate [no] component in
8 Variability Identified ? the reference
potential architecture?

analysis

Candidate for
a variable
component ?

[no]

9 Implement
general component

based on

similar component component from scratch

®

Fig. 2: Method for agile software product line development focused on application domain.
(colored = DE activities, white = AE activities)

[7 Implement component

[5 Implement new ‘}

access to all projects and related development artifacts. In addition, each project has a
specific project architecture which is very similar to the reference architecture.

The proposed method follows a component-based AE-first approach: the main item of the
software architecture is a component and any specification for a component is first raised
during AE. A component will only be considered to be redesigned in a more general way,
if it is proven that a corresponding demand is given and a general component is a realis-
tic opportunity within several projects. In addition, AE shall gain most benefit from the
already established product line and components which are currently developed in differ-
ent projects, without being slowed down by the burden of being dependent of generalized
components. Next the steps shown in Figure 2 are described in detail, whereby the order
defined in Figure 2 is followed.

In the first step, a new component is specified (I Specification of new component). This
is done by performing a first draft of the interface with a related functional description.
In addition, its position in the software architecture is estimated. This is done by consid-
ering the reference architecture of the SPL (2 Comparison with reference architecture).
In the context of PERSIST, components are hierarchically arranged in a set of composi-
tions. If a suitable component can be identified, which seems to be similar or identical
to the specified component, the name and location of the component will be adapted to

1691

Bernhard Rumpe et. al.

the reference architecture. This is the first step, where the SPL supports the development
during AE. Complex architectural decisions can often be supported by experiences from
the past (which are stored in the reference architecture). In case the component cannot be
mapped, a specific position in the project’s software architecture needs to be defined (3
Assign component to project architecture).

In general, the introduction of new components (components which are not part of the
current reference architecture) should be avoided, where possible, to reduce the complex-
ity of the reference architecture. In addition, further evaluations of similarities can only
take place efficiently, if components could be mapped to a similar context (name, compo-
sition). Therefore, in a second step the decision made in 3 Assign component to project
architecture, is reevaluated by the DE team to avoid any false negatives (4 Reevaluation of
assignment). Only if both the AE team and DE team cannot map the new component to the
reference architecture, a further similarity analysis will not take place. To reduce the effort
for AE during step 2 Specification of new component the main responsibility to avoid false
negatives lies with the DE team. If the component cannot be matched the complete imple-
mentation will be performed from scratch (5 Implement new component from scratch): no
benefit can be gained from the SPL but the additional effort for the AE team is also small.
Furthermore, the new component is added to the reference architecture after its location
has been agreed on (can also be applied after step 4 Reevaluation of assignment).

If the component specified in the context of the project can be mapped to a component
an extrinsical equality [Be10] regarding the reference architecture can be established. This
connection cannot only be used to compare the component, which is currently under devel-
opment, with general components of the SPL but also to compare it with other individual,
but extrinsical, equal components from different projects.

During such a comparison (6 Comparison with components of the product line and other
projects) the most similar component is derived by the DE team by applying a gradual
version of the identity relationship model [Bel0]:

Wi

A~ (CmC;) m

with W= {s €S [€S, :5s=1Abs =D} (1)

whereby the syntactical interface set S¢; of component c¢; consists of r concrete signa-
tures s = id x Z(N,R,[TYPE],..}) and by : sy — 9({1\1 R,[TYPE],..}) prescribes the
behavior of the signature s [Bel0].

To be able to identify semantical similarities automatically, corresponding test cases need
to be provided, as suggested in [BRR10]. As consequence a TDD is required to derive
similarities as early as possible. If they cannot provided, only structural similarities will
be extracted automatically. A semantical analysis has to be performed by experts, contra-
dicting the general goal to reduce the additional effort for the AE team to a minimum.
In the best case, the similarity is 100%: the whole component can be reused directly, no
additional effort is given. In the worst case, no useful similarity can be identified: the com-
ponent has to be implemented from scratch (5 Implement new component from scratch).

1692

Agile Synchronization of Software Product Lines

If a candidate with a similarity lower than 100% is identified, this candidate can be used
by the AE team to finalize their own specification and the implementation can be based on
the provided development artifacts (7 Implement component based on similar component).
The AE team does not spend any additional effort on implementing a reusable component
which is able to fulfil the requirements of both or more similar components. The identified
similarities are only used to speed up the development during AE.

In a parallel step (8 Variability Potential Analysis) the DE team evaluates if the identi-
fied similarities provide enough potential for a general reusable component. Based on the
amount of similar components and the degree of similarity on structural and semantical
level this decision has to be made (7 Implement component based on similar component).
If the potential is high enough, the DE team will implement a general component which
can then be reused in further projects.

Depending on the actual milestones in the project and the necessary effort to implement
the general component, the AE team could also decide to skip their own individual imple-
mentation and directly apply the general component. Of course this would further reduce
the effort during AE, but in general it is suggested that the necessary time frame or re-
sources are not available. If corresponding expertise and resources are available, the AE
team could also implement the general component, therefore performing a DE team task.

The proposed steps ensure that the AE team always specifies component which are as
close as possible to the already established reference architecture and related general com-
ponents. In the best case general components can directly be reused. Additionally all
derivations of the reference architecture can automatically be spotted and the degree of
variation evaluated. Therefore the potential degeneration of an established product line
can be observed continuously and a synchronization between product and product line can
be performed iteratively.

4 Evaluation

Since the first application of PERSIST in [RPS14] it has successfully been introduced in
14 different projects (RCP and series development in the context of the automotive power
train) . The proposed approach could in part be established at the FEV GmbH. Based on
PERSIST which provides a set of standards regarding component and datatype definitions
it has already been possible to evaluate potentials and necessary improvements. The de-
scribed activities are just an extension of PERSIST, no costly adaption of the established
process are necessary.

Activities 2, 3, 4 (and of course 1 and 5) are already well established, while for activity 6
and 8 the necessary automatization to efficienty perform these steps is currently missing
(see Figure 2). General components, which are used in several projects, have already been
established, but always based on intensive manual reviews or during a proactive approach.
The possibility to investigate a given reference architecture during the specification of a
new component is not noticed as an additional effort. Instead the reference architecture
provides helpful information to perform architectural decisions.

1693

Bernhard Rumpe et. al.

No extrinsical

N .
2 extrinsical match (57 %)

matches (28%)

140

120

100 +

80 +—

2 extrinsical
60 +— matches (15 %)

40

20— —

SRR N N .

1 2 3 4 5 6 7 8 9 0 11 12 13 14

Fig. 3: Amount of components with n extrinsically identical components in several projects.

The comparison made in activity 4 is supported by a nightly build script which compares
the different project architectures with the reference architecture. If a component cannot
be extrinsically mapped to the reference architecture, a corresponding report will be gen-
erated. Based on this report, the DE team can reevaluate the architectural decision and
inform the corresponding project, if necessary. This way, the reference architecture can
semiautomatically be synchronized. Necessary time-intensive discussions to identify the
right location for a new component could not be reduced, but the effort to spot potential de-
viations has been significantly minimized. Furthermore, it can be evaluated automatically
how often a component of the reference architecture occurs in the different projects (how
often an extrinsically identical component is given). This information provides the access
point for further structural and semantical evaluations (Activity 6). In addition it provides
a first rough analysis of potential reuse and a good starting point for every implementation
performed by the AE team.

The results of the extrinsical comparison are shown in Figure 3. In the current status the
reference architecture consists of 219 components, whereas 125 (57%) components have
no extrisincally equal match. 94 (43%) components of the reference architecture are part
of more than one project and 61 (28%) of these components are also part of at least three
projects. To check the feasibility of the relationship model proposed in [Bel0], all com-
ponents which occur at least in 5 projects have been evaluated regarding their structural
similarities. In most of cases, none or very small structural similarities could be identified.
A comparison based on the concrete signature, as defined in [Bel0], appears not to be
sufficient. In many cases, the signatures are not identical but still very similar. During the
manual reviews of the components interfaces, many signatures could be identified which
only differed in their specific representation: often only different units, similar ranges or

1694

Agile Synchronization of Software Product Lines

other levels of abstractions result in changed signal names. In addition a manual analysis
of different interfaces has been identified as very time-intensive and still error-prone.

5 Related Work

In a reactive manner Salion developed an initial set of systems to derive commonalities
and identify variabilities [CNO2b] in a second step. This case study already provides first
input on a possible collaboration of ASD and SPLE: variable requirements have often
been realized by custom solutions instead of generic components [MRS10]. Refactorings
have been performed selectively, only smaller adaption on the product line scope, instead
of larger changes are performed [MRS10]. In addition, clone detection has been used to
identify candidates for an extraction. Still these clone detection mechanisms are not used
to identity reuseability potentials during the AE phase.

[Zh11] describes an incremental and iterative reengineering approach which focuses on a
component-wise establishment of a product line. This idea is based on a suggestion from
[SV02] which proposed to either establish a product line as a whole or component-wise.
In [Zh11], based on the developer’s expertise, components with a high level of variability
and expected intensive maintenance or adaption effort are selected first to be integrated
into the SPL. By comparing the maturity level and the degree of similarity of same com-
ponents in other projects, the reference component can be identified. The approach has
been applied in a specific project in which a product line based on 5 products was estab-
lished. During the incremental establishment of the product line the integration effort and
faults report trend significantly decreased, which resulted in positive accumulated profit
after the second product had been derived. In comparison to the provided approach no ex-
plicit metrics have been defined to measure similarities between components or to analyze
the strategical importance for the SPL. Therefore a possible automatization of this task
is not discussed. In addition an initial comparison of components through an additional
mapping to the reference architecture at the beginning of the development cycle is not part
of the process. Potentials of reuseability are only identified due to the reengineering of the
software product line. Even component-level automated test-suites are provided to ensure
a proper reengineering, these artifacts are not used for any kind of similarity analysis.

In [Ca06] incremental design [BA04] and the planning game [Hu05] are applied to PULSE-
I, a reuse centric application engineering approach, to complement the benefits of SPLE
and ASD. In a later step the planning game has been adapted to provide feedback be-
tween the domain and the application engineering team [Ca08]. In contrast the proposed
approach focuses on efficient similarity analysis in the AE phase due to agile techniques
like TDD and continious integration. An introduction of the planning game is currently
not considered, but maybe will be applied in the future.

In [GM10, GPMO8], a test-driven reactive SPLE approach is described and evaluated. In
this approach, new variation points are introduced by using the test artifacts as a starting
point. Even though the authors mention in [GPMO08] the possibility of comparing accep-
tance tests to evaluate similarities between given systems and new requirements, this idea
is not evaluated further.

1695

Bernhard Rumpe et. al.

Compositional software product lines as described in [Bo10] allow to move all necessary
coordination overhead to the architecture level: each team decides on its own which new
functionality needs to be implemented and ensures that each new version provides a back-
ward compatibility regarding its interface. While this approach is also architecture-driven,
the identification of reuseability potentials is performed individually and is not supported
by standardized metrics.

In [Rul2, Ru04] a set of agile methods is proposed to define complex systems based on
UML/P, a profile of UML. These methods build a foundation for agile model-driven de-
velopment with focus on flexibility and customer satisfaction [Rul2].

In [Ho12], a reactive and model-driven approach is suggested, which focuses on the appli-
cation of reusability in parallel to the project-driven development. Already existing mod-
ules are optimized stepwise, as the general introduction of a software product line has been
identified as a challenging task.

6 Conclusion

The proposed approach provides the possibility of realizing the project-driven implemen-
tation work directly in the project (AE) without loosing the benefits of a corresponding
software product line. Each project team can benefit from the established reference archi-
tecture to speed up architectural decisions, while the similarity analysis performed during
DE can provide additional foundations for the actual implementation. In the long-term,
general components can be derived whose reusability potential have been proven through
several projects. Furthermore the Activity 4 Reevaluation of assignment can be fully or
semi automated, if adequate information is provided. More complex evaluations for the
activities 6 Comparison with components of the product line and other projects and 8
Variability potential analysis are currently not automated and require some improvements
regarding their granularity to establish a quality similar to a manual review. Hence, a more
detailed relationship model and an automated evaluation of semantical similarities based
on test cases is planned for the future. Regarding the current status the potential of the sug-
gested approach could not be evaluated totally, but necessary additional modifications are
currently developed to be able to perform a more detailed analysis in the future. Moreover,
it is necessary to provide the AE team all already established data, such as signals, compo-
nent definitions or nightly build reports, in an adequate and stable manner to increase the
acceptance of the product line. Therefore, it is planned to foster PERSIST with a database
supporting signal and model management.

References

[BAO4] Beck, Kent; Andres, Cynthia: Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2nd edition, November 2004.

[Be02] Beck, Kent: Test-Driven Development: By Example. Addison-Wesley Professional, 1
edition, November 2002.

1696

Agile Synchronization of Software Product Lines

[Bel0]

[Bo10]

[Br06]

[BRR10]

[Ca06]

[Ca08]

[CNO2a]

[CNO2b]

[Dil1]

[GM10]

[GPMO8]

[HFO08]

[Hol2]

[Hu05]

[Kr02]

Berger, Christian; Rendel, Holger; Rumpe, Bernhard; Busse, Carsten; Jablonski,
Thorsten; Wolf, Fabian: Product Line Metrics for Legacy Software in Practice. In: Pro-
ceedings of the 14th International Software Product Line Conference (SPLC 2010). vol-
ume 2, 2010.

Bosch, J.: Toward Compositional Software Product Lines. Software, IEEE, 27(3):29-34,
May 2010.

Broy, Manfred: Challenges in Automotive Software Engineering. In: Proceedings of the
28th International Conference on Software Engineering. ICSE 06, ACM, New York, NY,
USA, pp. 33-42, 2006.

Berger, Christian; Rendel, Holger; Rumpe, Bernhard: Measuring the Ability to Form a
Product Line from Existing Products. In: Variability Modelling of Software-intensive
Systems (VaMos). 2010.

Carbon, Ralf; Lindvall, Mikael; Muthig, Dirk; Costa, Patricia: Integrating Product Line
Engineering and Agile Methods: Flexible Design Up-front vs. Incremental Design. In:
Workshop on Agile Product Line Engineering. 2006.

Carbon, R.; Knodel, Jens; Muthig, Dirk; Meier, G.: Providing Feedback from Application
to Family Engineering - The Product Line Planning Game at the Testo AG. In: Software
Product Line Conference, 2008. SPLC *08. 12th International. pp. 180-189, Sept 2008.

Clements, P.; Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002.

Clements, Paul; Northrop, Linda: Salion, Inc.: A Software Product Line Case Study.
Technical Report CMU/SEI-2002-TR-038, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 2002.

Diaz, Jessica; Pérez, Jennifer; Alarcén, Pedro P.; Garbajosa, Juan: Agile Product Line
Engineering - A Systematic Literature Review. Software: Practice and Experience,
41(8):921-941, July 2011.

Ghanam, Yaser; Maurer, Frank: Extreme Product Line Engineering - Refactoring for Vari-
ability: A Test-Driven Approach. In (Sillitti, Alberto; Martin, Angela; Wang, Xiaofeng;
Whitworth, Elizabeth, eds): Agile Processes in Software Engineering and Extreme Pro-
gramming, volume 48 of Lecture Notes in Business Information Processing, pp. 43-57.
Springer Berlin Heidelberg, 2010.

Ghanam, Yaser; Park, Shelly; Maurer, Frank: A Test-Driven Approach to Establishing
& Managing Agile Product Lines. In: SPLiT 2008-Fifth International Workshop on
Software Product Line Testing. p. 46, 2008.

Hanssen, Geir K.; Figri, Tor E.: Process Fusion: An Industrial Case Study on Agile Soft-
ware Product Line Engineering. Journal of Systems and Software, 81(6):843-854, June
2008.

Hopp, Christian; Rendel, Holger; Rumpe, Bernhard; Wolf, Fabian: Einfiihrung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel von
Steuergeritesoftware. In: Software Engineering 2012: Fachtagung des GI-Fachbereichs
Softwaretechnik. volume 198 of LNI, Berlin, Deutschland, pp. 181-192, 2012.

Hunt, John: Agile Software Construction. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

Krueger, C.: Eliminating the Adoption Barrier. Software, IEEE, 19(4):29-31, 2002.

1697

Bernhard Rumpe et. al.

[Li04]

[MRS10]

[PBLO5]

[Pr07]

[Ril5]

[RPS14]

[Ru04]

[Rul2]

[Sc04]

[Sc12]

[SV02]

[TCO06]

[VRP15]

[Zh11]

Lindvall, M.; Muthig, Dirk; Dagnino, A.; Wallin, C.; Stupperich, M.; Kiefer, D.; May,
J.; Kahkonen, T.: Agile Software Development in Large Organizations. Computer,
37(12):26-34, Dec 2004.

Mohan, Kannan; Ramesh, Balasubramaniam; Sugumaran, Vijayan: Integrating Software
Product Line Engineering and Agile Development. Software, IEEE, 27(3):48-55, 2010.

Pohl, Klaus; Bockle, Giinter; Linden, Frank J. van der: Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NIJ, USA, 2005.

Pretschner, Alexander; Broy, Manfred; Kriiger, Ingolf H.; Stauner, Thomas: Software
Engineering for Automotive Systems: A Roadmap. In: 2007 Future of Software Engi-
neering. FOSE ’07, IEEE Computer Society, Washington, DC, USA, pp. 55-71, 2007.

Richenhagen, Johannes; Venkitachalam, Hariharan; SchloBer, Axel; Pischinger, Stefan:
PERSIST — a scalable software architecture for the control of various automotive hybrid
topologies. Technical report, SAE Technical Paper, 2015.

Richenhagen, Johannes; Pischinger, Stefan; SchloBer, Axel: PERSIST—A Flexible and
Automatically Verifiable Software Architecture for the Automotive Powertrain. Journal
of Electrical Engineering, 2:108-115, 2014.

Rumpe, Bernhard: Agile Modeling with the UML. In (Wirsing, M.; Knapp, A.; Balsamo,
S., eds): Proceedings of the Radical Innovations of Software and Systems Engineering in
the Future. 9th International Workshop (RISSEF’02). volume 2941 of LNCS, Springer,
Venice, Italy, pp. 297-309, October 2004.

Rumpe, Bernhard: Agile Modellierung mit UML: Codegenerierung, Testfélle, Refactor-
ing. Springer Berlin, 2te edition, Juni 2012.

Schwaber, Ken: Agile Project Management with Scrum. Microsoft Press, Redmond, WA,
USA, 2004.

Schaefer, Ina; Rabiser, Rick; Clarke, Dave; Bettini, Lorenzo; Benavides, David; Botter-
weck, Goetz; Pathak, Animesh; Trujillo, Salvador; Villela, Karina: Software Diversity:
State of the Art and Perspectives. International Journal on Software Tools for Technol-
ogy Transfer, 14(5):477-495, 2012.

Schmid, Klaus; Verlage, Martin: The Economic Impact of Product Line Adoption and
Evolution. IEEE software, 19(4):50-57, 2002.

Tian, Kun; Cooper, Kendra: Agile and Software Product Line Methods: Are They So
Different. In: 1st International Workshop on Agile Product Line Engineering. 2006.

Venkitachalam, Hariharan; Richenhagen, Johannes; Pischinger, Stefan: A generic control
software architecture for Battery Management Systems. Technical report, SAE Technical
Paper, 2015.

Zhang, Gang; Shen, Liwei; Peng, Xin; Xing, Zhenchang; Zhao, Wenyun: Incremental
and Iterative Reengineering Towards Software Product Line: An Industrial Case Study.
In: Software Maintenance (ICSM), 2011 27th IEEE International Conference on. pp.
418-427, Sept 2011.

1698

