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Abstract: Simulation of business process models allows for drawing conclusions on the
performance and costs of business processes before they are implemented or changed.
Requirements for a business process simulation engine are specific to a concrete use
case and a dedicated business domain. In this paper, we focus on the simulation of
clinical pathways in a hospital. We elaborate on the requirements imposed by this
use case in detail and propose an architecture blueprint for a simulation engine. It is
based on annotated BPMN process models and uses timed and colored Petri nets as the
underlying formalism.
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1 Introduction

Business process modeling has proven to offer a successful way for capturing and specifying

processes that are run in order to achieve a certain business goal. Process models support

the understanding of existing processes as well as discussions on them. Moreover, they can

be analyzed in order to find weaknesses and unintended behavior.

Models of intended processes cannot only be used to communicate new procedures but also

for simulations of the new processes’ behaviors. Thereby, the creation and investigation

of these models allows for early (and therefore particularly valuable) conclusions on the

planned processes performance and costs. The same method is used in many engineering

disciplines, such as the construction of a new car. Here, before the actual car is built, several

prototypes capturing only the car’s shape are developed and tested in a wind tunnel.

This paper proposes an architecture blueprint for a business process simulation engine. We

focus on the use case of predicting the performance of clinical pathways that are defined by

BPMN models. These models are supposed to capture relevant execution aspects, whereas

their primary focus is still on human-to-human communication. Therefore, the simulator

has to be integrated with BPMN modeling concepts seamlessly. Hence, our contribution is
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an architecture proposal for a discrete event simulation of annotated BPMN models. To

this end, we leverage timed and colored Petri nets.

The remainder of this paper is structured as follows. Section 2 presents our use case and

derives requirements from it. Then, Section 3 examines existing performance prediction

approaches. Based on these approaches, Section 4 proposes an architecture of a simulation

engine supporting the introduced use case. Finally, Section 5 concludes the paper.

2 Clinical Pathway Simulation Use Case

This section introduces the background of our work. First, Section 2.1 elaborates on our

use case. Second, we derive concrete requirements from the use case in Section 2.2.

2.1 Use Case

In this paper, we focus on the use case of simulation of clinical pathways. A clinical

pathway describes the different steps during the interdisciplinary diagnosis and clinical

treatment of a group of patients suffering from the same illness. Using process modeling

languages such as the BPMN [omg09], clinical pathways can be captured in process models,

e.g. for the purpose of standardization and clinical quality management.

However, there are also other possible applications for clinical pathway models: Transfer-

ring process models from the current structure of an existing state (”as-is”) to the intended

structure of the pathway after a change (”to-be”) can be used to reason over the impact the

change will have, e.g. on patient waiting times, staff workloads, or total treatment costs.

For a simulation, a process analyst creates a set of ”as-is” process models, which in this use

case are BPMN 2.0 process diagrams. The models are to be quantified, i.e. measured or

best educated guesses of activity efforts, cost and gateway probabilities are assigned.

Also, additional simulation parameters such as the frequency of patients arriving or number

of available nurses on a station are specified. Then, simulation is started and execution

statistics are derived. The output should describe the real as-is situation for the selected

group of patients. The procedure can then easily be repeated after some models or part of

them had been changed to a proposed or planned ”to-be” situation. Within the statistics

mentioned, we can now find answers to simulation questions such as the change of average

waiting time of patients in the emergency room or changed resource utilisation.

Simulating a Business Process. As already mentioned, a clinical pathway describes how a

diagnosed patient is given therapy. Therefore, a process model of a clinical pathway consists

of set of tasks and subprocesses as well as decision points and parallel executions. Pools and

lanes can be used to assign roles and responsibilities to the actions that need to be performed

in the course of the patient’s treatment. As many of these actions have to be conducted

repeatedly, e.g. in nursing, loops are often used as well. Figure 1 shows an example of

a clinical pathway model describing heart attack treatment. Due to space limitations, the
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Figure 1: Abstract simplified clinical pathway treating a heart attack (modeled using BPMN)

model is simplified with respect to the number of activities and the distinction between

different roles of hospital staff.

For a simulation of this model, not only the ordering of activities but also some execu-

tion information is relevant. Therefore, the process model is annotated with three basic

performance values: a) Each task holds an average duration. b) For each decision point,

probabilities for the outgoing arcs are specified. c) For loops, an average number of itera-

tions is annotated. These values are captured in Figure 1 informally using text annotations.

Now, for simulating this process model, additional parameters have to be known: a) As the

different activities are executed by members of the hospital staff and each assignee can only

treat one patient at a time, the simulator has to know how many staff members are available

for each lane in the process model. b) It has to be specified how many process instances

are spawned within a certain time frame. In our example, e.g., we could specify that every

day, 8 heart attack patients are brought into the hospital and that there are always 4 staff

members working in the emergency room (ER).

As an output, execution statistics should be collected for different activities and process

instances. Thereby not only aggregated values (such as the mean waiting time for a lysis-

check) but also deviations of average values and peaks are relevant, as they might be

life-threatening. Therefore, the statistic should contain complete execution information

for every activity instance in every process instance. Complete information includes

timestamps of when the engine starts to wait for executing the activity (it may wait for

necessary resources), starts the actual execution, and finishes the execution as well as the

identification of an assignee. These values can the aggregated into information on instance

or activity type level as well as for the single assignees.

Additional Features for Clinical Pathways. Beside the already shown basic features

needed when simulating business process models, our use case also requires five more

advanced features:

1) When simulating a clinical pathway, not only human resources are needed to perform an
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activity, but also materials. There exist two types of materials: Disposable materials such as

bandages or stored blood and reusable materials such as operation rooms or even hospital

beds. Information on these materials has to be annotated to activities or subprocesses in the

process model and it has to be specified how many material units of a certain type exist.

2) As the complexity of treatment might vary from one patient to another, the pure modeling

of average activity durations and loop iterations is not sufficient. Rather, those measures

should be modeled as distributions (e.g., a normal distribution defined by mean value and

variance). Moreover, the duration of an activity adds up from two parts: A set-up time

and an execution time. Therefore, also the beginning of activity set-ups has to occur in the

simulation output.

3) A clinical pathway contains a lot of idle times. In Figure 1, e.g., the daily treatments

could technically all be executed on one single day, which would not help the patient’s

recovery, though. Thus, the single looped activity should be replaced with the looped

subprocess shown in Figure 2. Within this diagram, two timer events are used to express

idle times. The simulator has to understand those timers that are either relative or name

a concrete periodic point in time. Also, the simulation output should distinguish between

waiting times and idle times.

4) The distribution of staff members’ working times and new patient occurrences in a

hospital is not constant. Concerning a day, night shifts have a smaller staff than day shifts;

concerning a week, weekend shifts are smaller than working-day shifts. Also, there exist

diseases that do not occur regularly: For instance, more patients might suffer from a stroke

at the evening than in the morning. Therefore, the simulation parameters should allow for

distributions of these measures rather than average values.

5) As already mentioned, not only the simulation of exactly one model but of several

models is necessary, e.g., to investigate how resources are shared between them. Hereby,

three possible constellations can occur: a) One process is distributed over two or more

diagrams using link events or collapsed subprocesses. b) Two processes (modeled in one or

two diagrams) handle the same case and communicate using messages. c) Two processes

handle different cases and are started independently. For a) and b), the simulator has to

understand BPMN’s different means for linkage and connect the instances accordingly.

Daily Treatment

Daily, 7:00

Ward Round

First
medicat ion

Second
medicat ion

After 6 hours

Figure 2: More concrete definition of the daily treatment (modeled using BPMN)
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2.2 Requirements

For a better evaluation of existing approaches and our architecture proposal, this section

derives concrete requirements from the introduced use case. First, requirements regarding

the modeling environment are given. For our proposal of an architecture for a simulation

engine, we assumed that these requirements are fulfilled by an existing modeling framework.

As the process models used in our context are mainly intended to support human-to-human

communication, we require them to be specified in BPMN. Still, most of the requirements

might also be lifted to other modeling languages such as EPCs.

• REQ M1: Within BPMN 2.0 process diagrams, tasks can be annotated with dis-

tributions of set-up times, execution times (either months, days, hours, minutes or

seconds), and (if looped) number of iterations.

• REQ M2: Arcs can be annotated with execution probabilities.

• REQ M3: Tasks and subprocesses can be annotated with several required material

types (either reusable or disposable).

• REQ M4: Link events, message and signal events and collapsed subprocesses can

identify elements within other diagrams.

• REQ M5: Timer events can express relative and periodic points in time.

The simulation engine itself has to meet the following requirements:

• REQ I1: The engine has to know execution semantics for the following BPMN 2.0

element types: Task, collapsed subprocess, expanded subprocess, AND gateway,

XOR gateways, pool, lane, standard events, message events, link events, timer events,

sequence flow, message flow. Also, semantics for modeling constructs resulting from

REQ M1 to REQ M5 have to be known.

• REQ I2: For each participant (retrieved from lanes) and each material type (retrieved

from annotations), the number of available entities has to specifiable. Thereby, these

numbers can vary over time and are specified by a distribution either over months,

weeks, days, hours or minutes.

• REQ I3: For each modeled process, the frequency of instance spawns has to be

specifiable, again using a distribution figure, which might be represented as a table.

• REQ I4: A simulation time-frame must be definable.

• REQ O1: Based on inputs derived from REQ I1 to REQ I4, a spreadsheet containing

execution statistics is generated. Thereby, resources and materials can only execute

one activity at a time.

• REQ O2: The report contains the following execution details for each activity in-

stance: tstartWait, tstartSetUp, tstartExecute, tendExecute, as well as the correspond-

ing durations in between, the executing participant and used materials.

• REQ O3: The report also contains, activity instance values aggregated on activity-

type level including average values for durations and queue-sizes, their standard

deviations and peaks of these measures.

• REQ O4: Moreover, these values have to be aggregated for process-instances and on

the process-model level.

• REQ O5: For process participants and materials, the overall workload is aggregated.
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3 Literature and Tool Survey

After introducing a concrete business process simulation use case as well as its requirements,

this section examines existing simulation approaches. Although we focus on scientific

work, the last subsection also investigates existing business process simulation tools.

In [WJI09], the authors distinguish between two basic possibilities that can be applied

in order to estimate (performance-)characteristics of a planned system: On the one hand,

analytical approaches express the behavior of the system as a set of equations. These

equations describe how the system’s state changes and can be solved using a mathematical

calculus. Simulation approaches, on the other hand, enact a system model instead of solving

mathematical equations. Both approaches can of course be applied in the investigation of

any type of system. However, the remainder of this section will concentrate on processes as

systems of concern.

The authors of [KAMH09] try to optimize the assignment of tasks in a military process to

different participants considering their personal abilities. Thereby, they use an analytical

approach as well as a combinational simulation approach. Comparing the two methods,

they show that analytical approaches only provide limited expressiveness, e.g., for complex

control flow structures, while simulation runs consume significantly more time and the

number of needed runs might explode.

The following two subsections give an overview on existing solutions for these two process

performance evaluation approaches and evaluate them against our use case presented in

Section 2.

3.1 Analytical Approaches

The perhaps best known paper in the context of business process analysis is presented

in [MM07]. The authors propose a BPMN extension for capturing execution costs and

branching probabilities for single activities and flows. Moreover, for differently complex

process models, they define different algebraic methods to predict the overall costs for the

process. By decomposing complex models into graphs of more simple fragments, they

cover a wide range of control flow structures. However, the approach can only estimate cost

intervals or average costs, assuming an equal distribution of process instances. Therefore,

neither peaks nor bottlenecks can be investigated.

A similar approach is taken in [GS10] in order to determine the costs of running web

services. Thereby, the authors incorporate the prediction of possible but unknown service

partners based on constraints. Therefore, the service costs are over-estimated. Again, only

average values are regarded in this approach.

With FMC-QE [PKCZ09], there exists a framework for modeling and analysis of process-

oriented IT systems. A system is hereby modeled from three different but connected

perspectives: A request structure, a process structure and a server structure. Then, these

models are evaluated using a calculus that estimates queue sizes, workloads and throughput
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times. As the other analytical approaches, FMC-QE assumes an equal distribution of

requests to the system and covers only steady-state systems. Also, only simple control flow

structures can be supported by the FMC-QE calculus [PFKR10].

Although analytical systems have the advantage of being accurate as well as fast to evaluate,

they cannot be applied in our context as they do not meet all requirements defined in

Section 2.2: Especially the evaluation of non-average input measures (REQ I2, REQ I3)

and the estimation of detailed activity instance data (REQ O2), peaks and bottlenecks

(REQ O3) is not possible. Therefore, the usage of simulation approaches as investigated in

the next subsection should be considered.

3.2 Simulation Approaches

An often used simulation approach are System Dynamics (SD) [Ran80]. SD offers the

modeling of dependencies between system elements in continuous feed-back loops. In

flow diagrams, these dependencies can be quantified using stocks and flows. A simulation

unit enacts such a quantified flow diagram over a certain time-range and thereby tracks the

continuous change of system measures.

Although the approach of SD supports the variation of input measures as well as output

values, it can hardly be applied for the simulation of a business process model. This is due

to the fact that process models abstract from a continuous flow of time and use discrete

points that mark a state change instead (such as the beginning or completion of an activity).

The continuous state changes in SD simulation are not suitable to track those discrete state

changes (as required by REQ O2). Instead, the approach of discrete event simulation (DES)

can be applied as DES follows the same abstraction principles [Swe99].

A good introduction to DES can be found in [WJI09, SB08]. Both papers describe how

DES systems work and which underlying assumptions hold.

In contrast to SD, DES is more process-oriented as it investigates well-defined events that

take place at discrete points in time. Thereby, the occurrence of an event is always related

to other events. The main idea behind DES is to simulate how an entity (or case) runs

through a system of different work steps and thereby changes the system’s state (which is

represented by events). While processing the entity, it might be delayed or queued: A delay

represents that an executed work step consumes time. A queue on the other hand is used if

a resource is necessary for processing an entity but is not available at the current point in

time.

When simulating a DES model, a clock is used to subsequently enact discrete points in

time. Thereby, for each time, all possible state changes are performed and afterwards the

clock value is advanced. In order to optimize this procedure, a calendar (a sorted list of

scheduled events) is used: Every time the processing of an entity has to be delayed, a future

point in time is scheduled for the corresponding state change. Due to that, the clock can

always be advanced to the nearest scheduled event. Then, in the course of handling the

delayed entity, other entities that are queued might become active again.
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In the literature it is proposed to perform not only one but several simulation runs and to

aggregate their results in order to minimize the effects of statistical outliers. During the

execution of a DES run, detailed output statistics can be retrieved that cover all requirements

presented in Section 2.2. Nevertheless, there exists a gap on the input requirements. While

all necessary types of simulation parameter can be set, DES models differ from business

process models as they express a lot of behavior explicitly that is implicitly covered in

business process models. Only events and their relations can be expressed in a DES model.

So, the execution of a certain work step as well as its set-up, resource allocation, and

queuing has to be defined explicitly by a set of interdependent events.

There exist several scientific papers such as [TT07] and [RWD+08] describing the applica-

tion of DES for business process models in an abstract manner. Neither concrete realizations

nor limitations of the approaches are shown; they rather focus on user-perspective tool

descriptions and methodologies.

A concrete integration between DES and business process modeling can be found in [WNW09],

though. The authors propose a DES extension that allows for the modeling of business-

process-model-like activities rather than events in order to express the starting and complet-

ing of a certain work step. However, the approach still requires the explicit definition of

resource allocation and queuing behavior by the usage of either events or activities. As this

paper’s use case aims for an implicit encapsulation of all these features for each task in a

simulated process model, this extension is not suitable to bridge the before mentioned gap

between DES and business process models.

Further, Petri nets [Pet62] can serve as the underlying formalism for DES. Here, the state

of a Petri net (represented by its marking) can only be changed by one atomic action, i.e.,

the firing of a transition. Interpreting that as an event, DES can be implemented, shown, for

instance, in [BvMO08]. Based on these ideas, various tools for the simulation of Petri nets

have been presented, see [DJLN03, JKW07, KLO08]. Still, the question of how annotated

BPMN process diagrams can be transformed into corresponding Petri nets used for DES is

left to be answered.

Although they offer good performance along with exact results, analytical approaches do

not cover the requirement derived from this paper’s use case: This is due to their steady-state

assumption and incompletely covered control flow semantics. SD simulation approaches

are also not suitable in our context, as they cover continuous flows of values rather than

discrete actions. The DES approach on the other hand fulfills all requirements towards the

simulation engine except for a native support of business process modeling constructs. In

the following usage of the DES, this gap has to be bridged either by an extension of DES

concepts or a transformation into common DES concepts.
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3.3 Business Process Simulation Tools

We start our discussion of existing simulation tools with the Savvion Process Modeler by

Progress Software1. The tool is an Eclipse2-based business process modeling software

with simulation capabilities. As modeling notation a small subset of BPMN constructs

and properties is supported. For modeling task durations and required materials extensions

are used. Materials, human resources, and executing systems can be defined globally in

order to be shared by different processes. Using so called dataslots, different processes

can access global variables. However, the communication of different processes or the

linkage of different diagrams for the definition of one process is not possible. Also, there

exists no support for timer events, loops, or expanded subprocesses (all these constructs are

elementary in the modeling of clinical pathways as Section 2 shows).

Savvion’s simulation unit can be started for a set of process models by specifying a

time frame to be simulated and process instantiation frequencies. It is not possible to

specify varying spawn frequencies or staff quantities, though. The simulation itself can be

graphically animated within the selected diagrams.

The second investigated tool is ITP Process Modeler3. It is a Microsoft Visio4 extension

that allows for the modeling and simulation of BPMN diagrams. Although it supports more

modeling constructs than Savvion, ITP comes with a major disadvantage as it only supports

the simulation of one process on one diagram at a time. Therefore, neither the sharing

of resources nor the communication between processes or the distribution of a process

on several diagrams can be simulated. Similar to Savvion, the variation of new process

instances and staff sizes cannot be specified when starting the simulation of a diagram.

4 Architecture Blueprint

Section 3 has shown that DES is a suitable approach for the simulation of clinical pathways

modeled in BPMN as described in Section 2. This section will now propose an architecture

for such a simulation engine by naming and explaining all the engine’s components and

their relations with each others.

As already mentioned, the first big design decision is on how to bridge the gap between

BPMN models with their complex activities but missing formal semantics and DES. One

possibility is to enhance DES by introducing new concepts. This would result in a BPMN

specific DES engine defining the execution semantics by its own implementation. The other

possibility is a transformation into a less complex but more formal notation that could be

handled easily using the DES approach.

The latter possibility does not only offer a better distinction between semantic definition and

process simulation. It also allows for the creation of a generic process simulation engine

1http://web.progress.com/en/savvion/process-modeler.html
2http://www.eclipse.org/modeling
3http://www.itp-commerce.com/products/process-modeler
4http://office.microsoft.com/en-us/visio
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Figure 3: Architecture of the business process simulator (as FMC block diagram)

that could also be used, e.g., for event-driven process chains only by using a different before-

hand transformation. Therefore, this second alternative is taken here: Petri nets [Pet62] will

thereby serve as the underlying formalism for DES as mentioned above.

Figure 3 shows the overall architecture proposed by this paper, which separates notation-

dependent transformations and the generic DES execution. The diagram shows that for

BPMN models, a model checker is run before the models are transformed into Petri nets.

This paper assumes that such a checker already exists in the used modeling environment.

The model checker looks for syntactical and semantical errors that might cause the BPMN

model to be not transformable into a save Petri net. All other components shown in Figure 3,

will be explained in the following paragraphs.

Petri Net Transformer The Petri net transformer is supposed to generate one (or several)

Petri nets out of a set of BPMN models. Thereby, different BPMN processes become part

of the same net if they share resources or communicate with each others.

A single BPMN process can be transformed into a Petri net using the approach by Dijkman

et al. [DDO08]. This approach is taken and extended here. Extensions are necessary in order

to cover a) different execution states of an activity, b) required resources and materials, c)

the existence of subprocesses, d) looping of activities and processes, e) execution durations

and waiting times, f) branching probabilities, g) process links between diagrams, and h)

communication between processes using messages.

Figure 4 shows all additional rules in order to extend Dijkman’s mapping for clinical

pathway BPMN models. Thereby, the concept of a colored Petri net [Jen86] is used in

order to store and query information in tokens which supports the covering of d) and f).

Moreover for solving e), the Petri nets have to contain defined delays. Therefore, also the

concept of timed Petri nets [Ram74] is picked up here: In timed Petri nets, constraints can

be used in order to delay a transition’s firing after it becomes enabled for a certain time. In

Figure 4, this time is denoted by <x> where x might be a function that has to be evaluated

every time the transition becomes enabled by incoming token combinations.

So, in order to simulate a Petri net generated by this transformation, the engine has
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to support colored tokens, time constraints on transitions as well as the four function

rand() (providing a random number between 0 and 1), generateID() (providing an

UUID), eval(d, n) (evaluating a distribution function d based on a number n) and

timeUnitsTo(p) (calculating the duration to a periodic time p).

Time Mapper This utility maps qualified times defined in a process model and the

simulation parameters to time units used by the simulator. According to the requirements

in Section 2.2, time values or time distributions can be either specified in seconds, minutes,

hours, days or months. All these times are transformed into seconds when the Petri net is

build, as the engine’s clock uses the smallest of these units. However, the resulting report

should of course contain time values using the same units as specified in the model.

*2

BPMN Construct PN Construct

*1: reusable materials are handled similar as resources
*2: for collapsed subprocesses accordingly
*3: for start events accordingly

*3

*3

*3

*1

Figure 4: Additional rules that extend BPMN to PN mapping
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< timeUnitsTo
(Monday) >

< 10 min>

< 30 min>< timeUnitsTo(6am) >< timeUnitsTo(8pm) >

(a) (b)

< timeUnitsTo
(Saturday) >

…

token.id = generateID()

token.id = generateID()

Figure 5: Rules for the integration of simulation parameters into the Petri net

For the transformation of periodic times (such as ’every morning at 7am’), the mapper

needs to know when the simulation starts, which is specified in the simulation parameters.

Using this information, a periodic time can be represented using the modulo operator: If a

simulation for example starts at a certain date at midnight, ’every morning at 7am’ can be

expressed by t ≡ (7 · 60 · 60) (mod 24 · 60 · 60).

Simulation Parameter Integrator After transforming the BPMN diagrams into one

or several Petri nets, the simulation parameters need to be integrated. While the time

mapper takes care about the simulation start and completion times, the frequency of process

instantiations as well as the quantity of resources and materials have to be defined. If

resources and materials are specified by constant values, only the specified number of

tokens has to be put onto each shared resource/material place. If they vary over time (e.g.,

to specify different shift sizes), switching constructs have to be introduced.

In Figure 5 (a), a place is shown that represents a resource type with a staff size of three

at day and two at night. A similar approach is taken in order to switch between different

process instantiation frequencies (if specified). Figure 5 (b) shows that examplary for a

process that starts every 10 min on working days and every 30 min on weekends. Please

note, that (due to simplicity) the times within the diagrams have not been mapped to

simulation time units.

Timed Petri Net Engine The generated and enriched Petri net can afterwards be executed

by the engine, which runs as long as the timer component advances the clock. The engine

retrieves scheduled fire events and executes them along with subsequent firings that can be

performed immediately. The firing of transitions that carry a time constraint is scheduled

for a later point a time. During the course of a transition firing, new tokens are produced

based on the incoming tokens and possibly defined transition rules. Also, each firing is

logged. The following code listing shows the engine’s central run() method as well as its

supporting recursive fire() method (all other supporting method are only named):

p u b l i c vo id run ( ) {
whi le ( t i m e r . advanceClock ( ) )

f o r ( F i r e E v e n t e : t ime . g e t S c h e d u l e d E v e n t s ( ) )

f i r e ( e . g e t T r a n s i t i o n ( ) , e . ge tTokens ( ) ) ;

}

20



p r i v a t e void f i r e ( T r a n s i t i o n t r a n s i t i o n , Set<Token> t o k e n s ){
produceNewTokenToMarking ( t r a n s i t i o n , t o k e n s ) ;

removeTokenFromMarking ( t o k e n s ) ; l o g ( t r a n s i t i o n , t o k e n s ) ;

f o r ( P l a c e p : t r a n s i t i o n . g e t O u t g o i n g P l a c e s ( ) )

f o r ( T r a n s i t i o n t : p . g e t O u t g o i n g T r a n s i t i o n s ( ) )

i f ( ( Set<Token> newTokens = i sNewlyEnab led ( t ) ) ! = n u l l ) {
i f ( t . c a n F i r e I m m e d i a t e l y ( ) )

f i r e ( t , newTokens ) ;

e l s e {
long t ime = 0 ;

i f ( t . h a s P e r i o d i c T i m e ( ) )

t ime = t i m e r . t i m e U n i t s T o ( t . g e t P e r i o d i c T i m e ( ) )

e l s e

t ime = t i m e r . g e t C u r r e n t T i m e ( ) + t i m e r . e v a l (

t . g e t D i s t r u t i o n F u n c t i o n ( ) , r a n d o m i z e r . r and ( ) ) ;

t i m e r . s c h e d u l e ( t , newTokens ) ;

}
}

The JAVA code listing shows that firing of a transition only depends on its direct neighbors.

For executing all possible firings at a certain time, not the whole net has to be traversed.

Instead, we consider solely parts directly connected with transitions that are scheduled to

fire at the current point in time. This optimizes the performance of the engine’s algorithm.

Timer As already shown, the timer manages the simulation clock and the calendar of

scheduled events. When requested by the engine, the timer advances the clock (as long as

the simulation completion time is not reached) to the nearest scheduled time and returns

all events associated with it. Moreover, the timer is responsible for the evaluation of

time distribution functions (eval(d, n)) as well as the calculation of the duration to a

periodic point in time (timeUnitsTo(p)).

eval(d, n) expects a function d with a domain of real numbers between 0 and 1. For

an equal distribution between 20 to 100 time units, d can be expressed by d(x) = 20+80x.

Other possibilities for d include normal or exponential distributions but also manually

defined ranges such as

d(x) =

{
30, if x < 0.25

40, if x ≥ 0.25

As some of these functions produce real numbers but time values are represented by discrete

natural numbers, the result of a function call might have to be rounded.

timeUnitsTo(p) expects an periodic time p expressed using the modulo operator and

returns the number of time units between the current time and the next occurrence of

p. If p is defined by t ≡ x (mod y) and c denotes the current time, then we define

timeUnitTo(p) { return modulo(x-c, y); } .

Randomizer This utility simply offers the generation of a random number between 0

and 1 by calling its rand() method. Moreover, it provides a generateID() method,

generating an UUID based on random numbers. For both methods, the component relies on

basic randomizer functionalities included in state-of-the-art programming languages.
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Report Generator After completing the simulation, the report generator creates an Excel

report based on the logged simulation events. Thereby, the logged events need to be

transformed into performance measures on process-model level.

However, the simulation log only contains information about the firing of transitions. For

each firing, the current time, the transition’s ID, and the produced tokens’ IDs are logged.

Within the Excel report, these information need to be aggregated in order to obtain execution

durations on activity-instance level (or event-instance level).

So, for each transition firing it has to be determined to which process instance it belongs and

which activity-state (or event) was represented by the transition. This information can be

encoded using the different IDs logged by the engine. Tokens on control flow places carry

a process instance ID. Transition IDs on the other hand encode the ID of the represented

activity and the state transition within the activity’s lifecycle.

After obtaining data on activity-instance level, it can be aggregated on different levels, for

example for process instances, activity types and process definitions. Moreover they can be

used in measures such as queue sizes and resource workload.

5 Conclusion

In this paper, we proposed an architecture blueprint for a business process simulation

engine. We focused on the use case of simulating clinical pathways in a hospital. Based on

the identified requirements, components of the architecture have been described in detail.

In particular, we discussed how execution relevant annotations of a process model are

considered during the simulation by leveraging timed and colored Petri nets.

As the next step, we plan to implement the simulation engine according to the presented

architecture. Moreover, we plan to conduct a case study in order to evaluate our approach

in a real world setting.
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