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Deep Quality-informed Score Normalization for Privacy-

friendly SpeakerRecognition in unconstrained Environments

Andreas Nautsch , Søren Trads Steen , Christoph Busch1 1,2 1

Abstract: In scenarios that are ambitious to protect sensitive data in compliance with privacy reg-
ulations, conventional score normalization utilizing large proportions of speaker cohort data is not
feasible for existing technology, since the entire cohort data would need to be stored on each mobile
device. Hence, in this work we motivate score normalization utilizing deep neural networks. Con-
sidering unconstrained environments, a quality-informed scheme is proposed, normalizing scores
depending on sample quality estimates in terms of completeness and signal degradation by noise.
Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we
aim at mimicking cohort based score normalization optimizing the Cmin

llr discrimination criterion.

Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled
55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of
Cmin

llr . Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when
conditions comprising lower quality samples are not available during training.

Keywords: speaker recognition, score normalization, unconstrained environments, neural

networks, deep learning

1 Introduction

Accounting for European data privacy regulations [Eu16], resource limitations of mo-

bile operating scenarios, and technological requirements concerning vast signal quality

variations in unconstrained environment speaker recognition, current score normalization

schemes are put to its limits. In this paper, we propose a quality-informed score normal-

ization scheme utilizing cohort data for the purpose of training a neural network in order

to avoid a distribution of biometric data from cohort subjects, substituting conventional

cohort-based score normalization. This study is limited with respect to deeper network

architectures and the sensitivity to unseen quality conditions. Comparative experiments to

conventional normalization schemes are excluded, since we assume their design to be pro-

hibited due to a restrictive interpretation of §9 in EU regulation 2016/679, i.e. cohort data

which is necessary to estimate parameters of zero-norms shall not be distributed. The EU

regulation 2016/679 [Eu16, §9] prohibits the processing of biometric data, if not – among

others – the biometric subject is giving consent, and the processing relates to personal

data which are manifestly made public by the data subject. Hence, the distribution and use

of cohort data related to other individuals than the biometric subject under processing may
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become improper to justify as cohort data would need to be transmitted to the device of

any other biometric user for conducting cohort normalization, especially for data deletion.

This paper is organized as follows: Sec. 2 depicts the related work on speaker recognition

and neural networks. Sec. 3 depicts the proposed normalization scheme. Experimental

evaluations are carried out in Sec. 4, and conclusions are drawn in Sec. 5.

2 Related Work

Recent speaker recognition approaches rely on i-vectors, representing the characteristic

speaker offset from an Universal Background Model (UBM), which models the distribu-

tion of acoustic features, such as Mel-frequency cepstral coefficients [RQD00]. Thereby,

UBM components’ mean vectors are concatenated to a supervector &µUBM.

Speaker supervectors &s are decomposed by a total variability matrix into a lower-dimen-

sional i-vector&i as an offset to the UBM supervector &µUBM [Ke05, De11]. Then, i-vectors

are projected onto a spherical space by whitening transform and length normalization

[GREW11, BBM13]. State-of-the-art i-vector comparators, e.g. Probabilistic Linear Dis-

criminant Analysis (PLDA) [CL14], conduct a likelihood ratio scoring.

2.1 Conventional Score Normalization Methods

State-of-the-art recognition systems [Va16, Br16] utilize score normalization in order to

improve discrimination power on secure operating points by employing statistics from

comparisons of the reference against an independent (cohort) data set, referred to as z-

norm, from comparisons of the probe against a cohort set, referred to as t-norm, and vari-

ations of z- and t-norm, such as the zt-norm, or s-norm, as well as adaptive variations e.g.,

at- [SR05] and as-norm [Cu11]. Exemplary, in [SR05, Ha13], data of 550, 1039 female,

and 435, 680 male speakers is utilized for normalization purposes, respectively, whereas in

[Cu11], solely the usage of 348 female and 273 male voice samples is reported. In mobile

applications, where no data of the biometric subject should leave the device, the cohort

data needs to be present on each mobile device.

2.2 Different Environmental Conditions

Variations in signal quality, i.e. in the probe sample condition, result in different score dis-

tributions per condition [Ma13, MSvL15]. While systems are usually calibrated for known

scenarios and in fixed-condition environments, calibrating systems well among known as

well as unseen conditions is harder, i.e. when facing unconstrained environments.

In this paper, we examine the 55 duration and noise conditions presented in [Na15]. In

[Na15], SNR conditions stem from two noise sources: air conditioner (AC) and crowd

(CROWD) noise. By degenerating voice samples from the I4U file list [Sa13], combined

signal degradation and observation incompleteness (short probe segment duration) effects

are simulated, which are expected to represent the most common conditions, cf. Tab. 1.
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Tab. 1: Label scheme for combined duration and noise conditions, cf. [Na15].

Condition 1 2 3 4 5 6 7 8 9 10 11 . . . 30 31 . . . 55

Duration 5 s 10 s 20 s 40 s full 5 s 10 s . . . full 5 s . . . full

Noise
clean

AC CROWD

SNR 0 dB 5 dB 10 dB 15 dB 20 dB 0 dB . . . 20 dB 0 dB . . . 20 dB

2.3 Estimation of Unified Audio Quality Vectors

For the purpose of estimating quality in speaker recognition, unified audio characteristics

[Fe12] are utilized. Single multivariate Gaussian models Λ j ∼ N (µ j,Σ), j = 1, . . . ,55

are trained in original i-vector space for each quality condition as outlined in Tab. 1. The

models have condition-dependent mean vectors µ j and share a full covariance matrix Σ.

Class-dependent means are estimated using i-vectors from a respective quality condition

and Σ is estimated by pooling all the i-vectors. The resulting vector of posterior probabili-

ties for an i-vector&i represent a condition quality vector (q-vector)&q [Fe12], with entries:

q( j) =
P(&i |Λ j)

∑55
j=1 P(&i |Λ j)

. (1)

2.4 Neural Network schemes

Feed forward neural networks consist of layers of units [Bi06]. An input layer and an

output layer are linked over a number of hidden layers by numerous connections, where

the connections between units of each layer are weighted. In [He15], initial weights are

proposed having a standard deviation of
√

2/nl , with nl being the number of incoming

connections to the unit. In each unit, a linear combination, the response, is constructed

from the outputs of the previous layer’s units. A non-linear activation function is evaluated

on the response to achieve the output, or activation, of the units e.g., the linear recti-

fier, ReLU activation function [LBH15] and the sigmoid function for bounded activations

[Bi06]. Networks are trained to optimize the performance regarding the cost function us-

ing gradient descent, where the Adam algorithm [KB14] and backpropagation [Bi06] can

be employed. As a cost function, the binary cross-entropy function is a measure of the dis-

tance between the distribution of the actual classes and the distribution of the prediction.

In this work, we utilize a single-unit output layer, representing a system’s score. In order to

avoid over-fitting of the training data, different regularization schemes can be employed,

such as weight decay [Bi06], dropout [Sr14], and batch normalization [IS15].

3 Deep Quality-informed Normalization

In order to account for cohort-related data as well as quality information, we propose

to construct the input layer to a feed forward neural network based on the comparison
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score, reference and probe i-vectors&iref,&iprb as well as corresponding q-vectors &qref,&qprb,

cf. Fig. 1, whereas a normalized score between 0 and 1, representing impostor and gen-

uine classes, respectively, is obtained via a single unit output layer with a sigmoid acti-

vation function, yielding rather discriminative than well-calibrated scores. By training the

network on the cohort data set, we assume the network model to comprise cohort and

quality information, whilst achieving anonymity (not only pseudonymization) for the co-

hort speakers. Furthermore, massive data amounts featuring multi-condition quality is not

required to be transferred to each mobile device by the biometric system operator.
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Fig. 1: Proposed deep quality-informed normalization network design with input layer (green), hid-

den layers (red), and output layer score S′. uQ,uQ̄ represent Q-dim. q-vectors, and uI ,uĪ represent

I-dim. i-vectors, respectively.

For the purpose of accounting for linear normalization approaches e.g., linear quality cal-

ibration [Bd11, Fe12, Na16], the first hidden layer of the proposed network employs a

linear activation function f (x) = a+bx. During training, input features are adaptively nor-

malized with respect to the amount of genuine and impostor comparisons. Deeper hidden

layers are non-linear using the ReLU activation function. The weights are initialized by the

scheme proposed in [He15]. Convergence is reached after 3 epochs on a random-selected

20% held-out validation subset, on which the best performing model is chosen. In order

to achieve an effective class balance of equal priors, genuine comparisons are weighted

higher than the impostor comparisons during network training. The network configura-

tion is referred to as (L,U) with a network of a linear layer with U units, followed by L

non-linear layers of U units, cf. Fig. 1.

4 Experimental Set-Up and Analysis

For the purpose of studying the proposed method, first we examine regularization impacts

on a fixed configuration of number of layers and units, finding λ = 10−5 to reduce over-

fitting well, then parameters of the deep neural network with fix regularization parameter

are examined comparing reasonable configurations on the testing set. In order to gain

insights on the robustness of the proposed normalization scheme, a sensitivity analysis is

conducted by excluding poor quality conditions from training the normalization network.

Implementations are based on Python 2.7 with Keras 1.1.1 and Theano 0.9.0.dev1, Mat-

lab 2016b, and the BOSARIS toolkit [Bd11]. The data used is the same as in [Na15]

of the I4U file list for NIST SRE’12 [Sa13]. The dataset consists of 55 different degra-

dations in duration and noise type and level, denoted here as degradation conditions, cf.
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Tab. 1. There are 680 reference i-vectors and 357269 probe i-vectors in the training dataset,

and 723 reference and 388278 probe i-vectors in the test set. The i-vectors are processed

dependent on the noise condition by performing linear discriminant analysis (LDA) to

200 dimensions, within class covariance normalization (WCCN), and length normaliza-

tion [GREW11]. Baseline scores are derived from our recent work [Na15, Na16].

As an application-independent performance metric, we use minimum cost of log-likeli-

hood ratio scores Cmin
llr [BdP08], i.e. the generalized empirical cross-entropy of genuine

and impostor scores, assuming well-calibrated systems in terms of Bayes decisions. The

upper bound of Cmin
llr is determined by the EER of the ROC’s convex hull [Bd11].

4.1 Experimental Analysis: Network Configuration

In order to examine network configurations, we investigate on L = 1,2,4 layers, where

all layers comprise the same amount of hidden units, i.e. U = 50,100,200 units. Tab. 2

compares the different networks on the test set: configuration (1, 50) yields the largest

condition-average Cmin
llr gain over a conventional i-vector / PLDA baseline system of 6.2%

with the lowest standard variation, i.e. with rather stable improvements among all condi-

tions. Configuration (2, 100) yields the second largest gains regarding average and devia-

tion in terms of Cmin
llr , but also regarding pooled-condition performance, where the (2, 50)

network yields the largest gains. Accounting for potential over-fitting, dropout is exam-

ined on (1, 50) and (2, 100) networks with a 20% dropout rate: on average, Cmin
llr grows,

which may occur due to a too high dropout rate. Further investigations are carried out on

the (1, 50) configuration, due its gains on pooled performance.

Tab. 2: Benchmark of relative Cmin
llr changes (in %) to PLDA baseline on the test set regarding

condition averaging (µ), standard deviation (σ ), and pooling (p), and dropout training (DO).
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DO

µ -6.2 1.4 -2.0 -2.1 -5.7 0.8 -2.9 -5.2 -0.9 1.3 4.9

σ 2.4 6.6 3.5 4.3 2.6 4.4 3.1 2.9 3.8 1.6 4.0

p -4.6 0.9 -0.2 -6.6 -6.4 0.4 -0.2 -3.4 0.0 -2.5 7.1

4.2 Robustness Analysis to unseen signal degradation and noise types

For the purpose of examining the robustness of the proposed normalization, training is

conducted with unseen test conditions, i.e. all conditions afflicted with SNR levels ≤ 5 dB

and with durations ≤ 10 s are excluded. Figs. 2a, 2b compare the effects to (1, 50) and

(2, 100) configurations, with and without employing dropout, regarding whether or not the

Cmin
llr performance is not exceeding a ±20% performance band with respect to each con-

dition’s Cmin
llr . In this analysis, the (1, 50) configuration outperforms the (2, 100) in terms
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of coherence stability. Also, employing dropouts sustain coherent and stable performance.

By placing focus on robustness towards noise type rather than low-SNRs, we exclude all

CROWD noise afflicted conditions from training instead: both configurations perform sta-

ble and coherent with slight benefits from conducting dropout training, see Figs. 2c, 2d.
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Fig. 2: Relative Cmin
llr change on test set (in %). Performance by duration and SNR regarding AC

(A) and CROWD (C) noise as well as whether dropout is conducted (DO). Green lines indicate the

conditions excluded from training. Crosses denote relative Cmin
llr changes above ±20%.

4.3 Summary and Discussion

Examining deeper architectures considering non-linear layers, gains compared to the base-

line PLDA performance are observed on average, though not further increasing the single

linear layer performance. Comparatively, the cohort normalization in [Na15] yields up to

8.2% relative gains in Cmin
llr on single conditions. In the robustness analysis, i.e. by exclud-

ing poor quality conditions and the more challenging noise type, the proposed approach

reveals to benefit on good quality conditions, the performance of the (1, 50) configuration

is preserved within a ±20% performance band on unseen poor quality conditions. Con-

trastively, on excluding overlapping speech (CROWD noise) conditions, either (1, 50) and

(2, 100) configurations perform comparatively stable. Thus, the proposed approach bene-

fits rather from training on a broad scale of SNR levels than on more noise types, posing a

challenging scenario due to overlapping biometric features of other subjects.

5 Conclusion

In this study, we introduced a neural network based normalization approach utilizing qual-

ity estimates, suitable for unconstrained environments under data privacy as well as lim-

ited resource concerns regarding the data of cohort speakers. As system operators trans-

mit trained networks to mobile devices instead of cohort data, data privacy is achieved

for cohort subjects, while sustaining comparative discrimination performance. Robustness

analyses show benefits of knowing levels of SNR levels and durations during training over

knowing different noise types of mid / high-SNR levls during training.
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