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Abstract  
Disk capacities and processor performances have increased dramatically ever since. With rising storage space the 
probability of failures gets higher. Reliability of storage systems is achieved by adding extra disks for redundancy, like 
RAID-Systems or separate backup space in general. These systems cover the case when disks fail but do not recognize 
corrupted data in faulty blocks. Especially new storage systems like Solid State Drives are more vulnerable to corrupted 
data as cells are “aging” over time. We propose to add error detection and correction of data to a RAID-system without 
increasing the amount of space needed to store redundancy information compared to the common implementation RAID 
6. To overcome higher computation complexity the implementation uses parallel execution paths available in modern 
Multicore and Multiprocessor systems. 
 

1 Introduction 
A hard disk drive cannot be seen as a reliable and durable 
medium when it comes to storing valuable data. Hard disks 
can fail suddenly by defects in the controller or more often 
in the mechanics of the disk. Therefore several techniques 
have been developed in the past years to overcome 
problems with hard disk failures. The most common 
technique is RAID, where one or more extra disks are used 
for adding redundant information in order to tolerate the 
loss of one or more disks. However data on hard disks can 
get corrupted without a disk failure. This issue has 
dramatically increased since the introduction of solid state 
drives, where it is only a matter of time and usage 
frequency when cells are unable to store data correctly. 
Data on storage drives is checksum protected. Therefore 
the host controller usually gets notified if corrupted errors 
are detected. These “noisy” errors can then be corrected by 
recovering the data from redundant data stored on different 
disks of the storage array. However, a lot of components 
handle the data until it is finally stored in RAM and each 
one can fail without recognition. These failures are also 
called “silent” errors and have already been investigated in 
an experiment. For further information see [3]. Several 
techniques, from hardware to software levels, have been 
investigated to detect and recover corrupted data. The 
disadvantage of these schemes is that additional storage is 
needed for detecting errors and in most cases a new 
storage independent layer is implemented. We propose a 
technique for extending a RAID 6 system to detect and 
correct corrupted data in faulty disk blocks, while using 
the same amount of storage space as the common RAID 6 
system. Our approach provides the same level of data 
reconstruction in case of hard disk losses and allows the 
correction of more combinations of noisy data block 
errors. In addition our system also has the ability to detect 
up to three defect data blocks (silent errors) in a certain 
range and correct it, so the probability of undetected 
corrupted data can be dramatically decreased. RAID 6 uses 
two parity values and can therefore only correct one faulty 
block and only if all disks are working. The system used in 

our proposal offers the capability of correcting single 
blocks in a certain range even after one disk stopped 
working. The proposed technique involves more complex 
computations, based on Reed Solomon codes, than those 
without error detection. Therefore a parallel 
implementation is introduced which is optimized for latest 
multicore and multiprocessor systems. Validation of this 
implementation demonstrates that the error correction 
ability works and that the performance on standard desktop 
computers is sufficient for storage systems using the latest 
disk drives. 
 
The remainder of this paper is structured as follows. 
Section 2 described related work. In Section 3 the 
proposed technique and algorithm are introduced. Section 
4 validates the performance and error correction capability 
of an implementation. Section 5 gives a conclusion and an 
outlook on future work. 

2 Related Work 
RAID (Redundant Array of Inexpensive Disks) is a 
common technique used to increase performance, 
reliability or both. It has been introduced in [6]. Among 
the variety of RAID systems a disk array tolerating the 
failure of two disk losses, called RAID 6 as described in 
[7] has been investigated, which is able to tolerate two disk 
losses with two additional disks using Reed Solomon 
codes. Other techniques followed in order to overcome the 
computation complexity when Reed Solomon codes are 
used: EVENODD [2] and DATUM [1] are only two of 
numerous examples. If too many errors are encountered, a 
Reed Solomon decoder may miscorrect to another code 
word with a certain probability [9], which also constitutes 
a kind of error. To solve the problem of undetected errors, 
systems have been proposed storing separate values for 
checksums like [8] or ZFS of [10] amongst others. The 
proposed technique combines the advantages of both 
approaches, i.e. it is able to detect and correct corrupted 
data and tolerates the loss of two disks without the need of 



extra storage compared to RAID 6. RAID systems [4] and 
Reed Solomon codes [5] have also been accelerated by 
using configurable hardware. While this seems a viable 
option in systems-on-chip and in high performance 
computers like the Cray XD1, our approach targets 
standard personal computers where we cannot expect 
reconfigurable hardware, for which reason we have 
focussed on a software solution. 

3 Concept 
The proposed technique is based on Reed-Solomon 
correction codes like in the RAID 6 system. Like the well 
known RAID it uses two hard disk drives for storing 
redundant data (parity) and is able to recover data in the 
case of the loss of up to two hard disks. Just like in RAID 
6 systems the content of each disk drive is divided into 
equally sized blocks. One row of blocks across all disks in 
an array having the same offset is called a stripe. Two 
blocks of one stripe contain parity information instead of 
data. The parity information is not stored on two specific 
disks. It is spread across all disks, changing the position 
every two stripes, see blue and red blocks in Figure 1. 
Instead of calculating two parity values like in RAID-6 the 
proposed system uses four values P, R, Q and S. The parity 
values are computed using the data across two stripes. 
Figure 1 shows an example of the algorithm for an array of 
five disks. 

 
Figure 1 - Position of parity and data blocks  
 
The algorithm for parity generation is based on the Galois 
Field GF(28)  with generators gn that are multiplied with 
data values of the disks. This enables the reconstruction of 
four data blocks within a set of two stripes, if the position 
of these disks is known. If disks are defect the missing 
blocks are known and can therefore be recovered. 
 
Corrupted data in data blocks can be determined by 
recalculating and comparing parity values. If the parity 
value on disk and the calculated one do not match, up to 
three blocks can be reconstructed. The probability of a 
successful recover depends on the number of blocks that 

have been corrupted and the number of disks. See Section 
4 for more details. There are three different scenarios 
when parity calculations have to be done: Generating 
parity before writing, checking parity after reading and 
recovering data after losing one or two disks. The system 
can be used in a similar way for disk arrays tolerating a 
different number of disk losses than two.  

4 Validation of performance and 
error correction capability 

The proposed algorithm was implemented to be able to 
perform experiments about error correction capability and 
performance. RAID arrays are used to increase storage 
performance and can reach transfer rates at a multiple 
speed of a single disk. Therefore the algorithm for parity 
computation is parallelized and optimized for modern 
multicore systems with high cache capacity. Finite field 
multiplications and divisions are complex operations 
which need large numbers of instructions on x86 
processor architectures. Therefore lookup tables are 
initially generated to speed up those operations on 
constants. In this case 3.3 Kilobytes of tables are required 
to perform a full recovery of four blocks in two stripes 
without the need of multiplications or divisions. The only 
operations left are XOR-computations. After parallel 
implementation the performance of two main operating 
modes has been measured with a quadcore processor 
system1. One typical mode is the computation of the 
parity. Figure 1 shows the performance when using one to 
four processors. The parity consists of four values that 
have to be generated when storing data. After data has 
been read these values can be computed again and 
compared to make sure the data has not changed. This 
process can be accelerated if less than four parity values 
are computed. However, the probability of undetected 
defect blocks will increase. 
 
If one or two disks fail data has to be recovered. If only 
one disk fails data integrity checks can still be done and 
one corrupted block in two stripes can still be corrected. 
Figures 2 and 3 show the performance scaling from one to 
four processors when data of one or two disks is 
recovered. In worst case, after two disks are lost, the 
system provides up to 150 MB/s utilizing one and almost 
600 MB/s using four processors. If one disk is lost the 
speed goes up to 300 MB/s on one and up to 800 MB/s on 
four processor systems. If integrity checking is used some 
overhead has to be added in order to calculate integrity 
checks with the remaining two parity blocks. 
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Figure 2�- Parity computing performance 

 
 

Figure 3�- Data recovery performance 

 
RAID-6 is able to detect two and correct one silent error 
within one stripe. If one disk fails single errors can be 
detected but not corrected. Our solution is able to detect 
up to four and correct up to three silent errors within two 
stripes. If one disk fails two errors can be detected and 
one error can be corrected.  
 
When correcting silent errors the success of a correction 
depends mostly on the number of concurrent errors within 
two stripes and the number of disks in the array. If both 
parameters increase the number of combinations of 
possible corrupted data bytes grows as well. To show the 
capabilities of our system, pseudo random data has been 
generated and parity values computed. In 100.000 test 
cycles one, two and three errors have been simulated on 
pseudo random positions. After that an attempt to 
reconstruct the data has been made. If one or two errors 
were injected, the data has always been constructed 
correctly. Figure 3 shows the capability of corrections 

when three simultaneous errors occur. Triple errors are 
already more likely to be recovered wrongly than 
correctly when eight data drives are used. This is because 
the location of the error is unknown. However, the 
probability of triple errors within two stripes is low and is 
just in case only one byte at the same position within 
three blocks in two stripes of at least two disks got 
corrupted. If more than one byte in a block has been 
corrupted, for example a whole sector, the probability of a 
successful correction can be increased as the same 
combination of predicted erroneous positions can be 
checked when other bytes are recovered.  
 

 
 

Figure 4 - Frequency of wrong error correction 

Compared to RAID-6 our proposal allows the correction 
of more noisy error constellations, too. Within two stripes 
each system allows the correction of a total of up to four 
errors. In our solution four errors can be corrected even if 
all of them are within one stripe. RAID-6 only allows the 
correction of two errors per stripe. Figure 5 shows the 
number of correctable error combinations within two 
stripes for both systems if all disks are running and after 
losing one disk. 
 

 
 
Figure 5�- Correctable error constellations 



5 Conclusions and Future Work 
We introduced a technique which can be used to 
overcome data corruptions on disks, especially on newer 
disk systems like Solid State drives which are more likely 
to fail because of cells wearing out or not being accessed 
for a longer amount of time. Utilizing this RAID 
technology a fast and reliable array of SSDs consuming 
little power can be constructed. The proposed scheme can 
easily be changed tolerating any other number of disk 
failures while being able to detect and correct data 
corruptions. A system tolerating one disk failure has 
already been investigated. By integrating data encryption 
or applying a diffusion filter the ability to detect triple 
errors can be improved to almost 100%. 
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