
RAID Architecture with Correction of Corrupted Data in Faulty Disk
Blocks

Henning Klein, Fujitsu Siemens Computers, Augsburg, Germany, henning.klein@fujitsu-siemens.com
Jörg Keller, Fernuniversität in Hagen, Hagen, Germany, joerg.keller@FernUni-Hagen.de

Abstract
Disk capacities and processor performances have increased dramatically ever since. With rising storage space the
probability of failures gets higher. Reliability of storage systems is achieved by adding extra disks for redundancy, like
RAID-Systems or separate backup space in general. These systems cover the case when disks fail but do not recognize
corrupted data in faulty blocks. Especially new storage systems like Solid State Drives are more vulnerable to corrupted
data as cells are “aging” over time. We propose to add error detection and correction of data to a RAID-system without
increasing the amount of space needed to store redundancy information compared to the common implementation RAID
6. To overcome higher computation complexity the implementation uses parallel execution paths available in modern
Multicore and Multiprocessor systems.

1 Introduction
A hard disk drive cannot be seen as a reliable and durable
medium when it comes to storing valuable data. Hard disks
can fail suddenly by defects in the controller or more often
in the mechanics of the disk. Therefore several techniques
have been developed in the past years to overcome
problems with hard disk failures. The most common
technique is RAID, where one or more extra disks are used
for adding redundant information in order to tolerate the
loss of one or more disks. However data on hard disks can
get corrupted without a disk failure. This issue has
dramatically increased since the introduction of solid state
drives, where it is only a matter of time and usage
frequency when cells are unable to store data correctly.
Data on storage drives is checksum protected. Therefore
the host controller usually gets notified if corrupted errors
are detected. These “noisy” errors can then be corrected by
recovering the data from redundant data stored on different
disks of the storage array. However, a lot of components
handle the data until it is finally stored in RAM and each
one can fail without recognition. These failures are also
called “silent” errors and have already been investigated in
an experiment. For further information see [3]. Several
techniques, from hardware to software levels, have been
investigated to detect and recover corrupted data. The
disadvantage of these schemes is that additional storage is
needed for detecting errors and in most cases a new
storage independent layer is implemented. We propose a
technique for extending a RAID 6 system to detect and
correct corrupted data in faulty disk blocks, while using
the same amount of storage space as the common RAID 6
system. Our approach provides the same level of data
reconstruction in case of hard disk losses and allows the
correction of more combinations of noisy data block
errors. In addition our system also has the ability to detect
up to three defect data blocks (silent errors) in a certain
range and correct it, so the probability of undetected
corrupted data can be dramatically decreased. RAID 6 uses
two parity values and can therefore only correct one faulty
block and only if all disks are working. The system used in

our proposal offers the capability of correcting single
blocks in a certain range even after one disk stopped
working. The proposed technique involves more complex
computations, based on Reed Solomon codes, than those
without error detection. Therefore a parallel
implementation is introduced which is optimized for latest
multicore and multiprocessor systems. Validation of this
implementation demonstrates that the error correction
ability works and that the performance on standard desktop
computers is sufficient for storage systems using the latest
disk drives.

The remainder of this paper is structured as follows.
Section 2 described related work. In Section 3 the
proposed technique and algorithm are introduced. Section
4 validates the performance and error correction capability
of an implementation. Section 5 gives a conclusion and an
outlook on future work.

2 Related Work
RAID (Redundant Array of Inexpensive Disks) is a
common technique used to increase performance,
reliability or both. It has been introduced in [6]. Among
the variety of RAID systems a disk array tolerating the
failure of two disk losses, called RAID 6 as described in
[7] has been investigated, which is able to tolerate two disk
losses with two additional disks using Reed Solomon
codes. Other techniques followed in order to overcome the
computation complexity when Reed Solomon codes are
used: EVENODD [2] and DATUM [1] are only two of
numerous examples. If too many errors are encountered, a
Reed Solomon decoder may miscorrect to another code
word with a certain probability [9], which also constitutes
a kind of error. To solve the problem of undetected errors,
systems have been proposed storing separate values for
checksums like [8] or ZFS of [10] amongst others. The
proposed technique combines the advantages of both
approaches, i.e. it is able to detect and correct corrupted
data and tolerates the loss of two disks without the need of

extra storage compared to RAID 6. RAID systems [4] and
Reed Solomon codes [5] have also been accelerated by
using configurable hardware. While this seems a viable
option in systems-on-chip and in high performance
computers like the Cray XD1, our approach targets
standard personal computers where we cannot expect
reconfigurable hardware, for which reason we have
focussed on a software solution.

3 Concept
The proposed technique is based on Reed-Solomon
correction codes like in the RAID 6 system. Like the well
known RAID it uses two hard disk drives for storing
redundant data (parity) and is able to recover data in the
case of the loss of up to two hard disks. Just like in RAID
6 systems the content of each disk drive is divided into
equally sized blocks. One row of blocks across all disks in
an array having the same offset is called a stripe. Two
blocks of one stripe contain parity information instead of
data. The parity information is not stored on two specific
disks. It is spread across all disks, changing the position
every two stripes, see blue and red blocks in Figure 1.
Instead of calculating two parity values like in RAID-6 the
proposed system uses four values P, R, Q and S. The parity
values are computed using the data across two stripes.
Figure 1 shows an example of the algorithm for an array of
five disks.

Figure 1 - Position of parity and data blocks

The algorithm for parity generation is based on the Galois
Field GF(28) with generators gn that are multiplied with
data values of the disks. This enables the reconstruction of
four data blocks within a set of two stripes, if the position
of these disks is known. If disks are defect the missing
blocks are known and can therefore be recovered.

Corrupted data in data blocks can be determined by
recalculating and comparing parity values. If the parity
value on disk and the calculated one do not match, up to
three blocks can be reconstructed. The probability of a
successful recover depends on the number of blocks that

have been corrupted and the number of disks. See Section
4 for more details. There are three different scenarios
when parity calculations have to be done: Generating
parity before writing, checking parity after reading and
recovering data after losing one or two disks. The system
can be used in a similar way for disk arrays tolerating a
different number of disk losses than two.

4 Validation of performance and
error correction capability

The proposed algorithm was implemented to be able to
perform experiments about error correction capability and
performance. RAID arrays are used to increase storage
performance and can reach transfer rates at a multiple
speed of a single disk. Therefore the algorithm for parity
computation is parallelized and optimized for modern
multicore systems with high cache capacity. Finite field
multiplications and divisions are complex operations
which need large numbers of instructions on x86
processor architectures. Therefore lookup tables are
initially generated to speed up those operations on
constants. In this case 3.3 Kilobytes of tables are required
to perform a full recovery of four blocks in two stripes
without the need of multiplications or divisions. The only
operations left are XOR-computations. After parallel
implementation the performance of two main operating
modes has been measured with a quadcore processor
system1. One typical mode is the computation of the
parity. Figure 1 shows the performance when using one to
four processors. The parity consists of four values that
have to be generated when storing data. After data has
been read these values can be computed again and
compared to make sure the data has not changed. This
process can be accelerated if less than four parity values
are computed. However, the probability of undetected
defect blocks will increase.

If one or two disks fail data has to be recovered. If only
one disk fails data integrity checks can still be done and
one corrupted block in two stripes can still be corrected.
Figures 2 and 3 show the performance scaling from one to
four processors when data of one or two disks is
recovered. In worst case, after two disks are lost, the
system provides up to 150 MB/s utilizing one and almost
600 MB/s using four processors. If one disk is lost the
speed goes up to 300 MB/s on one and up to 800 MB/s on
four processor systems. If integrity checking is used some
overhead has to be added in order to calculate integrity
checks with the remaining two parity blocks.

�������	��
����
	���������	����������������
�����������
����������		����� ���

Figure 2�- Parity computing performance

Figure 3�- Data recovery performance

RAID-6 is able to detect two and correct one silent error
within one stripe. If one disk fails single errors can be
detected but not corrected. Our solution is able to detect
up to four and correct up to three silent errors within two
stripes. If one disk fails two errors can be detected and
one error can be corrected.

When correcting silent errors the success of a correction
depends mostly on the number of concurrent errors within
two stripes and the number of disks in the array. If both
parameters increase the number of combinations of
possible corrupted data bytes grows as well. To show the
capabilities of our system, pseudo random data has been
generated and parity values computed. In 100.000 test
cycles one, two and three errors have been simulated on
pseudo random positions. After that an attempt to
reconstruct the data has been made. If one or two errors
were injected, the data has always been constructed
correctly. Figure 3 shows the capability of corrections

when three simultaneous errors occur. Triple errors are
already more likely to be recovered wrongly than
correctly when eight data drives are used. This is because
the location of the error is unknown. However, the
probability of triple errors within two stripes is low and is
just in case only one byte at the same position within
three blocks in two stripes of at least two disks got
corrupted. If more than one byte in a block has been
corrupted, for example a whole sector, the probability of a
successful correction can be increased as the same
combination of predicted erroneous positions can be
checked when other bytes are recovered.

Figure 4 - Frequency of wrong error correction

Compared to RAID-6 our proposal allows the correction
of more noisy error constellations, too. Within two stripes
each system allows the correction of a total of up to four
errors. In our solution four errors can be corrected even if
all of them are within one stripe. RAID-6 only allows the
correction of two errors per stripe. Figure 5 shows the
number of correctable error combinations within two
stripes for both systems if all disks are running and after
losing one disk.

Figure 5�- Correctable error constellations

5 Conclusions and Future Work
We introduced a technique which can be used to
overcome data corruptions on disks, especially on newer
disk systems like Solid State drives which are more likely
to fail because of cells wearing out or not being accessed
for a longer amount of time. Utilizing this RAID
technology a fast and reliable array of SSDs consuming
little power can be constructed. The proposed scheme can
easily be changed tolerating any other number of disk
failures while being able to detect and correct data
corruptions. A system tolerating one disk failure has
already been investigated. By integrating data encryption
or applying a diffusion filter the ability to detect triple
errors can be improved to almost 100%.

6 Literature

[1] Alvarez, G. A.; Burkhard, W.A. and Cristian, F.:

Tolerating Multiple Failures in RAID Architectures
with Optimal Storage and Uniform Declustering. In
Proc. 24th International Symposium on Computer
Architecture, pp. 62-72, 1997.

[2] Blaum, M., et al.: EVENODD: An optimal scheme for
tolerating double disk failure in RAID architectures.
IEEE Transactions on Computers Vol. 44 No. 2, pp.
192-202, 1995

[3] Bonwick, Jeff; Moore, Bill: ZFS – The last word in
File Systems. [online] http://www.opensolaris.org/os
/community /zfsopensolaris.org/os/community/
zfs/docs/zfs_last.pdf

[4] Gilroy, M.; Irvine, J.: RAID 6 Hardware Acceleration.
In Proc. International Conference on Field
Programmable Logic and Objects, pp. 1-6, 2006

[5] Hampel, Volker; Sobe, Peter; Maehle, Erik:
Experiences with a FPGA-based Reed/Solomon-
encoding coprocessor. Microprocessors &
Microsystems Vol. 32 No. 5-6, pp. 313-320, 2008

[6] Patterson, David A.; Gibson, Garth and Katz, Randy
H.: A Case for Redundant Arrays of Inexpensive
Disks (RAID). In Proc. International Conference on
Management of Data (SIGMOD), pp. 109-116, 1988

[7] Plank, J.: A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software
Practice and Experience Vol. 29 No. 9, pp. 995-1012,
1997

[8] Sivathanu, G.; Wright, C. P. and Zadok, E.: Ensuring
Data Integrity in Storage: Techniques and
Applications. Proc. 2005 ACM workshop on Storage
security and survivability (StorageSS'05), pp. 26-36,
2005

[9] Sofair, Isaac: Probability of Miscorrection for Reed-
Solomon Codes. Proc. International Conference on
Information Technology, Coding and Computing
(ITCC'00), pp. 398-401, 2000

[10] Sun Microsystems: Sun On-Disk Specification.
[Online] http://opensolaris.org/os/community
/zfs/docs/ondiskformat0822.pdf

