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Abstract: Besides its use in the web, the JavaScript programming language has be-
come the basis of some of today’s most important mobile cross-platform development
tools. To enable and simplify debugging in such environments, this paper presents a
novel method for debugging interpreted JavaScript code. The described method uses
source code instrumentation to transform existing JavaScript programs in a way that
makes them debuggable when executed in any standard JavaScript environment.

1 Introduction

In recent years, the number of applications that runs on smartphone operating systems like
iOS or Android, commonly referred to as “apps”, has grown tremendously1. However,
developing such apps is quite complicated, as all common hardware platforms require a
different toolset. To simplify this process, several cross-platform development tools have
been developed recently. While often solving the issue of developing the business logic
and a user interface for multiple platforms in an integrated fashion, no cross-platform
development tool available at the time of writing provides a debugging approach which
is directly integrated into the IDE. But for a high quality software product, it is important
to be able to debug the created code [GHKW08]. Thus, we present a debugger which is
integrated into a cross-platform development environment.

In section 2, we examine the existing work in the area of mobile cross-platform develop-
ment tools. Based on this overview we derive the functional and non-functional require-
ments a debugger for such environments has to fulfill and compare them to the features of
existing JavaScript debuggers. Section 3 describes our debugging approach, as well as the
context of our work. The following section 4 shows the implementation of our concept us-
ing the existing cross-platform mobile development tool AppConKit as a basis. In section
5 we validate our implementation using an independent JavaScript test suite and discuss
the results, before we end with a conclusion in section 6.

1http://www.mobilestatistics.com/mobile-statistics/
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2 Existing Work and Requirements

Mobile Development Tools Examining the current landscape of software development
tools for app development, we can separate them into five main groups as laid out in
[WIM11]:

1. Native development tools from the operating system manufactures, e.g. the An-
droid or iOS SDK. They all allow for on-device debugging [And] [iOS].

2. Cross-compiler tools. They might also allow for debugging, for example Mono-
Touch [Mon]. However, these cross-compiler tools do not allow for direct devel-
opment of apps on multiple platforms - there is still effort involved in porting code
between platforms.

3. Web (HTML5) frameworks like jQuery or Sencha Touch. These frameworks use
a JavaScript debugger in the browser on the developer’s PC to debug apps built
with them. However, they do not provide an integrated debugger that allows for
debugging the created apps directly on a mobile device. [jQu] [Sen]

4. Hybrid app frameworks. These combine native and web technology in one app. A
common framework in that area, PhoneGap [Pho11], also does not provide means
of debugging the apps on the mobile device.

5. Application description languages for cross-platform apps. An app created with
the most prominent example of app description languages, the Appcelerator plat-
form, cannot be debugged at all [App].

Requirements As long as software is written by humans, they will make mistakes lead-
ing to faulty or buggy programs [GHKW08]. These bugs are caused by errors in the source
code, in the software design, and sometimes also by the compiler. The activity of analyz-
ing those faults or bugs is called debugging [Ros96]. As outlined by Rosenberg ([Ros96]),
context is very important for a debugger. To maximize the available context, the debugger
should be integrated into the development environment, as all necessary information is
available there. This has the added benefit of reducing the impact of tool changes .

The functional requirements for a debugger, according to the book The Art of Debugging
with GDB and DDD by N. Matloff and P. Salzman, facilitate The Principle of Confirmation
[MS08, p. 2]. This principle states, that a debugger helps confirming that all assumptions
a programmer makes about his program are really true during runtime. To verify these
assumptions, most debuggers provide the following set of features:

1. control the program flow.

2. inspect the contents of variables.

3. modify the contents of variables.
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Our debugger will be implemented for the JavaScript programming language. JavaScript
is a high-level, dynamic and untyped programming language with support for both object-
oriented and functional programming styles. It is an interpreted language, which derives
its syntax from Java. However, it is not related to Java in any way. [Fla11, p. 1] While
JavaScript was made famous for its use as a scripting language for the web, it can be
embedded into existing applications to add scripting support to them. On all current mobile
operating systems, a powerful JavaScript engine can be run.

Our research shows that the non-functional requirements for an integrated mobile cross-
platform debugger are:

• Integrated User Interface: The UI of the debugger should be integrated into an
existing Integrated Development Environment (IDE) to minimize tool breaks and
maximize the available context.

• Low Response Time: The UI of the debugger should feel responsive and the delay
between firing a command and its response should not be higher than 500 ms on
average, based on the Truthful Debugging principle stated in [Ros96].

• Reliability and Integrity: It should follow the basic principles of a debugger
(Heisenberg Principle, Truthful Debugging, Context is the Torch in a Dark Cave) as
described in How Debuggers Work: Algorithms, Data Structures, and Architecture
[Ros96] .

• Maintainability and Extensibility: Its design and protocols should be well defined
to allow future extensions.

• Interoperability: We can not make assumptions or changes in the runtime envi-
ronment (JavaScript engine) that will run the code to support debugging. Hence
debugging has to be supported with any JavaScript engine.

While the functional requirements are the basic requirements for every modern debugger
for high-level languages, the non-functional requirements are specialized for the use case
of debugging cross-platform applications.

Existing Debuggers There are several known solutions for debugging JavaScript like
the Mozilla Rhino debugger [Rhi], Firebug [Fir] or the Chrome V8 debugger [Chr]. These
solutions serve their purpose and have proven to work. However, there is one problem:
most of them depend on a specific JavaScript engine. In fact, we found only one solution
that provides the full set of debugging features but (at least in theory) does not depend
on a specific engine: Crossfire [CB11]. But Crossfire requires that the JavaScript engine
running the code implements the Crossfire commands and protocol, which violates the
non-functional requirement of Interoperability. Hence the current situation is illustrated
in figure 2.1. Every JavaScript engine we have looked at comes with its own debugger and
defines its own remote debugging protocol.
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Figure 2.1: Architecture of existing remote debugging solutions for JavaScript.

3 Approach

Proposed Solution As no existing debugger fulfills our requirements, we propose an
alternative solution to the challenge of implementing a platform-independent remote de-
bugging solution for JavaScript. We call it the Universal JavaScript Debugger.

The basic idea behind the Universal JavaScript Debugger is the following: we know, that
there is a JavaScript runtime environment on the debuggee-side2. So, if the debuggee-side
of the debugging solution itself is implemented using JavaScript, the debugger supports
any standard JavaScript engine. This way, we achieve three goals:

1. The solution works with any standard JavaScript engine.

2. There is no need to make changes to an existing JavaScript engine.

3. It can be integrated into an existing IDE.

To achieve this, we modify (instrument) the JavaScript source code before it is sent to the
debuggee. As shown in figure 3.1, using that approach, there is only one debugger and
only one protocol needed to provide debugging capabilities for various existing JavaScript
engines.

Figure 3.1: Architecture of the Universal JavaScript Debugger.

2The program which is being debugged by a debugger is referred to as the debuggee.
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Our solution consists of the following parts:

• A set of source code modification rules on how to modify an existing JavaScript
program to make it debuggable, i.e. to allow for attaching a debugger to the running
program and analyzing its state and behavior.

• An implementation of those rules using a JavaScript parser and code generator.

• A JavaScript library for controlling the program flow and communicating with a
remote debug UI.

• A debug UI based on the Eclipse software development platform for controlling the
debuggee which will be integrated into the AppConDeveloper IDE.

Context The concept and implementation of our debugger is based on the AppConKit, a
commercial cross-platform native app development tool created by Weptun3. We extended
it to allow for debugging directly on the mobile device.

The AppConKit is a framework dedicated to the design and implementation of native
mobile business applications for touchphones and tablets. It currently supports the iOS
operating system from Apple (iPhone and iPad), as well as the Android platform developed
by the Open Handset Alliance, where Google is one of the main contributors.

Supported by a graphical interface, mobile application developers are able to create na-
tive multi-platform mobile applications using a set of ready-to-use software components
provided by the AppConKit. The AppConKit is based on a client-server architecture con-
sisting of the AppConClient and the AppConDeveloper (or the AppConServer after de-
ployment). During development of a mobile application, the AppConClient runs on the
mobile device, while the AppConDeveloper runs on the developer’s machine.

The challenge of developing applications for heterogeneous platforms and devices is
solved by using an abstract platform-independent application description language. This
application description, which is directly and automatically generated from the graphical
representation of the application, is then interpreted by a special runtime on the mobile
device.

In the most recent iteration, the AppConKit has been extended by adding the possibility
to express the app’s business logic using JavaScript code which is directly executed on the
device. The architecture of the AppConKit can be seen in figure 3.2.

3http://www.weptun.de
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Figure 3.2: Architecture of the AppConKit.

4 Implementation

To evaluate the proposed solution, we implemented a prototypical system and tested it to
show that we meet the goals outlined above.

System Architecture The abstract system architecture of the Universal JavaScript De-
bugger is shown in figure 4.1. On the debuggee-side there is a JavaScript engine which
executes the previously instrumented JavaScript code. This instrumented code commu-
nicates with a JavaScript debug library, that also runs on the debuggee-side. This li-
brary exchanges information with a remote JavaScript debug connector located on the
debugger-side. The connector is attached to a controller which is operated by the UI. On
the debugger-side there is also the original unmodified JavaScript code written by the de-
veloper. It is needed to visualize the current state of the program, i.e. the lines where
breakpoints are defined, and the current position where the program is suspended.

Figure 4.1: Abstract system architecture of the Universal JavaScript Debugger.

The actual system architecture can be seen in figure 4.2. The integration of the Universal
JavaScript Debugger into the AppConDeveloper is carried out by extending the Eclipse
JSDT [Ecl] environment.
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Figure 4.2: System architecture of the AppConKit including the integrated JavaScript debugger.

Integration into the AppConKit The AppConKit development environment can be
used in either Debug or Normal mode. Our debugging procedure is only activated in
debug mode.

When using the AppConKit in debug mode, the resulting design as shown in figure 4.2
is basically achieved by combining the designs of figure 3.2 and figure 4.1. We start with
the AppConDeveloper, the Eclipse-based development environment used to implement the
mobile applications. With the AppConDeveloper, the business logic can be implemented
using JavaScript and attached to the mobile application, so that it can be executed on the
AppConClient. However, before the app description is sent to the client, the JavaScript
code is processed and instrumented as shown below. After that it is embedded into the app
description, along with a JavaScript debug library. Upon interpretation of the app descrip-
tion on the debuggee-side, the embedded JavaScript code is extracted and executed within
a JavaScript engine. During execution, the JavaScript debug library communicates with
the Universal JavaScript Debugger within the remote AppConDeveloper via the debug
connection. The AppConDeveloper now has the role of the debugger.

The actual source code modifications were implemented with a JavaScript parser, which
creates an Abstract Syntax Tree (AST) of the program. In the next step, the AST is tra-
versed, and calls into a debug library are inserted. Additionally, in order to allow for
more sophisticated debugging features, certain patterns in the AST are identified and trans-
formed according to a set of rules. In the final step, the modified AST is transformed into
instrumented JavaScript source code by a code generator. We use the Mozilla Rhino envi-
ronment [Moz] as the JavaScript parser and source code generator.

Instrumentation and Code Rewriting Rules We stated that we use source code instru-
mentation and other modifications to add additional statements to the source code. In this
section, we will highlight the rewriting rules used to modify the code for instrumentation.
In the following, we will refer to the original non-modified script as original script, and to
the modified script as instrumented script.
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Using source code instrumentation and other modifications of the original script, we want
to achieve two goals:

1. The instrumented script gathers additional information about its state at runtime.
This information then can be transferred to a remote debugger.

2. The instrumented script can be controlled by a remote debugger. This enables the
implementation of breakpoints and step-by-step execution.

In order to reach these goals, we must be able to monitor and alter the behavior of the
original script at a very fine-grained level. So the purpose of the following source code
modifications is to be able to insert additional function calls at arbitrary locations in the
original script. These additional function calls invoke functions of our JavaScript debug
library, which are used to gather runtime information, and also to change the original
script’s behavior. To achieve this, we need to break up complex constructs in the original
script into a set of more or less atomic operations. Between these atomic operations,
additional statements have to be inserted, which capture the program state before and after
those operations.

The two most important statements we insert are the inclusion of the debug library and
the debug() statement itself. The debug library is used to manage the gathered runtime
information and to communicate with the remote debugger. So the basic step of the source
code modification consists of inserting the debug library at the beginning of the original
script, which makes it globally available. The functions provided by the library are:

• debug() - used by the instrumented script in order to provide runtime information to
the debug library. Additionally, the debug library is able to pause execution of the
instrumented script by not returning from this function.

• push() - used to create a new stack frame and save the associated local variables
whenever a new function is called.

• pop() - used to remove the top most stack frame and inserted whenever a return
statement is found.

Now that the debug library is available, we need to insert a debug() call before every
executed statement. Events can occur at any statement, and as such we must be able to
pause execution at any statement. The formal definition of this transformation rule is very
simple, it is shown in table 1.

Source Pattern Transformation Rule
Statement debug(...);

Statement

Table 1: Source pattern and transformation rule for Inserting Debug Statements rule.

In total, we created 7 rules to cover all atomic operations listed in table 2. With the total
source code instrumentation rule set we were able to cover every use case outlined there.
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5 Validation

Debugger Tests We created test cases to verify that each of the debugger’s functions
works with every JavaScript source construct. Table 2 shows the test matrix, as well as
the final test results. For each row in the test matrix, we implemented a JavaScript func-
tion, which uses the JavaScript source construct to be tested. After that, we executed this
function six times, each time using a different debugger functionality (Step In, Step Over,
Modify Variable, ...).

The test cases were executed using both iOS and Android as a debuggee and with the App-
ConDeveloper as the debugger. This ensures that no platform-specific errors exist, and that
the functional requirements are fulfilled. Additionally, this way also the non-functional re-
quirements Integrated User Interface and Interoperability can be validated.

Debugger Functionality
Set

Break-
point

Step In Step
Over

Step
Out

Inspect
Vari-
able

Modify
Vari-
able

Ja
va

Sc
ri

pt
So

ur
ce

C
on

st
ru

ct

Choice: If Else
Switch Case

Loops: While
Do While

For
For In

For Each In
Special

Statements:
Break

Continue
Return
Throw
With

Exceptions: Try Catch
Functions: Definition

Function
Call

Nested
Function

Calls
Variables: Declaration

Assignment
Data Types: Number

String
Boolean
Object
Array

Function
null

undefined

Table 2: Test matrix and results of debugger related test cases.
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Mozilla JavaScript Test Library To verify that the behavior of the original scripts is
not changed by our source code modifications and hence to validate the non-functional
requirement Reliability and Integrity, we used the Mozilla JavaScript Test Library4. This
test suite was created to test the functionality of the core JavaScript engine. It currently
consists of 5216 test cases which verify the engine’s behavior when executing a JavaScript
program. The test cases itself are written in JavaScript, and they are executed using the
Java Test Framework JUnit5 and Mozilla Rhino as a JavaScript engine. There is a common
JavaScript library used in every test case which provides the basic test infrastructure, e.g.
means of comparing the expected and actual behavior, and raising an exception, if the test
case has failed. The test cases are executed sequentially and upon completion, a test report
is generated, which contains a list of all executed test cases with their status. There are
three states:

1. Passed - expected and actual behavior are the same, everything works.

2. Failed - actual behavior differs from expected behavior, something is wrong.

3. Error - there was an error when executing the test case, e.g. a Java exception raised
by the Mozilla Rhino JavaScript engine.

To be able to use this large test suite to verify the correctness of our code instrumentation
rules, we modified it in the following way:

• When a JavaScript test case is read from file, we process the contents of the file first
using our code instrumentation implementation, before handing it over to the test
executor. This way, all executed code is instrumented JavaScript code.

• As instrumenting the code takes a few seconds, running the whole test suite sequen-
tially can add up to a few hours in total. In order to verify the correctness of changes
to the instrumentation code faster and more often, we further modified the test suite,
so that several test cases are run in parallel. On a quad-core machine with 8 parallel
threads (using hyper-threading) we could reduce the time for running the complete
test suite to less than 45 minutes, which turned out to be an acceptable delay.

To make sure to only discover actual errors within the code instrumentation rules and
implementation, we defined a three tiered test methodology, which allows us to ignore
errors within third-party components, i.e. the JavaScript engine, or the JavaScript parser.

1. Run: execute the original test cases. This reveals all errors within the JavaScript
engine itself. (Test cases: 5216, Passed: 96.3 %, Failed: 3.7 %, Error: 0 %)

2. Run: leave out the failed test cases of the first run. Before executing a test case,
parse the JavaScript code, but don’t modify the resulting AST. Instead, just generate
JavaScript code again and run it. This reveals all errors within the parser and the
code generator we use. (Remaining test cases: 5022, Passed: 90.6 %, Failed: 9.4 %,
Error: 0 %)

4http://www-archive.mozilla.org/js/tests/library.html
5http://www.junit.org/
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3. Run: leave out the failed test cases of the second run. For each remaining test case,
instrument the original test case, and run the instrumented test case using the test
executor. Now we know exactly which test cases failed due to the source code in-
strumentation, and not because of other errors. (Remaining test cases: 4548, Passed:
97.2 %, Failed: 1.7 %, Error: 1.1 %)

Test Results Figure 5.1 shows the results of the three runs in one chart.

Figure 5.1: Test results achieved using the
Mozilla JavaScript Test Library.

Figure 5.2: Detailed analysis of the test cases
which failed due to code instrumentation.

Most of the errors are caused by either the Rhino engine itself, or Rhino’s JavaScript
parser, which we use. A further analysis of the failures revealed that most of the failures
are caused by one of the following reasons:

• Missing dependencies: The test suite contains test cases designed to test function-
ality only available in a browser, such as means of modifying the HTML document
currently displayed in the browser. As these features are not part of a standalone
Rhino instance, all these test cases fail. This is the cause of most of the 194 failures
by the Rhino engine.

• Code equality checks: In JavaScript, functions can be transformed into a String
representation which contains the source code of that particular function. A lot of
test cases make use of that feature to check whether the properties of that function
match the expected content. These checks are very specific. In fact, it is enough to
add an additional whitespace in order for such a test to fail. By using a parser and a
code generator, the resulting source code is slightly different than the original one,
which is the reason why using the Rhino parser alone is enough to make 474 tests
fail. So these test cases can be considered invalid test cases, as they will also fail if
there aren’t any real problems in the source code.

With that knowledge in mind, we further analyzed the remaining 129 failures which were
caused by the instrumented scripts. These are the failures we are interested in, because they
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could be caused by incorrect code instrumentation rules. For our analysis, we assigned the
failures to different categories, as figure 5.2 shows.

• 78 test cases have failed due to code equality checks. These test cases will never
work, as by using source code instrumentation, the source code will always be dif-
ferent than what is expected by the test case.

• 27 test cases have failed due to errors within the JavaScript engine itself: 24 Null
Pointer Exceptions and 3 Stack Overflow Errors within Rhino’s Java code. Until
now, we haven’t identified the exact cause of these errors in Rhino’s source code,
however, they are likely to be fixed in future versions.

• 15 test cases failed due to a Redeclaration Error raised by the JavaScript engine.
This turned out to be a bug in Rhino’s implementation of the eval() function. We
filed a bug report6 for this error, and there is already a fix available.

• 6 test cases failed due to an incorrect behavior of the eval() function in some cases.
There seems to be a problem with global objects defined within an eval() call. We
are still investigating this problem, however, it seems to be an error within Rhino’s
eval() implementation, just like the Redeclaration Error.

• 3 test cases failed due to an incorrect handling of a reserved word by Rhino’s
JavaScript parser.

We were able to either solve every problem which resulted in a failed test case, or to trace
back the problem to a third party component. Table 3 contains a summary of the final test
results. It shows, that all remaining failing tests are caused by one of the following:

• Problems in the JavaScript engine.

• Problems in the JavaScript parser.

• The test procedure, e.g. by test cases which rely on completely unmodified source
code.

Number of
Test Cases

Percentage Result Reason

4419 84.7 % Passed No problems
552 10.6 % Failed Invalid test cases: code equality checks
194 3.7 % Failed Invalid test cases: missing dependencies
51 1 % Failed / Error Problem in Rhino JavaScript engine

Table 3: Summary of the test results achieved using the Mozilla JavaScript Test Library and the
Mozilla Rhino JavaScript engine.

6https://bugzilla.mozilla.org/show_bug.cgi?id=784358
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With these results, we can show that our source code modification rules are correct in
the sense that they preserve the functionality of the instrumented scripts. And given the
sheer number of successful tests, our implemented solution performs well enough to be
used in nearly all practical settings. This means that we have reached the non-functional
requirement Reliability and Integrity.

6 Conclusion

In this paper, we presented a method for device-independent integrated debugging of
JavaScript programs which is based on a mobile cross-platform app development frame-
work. We elicited the important functional and non-functional requirements our solution
has to fulfill. Based on these requirements, we designed a universal JavaScript debugger
and integrated a prototypical implementation into the AppConDeveloper IDE. Using this
solution, we have run extended functional tests to ensure that we meet all requirements.
We also were able to show that our approach could be integrated into an existing IDE
and be used to debug code running on a remote device in the same context as writing or
running it. With this prototypical solution, we have proven that the approach is generally
feasible.

However, our work is not finished yet. We have started to evaluate the system in real-life
scenarios and plan to release it to a wider public in the near future. In this context, several
other studies will be carried out to lead to the final goal of simplifying the development of
integrated mobile apps in the same way that IDEs [KKNS84] did for normal application
development.
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