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Abstract:
Wide area mobile networks facilitate TCP/IP with radio link protocols (RLP) in or-

der to achieve acceptable throughput. Varying channel properties, roaming etc. which
interfere with the TCP retransmission and congestion control mechanisms can be alle-
viated by split connection techniques and performance enhancing proxies (PEP).

However, current split connection techniques and PEP do not sufficiently maintain
end–to–end congestion control and rate control. Flow control and window clamping
techniques, which are often used for this purpose, do not solve but work around the
problem and undermine TCP’s sliding window mechanism.

In this paper we propose the concept of Path Tail Emulation to overcome this weak-
ness. A TCP flow is split at the gateway from the Internet into the mobile network.
The mobile network is then hidden behind an emulated loss free link, the bandwidth
and capacity of which correspond to the mobile network’s properties.

Using Path Tail Emulation, congestion control and acknowledgement pacing is
done exactly the same way as in pure wirebound networks, thus TCP can fully exploit
the available network capacity without suffering from any adverse interaction with
lower layers.

The behaviour of a mobile network behind a PEP using Path Tail Emulation is
reduced to a network which is compliant to the network model used for TCP in wire-
bound networks and therefore can be handled with well known and well proven tech-
niques.

1 Introduction

Internet access using wide area mobile netwoks like GPRS and UMTS (refered
to as ‘mobile networks’ in this paper) is becoming increasingly popular. The typical
situation is shown in figure 1. In this paper, we focus on the scenario where a sender
in the Internet (FH) sends data to a mobile host (MH).

BS is the gateway between the Internet and the mobile network. This simplified
view is sufficient for our discussion. 1

In order to achieve sufficient throughput and to protect the sender from error loss,
mobile networks employ reliable link layer protocols like the Radio Link Protocol
(RLP) [BOW99, Bao96]. However, the use of RLP has adverse consequences for TCP

1Note that curent mobile networks hide user mobility from the Internet. Although MH is allowed to roam
between different radio cells, MH will not change its IP address. In mobile networks this is typically achieved by
‘micromobility’ mechanisms on layer 2. Particularly BS is not related to any particular radio cell but will cover
the whole mobile network. More detailed information on mobile networks can be found in [Wal01].
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Figure 1: The system model

[BOW99], e.g. transport latencies in the mobile network suffer from large and abrupt
fluctuations which make it difficult for the sender to achieve a proper, stable RTT
estimate. In consequence, packet loss may be detected too late or falsely and insuffi-
cient throughput may result [Bao96, GL03]. This difficulty is overcome by connection
splitting and performance enhancing proxies (PEP), which terminate the TCP flow and
acknowledge TCP packets at BS and thus protect the flow from latency variation. BS
in turn ensures proper packet delivery. To maintain proper end–to–end semantices for
the TCP flow, BS does generate acknowledgements only if the TCP flow is in ‘es-
tablished’ state. Particularly when the flow is shut down, acknowledgements are sent
solely by MH. It is thus guaranteed that all data has been delivered to MH once a
sender’s ‘close’ has been properly acknowledged [CKCP03].

However, if TCP datagrams are acknowledged at BS, the end–to–end congestion
control and TCP acknowledgement pacing are broken. If the mobile network happens
to be the bottleneck, congestion at BS and therefore throughput degradation may oc-
cur [BOW99, Bao96, GL03]. The basic problem is that neither the mobile network’s
bandwidth nor the mobile network’s capacity are signaled to the TCP sender in cur-
rent PEP approaches. In fact, current PEP approaches work around this problem with
flow control techniques and window clamping, which do not solve the problem but
undermine TCP’s sliding window mechanism. Refer to section 2 for a more detailed
discussion.

In this paper, we propose the concept of Path Tail Emulation (PTE), which allows
PEP techniques to provide the flow with the mobile network’s bandwidth and capac-
ity and therefore allows the sender to rely on proper congestion control and ACK
pacing. A PEP using PTE does not simply hide the mobile network from the Inter-
net, but covers only its disadvantegeous properties, whereas characteristics needed for
proper pacing and congestion control are provided to the Internet, the flow and the
TCP sender.

Providing the flow with the mobile network’s bandwidth directly refers to the well
proven principle of conservation [Jac88]: The mobile network accepts data at a rate it
can successfully convey to the receiver. The average amount of data on the fly in the
mobile network remains constant. Therefore, proper congestion control is achieved.

Providing the flow with the mobile network’s capacity allows to extend TCP’s
sliding window technique on the whole path, including both the Internet and the mobile
network. Thus, we avoid path underutilization, which may occur as a consequence of
clamping techniques.

PTE fully decouples transport layer and link layer mechanisms. In addition, we do
not abuse awnd 2 as done e.g. by clamping techniques. Note that in TCP flow control

2We use the following abbrevations: awnd: Receiver’s advertised window, cwnd: Congestion Window,
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the sender is throttled, when the receiving application is unable to accept data from
the socket and thus the sender must be stalled.

For the following discussion, we assume the system model shown in figure 1. The
mobile link employs RLP and PEP techniques, hence its packet loss rate, packet cor-
ruption rate, packet duplication rate and packet reordering rate are negligible.

In order to provide the flow with the correct bandwidth, we need an estimate of
the mobile network’s average throughput to be provided by the mobile network’s op-
erator.3 If a smoothened average is used, throughput fluctuations and short time dis-
connections can be dealt with locally by a PEP and hence are totally hidden from the
flow.

Note, that we do not need an explicit estimate of the mobile network’s capacity,
different from the clamping approach presented in [CKCP03]. In pure wirebound TCP,
cwnd yields an estimate of the path’s end–to–end capacity. Using the PTE approach
presented in this paper, cwnd will continue to do so even in a split connection or in
presence of a PEP.

The remainder of this paper is organized as follows. In section 2 we discuss some
related work. Our approach is described in section 3. Some first simulation results are
presented in section 4. Section 5 summarizes our work and gives an overview of our
next steps.

2 Related Work

Current split connection approaches and performance enhancing proxies usually
employ the receiver advertised window (awnd) to achieve proper congestion control.
[BB95, SRWB01] for example rely upon TCP’s flow control mechanism. A modified
version of flow control are clamping approaches. These approaches ‘clamp’ the sender
window by an appropriate value. In [CKCP03] awnd is set to the available buffer
space in the mobile network in order to avoid congestion at BS. The idea of [AHM03]
is to maintain a constant buffer queue at the path bottleneck by restricting the sender’s
window using awnd.

In our opinion, there are some basic shortcomings in using awnd for congestion
control.

1. awnd is typically not constant but may suffer from large fluctuation, especially
when awnd is used for clamping. In [CKCP03] awnd is set to the mobile net-
work’s free capacity, which heavily depends on wireless conditions, because link
layer retransmissions occupy buffer space as well as line capacity. These flucta-
tions are imposed on swnd and thus practically undermine the sliding window
mechanism used in TCP. Note that cwnd is an estimate of the flow’s fair share
of the path capacity and thus should remain rather constant, apart from probing.
If a receiver’s buffer, and therefore awnd, is sufficiently large, swnd equals
cwnd.

2. Another difficulty in [AHM03] is that its setting of awnd violates the require-
ments for TCP receivers as specified by the IETF [Bra89]. Particularly, [Bra89]
specifies the correct window update behaviour for awnd to avoid the ‘Silly Win-
dow Syndrome’.

3. awnd may be zero, e.g. in M-TCP[BS97] this is used to stall the sender in
case of roaming, and therefore a window update becomes necessary. Window
updates are sent unreliably and TCP senders follow a timer backoff scheme when

swnd: Sender’s window, i.e. the minimum of awnd and cwnd
3Mobile networks require quite a lot of monitoring and compensation of path disturbances, e.g. phase shift

due to multipath fading. Therefore it should be possible to provide a througput estimate with reasonable effort.
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window updates must be polled. In consequence, unwanted pauses in the flow
may occur.

4. If the flow experiences the bottleneck in the Internet, there should be no problem
at all. A flow from FH to MH arrives at BS with a rate that the mobile network
can carry. However, clamping approaches like [CKCP03] restrict swnd by set-
ting awnd to the mobile network’s capacity. In flow control approaches like
[BB95, SRWB01], awnd is set to the available buffer space in the receiving
socket. Neither approach considers the capacity available in the Internet. This
may result in the following situations:

(a) cwnd is less than or equal to awnd. In this case, the TCP flow is left alone.
Because by assumption the TCP flow is already restricted to the proper rate,
this is exactly what we want.

(b) awnd is less than cwnd. In that case, a TCP flow’s rate is decreased by BS
although its rate may be carried by the mobile network. In that case, the
mechanism may happen to be malicious.

Note that cwnd can exceed awnd particularly in cases with a long Internet path
with large path capacity. Typically, this is not a lab situation where the ”Internet”
may be represented by one or two LAN segments with only little capacity. How-
ever, in practical situations, e.g. a UMTS subscriber in Berlin wants to download
some material from a server in the United States, the wirebound part of the path
may have much more capacity than the mobile one.

5. Another problem occurs, if the flow experiences the bottleneck in the mobile
network. Let us clearly point out what we try to achieve: The sender shall use
its fair share of path capacity and thus send with its ideal rate. The relation
between rate and cwnd can be roughly described by the well known formula
rate =

cwnd
rtt

. Hence, to have the sender send at the proper rate, the sender’s
window must be set, or clamped respectively, to a value which respects the rtt as
seen by the sender, which is difficult and not supported in current TCP flavours.

In summary, clamping and flow control techniques interfere with TCP’s sliding
window mechanism because the path capacity located in the Internet is not considered.

Some approaches stop the sender during handover [BS97] or in case of a broken
mobile network [GMPG00]. In both cases, the sender is blocked by setting awnd to
zero, which leads to the aforementioned difficulty.

Freeze TCP [GMPG00] attempts to signal bad conditions on the mobile network
to the sender using awnd; in other approaches network conditions are signaled by
BS, using flags or duplicate acknowledgements. One example is the FDA scheme
presented in [HY01]. A basic difficulty in these approaches is to timely slow down
and accelerate the sender. If e.g. the sender is slowed down too early, an unwanted
pause in the flow would result. If the sender is re-accelerated too early, packets may
reach the mobile network although the bad condition is not yet overcome.

With PTE, there is no slow down at all. Instead, varying network conditions are
hidden by a PEP, which in turn emulates a link with a given bandwidth to the Internet.

The ‘ACK Regulator’ presented in [CR02] attempts to overcome problems caused
by delay variation in mobile networks by regulation of ACK datagrams sent from MH
to FH. The key idea is to delay ACK packets and thus to slow down the sender in case
of imminent buffer overflow at BS, when cwnd has not yet reached a certain threshold
QueueLim. Therefore, it is necessary to provide an estimate for cwnd at BS and
to define an appropriate threshold QueueLim. In general, it is difficult for BS to
obtain an estimate for cwnd. The algorithm presented in [CR02] works fine for the
scenario used in [CR02]. However, this algorithm will not hold for the general case.
Particularly, any drop in the Internet, e.g. due to crosstraffic, traffic bursts or queue
management mechanisms as RED would cause the presented mechanism to fail.
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Note, that the PTE approach does not make any assumptions on the Internet. PTE
does not attempt to estimate state variables used at the TCP sender or other state vari-
ables in the Internet. Instead, PTE provides the Internet with information which can
be reliably obtained from the mobile network’s operator.

The very strength of PTE is that PTE does not add any mechanisms to the Inter-
net or to TCP, but mobile networks are fit into TCP’s system model and thus can be
successfully treated by current TCP control mechanisms as well as by future ones.

3 Path Tail Emulation

The basic goal in Path Tail Emulation is to provide the Internet with the bandwidth
and path capacity of the mobile network.

Let us briefly discuss a TCP datagram traveling from FH to MH and the corre-
sponding ACK datagam in an idealized situation. Consider a loss free network segment
between BS and MH with a certain bandwidth bw and constant propagation latency as
depicted in figure 2. For simplicity, we consider a unidirectional flow from FH to MH.

L
L

q

s

Constant delay/
         ACK

TCP

FH
MH

Internet

BS

Propagation Processing

Emulated Path Tail

End−to−End Path

a)

ACK marked with Ls  and
queued for transmission

b)
TCP

Packet is reliably delivered by PEP

Figure 2: Latencies of a TCP packet. The mobile network is modeled as loss free link with a
bandwidth equal to the mobile network’s estimated througput in figure (a). Figure (b) shows the
Path Tail Emulation algorithm. The PEP ensures reliable transmission.

A packet traveling from FH to MH reaches BS at time TTCP and experiences the
queueing latency Lq and the serialization latency Ls. After a constant propagation de-
lay it arrives at MH. We assume the processing latency at MH to be constant (in fact, it
is negligible in many cases). After the processing latency MH issues an ACK datagram
which is then sent back to FH via BS. In unidirectional flows, ACK datagrams carry no
data and thus have a constant length and experience constant serialization latencies at
MH. The propagation latency from MH to BS is constant. The ACK datagram reaches
BS at time TACK = TTCP + Lq + Ls + c, where c summarizes the aforementioned
constant latencies. Ls depends on the actual packet length and the bandwidth bw.

The key idea of Path Tail Emulation is to emulate exactly this behaviour at the
real BS: If a TCP datagram arrives at BS, BS checks whether the datagram can be
accepted for delivery. If the datagram cannot be accepted due to buffer overflow, the
datagram is silently discarded. In consequence, cwnd will be correctly decreased by
normal congestion handling. If the datagram is accepted for delivery, BS sends the
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appropriate acknowledgement to FH after a delay D = Lq + Ls. This results in
correct acknowledgement pacing and increase of cwnd.

D does not contain the constant c, because c does not affect the temporal gaps
between ACK datagrams and therefore has no meaning in acknowledgement pacing.
c corresponds to a constant delay and therefore to a constant part of the path capacity.
Hence, c is taken into account implicitly by the sender in cwnd, which is an estimate
of the path capacity. The serialization latency Ls is calculated from the packet length
and the throughput estimate provided by the network operator. The queueing delay
Lq is calculated implicitly by an ACK queue maintained on BS. When BS accepts a
TCP datagram, it calculates Ls and appends the ACK datagram marked with Ls to the
ACK queue. The ACK queue is served FIFO. When an ACK datagram is taken from
the ACK queue the serving process waits the serialization delay corresponding to this
ACK. Afterwards, the serving process sends the ACK datagram and continues serving
the queue.

4 Simulation

For a first proof of concept, we implemented our algorithm with the network sim-
ulator NS2 [ns2]. We simulated the mobile network as a loss free link without packet
duplication and packet reordering but with large and varying latencies, similar to cur-
rent GPRS and UMTS networks. Our simulation topology is similar to figure 1. The
‘Internet’ is modeled as a single link connecting FH and BS with 100 KBit/s band-
width and 50 ms latency. We chose these parameters to model some reasonable Inter-
net connection as it may appear to an Internet user. For the mobile link we chose a link
bandwidth, i.e. the parameter bw, of 1 MBit/s and a propagation delay of 1 ms.

Link layer recovery and roaming was modeled with a varying recovery with an
average of 0.5 s. In the implementation, this latency was added to the serialization
delay in order to leave the packet order untouched. We used a Pareto distribution to
model varying latencies in the mobile link, because this distribution exhibits values
which are typically rather small but sometimes expose large outliers.

We implemented a trivial PEP to hide varying latencies from the Internet using a
simple buffer mechanism. Newly arrived packets are stored in a buffer which is served
by the mobile network. If the buffer is occupied, incoming packets are discarded. Our
PEP employs the PTE algorithm as presented in this paper. The serialization delay Ls

was calculated according to the aformenetioned link bandwidth 1 MBit/s. The average
recovery latency 0.5 s was added to Ls. This is equivalent to the calculation in section
3 where link bandwidth and average recovery delay appear as one parameter, i.e. the
throughput estimate. The buffer space was set to 1000 packets.

For a first proof of concept, we compared TCP flows with and without proxy. In
the first situation, TCP flows were confronted with the varying latencies which result
from RLP, roaming etc. In the second situation, TCP flows were protected from the
mobile network by our proxy and the PTE mechanism.

Figure 3 shows a typical result. The x-axis shows the simulation time in seconds,
the y-axis shows the amount of data received by the application. In all simulations,
we transfered a fixed amount of data (2 MByte) and thus could compare the duration
of the copy process.

In the diagram, we have a straight line which describes the bandwidth of the mobile
link, which is the bottleneck in our simulations. Thus, it describes the maximum
possible throughput of the mobile network.

The curve with circles shows the amount of received data with PTE switched on.
The curve with triangles shows the amount of received data without PTE. Because the
amount of data transfered is identical, the transfer durations can be compared. In the
simulation depicted in figure 3 the transfer without a proxy enabled needs about 230
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Figure 3: TCP flow with and without PTE

seconds to complete, whereas with proxy enabled the transfer only needs 170 seconds.
In our future work, we will compare the PTE mechanism to other approaches for

congestion control and rate control. The most important ones are flow control and
clamping approaches. Unfortunately, the NS2 does not yet support dynamic awnd,
update window polling and proper avoidance of the Silly Window Syndrome for TCP
receivers. It is thus necessary to add these mechanisms before we can conduct com-
parative simulations.

5 Conclusion and Future Work

We presented the concept of Path Tail Emulation which allows the seamless appli-
cation of the TCP system model to nodes attached to the Internet by mobile networks,
connection splitting and performance enhancing proxies.

However, this work is far from being complete. So, the next paragraphs will give
an overview of our next steps.

1. We will conduct comparative simulations to other approaches. Therefore we
will add full awnd flow control and the window update mechanism to NS2 in
order to properly simulate flow control and clamping approaches.

2. We will validate our approach and demonstrate its effectiveness with a generic
model of mobile networks. In this short paper, we used a simple approximation
based upon a Pareto-distribution. For our future work, we will use a model based
upon the work presented by Gang Bao [Bao96]. The main idea is to use a generic
RLP implementation in conjunction with varying radio block error conditions.

3. A main objective of path tail emulation is to correctly provide the Internet with
the correct bandwidth for a flow. Basically, the bandwidth is obtained by the
mobile network’s operator. However, a number of different cases must be con-
sidered. For space limitations, we can only give some examples here.

(a) BS serves one broadcast cell. In this case, all TCP flows directed to this
broadcast cell share the available bandwidth. bw is set to the cumulative
bandwidth for this cell. This situation is equivalent to other shared me-
dia networks like Ethernet. Thus, the flows are allocated a fair share of
ressources as a consequence of TCP congestion control.

(b) BS serves different broadcast cells. In this case, BS should implement the
path tail emulation algorithm for each cell individually to achieve a fair
share of ressources within each cell.
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(c) The mobile network allows QoS profiles. Some mobile networks, like
UMTS, allow fixed bandwidth allocations for individual flows. Although
the Internet itself is typically ‘best effort’, path tail emulation allows allo-
cating a fixed bandwidth to a flow. This can be achieved by implementing
the emulation algorithm individually for each flow.
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