
On the Usefulness of Detecting Soft Errors in Parallel Pipelines for

High-Speed Machine Vision Based on Organic Computing

Marcus Komann, Frank Taubert, and Dietmar Fey

Friedrich-Schiller-University Jena, Germany

marcus.komann@cs.uni-jena.de, fey@uni-jena.de

Abstract

Computer hardware is always in danger of being hit by ionized particles which cause different kinds of faults. In this pa-

per, the effect of transient soft-errors on the stages of parallel pipelines is investigated by the example of emergent algo-

rithms and machine vision. A fault injection model is introduced and the corresponding protection scheme is presented.

During simulation, the number of relevant faults showed to be relatively small and the effect on the pipelines was mostly

negligible. However, the costs for protection are low possibly making use of protection worthwhile.

1 Introduction

The term Single Event Effect (SEE) describes perturbations

in semiconductor elements which are caused by ionizing

radiation like, e.g. cosmic rays or neutron radiation. Such

particles hit or cross computer hardware and either tempo-

rarily disturb the functionality or destroy parts of the sys-

tems. Errors which account for permanent failure are

called hard errors while errors which only result in defects

over a period of time are called soft errors.

Some years ago, soft errors were hardly in the focus of the

reliability community [5]. But they have received growing

interest recently because they are a major threat to today's

electronic systems. For example, Baumann [1] compared

different types of soft errors and showed that their rate in a

system can be higher than that of all other errors com-

bined. Furthermore, paying attention to these effects on

computer systems is especially important in aerospace

technology because the probability of being hit by a parti-

cle is much higher in upper layers of the atmosphere due to

higher radiation. But awareness and possible protection is

also important on sea level because SEUs also become

more likely there due to ever shrinking structure sizes.

Anyhow, reliability and fault-correction are a major con-

cern of computer industry today.

Soft errors divide into Single Event Upset (SEU) and Sin-
gle Event Transient (SET) errors. SEUs produce bit-flips

in memory. SETs result in undesired changes of signal

levels. The reason for such transient errors are particles

crossing the semiconductor which emit energy in a so-

called Line Energy Transfer which produces a change in

the electric charge of the component. These errors thus

don't destroy the component and can be reverted if they are

detected. See [1] and [5] for an overview and more details

on the subject.

Such failures in technical systems might not have any im-

pact on the processing of some problems because they alter

irrelevant memory/signals or because their wrong value is

overwritten and thus corrected in later steps. But in some

scenarios, soft errors might have severe consequences ran-

ging from simple production facility breakdown to danger

for human lives as in airplanes or cars. The main question

in general is thus: Which effort is worth the protection of

which system? In this paper, we want to answer this ques-

tion towards an agent-based, massively-parallel, high-

speed machine vision system and transient errors. Protec-

tion costs time and money but might pay back the effort

with robustness, effectivity, and longevity of the system.

The paper is structured as follows. We present the Organic

Computing vision system and the corresponding pipeline

architecture in Sect. 2. In Sect. 3, the fault model we used

is introduced and the scheme of fault injection into the ar-

chitecture is shown. At last, we wrap up, discuss the re-

sults, and take a look forward in Sections 4 and 5.

2 The Marching Pixels concept

and the corresponding pipeline

architecture

This section presents the architecture in which the faults

are injected in Sect. 3. At first, the Marching Pixels project

is motivated and described briefly. Afterwards, the pipe-

lined version of the corresponding architecture is ex-

plained.

2.1 Marching Pixels - Massively-parallel

machine vision

In modern factories, machine vision is an elementary part

of the production processes. Robots have to see in order to

grab, drill, grind, or in general handle tools and work pie-

ces. With increasing production speeds, the need for ex-

tremely fast vision systems is ever-growing. On the other

hand, it is also important that these vision systems don't

become too large for reasons of power consumption, price,

or simply limited space for installation, e.g. on a robot's

gripper arm.

One of these vision problems is detection of objects and

their attributes in binary images. In this case, detection

means classification of objects, which for example lie on

an assembly line, according to a set of pre-known object

categories. It also means detection of defective or in-

complete work pieces which should be sorted out by the

production system. Apart from object classification, it is

also important to detect some properties of the single ob-

jects like size, edge lengths, rotation, and centroids in this

use case. All of these tasks shall furthermore be carried out

for multiple objects per image and possibly thousands of

images per second in order to keep the productivity of the

assembly line and its corresponding factory high.

When such opposing aims of low size and high speed

meet, classic serial vision architectures reach their limits.

This is especially true if the systems don't have to detect

one but many objects at a time whose number is not known

in advance. A practical example for this are small pieces

like nails or screw-nuts lying on the mentioned fast mov-

ing assembly line.

One system architecture that is able to cope with these op-

posing aims is developed in the Marching Pixels project. It

is explained shortly in the next paragraphs. For more de-

tails on the system, the algorithms, capabilities and weak-

nesses, and implementations in VHDL and FPGA, please

refer to earlier publications like [3], [4], [6], or [7].

Put very short, the basic idea of Marching Pixels is to take

a binary image, load it into a massively-parallel field of

simple processing elements, and to let agents, so-called

Marching Pixels (MPs), travel around this field in order to

detect objects and their attributes. These agents work col-

laboratively and thereby exploit emergence [10] to fulfill

their goals. The advantage of this approach is that the

complete architecture can be implemented on a relatively

small dedicated chip and thus in a small embedded vision

system (including camera and input/output). The massive

parallelism of processing elements grants large compute

power which can be used to meet strict realtime require-

ments.

This description proposes dividing an MP vision system

into two parts. The first one is an architectural layer where

the field of processing elements in a whole, the processing

elements themselves in detail, and the input/output charac-

teristics have to be defined. The second part is an upper

layer where specific emergent algorithms that are executed

on the single processing elements have to be found and

tested. This is the level where the Marching Pixels agents

are running.

2.1.1 Architectural layer

In this layer, the hardware structure necessary for emergent

agents is described. Figure 1 shows the principle. On the

left side, the processor element (PE) array on a chip can be

seen. The PEs have a specific local neighborhood. In the

figure, the PEs have Moore neighborhood with radius=1.

But also von-Neumann neighborhood and neighborhoods

with larger radii are possible. PEs don't have connectivity

across the borders. Outer PEs are used for outside commu-

nication instead. But also

On the right side of the figure, you can see a PE in detail.

It has an optical detector on top which captures a part of

the image, i.e. one pixel in the simplemost case. This pixel

is then binarized and used as input to digital processing. In

the digital part, arbitrary digital operations can be used like

binary logic, shift operations, multiplexing, or even arith-

metic operations in ALUs. Apart from that, it is possible to

use flip-flops as local memory for each single PE.

The agents can now be described as data packages of states

and memory which are moved between different PEs. The

state machine/program of the agents is modeled in digital

hardware and the states of the agents are stored in local

memory. This system can also be used for fast parallel exe-

cution of other local operators as used in cellular automata,

local image filters, and so on.

2.1.2 Algorithmic layer

Having PEs with these abilities, we now can think of algo-

rithms which solve the previously described problem of

fast object detection in binary images. In the Marching Pi-

Figure 1: Architecture of processor element array and of a single PE

xels project, we orient on ant-like behavior to steer agents

across the PE array (and thus the image) with the goal of

visiting certain pixels and thereby compressing gathered

information. In the end, the centroid pixel shall be found

and desired information like size, rotation, or edge lengths

shall be output.

On their way, these agents called Marching Pixels (MPs)

can mutually interact directly or via indirect, so-called

stigmergic, communication. MPs can be born, can unite,

and they can die. Exploiting these capabilities, we are able

to create several emergent object detection algorithms with

different capabilities and requirements. We won't go into

detail about the specific algorithms here because this paper

is on the pipelined implementation of the hardware. Please

refer to the mentioned literature for details.

2.2 From an array of processor elements

to pipeline execution

Implementing possibly several thousands of PEs on a chip

or FPGA is expensive and sometimes impossible due to

size constraints. It might therefore be useful to trade some

of the execution time for architecture size if given

(real)time requirements can still be met afterwards. Using

time-multiplexing pipelines which execute several PE po-

sitions/cells1 one after another makes it possible to execute

virtual agent schemes with a smaller hardware requirement

in longer time. For example, for a n*n image, using n par-

allel pipelines, one for each line, takes O(n) times longer

for execution but saves O(n) space keeping in mind that

pipeline execution costs some overhead.

In [9], a generic pipeline architecture for emergent algo-

rithms in general and Marching Pixels algorithms in detail

was specified in VHDL. Generic means that most of the

pipeline properties can be chosen freely, such as number of

parallel pipelines, size of the array (for MPs: image), num-

ber and size of registers for states and variables, neighbor-

hood, or data width. Apart from that, the state transition of

each position/cell in the array is passed to the system via a

rule table. And at last, a set of instructions along with spe-

cific conditions can be defined which is executed at each

position/cell in each step. Using state transition table and

commands, it is possible to implement arbitrary parallel

automata/programs. As mentioned, it could for example be

used for fast simulation of Conway's Game of Life or for

cellular automata in general [11].

Figure 2 shows the architecture of one pipeline in detail.

On the left side, the pipeline stages can be seen. The tasks

of the single stages are shown on the right side. For all

parts which check or evaluate states or registers, not only

own memory is read but also memory of the defined

neighbors. Conditions and transitions can thus be depend-

ent on information of the current position/cell and its

neighbors. The same holds for the execution of instruc-

tions or arithmetic operations which might or might not be

done in every pipeline cycle. Write back from the buffers

is done in the end because agents and empty positions/cells

need data from the previous synchronous execution step

like, e.g. in cellular automata.

For example, if the current cell does not host an agent, it

doesn't calculate anything but simply waits in a defined

state until an active agent is crossing its neighbors. When

an agent moves towards the cell, the cell takes the agent by

changing its state to the agent's state and copies the agent's

memory in its own memory. The original cell of the agent

deletes all information and turns to a passive state. The

new cell of the agent might then furthermore calculate so-

me values using the ALU if certain conditions are met, e.g.

if the cell is the final cell or an edge cell.

3 Redundant pipeline buffers and

fault injection

3.1 Majority voting of duplicated buffers

Giving a short reminder, the question we are trying to an-

swer is if it is worth protecting pipeline stages as described

in Sect. 2.2 against errors? We do not want to identify the

specific circuit in which a fault occurs. Instead, we are try-

1 One could also call the PE positions cells of a regular

array as in cellular automata.

Figure 2: Pipeline stages and their tasks.

ing to figure out which pipeline stage as a whole unit is

vulnerable and thus insert the detection and protection

modules between the pipeline stages.

In this paper, we focus on answering this question con-

cerning transient errors (SETs) as shown in Sect. 1. Bit flip

errors (SEUs) are less interesting and not scope of this pa-

per because they occur in memory and can be handled

relatively easy with normal error correction codes. Tran-

sient errors alter signal levels in logic temporarily and thus

can create wrong results of the whole system if they are

not detected and corrected.

We now look at the described pipeline and try to find out

which stages of it are vulnerable and how severely faults

occurring in the stages change the output of the whole sys-

tem. With the proposed pipeline extension, errors in stages

are not only detected but are furthermore instantly cor-

rected. The write back part of the pipeline does not need

protection because it writes memory directly and thus has

no logic which can be disturbed. But vulnerable logic is

situated in each of the pipeline stages.

Between every two stages, buffers catch the results of the

prior stage and memorize them. The result values then

serve as input for the following stage. Those buffers are

redundantly duplicated two times each. Together with the

initial buffer, we end up with three buffers, which are used

to detect temporary errors in the stages. This approach is

similar to triple modular redundancy (see also the works of

Nicolaidis [8]) The basic idea is now to direct the signal

from a stage to the redundant buffers one after another in

order to detect errors by comparing the buffer contents in a

majority voter. Therefore, the pipeline stages have to be

changed to asynchronous logic first. Figure 3 shows the

tripled buffer, the voter, and the required signal lines. The

original buffer is at the right side. The original signal is

compared to the signals at times Clk-� and Clk-(2*�)
which are saved in the other two buffers. � is defined as

the time of a transient error and is architecture-dependent.

The voter decides for the correct values by making a ma-

jority decision between the three input signals effectively

correcting all single transient errors. The result is written

in the original buffer at time Clk. It is then available as

output.

The voter itself is not protected. While this is no problem

for our test scenarios here in which we want to identify

vulnerable pipeline stages, this can become an issue when

the presented protection scheme is used in a real system.

Faults occurring in the voter would probably lead to erro-

neous system behavior. However, the probability of a

cosmic ray hitting the voter is very small. But for systems

like airplanes, this should be taken into account. Also pro-

tecting the voter/control system is a sophisticated task and

shall not be discussed here.

In this paragraph, we compare technical details of the pre-

sented protection scheme and the protection of Nicolaidis

[8] because they differ in some aspects. Nicolaidis uses

three latches to store intermediate values. Then, those three

values are compared by a voter and the majority result is

written in a fourth latch. For saving chip area, we leave out

one of those latches and compare two buffers with the cur-

rent signal. This change has some implications on the time

behavior of the system. In our architecture, the delay be-

tween Clk-� and Clk not only has to be larger than a tran-

sient error. It also must be larger than the time required by

the voter. The original architecture of Nicolaidis achieves

voter time independence by practically delaying the result

by one clock cycle. For our approach, the implementation

of the voter has to be very fast as a result. Otherwise, the

time of the voter would slow the computation because it

would work as a lower boundary for the clock rate.

3.2 Injecting faults by altering signal lev-

els between pipeline stages

After defining the error detection architecture, a fault in-

jection model has to be implemented. We only look at sin-

gle faults which change one bit position of a signal. [2]

contains a harsh real world test where no two bit faults oc-

curred concurrently. [13] estimates the probability of two

bit faults occurring at a time as very small. In order to find

weak points of the architecture, a module is inserted be-

tween the logic of each pipeline stage and its buffer. This

error module is able to alter the signal level just as a parti-

cle does.

Three Marching Pixels algorithms called Gaphop, Flood-
ing, and Opposite Flooding from [9] are used as test sce-

narios (see [6] for details on the algorithms or [12] for

some sample simulations). As input, four different images

with different objects are processed. The first three images

contain one square object which occupies resp. 25%, 50%,

and 75% of the image pixels. The last image contains sev-

eral small objects.

An error simulation then worked as follows. Every image

was simulated with each algorithm for at least 100 times

and the errors in each stage were counted. We used an ex-

traordinary high error probability of 50% in each clock cy-

cle in order to find stages which are weak. After the ini-

tialization of the pipeline had finished, a fault was injected

at a random stage of a random pipeline. Fault injection was

then stopped until the error had traversed the pipeline be-

cause of the reasons concerning double errors mentioned

above. Another reason for not analyzing two-bit errors is

that we wanted to be able to assign final errors of the com-

plete architecture to the stage and the exact fault that was

injected

After injection, the errors were on one hand partitioned

into relevant and irrelevant ones, and status or register er-

rors on the other hand. Relevant errors result in wrong fi-

Figure 3: Multiplied buffers and corresponding clock

signals.

nal image processing (creation of false or deletion of cor-

rect final states of the agents) while irrelevant ones have

no effect on the final output of the system. Status errors are

basically also register errors but have a larger impact be-

cause they hinder steering the Marching Pixels agents cor-

rectly while registers "just" memorize values the agents

gathered during their run. Relevant register errors result in

wrong register values of final state agents. This is also a

drawback but the agents at least took the correct path and

ended in the correct position/cell then.

4 Results

Table 1: Number of relevant errors occurring and corre-

sponding protection costs (in UMC cell units).

 Errors Costs

Stages protected State Register Sum relative absolute

none 1189 1178 2367 515285 100,00%

eval_cond_check 554 545 1099 516056 100,15%
instruction_selection 237 263 500 535731 103,97%
state_cond_proc 209 142 351 537927 104,39%
reg_cond_check 149 136 285 549712 106,68%
fetch_operands 33 78 111 574228 111,44%
Alu 0 14 14 589974 114,49%
instruction_filter 7 0 7
instruction_load 0 0 0
reg_cond_load 0 0 0

all 0 0 0 606875 117,77%

Table 1 shows results of the tests and of the synthesis of

the pipeline architecture. The error part shows the absolute

number of relevant errors that occurred in the different

stages. The cost part of the table shows how expensive it is

to protect the stages from errors. It was created by synthe-

sizing the hardware description with a 90 nm process from

UMC. This part is cumulative meaning, e.g. the costs of

protecting stage instruction_selection include the costs

for eval_cond_check. The numbers in the table show that

the logic in the condition checking stage suffers most from

errors while the ALU surprisingly doesn't. The reason for

this is that the Marching Pixels algorithms don't always

have to use the ALU by design. They mostly compare own

and neighbors' states in order to calculate new states of the

agents instead. Thus, errors in the ALU are mostly irrele-

vant.

Even more surprising is the small amount of relevant er-

rors over-all. Summing up, 14407 bit-flips were injected

into the architecture's inner signals. 2367 of them caused

relevant errors, 824 caused irrelevant errors, and 11216 did

not have any effect on the computation. The reason for this

also lies in the Marching Pixels algorithms. Lots of the PE

positions/cells don't have to do anything in some steps be-

cause they don't host an active MP agent. Or the cells don't

ever have to do anything because they are background

pixel. Background pixels are never visited by an agent in

some MP algorithms. Errors in such unused cells thus have

no effect on the final outcome. The same holds e.g. for er-

rors in cells containing MP agents only at the start of a

computation. If errors happen there later, they don't have

any effects.

5 Discussion

In this paper, we presented how the reliability of parallel

pipelines can be improved by redundancy. Therefore, buff-

ers between pipeline stages were duplicated. Afterwards,

errors were injected in the logic of the stages according to

a specified scheme. A majority voting of buffer values was

then able to catch and correct all applied faults. The cost

for protecting the different stages was presented along with

the probability of errors to cause severe system failures.

This protection was applied to an Organic Computing vi-

sion system called Marching Pixels where parallel, emer-

gent agents detect objects in binary images.

[13] estimates the number of soft errors per year to 200 on

a 2mm2 chip. The conclusion is that it depends whether it

is worth to protect parallel pipelines with algorithms simi-

lar to Marching Pixels or cellular automata or not. It must

be done if they are part of systems which should never fail,

like e.g. in airplanes. On the other hand, the occurrence of

errors is very improbable and the effect of errors is fur-

thermore mostly negligible. However, the cost for protect-

ing all pipeline stages is only 17% in space and the cost for

protecting the four most error-prone stages is just over 4%

making protection relatively cheap.

For the future and due to the rareness of errors, another

protection architecture seems interesting where history bits

are used instead of tripled buffers for comparison of signal

levels. If levels differ there, the pipeline is stopped and

rolled back in order to repeat the erroneous last computa-

tion step. This costs one complete clock cycle time when

errors occur due to the rollback of a complete pipeline not

coming for free. But it saves chip area because only the

history bits and the rollback logic have to be added in

hardware instead of tripled buffers and voters as presented

in this paper.

The two approaches' time constraints can be compared

mathematically as follows. Given the error probability E,

1/E defines the average number of clock cycles between

two errors. Let T furthermore define the unprotected clock

cycle time. Protection with buffers requires a cycle time of

T+2*� while protection with history bits requires T+�

time if no error occurs, i.e. one � less. History bit protec-

tion is faster if the time for rollback if an error occurs is

smaller than saved time (in comparison to tripled buffers)

if no error occurs:

����� *)1()(* ETE

EET /)1(/)(�����

 2/1/ ��� ET

Thus, history bit protection is faster if unprotected clock

cycle time divided by maximal error duration is smaller

then average number of clock cycles between errors minus

two.

References

 [1] R.C. Baumann. Radiation-induced soft errors in ad-

vanced semiconductor technologies. IEEE Transac-

tions on Device and Materials Reliability, 5(3):305-

316, Sept. 2005.

 [2] Damien Chardonnereau, Raijmond Keulen, Michael

Nicolaidis, Eric Dupont, KholdounTorki, Fabien

Faure, and Raoul Velazco. Fault tolerant 32-bit risc

processor: Implementation and radiation test results.

In Single Event Effects Symposium, April 23-25

2002, Manhattan Beach, California. ww.iroctech.com,

2002.

 [3] Dietmar Fey, Marcus Komann, Frank Schurz, and

Andreas Loos. An organic computing architecture for

visual microprocessors based on marching pixels. In

ISCAS, pages 2686-2689. IEEE, 2007.

 [4] Dietmar Fey and Daniel Schmidt. Marching pixels: A

new organic computing paradigm for smart sensor

processor arrays. In CF ’05: Proceedings of the 2nd

conference on Computing frontiers, pages 1-9, New

York, NY, USA, 2005. ACM.

 [5] Tino Heijmen. Radiation-induced soft errors in digital

circuits a literature survey. Report 2002/828, Philips

Electronic National Lab., Netherlands, August 2002.

 [6] Marcus Komann and Dietmar Fey. Realising emer-

gent image preprocessing tasks in cellular-automaton-

alike massively parallel hardware. International Jour-

nal of Parallel, Emergent and Distributed Systems,

22(2):79-89, 2007.

 [7] Marcus Komann, Andreas Mainka, and Dietmar Fey.

Comparison of evolving uniform, non-uniform cellu-

lar cutomaton, and genetic programming for centroid

detection with hardware agents. In Victor E. Ma-

lyshkin, editor, PaCT, volume 4671 of Lecture Notes

in Computer Science, pages 432-441. Springer, 2007.

 [8] Michael Nicolaidis. Time redundancy based soft-error

tolerance to rescue nanometer technologies. In VTS

’99: Proceedings of the 1999 17TH IEEE VLSI Test

Symposium, page 86, Washington, DC, USA, 1999.

IEEE Computer Society.

 [9] Marcus Wagner. Entwurf einer generischen Prozes-

sorarchitektur für emergentes Rechnen. Diploma the-

sis, Chair for Computer Architecture, Friedrich-

Schiller-University Jena, 2007.

 [10] Tom De Wolf and Tom Holvoet. Emergence versus

self-organisation: Different concepts but promising

when combined. In Sven Brueckner, Giovanna Di

Marzo Serugendo, Anthony Karageorgos, and

Radhika Nagpal, editors, Engineering Self-Organising

Systems, volume 3464 of Lecture Notes in Computer

Science, pages 1-15. Springer, 2004.

 [11] Stephen Wolfram. A New Kind of Science. Wolf-

ram Media Inc., Champaign, Ilinois, US, United

States, 2002.

 [12] www2.informatik.uni-jena.de/oc/english.html.

 [13] J. F. Ziegler. Terrestrial cosmic rays. IBM Journal of

Research and Development, 40(1):19-39, 1996.

