
On the Usefulness of Detecting Soft Errors in Parallel Pipelines for 

High-Speed Machine Vision Based on Organic Computing 
 

Marcus Komann, Frank Taubert, and Dietmar Fey 

Friedrich-Schiller-University Jena, Germany 

marcus.komann@cs.uni-jena.de, fey@uni-jena.de 

 

Abstract

Computer hardware is always in danger of being hit by ionized particles which cause different kinds of faults. In this pa-

per, the effect of transient soft-errors on the stages of parallel pipelines is investigated by the example of emergent algo-

rithms and machine vision. A fault injection model is introduced and the corresponding protection scheme is presented. 

During simulation, the number of relevant faults showed to be relatively small and the effect on the pipelines was mostly 

negligible. However, the costs for protection are low possibly making use of protection worthwhile.  

 

1 Introduction 

The term Single Event Effect (SEE) describes perturbations 

in semiconductor elements which are caused by ionizing 

radiation like, e.g. cosmic rays or neutron radiation. Such 

particles hit or cross computer hardware and either tempo-

rarily disturb the functionality or destroy parts of the sys-

tems. Errors which account for permanent failure are 

called hard errors while errors which only result in defects 

over a period of time are called soft errors. 

Some years ago, soft errors were hardly in the focus of the 

reliability community [5]. But they have received growing 

interest recently because they are a major threat to today's 

electronic systems. For example, Baumann [1] compared 

different types of soft errors and showed that their rate in a 

system can be higher than that of all other errors com-

bined. Furthermore, paying attention to these effects on 

computer systems is especially important in aerospace 

technology because the probability of being hit by a parti-

cle is much higher in upper layers of the atmosphere due to 

higher radiation. But awareness and possible protection is 

also important on sea level because SEUs also become 

more likely there due to ever shrinking structure sizes. 

Anyhow, reliability and fault-correction are a major con-

cern of computer industry today. 

Soft errors divide into Single Event Upset (SEU) and Sin-
gle Event Transient (SET) errors. SEUs produce bit-flips 

in memory. SETs result in undesired changes of signal 

levels. The reason for such transient errors are particles 

crossing the semiconductor which emit energy in a so-

called Line Energy Transfer which produces a change in 

the electric charge of the component. These errors thus 

don't destroy the component and can be reverted if they are 

detected. See [1] and [5] for an overview and more details 

on the subject. 

Such failures in technical systems might not have any im-

pact on the processing of some problems because they alter 

irrelevant memory/signals or because their wrong value is 

overwritten and thus corrected in later steps. But in some 

scenarios, soft errors might have severe consequences ran-

ging from simple production facility breakdown to danger 

for human lives as in airplanes or cars. The main question 

in general is thus: Which effort is worth the protection of 

which system? In this paper, we want to answer this ques-

tion towards an agent-based, massively-parallel, high-

speed machine vision system and transient errors. Protec-

tion costs time and money but might pay back the effort 

with robustness, effectivity, and longevity of the system. 

The paper is structured as follows. We present the Organic 

Computing vision system and the corresponding pipeline 

architecture in Sect. 2. In Sect. 3, the fault model we used 

is introduced and the scheme of fault injection into the ar-

chitecture is shown. At last, we wrap up, discuss the re-

sults, and take a look forward in Sections 4 and 5. 

 

2 The Marching Pixels concept 

and the corresponding pipeline 

architecture 

This section presents the architecture in which the faults 

are injected in Sect. 3. At first, the Marching Pixels project 

is motivated and described briefly. Afterwards, the pipe-

lined version of the corresponding architecture is ex-

plained. 

2.1 Marching Pixels - Massively-parallel

machine vision 

In modern factories, machine vision is an elementary part 

of the production processes. Robots have to see in order to 

grab, drill, grind, or in general handle tools and work pie-

ces. With increasing production speeds, the need for ex-

tremely fast vision systems is ever-growing. On the other 

hand, it is also important that these vision systems don't 

become too large for reasons of power consumption, price, 

or simply limited space for installation, e.g. on a robot's 

gripper arm. 

One of these vision problems is detection of objects and 

their attributes in binary images. In this case, detection 

means classification of objects, which for example lie on 

an assembly line, according to a set of pre-known object 

categories. It also means detection of defective or in-



complete work pieces which should be sorted out by the 

production system. Apart from object classification, it is 

also important to detect some properties of the single ob-

jects like size, edge lengths, rotation, and centroids in this 

use case. All of these tasks shall furthermore be carried out 

for multiple objects per image and possibly thousands of 

images per second in order to keep the productivity of the 

assembly line and its corresponding factory high. 

When such opposing aims of low size and high speed 

meet, classic serial vision architectures reach their limits. 

This is especially true if the systems don't have to detect 

one but many objects at a time whose number is not known 

in advance. A practical example for this are small pieces 

like nails or screw-nuts lying on the mentioned fast mov-

ing assembly line. 

One system architecture that is able to cope with these op-

posing aims is developed in the Marching Pixels project. It 

is explained shortly in the next paragraphs. For more de-

tails on the system, the algorithms, capabilities and weak-

nesses, and implementations in VHDL and FPGA, please 

refer to earlier publications like [3], [4], [6], or [7]. 

Put very short, the basic idea of Marching Pixels is to take 

a binary image, load it into a massively-parallel field of 

simple processing elements, and to let agents, so-called 

Marching Pixels (MPs), travel around this field in order to 

detect objects and their attributes. These agents work col-

laboratively and thereby exploit emergence [10] to fulfill 

their goals. The advantage of this approach is that the 

complete architecture can be implemented on a relatively 

small dedicated chip and thus in a small embedded vision 

system (including camera and input/output). The massive 

parallelism of processing elements grants large compute 

power which can be used to meet strict realtime require-

ments. 

This description proposes dividing an MP vision system 

into two parts. The first one is an architectural layer where 

the field of processing elements in a whole, the processing 

elements themselves in detail, and the input/output charac-

teristics have to be defined. The second part is an upper 

layer where specific emergent algorithms that are executed 

on the single processing elements have to be found and 

tested. This is the level where the Marching Pixels agents 

are running.  

2.1.1 Architectural layer 

In this layer, the hardware structure necessary for emergent 

agents is described. Figure 1 shows the principle. On the 

left side, the processor element (PE) array on a chip can be 

seen. The PEs have a specific local neighborhood. In the 

figure, the PEs have Moore neighborhood with radius=1. 

But also von-Neumann neighborhood and neighborhoods 

with larger radii are possible. PEs don't have connectivity 

across the borders. Outer PEs are used for outside commu-

nication instead. But also  

On the right side of the figure, you can see a PE in detail. 

It has an optical detector on top which captures a part of 

the image, i.e. one pixel in the simplemost case. This pixel 

is then binarized and used as input to digital processing. In 

the digital part, arbitrary digital operations can be used like 

binary logic, shift operations, multiplexing, or even arith-

metic operations in ALUs. Apart from that, it is possible to 

use flip-flops as local memory for each single PE.  

The agents can now be described as data packages of states 

and memory which are moved between different PEs. The 

state machine/program of the agents is modeled in digital 

hardware and the states of the agents are stored in local 

memory. This system can also be used for fast parallel exe-

cution of other local operators as used in cellular automata, 

local image filters, and so on. 

2.1.2 Algorithmic layer 

Having PEs with these abilities, we now can think of algo-

rithms which solve the previously described problem of 

fast object detection in binary images. In the Marching Pi-

Figure 1: Architecture of processor element array and of a single PE 



xels project, we orient on ant-like behavior to steer agents 

across the PE array (and thus the image) with the goal of 

visiting certain pixels and thereby compressing gathered 

information. In the end, the centroid pixel shall be found 

and desired information like size, rotation, or edge lengths 

shall be output. 

On their way, these agents called Marching Pixels (MPs) 

can mutually interact directly or via indirect, so-called 

stigmergic, communication. MPs can be born, can unite, 

and they can die. Exploiting these capabilities, we are able 

to create several emergent object detection algorithms with 

different capabilities and requirements. We won't go into 

detail about the specific algorithms here because this paper 

is on the pipelined implementation of the hardware. Please 

refer to the mentioned literature for details. 

2.2 From an array of processor elements 

to pipeline execution 

Implementing possibly several thousands of PEs on a chip 

or FPGA is expensive and sometimes impossible due to 

size constraints. It might therefore be useful to trade some 

of the execution time for architecture size if given 

(real)time requirements can still be met afterwards. Using 

time-multiplexing pipelines which execute several PE po-

sitions/cells1 one after another makes it possible to execute 

virtual agent schemes with a smaller hardware requirement 

in longer time. For example, for a n*n image, using n par-

allel pipelines, one for each line, takes O(n) times longer 

for execution but saves O(n) space keeping in mind that 

pipeline execution costs some overhead.  

In [9], a generic pipeline architecture for emergent algo-

rithms in general and Marching Pixels algorithms in detail 

was specified in VHDL. Generic means that most of the 

pipeline properties can be chosen freely, such as number of 

parallel pipelines, size of the array (for MPs: image), num-

ber and size of registers for states and variables, neighbor-

hood, or data width. Apart from that, the state transition of 

each position/cell in the array is passed to the system via a 

rule table. And at last, a set of instructions along with spe-

cific conditions can be defined which is executed at each 

position/cell in each step. Using state transition table and 

commands, it is possible to implement arbitrary parallel 

automata/programs. As mentioned, it could for example be 

used for fast simulation of Conway's Game of Life or for 

cellular automata in general [11]. 

Figure 2 shows the architecture of one pipeline in detail. 

On the left side, the pipeline stages can be seen. The tasks 

of the single stages are shown on the right side. For all 

parts which check or evaluate states or registers, not only 

own memory is read but also memory of the defined 

neighbors. Conditions and transitions can thus be depend-

ent on information of the current position/cell and its 

neighbors. The same holds for the execution of instruc-

tions or arithmetic operations which might or might not be 

done in every pipeline cycle. Write back from the buffers 

is done in the end because agents and empty positions/cells 

need data from the previous synchronous execution step 

like, e.g. in cellular automata. 

For example, if the current cell does not host an agent, it 

doesn't calculate anything but simply waits in a defined 

state until an active agent is crossing its neighbors. When 

an agent moves towards the cell, the cell takes the agent by 

changing its state to the agent's state and copies the agent's 

memory in its own memory. The original cell of the agent 

deletes all information and turns to a passive state. The 

new cell of the agent might then furthermore calculate so-

me values using the ALU if certain conditions are met, e.g. 

if the cell is the final cell or an edge cell. 

 

 

3 Redundant pipeline buffers and 

fault injection 

3.1 Majority voting of duplicated buffers 

Giving a short reminder, the question we are trying to an-

swer is if it is worth protecting pipeline stages as described 

in Sect. 2.2 against errors? We do not want to identify the 

specific circuit in which a fault occurs. Instead, we are try-

                                                 
1 One could also call the PE positions cells of a regular 

array as in cellular automata. 

Figure 2: Pipeline stages and their tasks.



ing to figure out which pipeline stage as a whole unit is 

vulnerable and thus insert the detection and protection 

modules between the pipeline stages. 

In this paper, we focus on answering this question con-

cerning transient errors (SETs) as shown in Sect. 1. Bit flip 

errors (SEUs) are less interesting and not scope of this pa-

per because they occur in memory and can be handled 

relatively easy with normal error correction codes. Tran-

sient errors alter signal levels in logic temporarily and thus 

can create wrong results of the whole system if they are 

not detected and corrected.  

We now look at the described pipeline and try to find out 

which stages of it are vulnerable and how severely faults 

occurring in the stages change the output of the whole sys-

tem. With the proposed pipeline extension, errors in stages 

are not only detected but are furthermore instantly cor-

rected. The write back part of the pipeline does not need 

protection because it writes memory directly and thus has 

no logic which can be disturbed. But vulnerable logic is 

situated in each of the pipeline stages. 

Between every two stages, buffers catch the results of the 

prior stage and memorize them. The result values then 

serve as input for the following stage. Those buffers are 

redundantly duplicated two times each. Together with the 

initial buffer, we end up with three buffers, which are used 

to detect temporary errors in the stages. This approach is 

similar to triple modular redundancy (see also the works of 

Nicolaidis [8]) The basic idea is now to direct the signal 

from a stage to the redundant buffers one after another in 

order to detect errors by comparing the buffer contents in a 

majority voter. Therefore, the pipeline stages have to be 

changed to asynchronous logic first. Figure 3 shows the 

tripled buffer, the voter, and the required signal lines. The 

original buffer is at the right side. The original signal is 

compared to the signals at times Clk-� and Clk-(2*�) 
which are saved in the other two buffers. � is defined as 

the time of a transient error and is architecture-dependent. 

The voter decides for the correct values by making a ma-

jority decision between the three input signals effectively 

correcting all single transient errors. The result is written 

in the original buffer at time Clk. It is then available as 

output. 

The voter itself is not protected. While this is no problem 

for our test scenarios here in which we want to identify 

vulnerable pipeline stages, this can become an issue when 

the presented protection scheme is used in a real system. 

Faults occurring in the voter would probably lead to erro-

neous system behavior. However, the probability of a 

cosmic ray hitting the voter is very small. But for systems 

like airplanes, this should be taken into account. Also pro-

tecting the voter/control system is a sophisticated task and 

shall not be discussed here. 

In this paragraph, we compare technical details of the pre-

sented protection scheme and the protection of Nicolaidis 

[8] because they differ in some aspects. Nicolaidis uses 

three latches to store intermediate values. Then, those three 

values are compared by a voter and the majority result is 

written in a fourth latch. For saving chip area, we leave out 

one of those latches and compare two buffers with the cur-

rent signal. This change has some implications on the time 

behavior of the system. In our architecture, the delay be-

tween Clk-� and Clk not only has to be larger than a tran-

sient error. It also must be larger than the time required by 

the voter. The original architecture of Nicolaidis achieves 

voter time independence by practically delaying the result 

by one clock cycle. For our approach, the implementation 

of the voter has to be very fast as a result. Otherwise, the 

time of the voter would slow the computation because it 

would work as a lower boundary for the clock rate. 

3.2 Injecting faults by altering signal lev-

els between pipeline stages 

After defining the error detection architecture, a fault in-

jection model has to be implemented. We only look at sin-

gle faults which change one bit position of a signal. [2] 

contains a harsh real world test where no two bit faults oc-

curred concurrently. [13] estimates the probability of two 

bit faults occurring at a time as very small. In order to find 

weak points of the architecture, a module is inserted be-

tween the logic of each pipeline stage and its buffer. This 

error module is able to alter the signal level just as a parti-

cle does. 

Three Marching Pixels algorithms called Gaphop, Flood-
ing, and Opposite Flooding from [9] are used as test sce-

narios (see [6] for details on the algorithms or [12] for 

some sample simulations). As input, four different images 

with different objects are processed. The first three images 

contain one square object which occupies resp. 25%, 50%, 

and 75% of the image pixels. The last image contains sev-

eral small objects. 

An error simulation then worked as follows. Every image 

was simulated with each algorithm for at least 100 times 

and the errors in each stage were counted. We used an ex-

traordinary high error probability of 50% in each clock cy-

cle in order to find stages which are weak. After the ini-

tialization of the pipeline had finished, a fault was injected 

at a random stage of a random pipeline. Fault injection was 

then stopped until the error had traversed the pipeline be-

cause of the reasons concerning double errors mentioned 

above. Another reason for not analyzing two-bit errors is 

that we wanted to be able to assign final errors of the com-

plete architecture to the stage and the exact fault that was 

injected  

After injection, the errors were on one hand partitioned 

into relevant and irrelevant ones, and status or register er-

rors on the other hand. Relevant errors result in wrong fi-

Figure 3: Multiplied buffers and corresponding clock 

signals. 



nal image processing (creation of false or deletion of cor-

rect final states of the agents) while irrelevant ones have 

no effect on the final output of the system. Status errors are 

basically also register errors but have a larger impact be-

cause they hinder steering the Marching Pixels agents cor-

rectly while registers "just" memorize values the agents 

gathered during their run. Relevant register errors result in 

wrong register values of final state agents. This is also a 

drawback but the agents at least took the correct path and 

ended in the correct position/cell then. 

 

4 Results 

Table 1: Number of relevant errors occurring and corre-

sponding protection costs (in UMC cell units).

 Errors   Costs   

Stages protected State Register Sum relative absolute

none 1189 1178 2367 515285 100,00%

eval_cond_check 554 545 1099 516056 100,15%
instruction_selection 237 263 500 535731 103,97%
state_cond_proc 209 142 351 537927 104,39%
reg_cond_check 149 136 285 549712 106,68%
fetch_operands  33 78 111 574228 111,44%
Alu 0 14 14 589974 114,49%
instruction_filter 7 0 7     
instruction_load 0 0 0     
reg_cond_load 0 0 0     

all 0 0 0 606875 117,77%
 

Table 1 shows results of the tests and of the synthesis of 

the pipeline architecture. The error part shows the absolute 

number of relevant errors that occurred in the different 

stages. The cost part of the table shows how expensive it is 

to protect the stages from errors. It was created by synthe-

sizing the hardware description with a 90 nm process from 

UMC. This part is cumulative meaning, e.g. the costs of 

protecting stage instruction_selection include the costs 

for eval_cond_check. The numbers in the table show that 

the logic in the condition checking stage suffers most from 

errors while the ALU surprisingly doesn't. The reason for 

this is that the Marching Pixels algorithms don't always 

have to use the ALU by design. They mostly compare own 

and neighbors' states in order to calculate new states of the 

agents instead. Thus, errors in the ALU are mostly irrele-

vant. 

Even more surprising is the small amount of relevant er-

rors over-all. Summing up, 14407 bit-flips were injected 

into the architecture's inner signals. 2367 of them caused 

relevant errors, 824 caused irrelevant errors, and 11216 did 

not have any effect on the computation. The reason for this 

also lies in the Marching Pixels algorithms. Lots of the PE 

positions/cells don't have to do anything in some steps be-

cause they don't host an active MP agent. Or the cells don't 

ever have to do anything because they are background 

pixel. Background pixels are never visited by an agent in 

some MP algorithms. Errors in such unused cells thus have 

no effect on the final outcome. The same holds e.g. for er-

rors in cells containing MP agents only at the start of a 

computation. If errors happen there later, they don't have 

any effects. 

 

5 Discussion 

In this paper, we presented how the reliability of parallel 

pipelines can be improved by redundancy. Therefore, buff-

ers between pipeline stages were duplicated. Afterwards, 

errors were injected in the logic of the stages according to 

a specified scheme. A majority voting of buffer values was 

then able to catch and correct all applied faults. The cost 

for protecting the different stages was presented along with 

the probability of errors to cause severe system failures. 

This protection was applied to an Organic Computing vi-

sion system called Marching Pixels where parallel, emer-

gent agents detect objects in binary images. 

[13] estimates the number of soft errors per year to 200 on 

a 2mm2 chip. The conclusion is that it depends whether it 

is worth to protect parallel pipelines with algorithms simi-

lar to Marching Pixels or cellular automata or not. It must 

be done if they are part of systems which should never fail, 

like e.g. in airplanes. On the other hand, the occurrence of 

errors is very improbable and the effect of errors is fur-

thermore mostly negligible. However, the cost for protect-

ing all pipeline stages is only 17% in space and the cost for 

protecting the four most error-prone stages is just over 4% 

making protection relatively cheap. 

For the future and due to the rareness of errors, another 

protection architecture seems interesting where history bits 

are used instead of tripled buffers for comparison of signal 

levels. If levels differ there, the pipeline is stopped and 

rolled back in order to repeat the erroneous last computa-

tion step. This costs one complete clock cycle time when 

errors occur due to the rollback of a complete pipeline not 

coming for free. But it saves chip area because only the 

history bits and the rollback logic have to be added in 

hardware instead of tripled buffers and voters as presented 

in this paper.  

The two approaches' time constraints can be compared 

mathematically as follows. Given the error probability E, 

1/E defines the average number of clock cycles between 

two errors. Let T furthermore define the unprotected clock 

cycle time. Protection with buffers requires a cycle time of 

T+2*� while protection with history bits requires T+� 

time if no error occurs, i.e. one � less. History bit protec-

tion is faster if the time for rollback if an error occurs is 

smaller than saved time (in comparison to tripled buffers) 

if no error occurs: 

 

����� *)1()(* ETE  

EET /)1(/)( �����  

       2/1/ ��� ET  

 

Thus, history bit protection is faster if unprotected clock 

cycle time divided by maximal error duration is smaller 

then average number of clock cycles between errors minus 

two. 
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