
cba

Springer, Cham (Hrsg.): ECSA 2021. Lecture Notes in Computer Science, vol 12857,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 11

Identifying Domain-Based Cyclic Dependencies in
Microservice APIs Using Source Code Detectors

Patric Genfer1, Uwe Zdun2

Abstract: Isolation, autonomy, and loose coupling are critical success factors of microservice
architectures, but unfortunately, systems tend to become strongly coupled over time and sometimes
even exhibiting cyclic communication chains. These cycles can even manifest on a conceptual or
domain level, making them hard to track for algorithms that rely solely on static analysis. Accordingly,
previous attempts to detect cycles either focused on synchronous communication or had to collect
additional runtime data, which can be costly and time-consuming. We suggest a novel approach
for identifying and evaluating domain-based cyclic dependencies in microservice systems based
on modular, reusable source code detectors. Based on the architecture model reconstructed by our
detectors, we derived a set of architectural metrics for identifying and classifying domain-based
cyclical dependencies. By conducting two case studies on open-source microservice architectures, we
validated the feasibility and applicability of our approach.

Keywords: Microservice API; domain-based cyclic dependencies; metrics; source code detectors

1 Introduction

One of the main goals of microservices is to reduce the complexity of large monolithic
applications by splitting them up into smaller, autonomously acting services [Th15]. In
addition to being isolated from each other, lightweight inter-service communication is
central in microservice architectures [Ne15]. These communications create dependencies
between services and are often problematic when they form cycles, where a chain of service
calls ends in the same service where it began [TL18]. Changing the communication flow
from synchronous to asynchronous communication alone does not resolve these cyclic
dependencies, but instead only shifts them to a different, more conceptual level [Wo17]
where they now become part of the domain or business logic, making them even more
difficult to track through static analysis. This work therefore presents a novel approach for
identifying and evaluating both, synchronous and domain-based cyclic dependencies on
microservice API operation level. For this, we reverse engineer a communication model from
underlying microservice code artifacts by using lightweight source code detectors [Nt21]
and based on this model, we define a set of architectural metrics for detecting and evaluating
potential cyclic dependency structures.
1 University of Vienna, Faculty of Computer Science, Research Group Software Architecture, Währinger Str. 29,
1090 Wien, Austria patric.genfer@univie.ac.at
2 University of Vienna, Faculty of Computer Science, Research Group Software Architecture, Währinger Str. 29,
1090 Wien, Austria uwe.zdun@univie.ac.at

cba

Lars Grunske, Janet Siegmund, Andreas Vogelsang (Hrsg.): SE 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 29

https://creativecommons.org/licenses/by-sa/4.0/


12 Patric Genfer, Uwe Zdun

2 Architecture Reconstruction and Cycle Identification

To model the communication flow observable at the microservice API level, this paper
uses a directed graph-based approach, similar to [Re18; ZNL17], but with a stronger focus
on the inter-service communication. To reconstruct the microservice architecture from
the underlying source code, we use a concept from our earlier research, called modular,
reusable source code detectors [Nt21]. These lightweight source parsers scan the code
according to predefined patterns and at the same time ignore any code artifacts unrelated
to the communication model. While these detectors must still be adopted to identify
technology-specific patterns, implementing and especially maintaining them requires less
effort than comparable approaches like a complete AST reconstruction. Based on our formal
communication model, we define a set of architectural metrics, both on service level but also
on a more fine-grained API-level, that allow us to identify and assess cyclic dependencies
within a microservice system.

3 Case Studies

We evaluated our approach by conducting two case studies with two different open-source
microservice architectures, Lakeside Mutual3 and eShopOnContainers4, both taken from
GitHub. We were able to identify domain-based cycles in both cases. Our case study has also
shown that our approach is very well suited for agile development processes, as it requires
only the underlying source code without gathering time-consuming runtime information,
which makes it particularly interesting for continuous integration pipelines.

4 Conclusion

In this paper, we presented a novel approach for detecting technical and especially domain-
based cyclic dependencies in microservice API architectures. Our approach confirms that the
detection is possible by relying solely on static source code artifacts. While our source code
detectors require some upfront implementation work, our case studies revealed that this effort
is manageable and can also be reduced by reusing existing detectors where possible. The
study results also show that by using our metrics, even inconspicuous domain-based cycles
can be detected. The information gathered through our cycle analysis provides software
experts with a solid foundation for making qualified decisions regarding a microservice
system’s architecture.

3 https://github.com/Microservice-API-Patterns/LakesideMutual

4 https://github.com/dotnet-architecture/eShopOnContainers

30 Patric Genfer, Uwe Zdun



Identifying Domain-Based Cyclic Dependencies in Microservice APIs 13

5 Data Availability

The source code and the data for the project are freely available. The data can be found under
the following link: https://swa.univie.ac.at/identifying-domain-based-cycles/.
This directory contains the generated communication models in png/svg format, together
with the textual output of the cycle search and the calculated metrics for each case study.
Source code for the detectors, the model generation and cycle search is available under
https://gitlab.swa.univie.ac.at/public-sources/microservice-cycles-public.

References

[Ne15] Newman, S.: BuildingMicroservices: Designing Fine-Grained Systems.O’Reilly
Media, Beĳing Sebastopol, CA, 2015, isbn: 978-1-4919-5035-7.

[Nt21] Ntentos, E.; Zdun, U.; Plakidas, K.; Genfer, P.; Geiger, S.; Meixner, S.; Hassel-
bring, W.: Detector-based component model abstraction for microservice-based
systems. Computing/, pp. 1–31, 2021.

[Re18] Ren, Z.; Wang, W.; Wu, G.; Gao, C.; Chen, W.; Wei, J.; Huang, T.: Migrating
Web Applications from Monolithic Structure to Microservices Architecture.
In: Proceedings of the Tenth Asia-Pacific Symposium on Internetware. ACM,
Beĳing China, pp. 1–10, Sept. 2018, isbn: 978-1-4503-6590-1.

[Th15] Thones, J.: Microservices. en, IEEE Software 32/1, pp. 116–116, Jan. 2015,
issn: 0740-7459.

[TL18] Taibi, D.; Lenarduzzi, V.: On the definition of microservice bad smells. IEEE
software 35/3, pp. 56–62, 2018.

[Wo17] Wolff, E.: Microservices: Flexible Software Architecture. Addison-Wesley,
Boston, 2017, isbn: 978-0-13-460241-7.

[ZNL17] Zdun, U.; Navarro, E.; Leymann, F.: Ensuring and Assessing Architecture
Conformance to Microservice Decomposition Patterns. In (Maximilien, M.; Val-
lecillo, A.; Wang, J.; Oriol, M., eds.): Service-Oriented Computing. Vol. 10601,
Springer International Publishing, Cham, pp. 411–429, 2017, isbn: 978-3-319-
69034-6 978-3-319-69035-3.

Identifying Domain-Based Cyclic Dependencies in Microservice APIs 31


