Draude, Lange, Sick (Hrsg.): INFORMATIK 2019 Workshops,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 175

Generic tools and individual research needs in the Digital
Humanities — Can agile development help?

Gerhard Heyer,1 Christian Kahmann? Cathleen Kantner’

Abstract: Many Digital Humanities research projects from many different target disciplines regularly
encounter the same recurring key problems and key procedures such as preprocessing, standard text
analytics, and visualization, which would be very time consuming if conducted without DH tools.
This calls for the use of generic platforms. However, there is a trade-off, since different researchers
from many different disciplines look at their objects from different theoretical perspectives. This raises
the general question how we can deal with this very typical conflict, and whether agile development
might be a suitable development method to cope with it. By addressing this question, we report on
an experience during a DH summer school as a condensed experiment in dealing with this trade-off
using the iLCM as a generic platform. In summary, although we have not arrived at a procedural
solutions for balancing individual user needs and generic problems which call for generic tools, our
summer academy experience well illustrates the high potential of a software eco-system supporting
the approach of agile development in Digital Humanities, and may help to better understand the role
of generic software tools and their role in DH.

Keywords: interactive modelling; agile development; iLCM

1 Introduction

If we take the term digital in the Digital Humanities not only to refer to digital infrastructures
like the ESFRI initiatives CLARIN# and DARIAHS, but also to refer to a digital — in
contrast to an analog — representation of research questions, then a key issue in the Digital
Humanities is to transform a Humanities or Social Science research question into a format
where digital data and computational analyses become key components of the research.
Assuming thus that theory-driven empirical research in the Humanities or Social Sciences
defines a need for computational methods in a new digital research paradigm in their own
fields, this implies that Digital Humanities is more than just using software tools for e.g.
text analytics or image analysis in the domain of Humanities and Social Science, but that it
is an effort of

! University Leipzig, Department for Natural Language Processing, Augustusplatz 10, 04109 Leipzig, Germany
heyer @informatik.uni-leipzig.de

2 University Leipzig, Department for Natural Language Processing, Augustusplatz 10, 04109 Leipzig, Germany
kahmann @informatik.uni-leipzig.de

3 University Stuttgart, Department of International Relations and European Integration, Breitscheidstr. 2 , 70174
Stuttgart, Germany cathleen.kantner @sowi.uni-stuttgart.de

4 https://www.clarin.eu/

5 https://de.dariah.eu/

©@@®@®@ doi:10.18420/inf2019_ws19


https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2019_ws19

176 Gerhard Heyer, Christian Kahmann, Cathleen Kantner

. a transdisciplinary cooperation between researchers from different scientific fields
with dissimilar research traditions

. in order to find answers to challenging research questions in their respective fields

. by employing digital data and methods.

Yet, how can this transformation be technically supported? Traditional software engineering
mainly focused on domains like business or production workflows: Software development
roughly follows a well defined path of first defining the application requirements, then
implementing the specifications, and finally testing and fine-tuning the resulting software
[So12]. This model, generally known as the waterfall, or V-model[Ba01], also seems to be
the main paradigm in the Digital Humanities: In most projects it is expected that scholars
(be it from the Humanities, the Social Sciences, or Computer Science) are able to define the
technical requirements for the tools to be employed from scratch. Computer Scientists then
implement it, and finally — often only at the very end of DH projects — the resulting data are
tested and evaluated against the original hypotheses by the Humanities and Social Science
scholars. The traditional software engineering approach is rather rigid, time consuming,
and inflexible when it comes to finding an optimal match between the requirements and
the available algorithmic solutions [Ma03]. In particular, iterative adaptations between
requirements on the one hand, and the implemented functionalities on the other, are not
encouraged. This suffices in domains of applications where user needs can be well defined in
advance and implemented based on a common knowledge shared between users and software
engineers of what is technologically possible. However, it does not work optimally in a
context of non-standard tasks, lack of routine, unknown dynamics of data, theory-building,
technology, highly interdisciplinary, and possible surprising findings.

2 Agile development

With the rapid development of new digital applications and technological changes, however,
even in some business applications, a more flexible paradigm, the so-called agile development
has been introduced. Agile development is based on the idea that a development group’s
"team ability” is crucial to the success of a project. Rather than optimizing on specifications
and the individual developers efficiency, the goal is to change the process of software
development into a team effort to develop quality software in a short time. Agile Software
Development is perceived as being a bit like playing a game [Co02]. The Manifesto for
Agile Software Development reflects this idea: While traditional software engineering
focuses on comprehensive documentation of requirements, code, and usability, the paradigm
of Agile Software Development values ,,individuals and interactions over processes and
tools, working software over comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following a plan* [Be01]. The twelve
guiding ,,principles of Agile Software* spell out the need and value of working software



Generic tools and individual research needs in the Digital Humanities 177

in short interactive development cycles open for revisions and fine-tuning. Development
methodologies like Scrum® help to implement the guiding principles of agile development.

We would like to propose the Agile Software Development paradigm for research in the
Digital Humanities, too: Rather than deciding upon software requirements too early in the
collaboration, we would like to recommend an iterative procedure of mutual rapprochement
between Humanities, or Social Scientists, on the one hand, and Computer Scientists on
the other as a means to arrive at the best results with respect to both parties research
goals involved. Agile development in Digital Humanities projects would allow for an early
interaction between defining software requirements and reflecting on how they can possibly
be implemented in dialogue with the further specification and adaptation of the research
questions of theory-driven empirical research in the Humanities or Social Sciences. In
practice, agile development in mixed teams of researchers can effectively be supported
by using a software ecosystem that allows to rapidly select suitable data and interactively
develop research hypotheses based on a truly digital representation of the research question.

Using agile development as a guiding paradigm for DH projects has also been followed in
projects like Derrida’s Margins [Ko18]. In fact, many Digital Humanities research projects
from many different target disciplines regularly encounter the same recurring key problems
and key procedures such as preprocessing, standard text analytics, and visualization, which
would be very time consuming if conducted without DH tools. This calls for generic
platforms such as weblicht? or generic tools such as the interactive Leipzig Corpus Miner
(ILCM?®). By “generic” we mean that the tool is not tied to one specific area of application,
but can easily be ported to other domains and applications. Generic tools support the
development of software in DH by automating general tasks that are not specific to a
particular application (such as preprocessing and defining task-specific data collections) ,
and thus help to structure the development process and to improve development productivity.
However, there is a trade-off, since different researchers from many different disciplines
look at their objects from different theoretical perspectives:

. They use different corpora with different characteristics for which a generic platform
is more or less well prepared,

. they discover different ways of using the generic platform, some of which are
surprising, and

. they call for different additional tools (e.g. POV / emotion classification tool) that are
not part of the original platform, etc.

Using a generic platform, this raises the general question how we can deal with this very
typical conflict, and whether agile development might be a suitable development method

6 https://www.scrumguides.org/
7 https://www.clarin-d.de/de/sprachressourcen-und-dienste/weblicht
8 http://ilcm.informatik.uni-leipzig.de/



178 Gerhard Heyer, Christian Kahmann, Cathleen Kantner

to cope with it. By addressing this question, we want to report on an experience during
a DH summer school as a condensed experiment in dealing with this trade-off. We were
surprised, how in a very short time four parallel student projects on very different subjects
from different scientific backgrounds could be developed quite far in adapting the generic
iLCM to very different user needs by engaging in a process that has a lot in common with
agile software development.

3 The eco-system iLCM

The iLCM project jointly carried out by the Computer Science Department of Leipzig
University and GESIS, pursues the development of an integrated research environment for
the analysis of structured and unstructured data in a “Software as a Service” architecture
(SaaS). The research environment addresses requirements for the quantitative evaluation of
large amounts of qualitative data with text mining methods as well as requirements for the
reproducibility of data-driven research designs in the Social Sciences [Nil8]. iLCM is not a
stand-alone program, but rather a server infrastructure comprising a number of components
including a document database (MariaDB), an NLP pipeline for preprocessing text data
(spaCy), a full-text index (Solr), a collection of text mining processes (for this, we rely on
a selection of mature external packages for the R statistical programming language and
additional own implementations), and finally a web application GUI (R Shiny). To make
the infrastructure available as a decentralized installation for end-users, it is embedded in a
virtual machine ensemble (Docker), which can be easily set up with predefined configuration
scripts. Docker ensures the executability of the iILCM on every system with a running docker
environment. All required libraries, software dependencies, and R packages are provided
with the docker containers. To set up the iLCM container ensemble, docker compose,
which automates the creation of all involved services in separate containers, is used. In
summary, iLCM integrates components for document management and retrieval, R scripting
capabilities for text data, and a GUI for analysis process management and result visualization
to enable researchers to conduct text mining on large collections in a systematic manner.

4 Agile development using iLCM at summer school

We tested the iLCM in a real life scenario using data from German and British newspapers
during a 2 week summer school of Studienstiftung des deutschen Volkes®. During the
first week, the students developed small Social Science research projects stating specific
hypotheses. The comparison between German and British newspaper coverage of Brexit
was one of those questions. The students decided to deploy a form of sentiment analysis on
relevant documents which was implemented within the iLCM infrastructure. Throughout
the second week, several principles of the agile development manifesto had been adopted.

9 https://www.studienstiftung.de/



Generic tools and individual research needs in the Digital Humanities 179

Using the iLCM simplified data acquisition, data management, data preprocessing, filtering
the data, extracting and selecting relevant documents in a processable format. Moreover, the
iLCM provided an integrated development environment with a set of necessary libraries
and functions already installed (R-Studio Server with pre installed libraries as running
Docker container having shared volumes with the R-Shiny App container). All this converged
towards the production of a first prototype in a very short period of time (1st principle).
Apparently, agile software development principles help to get users on their way in working
with a generic DH platform such as the iLCM, and encourage them to continue with their
research on their own. We do not claim to be the first and only to apply agile software
development principles and we do not propose them in a *fundamentalistic’ or all to naive
attitude. However, in the course of the realization of the project, it became apparent that
the students from various fields of science, viz. politics and computer science, played
the role of stakeholders as-well as developers simultaneously. Therefore, the principles
demanding close communication and feedback between the partners, were intensely realized.
Generic tools are useful, but have to be adapted to different individual user needs. The
first version of the implementation used two pre defined sentiment lists with words and
a binary assignment towards positive or negative sentiment expression. After applying
the initial algorithm to the selected documents, the students identified limits of binary
sentiment weights leading to incomprehensible results (3rd, 4th, 6th and 7th principle).
These outcomes lead to a new feature request (2nd principle): A list of sentiments with
continuous weights to obtain more reasonable results. The application of the principles
of agile development (fast first prototype) led to new and previously unseen demands
on the software. A more classical implementation strategy would not have offered the
possibility to integrate further requirements and consequently new implementation methods
so spontaneously. The already described approach in addition to a visualization of the results
of the sentiment analysis of the newspaper collection on Brexit over time using R-plotly,
was successfully implemented and incrementally improved (see 1) by the students. Due to
the lack of time and the exemplary character of the student’s projects, we also consider
the principle of simplicity (10th principle) as one of the basic features of the cooperation.
Apparently, platform operators learn in that process more about their needs as users, they
develop a kind of Beta-Version of possible new features and learn how they can improve
generic platforms such as the iLCM. This is a second very important positive effect.

5 Conclusion

Although we have not arrived at a procedural solution for balancing individual user needs
and generic problems which call for generic tools, our summer school experience well
illustrates the high potential of a software eco-system supporting the approach of agile
development in Digital Humanities, and may help to better understand the role of generic
software tools and their role in DH.



180 Gerhard Heyer, Christian Kahmann, Cathleen Kantner

@ Sentiment guardian

Sentiment Score

Fig. 1:
infrastr
taz and

@ Sentiment taz

) o ¢ 120k

100k

number of documents found

1985 1990 1995 2000 2005 2010 2015 2020

Visualization for implemented Sentiment Analysis created by the students using the iLCM
ucture. In the graphic the measured sentiments for documents (from the German newspaper
the British newspaper the Guardian) dealing with Brexit are shown in a diachronic matter.

The different result levels are caused by the used sentiments sets, which differ for the two languages.
Therefore the relative progressions is of main interest showing a worsening tendency since 2012 for
the Guardian and in contrast to that an improving sentiment in the German texts since 2011.

Bibliography

[BaO1]

[BeO1]

[Co02]

[Kol18]
[Ma03]

[Ni18]

[Sol2]

Balzert, Helmut: Lehrbuch der Software-Technik. Bd. 1. Software-Entwicklung. Spektrum
Akademischer Verlag, 2001.

Beck, Kent; Beedle, Mike; van Bennekum, Arie; Cockburn, Alistair; Cunningham, Ward;
Fowler, Martin; Grenning, James; Highsmith, Jim; Hunt, Andrew; Jeffries, Ron; Kern, Jon;
Marick, Brian; Martin, Robert C.; Mellor, Steve; Schwaber, Ken; Sutherland, Jeff; Thomas,
Dave: Manifesto for Agile Software Development, 2001.

Cockburn, Alistair: Agile Software Development. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

Koeser, Rebecca Sutton: Lessons learned from building “Derrida’s Margins”, 2018.

Martin, Robert Cecil: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

Niekler, Andreas; Bleier, Arnim; Kahmann, Christian; Posch, Lisa; Wiedemann, Gregor;
Erdogan, Kenan; Heyer, Gerhard; Strohmaier, Markus: ILCM - A Virtual Research Infrastruc-
ture for Large-Scale Qualitative Data. In (chair), Nicoletta Calzolari (Conference; Choukri,
Khalid; Cieri, Christopher; Declerck, Thierry; Goggi, Sara; Hasida, Koiti; Isahara, Hitoshi;
Maegaard, Bente; Mariani, Joseph; Mazo, Hélene; Moreno, Asuncion; Odijk, Jan; Piperidis,
Stelios; Tokunaga, Takenobu, eds): Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018). European Language Resources
Association (ELRA), Miyazaki, Japan, May 7-12, 2018 2018.

Sommerville, Ian: Software Engineering. Pearson Studium, Miinchen, 9 edition, 2012.



