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Abstract: Biometric data includes privacy-sensitive information, such as soft-biometrics. Soft-biome-
tric privacy enhancing technologies aim at limiting the possibility of deducing such information.
Previous works proposed several solutions to this problem using several different evaluation pro-
cesses, metrics, and attack scenarios. The absence of a standardized evaluation protocol makes a
meaningful comparison of these solutions difficult. In this work, we propose privacy evaluation pro-
tocols (PEPs) for privacy-enhancing technologies (PETs) dealing with soft-biometric privacy. Our
framework evaluates PETs in the most critical scenario of an attacker that knows and adapts to the
systems privacy-mechanism. Moreover, our PEPs differentiate between PET of learning-based or
training-free nature. To ensure that our protocol meets the highest standards in both cases, it is based
on Kerckhoffs‘s principle of cryptography.
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1 Introduction

Recent works on soft-biometrics showed that privacy-sensitive information, such as gen-
der, age, ethnicity, or even health can be deducted from biometric data of an individual
[DER16, Te19c]. However, for many applications, biometric data is expected to be used for
recognition purposes only, and extracting such information without the user’s agreement
raises major privacy issues [Ki13]. Consequently, this kind of data is given special protec-
tion, e.g. by the European Union with its General Data Protection Regulation [CotEU16].
Soft-biometric privacy aims at suppressing this privacy-sensitive information in biometric
data, to prevent a potential misuse (function creep) of this information. Previous works
proposed several solutions to this problem. However, since these works consider different
evaluation metrics and attack scenarios, a meaningful comparison is difficult. In this work,
we propose a standardized framework for evaluating the performance of PETs on soft-
biometric privacy. We introduce propose privacy evaluation protocols (PEPs) for learning-
based and training-free scenarios. Following the Kerkhoff principle, our PEPs build on the
critical scenario of a function creep attacker that knows and adapts to the system’s privacy-
mechanism. Our PEPs include a detailed description of the data handling, the choice and
the training of the attack estimators, as well as, robust and meaningful evaluation met-
rics for both aspects of soft-biometric privacy, suppressing privacy-risk information and
maintaining recognition ability.
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2 Related Work
Previous works on soft-biometric privacy either proposed solutions at the image-level
[Su11, OR14, MR17, Mi18, MRR18, MRR19] or at template-level [MFV19, Te19a, Te19b,
Te20b, Te20a]. At the image-level, Suo et al. [Su11] proposed a gender conversion ap-
proach that exchanges facial components of a given face with similar components of the
opposite gender. Othman and Ross [OR14] proposed an image-based approach by apply-
ing face morphing. To disturb the original gender of an individual they morph the indi-
viduals‘ image with an image of the opposite gender. In [Ch18], imperceptible noise was
used to suppress k attributes at the same time. However, this noise is trained to suppress
attributes from only one specific neural network classifier and consequently, may not gen-
eralize to other classifiers. Mirjalili and Ross [MR17] iteratively perturb face images until
the soft-biometric attribute assigned by arbitrary estimator flips. More recently, Mirjalili
et al. [Mi18] used semi-adversarial networks (SAN) to suppress the gender information in
images. SANs are auto-encoders with adversarial training that aim to maximize the per-
formance of a face matcher and to minimize the performance of an estimator. In [MRR18]
and [MRR19], the authors extended the idea of SANs to (a) an ensemble of SANs and (b)
combining a diverse set of SAN models to compensate for each other’s weaknesses.

Recently, template-based solutions received a lot of attention. In 2019, Terhörst et al.
[Te19b] proposed similarity-sensitive noise transformations to suppress privacy-sensitive
attributes in face representations in an unsupervised manner. Concurrently, Morales et al.
[MFV19] introduced SensitiveNets, a network that suppresses target information in face
templates based on triplet loss learning. In [Te19a], Terhörst et al. proposed Incremen-
tal Variable Elimination (IVE). IVE iteratively determines the most privacy-risk variables
and deletes them from the face template. Bortolato et al. [Bo20] proposed PFRNet, a face
template learning framework that disentangles identity from soft-biometrics to enhance
privacy. In [Te20b], Terhörst et al. proposed Negative Face Recognition (NFR). This unsu-
pervised approach stores only complementary identity information to enhance the user’s
privacy. Exploting the structural differences between face recognition (use-case) and fa-
cial attribute estimation (attack scenario), same authors proposed a privacy-preserving face
recognition approach based on minimal information units (PE-MIU) [Te20a].

The following list summarizes the limitations of previous works and demonstrates the need
for a standardized evaluation protocol:

• Violation of Kerkhoffs‘ principle: Most previous works [Su11, OR14, MR17,
Mi18, MRR18, MRR19, Ch18] assume an attacker with only restricted resources
and knowledge about the systems privacy mechanism.

• Gender focus: Most previous works focus mostly on the evaluation of the binary
characteristic gender. The effectiveness of categorical or continuous attributes, such
as race and age, is not well investigated [Su11, OR14, MR17, Mi18, MRR18, MRR19].

• Non-robust evaluation metrics:: Evaluation metrics (accuracy) used in most pre-
vious works [MFV19, OR14, Ch18] are sensitive to the underlying data distribution
and thus, vulnerable to unbalanced data.

• Non-standardized evaluation process: Due to no established evaluation protocols,
a meaningful comparison of PETs is difficult.
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3 Attack Scenario
For the privacy evaluation protocol, we assume the following attack scenario: the attacker
gained unauthorized access to the face templates or images (stored or transmitted) used to
recognize individuals. The attacker may have extensive knowledge of how these were cre-
ated and what method was used to enhance the privacy of the users. Moreover, the attacker
may have access to computational power and an annotated face dataset. Accordingly, we
follow Kerckhoffs‘s principle known from cryptography, which Shannon formulated as

”the enemy knows the system being used” [Sh49]. The attacker’s objective is the function
creep of the privacy-sensitive information of the individuals for an unknown purpose.

4 Framework / Protocol
In this section, we propose three soft-biometric privacy evaluation protocols (PEPs). We
distinguish between the evaluation of training-free (PEP-TF) and learning-based (PEP-
LB) PETs. The learning-based PETs need additional data about the suppressed attributes
for the training. PEP-TF requires no additional training and can be directly applied to
the data. For the learning-based scenario, we suggest an additional (third) loose protocol
(PEP-LBL) if the amount of data is not sufficient to perform the strict evaluation protocol
(PEP-LBS).

4.1 Preliminary

The first step of the protocol is to split the data set in approximately equally sized folds k
with k≥ 3. This split should preserve the statistical distribution of the data set and enforce
subject-exclusiveness. This means that images of an individual are not distributed over
multiple folds but only included in one fold exclusively. This is done to ensure that virtual
attackers learn abstract soft-biometric information and do not rely on learned identity in-
formation when predicting soft-biometric attributes. The folds are used to perform k-fold
cross-validation. The number of folds used for training, development (parameter tuning),
and testing are specified in an extended notation: PEP-LBS-Ntrain-Ndev-Ntest . The N values
indicate the number of folds for the specific step. For instance, PEP-LBS-2-1-2 would in-
dicate that the learning-based and loose protocol was performed with two folds as training
set, one fold for hyperparameter-tuning, and two folds for testing. After splitting the data
in the different folds, the feature vectors are scaled to unit-length and further normalized.
Feature normalization, such as z-score or min-max scaling, is applied in the same way
as the protocol presented below. These two steps ensure a meaningful start for the attack
estimators.

4.2 PEP-LBS: Learning-based and Strict Evaluation Protocol

The learning-based and strict privacy-enhancing protocol (PEP-LBS) assures that the
same data is not used multiple times during the evaluation process. The protocol assumes
that the PET includes a training process. Therefore, the original data set is divided into
three parts Dtrain, Ddev, and Dtest (which all may consist of multiple folds). The Dtrain set
is used to train the PET and the Ddev to fine-tune possible hyper-parameters of the method.
The Dtest is transformed using the trained and fine-tuned privacy-enhancing method and
further divided into the three subsets: Ttrain, Tdev, and Ttest . It is important to note that Ttrain,



4 P. Terhörst, M. Huber, N. Damer, P. Rot, F. Kirchbuchner, V. Struc, A. Kuijper

Tdev, and Ttest are subsets of the transformed Dtest and not the transformed Dtrain and Ddev.
Ttrain is then used to train the different FCEs. Tdev is used to fine-tune the hyper-parameters
of these FCEs. The Ttest set is used to evaluate the performance of the PETs in regard of
its recognition performance and the suppression performance on the FCEs. A schematic
view of the PEP-LBS protocol can be seen in Figure 1a. When using the PEP-LBS we
recommend to choose the number of folds in the test subset, Ntest ≥ 3.

(a) PEP-LBS (b) PEP-LBL

Fig. 1: Schematic of the data handling of both learning-based protocols PEP-LB.

4.3 PEP-LBL: Learning-based and Loose Evaluation Protocol

In PEP-LBS, dividing the Dtest into Ttrain, Tdev, and Ttest , requires an appropriate large test
set Dtest and thus, a large amount of data. Since this is often not available, we introduce
the learning-based and loose protocol (PEP-LBL). In this protocol, the data separation is
loosened. This comes at the cost of a partial overfit of the PET on T . The Dtrain subset is
used to train the privacy-enhancing method. The Ddev subset is used to adjust the hyper-
parameters of the PET. Afterwards, all three subsets Dtrain, Ddev, and Dtest are transformed
using the PET into Ttrain, Tdev, and Ttest . Ttrain is used to train the estimators of the attacker
and Tdev to fine-tune the parameters of the estimators. Ttest is only used to evaluate the PET.
The loose protocol provides a trade-off if splitting the test set Dtest to evaluate the FCEs
would lead to too small subsets that meaningful results cannot be obtained. To prevent this,
the train set Dtrain and the development set Ddev are used twice, once in their unaltered
templates/images to train and fine-tune the PET and once in their transformed ones Ttrain
and Tdev to train and fine-tune the attack estimators. A schematic view of the PEP-LBL
protocol is shown in Figure 1b.

4.4 PEP-TF: Training-free Evaluation Protocol

The proposed training-free evaluation protocol (PEP-TF) assumes that the PET does not
require a training phase. Therefore, the three parts of the original data set, Dtrain, Ddev, and
Dtest are directly transformed by the PET to the modified templates/images Ttrain, Tdev, and
Ttest . Ttrain is used to train the different FCEs, Tdev is used to adjust the hyper-parameter of
those estimator models and Ttest is then used to evaluate the performance of the privacy-
enhancing method. An illustration of the PEP-TF protocol is shown in Figure 2.

Fig. 2: Illustration of the data han-
dling for the training-free protocol
PEP-TF.
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4.5 Function Creep Estimators

In the proposed attack scenario, the function creep attacker deploy function creep esti-
mators (FCEs) to determine privacy-sensitive attributes that were previously obscured by
the transformation through the PET used. These FCEs are trained and fine-tuned as de-
scribed in the used protocol. The hyperparameter tuning can be done, for example, via
Grid Search, Random Search or Bayesian Optimization. In Section 4.1, the pre-processing
of the data was already described.
The template-based approaches are evaluated using the extracted feature representations
of the face images. For the possible FCEs, we recommend well-known estimators that
should be used as a baseline to assess the quality of the PETs. These include random for-
est, support-vector machines, k-nearest neighbors and logistic regression. This choice is
based on (a) their membership to different kinds of machine learning models and (b) the
fact that these perform evidently well on face templates [Te20b, Te19a]. Each FCE is in-
dependently trained twice: first, on the unmodified data and second, on the transformed
data that was modified by the PET. This allows us to compare the performance of the esti-
mators without having noise due to different test samples. The training of several different
estimators is intended to ensure the robustness of the PET for different kind of attacks.
Please note that another attack scenario might come from regenerating a face image from
a template and manually investigating this. However, patterns of privacy-sensitive infor-
mation in templates are generally easily detectable due to the feature entanglement during
the learning process.
In contrast to PET based on template-level, image-based approaches have to deal with
large-scale and more restricted feature spaces. Image-based approaches have the advantage
that, for many attributes, the modified representations can be evaluated by humans as well.
However, the choice of function creep estimators should additionally include machine-
based solutions since these solutions might catch suspicious artifacts that humans are not
aware of. Due to the large-scale nature of images, (a) CNN approaches [KSH12] should
be used as potential FCEs or (b) a combination of lower-dimensional handcrafted features,
such as LBPH [AHP06], with the proposed template-based estimators.

5 Evaluation
So far, the protocol descriptions focus on the data handling and the training of PETs and
FCEs. Based on this, this section describes how the PETs can be robustly evaluated in
regard to the FCEs. The challenge of soft-biometric privacy describes a trade-off between
maintaining the recognition performance of face representations and suppressing the pre-
dictability of privacy-sensitive attributes within these. To evaluate both aspects of the trade-
off, the attribute estimation and the recognition results of the modified and unmodified face
representations are compared. For the evaluation of the attribute suppression performance,
the predictions of the FCEs on the un/modified representations of Ttest are used. The eval-
uation of the recognition performance is based on the un/modified representations of Ttext .

The recognition performance is the most important factor of recognition systems, since it
measures its major purpose. We recommend to evaluate these in terms of receiver oper-
ating characteristic (ROC) curves with false non-match rates (FNMR) at a different false
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match rates (FMR) as defined in the ISO standard [ISO]. ROC curves provide a broad per-
formance overview independent of the application and allow to compare the recognition
performance of the unmodified baseline with the PETs. For more specific comparisons,
FNMR at a fixed FMR of 10−3 or smaller can be used as recommended by the European
Border Guard Agency Frontex [Fr17].

To evaluate the suppression performance of PETs, we recommend the use of the balanced
accuracy. This balanced accuracy is equivalent to the standard accuracy definition with
class-balanced sample weights. This allows an unbiased performance measure on testing
data with unbalanced attribute information. The suppression performance of PETs can be
compared by providing the attribute estimation performance of the unmodified baseline
and compare these with the estimation performances of the FCEs on the PET-modified
representations. For a single value comparison on the suppression performance the sup-
pression rate [Te20b] can be used. The suppression rate γ =

accorg−accmod
accorg

is defined by the
difference in prediction accuracy between unmodified (accorg) and PET-modified (accmod)
representations.

To measure the benefit of applying a PET, the privacy gain identity loss coefficient (PIC)
[Te19b] is a suitable tool. The PIC is defined as PIC = AE ′−AE

AE − RE ′−RE
RE where AE and

AE ′ denote the attribute prediction errors of an FCE. RE and RE ′ define the recognition
errors with and without the privacy-enhancement of the face representations. In Figure 3,
equipotential lines for different PIC-values are shown and visualize the trade-off. The PIC
values the relative error of the FCE prediction with the relative error of the recognition
performance. Consequently, it directly measures the benefit of using the PET such that a
higher coefficient states a higher benefit.

Fig. 3: Example of a recognition-
attribute plot [Bo20]. The attribute
prediction error is shown over the
recognition error for the unmodified
baseline and the different PETs. The
attribute error refers to the most suc-
cessful FCE. The size of the shaded
areas refer to the PIC coefficient for
a PET. Additionally, equipotential
lines for different PIC-values are
shown in grey.

To visualize the worst-case privacy-enhancing performance, we recommend the use of
recognition-attribute plots [Bo20], as shown in Figure 3. This plot shows the recognition
error (e.g. the FNMR at 10−3FMR) over the balanced prediction error of an attribute (e.g.
gender). The attribute prediction error refers to the most successful FCE, to simulate the
most critical attack scenario. In the plot, the unmodified baseline is shown, as well as the
PETs under the specification of the most successful FCE. This allows a complete eval-
uation of the trade-off between suppressing an attribute and maintaining the recognition
performance. To further visualize the benefit of applying a PET, the size of the shaded
areas around a PET represents its PIC coefficient.
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6 Conclusion
Extracting privacy-sensitive information, such as demographics or health information,
about an individual from biometric data without consent is considered a major privacy
issue. Recent works proposed PETs under different evaluation processes, metrics, and
considered attack scenarios. This makes a meaningful comparison of these methods chal-
lenging. To enhance the comparability of PETs, and thus enhance the development of this
field, we propose PEPs in the most critical attack scenario of a function creep attacker that
knows and adapts to the systems privacy-mechanism. We propose three PEPs to ensure
sufficient use of the data concerning the nature of the evaluated PET. This includes effi-
cient and independent data handling, training of PETs and FCEs, and robust evaluation
metrics for both aspects of soft-biometric privacy.
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