
Towards Autonomic Processes and Services

Schahram Dustdar

Distributed Systems Group
Institute of Information Systems

Vienna University of Technology,
Vienna, Austria

{dustdar@infosys.tuwien.ac.at}

Abstract. More than ever, computing devices are becoming more powerful and
networked, organizational boundaries are dissolving, and underlying information
systems become more complex, thus requiring higher degrees of autonomic
behavior of the business processes and software services they support. In this
keynote talk the main challenges towards building the required novel conceptual
abstractions as well as needed technological implementations are presented and
discussed.

Keywords: Service-oriented Computing, Web services, Autonomic Computing,
Service Composition, Context-based services

1 Introduction

In the past several decades the industrial landscape changed dramatically. Novel
business models were increasingly introduced and successfully implemented. More
recently, the vision of Service-oriented Architecture (SOA) aims at providing a model to
allow realization of such novel, highly dynamic, adaptive, and composeable information
systems and services for such business models and processes. SOAs are, in fact,
mapping the real world unto the world of large-scale Internet-based information systems.
Today we find many businesses and industries being “service-oriented”. For example,
telecommunications, financial services, healthcare, logistics, just to name a few. Those
industries became “service-oriented” mainly through three factors: specialization,
standardization, and scalability. All those factors can be also witnessed as being crucial
in our educational systems. Standardization, in particular, is an important factor in the
world of SOAs and business processes. In fact, it seems that – as we see in the real world
in many examples (e.g., Starbucks) we increasingly move to global standards of various
products and services. In the Internet-world the same principle is applied to SOAs:
Standards are being agreed upon and introduced (e.g., the Web services stack) and novel
methods for building such global large-scale systems are being promoted:

The SOA for the top-down enterprise-scale approach to business process design and
service composition (build once and use many times), and more recently, the service
mashup approach (build once and use once), for the bottom-up end-user (consumer)

13



driven approach to service composition. Service mashups have some additional
characteristics, such as more or less concurrent design and execution, higher degree of
user participation, and an overall agile approach to the development process.

Why are those approaches to service composition and business process design and
management relevant at all? Why is it not enough to use workflow management
systems? Or is it enough? Well, in this paper, I argue that those traditional approaches
increasingly don’t work. The reasoning is as follows: Throughout the last decades we
have seen that organizational boundaries increasingly became fuzzy. Novel business
alliances, including mergers and acquisitions, are occurring. Such partnerships happen
more often and faster than previously. Furthermore, partnerships need to be highly
dynamic and flexible, often depending on special cases and on-demand policies. In
technical terms we can say that there is increasingly a need for information systems
integration, however, the assumptions as we knew them from the area of workflow
management systems (e.g., first you model, then you execute; after exceptions occur,
remodel your process and enact again) do not hold any longer due to the requirements of
highly dynamic, flexible and inter-connected organizations and people including the
products and services they offer, provide and produce. The distinction between design
(model or built) time and run time is starting to become obsolete. We need to spend
more energy on analyzing finer “granularities” of those “times”.

The remainder of the paper is organized as follows. Section 2 discusses our
assumptions with regard to current technology trends and summarizes lessons-learned
from four areas which are crucial to the topic of this paper, i.e., Infrastructure Evolution,
Software Evolution, Process Evolution, and Teamwork Evolution. Section 3 motivates
the approaches chosen with an illustrative example. Section 4 discusses the technical
approaches we use in our research to solve those presented challenges. Section 5
concludes the paper.

2 Assumptions

Before we propose technical approaches and argue why it makes sense to move towards
autonomic processes and services, we outline our assumptions on the relevant techno-
logical landscape and context. The devices we use increasingly become smaller, more
powerful, cheaper, and always connected to networks. Basically, we move towards a
pervasive communications paradigm, where people are enabled to communicate and
coordinate their work activities anytime and from anywhere, potentially with many
devices. Such as pervasive underlying infrastructure model implies the need for an
efficient utilization model for hardware resources (e.g., Grid computing) and software
resources (e.g., Service-oriented Computing). The funda-mental assumption in this
domain is that we increasingly have complex, open and dynamic infrastructures where
business processes and services have to operate on. We summarize our assumptions on
four dimensions and subsequently discuss our contributions and challenges in them.

(1) Infrastructure Evolution. Complex, open and dynamic infrastructures require
all of their constituents to operate, to communicate, and to coordinate constantly,
in order to keep the overall system in a healthy mode. We can say that this

14



operational principle has some similarity with the human body, the autonomous
nervous system, respectively. Therefore, some research communities refer to this
research domain as “Autonomic Computing”. However, currently the scientific
community working in this domain mainly focuses on lower layers of the
software (e.g., operating systems) and hardware stacks (e.g., networking) and
intends to add autonomic features to the underlying infrastructure including what
is referred to as the self-* properties (e.g., self-healing, self-configuring, self-
adapting, self-organizing, self-optimizing, etc.). We should note that not only the
underlying infrastructure is supposed to act autonomically; also higher levels of
the software stack need to be composed accordingly. To understand what the
requirements for such a higher level autonomic composition of processes and
services are, we discuss three main lessons learned from the most important parts
of autonomic processes and services:

(2) Software Evolution. Software requirements cannot be fully gathered upfront
or be frozen. Requirements are intrinsically decentralized and a complete control
and pre-plan are illusory. When software is changed, it impacts the whole
product, process, and service. Software Evolution is intrinsic to software it is not
a “post-delivery” nuisance. We basically have two strategies to deal with
mastering the complexity of software evolution: a “top-down approach by (a)
using process-driven and model-driven approaches to master complexity and
enterprise-scale change. This means that we build a (process and service
composition) model once and use it many times; or a “bottom-up approach” (b)
by using end user-driven composition or service mashups for small-scale
processes and service compositions (i.e., build once and use once).

(3) Process Evolution. When we analyze business processes today we see that they
typically go across multiple departments, potentially over multiple organizations
and countries and run on multiple systems. Unlike databases, where one can
query and ask for all customer order info, it is very difficult or impossible to
query such “process” related questions. The reason is that business processes are
instantiated not on one system only (e.g., a DBMS) but rather leave traces in a
plethora of information systems, including workflow systems, databases, mail
servers, document management systems, web servers, and mail servers, just to
name a few prominent examples. If we require mechanisms to (semi)
automatically adjust processes and service compositions to new circumstances –
and this is what the underlying assumption here is – we require better
abstractions and systems to allow us to do so. It is simply not sufficient to make
changes in, e.g., a workflow system since a process touches multiple systems and
affects them as well. Making those changes manually does not scale.

(4) Teamwork Evolution. Over the past decades teamwork has evolved, both in
style and in form. “Classic” teamwork often involved solely intra-departmental
work with stable team configurations (i.e., team members did not change
frequently) and with long-lived time span (i.e., team members worked together
over many years). With the advent of the Internet, and the Web as a
communications and collaboration platform in particular, teamwork evolved into

15



what is known as “virtual teamwork”. This essentially means that a more or less
stable team usually from different organizations works together for a limited
amount of time (e.g., project-based). More recently, we find more team forms,
including nomadic teams (i.e., teams on the move) and nimble teams (e.g., a team
consisting of specialists to solve a particular problem). Both of the latter team
forms have in common that the team configuration may change rapidly and often
(e.g., due to network issues in MANETs or due to specialists joining or leaving
the team after they accomplished their mission).

Those categories of evolution (Infrastructure, Software, Process, Teamwork) require
novel strategies to deal with the design and enactment of supporting infrastructures and
information systems. Those novel strategies include self-* capabilities of the underlying
infrastructure on the one hand but also autonomic mechanisms on higher levels of
abstractions, including the business process levels and service composition levels.

3 Illustrating example

In order to motivate the need for autonomic processes and services consider the
following example system: credit management system. Such a system typically provides
answers to questions such as: which credit is the right one for me? Credit management is
part of a larger system since it depends on issues such as various insurance mechanisms,
various repay models, legal and business regulations and many models and regulations
more. To summarize: The overall system for managing such credit management features
is inherently open, complex, and distributed because interest rates, the status (context) of
the credit taker (e.g., illness, insolvency etc.) all have impact on the credit model and
rates. The question is how should such an information system be modeled? We argue
that we require novel abstractions and mechanisms to solve the problems in such open,
complex and distributed scenarios.

4 Technical Approaches for Autonomic Processes and Services

As we have seen, to master complexity in information systems one requires strong links
between the parts of the systems (similar to the human autonomous nervous system).
Those relationships provide a fundamental framework for the processes and service
compositions to be “glued” together in a flexible and adaptive manner.

In our research group, we contribute to the field of autonomic processes and services
with the following approaches, methods, and tools we develop: (1) Model-driven
compliance framework and approach, (2) Active service registries, (3) Service search
and clustering engines, and (4) Context-based and relevance-based service composition
and enactment.

16



4.1 Model-driven compliance framework

In this research [TZD07] we contribute with a view-based and model-driven
development (MDD) approach to reduce the development complexity of the overall
autonomic systems. The framework consists of modeling elements such as a meta-meta-
model, meta-models, and views. As mentioned in the previous section, a view is a
representation of a process from the perspective of related concerns. In our framework, a
view is specified using an adequate framework's meta-model. Each meta-model is a
(semi-)formalized representation of a particular business process concern. Therefore, the
meta-model specifies entities and their relationships that can appear in the correspondent
view. The meta-models, in turn, are defined on top of the meta-meta-model. The meta-
meta-model can be simple or more elaborate like MOF.

4.2 Active Service Registries

In our research in active service registries [Mi07] we address one fundamental
shortcoming of today’s SOA implementations, namely, dynamic binding and invocation.
We illustrate the set of today’s challenges by utilizing an example based on which those
shortcomings are analyzed henceforth. SOAs had foreseen the publish-find/bind cycle
(SOA triangle), whereas as today, most SOA implementations
use (for practical reasons) only the interaction between service requestor and service
provider with service contracts. This, of course, limits the envisaged potential of SOA
implementations considerably. In our research project VReSCO we provide a client-side
API to allow for dynamic binding and invocation of services to solve many of today’s
problem related to dynamic binding and invocation and its relationship to registries. In
this paper we discuss those implemented parts of our infrastructure which can be of help
when building large-scale SOAs requiring dynamic binding and invocation.

4.3 Service search and clustering engines

In our research on service search engines and clustering [PD05] we presented a novel
distributed Web service search engine based on the Vector Space Model for information
retrieval. We have shown that our prototype implementation works even for large
WSDL repositories. Unlike other search engines, no template document collection exists
to evaluate the final precision/recall rating. To formally evaluate and optimize the search
engine’s performance parameters, a test-collection with predefined results has to be
established. Furthermore, the vector matrix is currently uncompressed. By erasing zero
entries in the matrix and therefore compressing the vector space, we think the
performance can be increased significantly. We think that it is very hard to automatically
generate working applications out of Web services without human judgment. Creating
ontologies may help to a limited degree. For the future, we plan to extend the indexing
procedure from purely syntactical data to a semantic level. For this purpose we will
utilize a domain-specific ontology to describe the functionality of a service endpoint and
integrate the result in a BPEL-process. The major problem here is, to find a fitting
indexing method for the ontology itself. Furthermore, by using a domain-specific

17



resource, the application domain is limited equally, which is quite the opposite of what
we want to achieve. A possible tradeoff could be achieved by combining syntactical
analysis and ontology-supported weight adjustment. It remains to be seen how beneficial
the application of ontologies is to leverage the search mechanism to a semantic level.

4.4 Context- and relevance-based service composition and enactment

The inContext EU FP6 research project [InContext] aims at supporting highly dynamic
forms of human collaboration such as Nimble (short-lived collaboration to solve
emerging problems), Virtual (spanning different geographical places and involving
diverse professionals) and Mobile (collaboration with mobility capabilities) teams. These
teams require different mechanisms for coordination, and in many cases also different
software services (e.g., document sharing, project management, and instant messaging),
and infrastructures (e.g., large-scale and Internet-based mobile devices, and mobile ad-
hoc/P2P networks). SOA-based solutions thus offer greater advantages for inContext
over other solutions, such as those that are portal-based. For purposes of autonomic
services and processes we developed methods to react and to anticipate to changes. This
is of paramount importance in autonomic environments. The service adaptation can be
based on context information (e.g., degradation of QoS values) [RPD06, RPD07], based
on human activity mining [DH07] and on service interaction mining [DG07].

5 Conclusion

In this paper we discussed conceptual challenges as well as technical issues regarding
advancements towards autonomic processes and services. We have motivated the need
for systems capable of autonomic behavior by looking at the business demands and
technological advances, which have changed significantly over the last decades. We
outlined four research areas where we summarized our assumptions in more detail:
Infrastructure, Software, Processes, and Teamwork. Finally, we presented a summary of
our approaches which enable building a coherent framework for autonomic processes
and services. We observe that service mashups have an impact in the software evolution
domain, which helps to address the dynamics of infrastructures, team forms, and process
evolutions, while traditional service composition (e.g., Model-driven development, or
MDD for short) will help to address the complexity (e.g., interoperability, multiple
platforms, etc). Eventually, in the future service mashup approaches require a
“lightweight/on-demand MDD” support to help addressing the dynamics, while still
ensures solving the “complexity” issues.

References

[TZD07] Tran, H., Zdun, U., Dustdar, S. (2007). View-based and Model-driven
Approach for Reducing the Development Complexity in Process-Driven

18



SOA, International Conference on Business Processes and Services
Computing, 25-26 September, Leipzig, Germany

[Mi07] Michlmayr, A. Rosenberg, F., Platzer, C., Treiber, M., Dustdar, S. (2007).
Towards Recovering the Broken SOA Triangle - A Software Engineering
Perspective", In Proceedings of the 2nd International Workshop on Service-
oriented Software Engineering (IW-SOSWE'07), Dubrovnik, Croatia,
September 2007, ACM Press.

[InContext] http://www.in-context.eu
[RPD06] Rosenberg, F., Platzer, C., Dustdar, S., (2006). Bootstrapping Performance

and Dependability Attributes of Web Services. IEEE International
Conference on Web Services (ICWS'06), 18. - 22. September 2006,
Chicago, USA.

[RPD07] Rosenberg, F., Platzer, C., Dustdar, S., (2007). QUATSCH – A QoS
Evaluation and Monitoring Tool for Web Services. Journal on Web services
Research, forthcoming

[DH07] Dustdar, S., Hoffmann, T. (2007). Interaction pattern detection in process
oriented information systems, Data and Knowledge Engineering, Elsevier,
62 (2007), pp. 138–155

[DG07] Dustdar, S., Gombotz, R. (2007). Discovering Web service workflows using
Web services Interaction Mining. International Journal of Business Process
Integration and Management (IJBPIM), pp. 256-266.

[PD05] Platzer, C., Dustdar, S. (2005). A Vector Space Search Engine for Web
Services, IEEE European Conference on Web services (ECOWS), 14-16
November 2005, IEEE Computer Society Press.

19




