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Abstract: We present experimental results using lattice reduction algorithms. We
choose the BKZ algorithm, that is the algorithm considered the strongest one in this
area in practice. It is an important task to analyze the practical behaviour of lattice
reduction algorithms, as the theoretical predictions are far from being practical. Our
work helps choosing the right parameters for lattice reduction in practice. The experi-
ments in this paper go beyond the results of Gama and Nguyen in their Eurocrypt 2008
paper. We give evidence of some facts stated in their work, concerning the runtime and
the output quality of lattice reduction algorithms.
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1 Introduction

Lattices have been known in number theory since the eighteenth century. They already
appear when Lagrange, Gauss, and Hermite study quadratic forms. Former applications of
lattice reduction are discrete optimization and integer programming, as well as factoring
polynomials. Nowadays, lattices and hard problems in lattices are widely used in cryptog-
raphy as the basis of promising cryptosystems.

Lattice reduction is also a useful tool in cryptanalysis. Various cryptosystems are broken
using lattice reduction, e.g. knapsack systems [LO85, CJLT92] as well as RSA in special
settings [May10]. Further on, factoring composite numbers and computing discrete log-
arithms is possible using lattice reduction [Sch91, May10]. The security of lattice based
cryptosystems is based on the hardness of lattice problems that are solved using lattice
reduction. Therefore it is necessary to analyze the strength of lattice reduction algorithms.

A lattice is an additive subgroup of the Euclidean vector space R", generated by a lattice
basis. Its elements can be considered to be vectors in a vector space. Lattice reduction is
basically the search for vectors that are short and nearly orthogonal. There are two basic
notions of lattice reduction, namely LLL-reduction and BKZ-reduction. LLL-reduction is
a special case of the stronger BKZ-reduction.

The most famous algorithm for lattice reduction is the LLL algorithm by Lenstra, Lenstra,
and Lovasz [LLL82], which outputs an LLL-reduced basis. Theoretically, the best algo-
rithm to find short vectors is the slide reduction algorithm [GNO8a]. In practice, the most
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promising algorithm is the BKZ algorithm by Schnorr and Euchner [SE91], that outputs a
BKZ-reduced basis. A practical comparison of lattice reduction algorithms can be found
in [NS06, GNO8b, BLROS].

One major problem with lattice reduction algorithms is the fact that in practice, the algo-
rithms like LLL and BKZ behave better than the theoretical worst-case analysis predicts.
Therefore it is necessary to examine their practical, average-case behaviour. In 2008,
Gama and Nguyen published a comprehensive summary of their experiments [GNOSb],
that helps analyzing the practical behaviour of the LLL and BKZ algorithm as well as the
deep insertion variant of LLL. The results of this work are used widely when facts about
the strength of lattice reductions algorithm is required, it became kind of a standard work.

Our Contribution. In this paper we present experimental results using lattice reduction
algorithms that we collected during the last years. The focus of our work is on the BKZ
algorithm, which is the algorithm most widely used in practice. We analyze the runtime of
BKZ using high blocksizes, give details about the output quality of BKZ-reduced bases,
and based on our observations present a strategy for lattice reduction in high lattice dimen-
sions. With our work, we present heuristics that give further evidence to some arguments
stated unproven by Gama and Nguyen in [GNO8b]. Therefore, we extend the state-of-the-
art in practical lattice reduction.

Organization of the Paper. Firstly, we present the necessary facts on lattices and lattice
reduction in Section 2. Secondly, we present three main questions of this paper and answer
them successively in Section 3. Finally, we give a conclusion and present open questions
in the area in Section 4.

2 Preliminaries

A lattice L is an additive subgroup of the euclidean space R<. Let n,d € N,n <d, and let
bi,...,b, € R?be linearly independent vectors. Then L(B) = {>7_, x;b; : z; € Z}
is the lattice spanned by the column matrix B = [by,...,b,]. L(B) has dimension
n, the matrix B is called a basis of the lattice. Such a basis is not unique, lattices are
invariant under unimodular transformations. Therefore, every lattice in dimension n > 1
possesses infinitely many bases. We write L instead of L(B) if it is clear which basis
is concerned. The first successive minimum A; (L) is the length of a shortest vector of a
lattice. The lattice determinant det(L(B)) is defined as y/det(BB?). It is invariant under
basis changes. For full-dimensional lattices (n = d) there is det(L(B)) = |det(B)]| for
every basis B. Throughout this paper, vectors and matrices are written in bold face, e.g.,
x and M. We write ||x|| for the Euclidean norm of x.

The lattices that arise in cryptography have a more special structure. Let ¢ € N, A €
Zp*™. We define an m-dimensional lattice Ay (A) = {v € Z™ : Av = 0 (mod ¢)}.
Those lattices are called modular or g-ary lattices. For efficiency reason, so-called ideal
lattices are often used in cryptography. An ideal lattice of dimension m is the set of all
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points that belong to an ideal in the ring R = Z[x]/(f), for a polynomial f of degree n.
For special f, it allows to exhibit the lattice from only m representatives in Z,, instead of
mn in the g-ary lattice case, where m typically is in O(nlogn).

As mentioned above, each lattice has infinitely many bases. Creating a basis consisting of
short and nearly orthogonal vectors is the goal of lattice reduction.

Hard lattice problems. There are several problems on lattices that are supposed to be
or proven to be hard [MGO02]. The most famous problem is the shortest vector problem
(SVP). The goal of v-SVP is to find an (approximate) shortest non-zero vector in the lat-
tice, namely a vector v € L\ {0} with ||v|| < yA1(L), where v > 1 is the approximation
factor. It is possible to formulate the problem in every norm, the most usual norm is the
euclidean norm, that we are using throughout this paper.

As the length of the shortest vector A; (L) might not be known, it is hard to control the ap-
proximation factor of SVP in practice. Therefore it is common practice to use the Hermite-
SVP variant: givena~ > 1, find a non-zero vector v € L\ {0} with ||v|| < ~-(det L)*/™.
Recall that the determinant of a lattice is always known, as it can be computed from every
basis. Having reduced a basis B one can easily calculate the reached Hermite factor using
VHermite = ||Pminl|| /(det L)l/ ™. The main computational problem in g-ary lattices A(JI- (A)
is the short integer solution problem (SIS): given n, m, q, A € Z{;X’", and a norm bound
v, find v € Ay (A) with [|v]|, < v. The SIS was first introduced and analyzed by Ajtai
[Ajt96]. Numerous improvements to the analysis where made in, e.g., [MR07, GPVOS].
For information about further lattice problems we refer the reader to [MGO02] and [MRO8].

Algorithms. The +-SVP was solved by Lenstra, Lenstra, and Lovész in [LLL82] for
factors  exponential in the lattice dimension n. Their LLL algorithm has runtime poly-
nomial in the lattice dimension. It is parameterized by a § with % < 9 <1, and outputs a
basis whose first vector has length [|by || < (§ — 3)(1=™)/4 . det(L)'/™ [LLL82]. In other
words, LLL provably reaches a Hermite factor of (6 — i)(l_”)/ 4. An overview about ap-

plications and facts about LLL can be found in [NV10]. A typical choice for ¢ in practice
is § = 0.99.

In [SE91] the authors introduce the BKZ algorithm, that is a blockwise variant of the LLL
algorithm. BKZ is today’s best algorithm for lattice reduction in practice. A BKZ instance
using blocksize parameter (3 is called BKZ-(. It finds a lattice vector with length ||b;|| <

(’yg)g%i - A1, where 7 is the Hermite constant in dimension 3 [Sch94]. The runtime
cannot be proven to be polynomial in the lattice dimension, but practical experiments point
out that the runtime of BKZ is polynomial in the lattice dimension. In fact, the runtime
is exponential in the blocksize parameter 3. This parameter allows a trade-off between
runtime and output quality. Bigger blocksize causes shorter vectors at the expense of
increased runtime, and vice versa.
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Theoretically, the most promising algorithm for approximating shortest vectors is the al-
gorithm of [GN08a]. In [SE91] the authors also proposed, besides BKZ, the deep insertion
variant of LLL.

There are various algorithms that find a shortest lattice vector, not only an approximation.
The algorithms of Kannan [Kan83], Fincke and Pohst [FP83], and Schnorr and Euchner
[SE91] perform an exhaustive search for the shortest lattice vector. The algorithm used in
practice today is the variant of Schnorr and Euchner, called ENUM. A second approach for
solving the exact SVP are probabilistic sieving algorithms like the one of [AKS01], ana-
lyzed in [NVOS], or the improved algorithm of [MV10b] and [PS10b]. The most practical
sieving variant is presented in [MV10b], called Gauss-Sieve. In [MV10a] a deterministic,
single exponential time algorithm based on Voronoi cell computations is presented.

Concerning implementations, there are two libraries available for lattice reduction: the
NTL library of Shoup [Sho] and the fpLLL library of Stehlé et al. [CPS]. The fpLLL
library does not offer BKZ. Therefore, for our experiments we use the NTL library, as was
done in [NS06, GNO8b, BLRO8]. An improved LLL algorithm was presented as the L?
algorithm by Nguyen and Stehlé [NSO5]. It is implemented in the fpLLL library.

Practical behaviour. In practice however, lattice reduction algorithms behave much bet-
ter than expected from theory. In the average case they find much shorter vectors than theo-
retical worst case bounds suggest. In [GNO8b] Gama and Nguyen give a practical analysis
of random lattices using the NTL library [Sho]. The authors state that a Hermite factor of
1.01™ and an approximation factor of 1.02" in high lattice dimension (e.g. dimension 500)
is within reach today, but a Hermite factor of 1.005™ in dimension around 500 is totally out
of reach. The authors of [NS06] state similar facts for the LLL algorithm. In [BLR08] and
[RS10], the runtime of different lattice reduction algorithms on g-ary lattices is analyzed.
Those are the lattices that arise in lattice based cryptography, and their practical behaviour
is not well studied to date.

3 Experiments

This section shows the experiments that were performed during the last two years. We
provide answers to the following three questions:

e Which Hermite factor is reachable with a given blocksize?
e Is it possible in practice to run BKZ with big blocksizes?

e Is running BKZ with increasing blocksize a good strategy for lattice reduction?

All experiments are performed on random, full-rank lattices in the sense of Goldstein and
Mayer [GMO3], with bit size of the entries in the order of magnitude 10n. For LLL-
reduction we used a parameter § = 0.99 throughout all our experiments. We use the
NTL library [Sho] in version 5.4.2. The experiments were performed on an AMD Opteron
(2.3GHz) quad core processor, using one single core for the computation. For BKZ, we
use the quad precision (QP1) variant of NTL.
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3.1 Which Hermite Factor is Reachable With a Given Blocksize

It is well known that the blocksize parameter ( allows a trade-off between runtime and
reduction quality. Here we analyze the quality, in the shape of the Hermite factor. We
provide a prediction for the Hermite factor that is reachable with a given blocksize 5. This
directly predicts the length of the shortest vector after BKZ-reduction.

For each dimension n € {25, 50, ...,250} we generated 5 different, randomized bases for
each of 5 random lattices. The entries of the input bases where bounded by 219", These
bases were reduced using BKZ with each blocksize 8 € {5,6,...,23}, independently.
The reduced lattices were then used to calculate the Hermite factor reached in each case,

ie.,
VHermite = \ ||b1 || : det(L)l/” .

The mean values of all 25 bases in each dimension are depicted in Figure 1. We only show
every fourth value of (3, for clarity reason.
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Figure 1: Hermite factor in dimension 25 to 250. The figure shows the experimental results, i.e., the
average Hermite factors Ygemie reached by BKZ with different blocksize 3.

One notices that in low dimensions, say less than n = 175, BKZ reaches very small
Hermite factors. In higher dimension of n > 200, the Hermite factor for each blocksize
stabilizes at a certain constant value (as was already stated in [GNO8b]). In practice one
is interested in higher dimensions n > 200, We extract these constants and, using least-
squares fitting, we gain a fitting function (cf. Figure 2). For a given blocksize 3, this
function predicts the Hermite factor that can be reached with BKZ using the specified
blocksize, in higher lattice dimensions. The resulting function is f(3) = 1.01655 —
0.000196185 - 3. Proposition 1 summarizes the result.
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Figure 2: Mean values of the reached Hermite factors uermite and the fitting function f(3). For high
lattice dimensions (say n > 200), the function f(3) predicts the Hermite factor that is reachable
with a chosen blocksize 3.

Proposition 1 When BKZ is applied to a random, full-rank lattice L of dimension n using
blocksize (3, the output length of the shortest vector after BKZ reduction is

Ibi|| = f(B)" - det(L)Y™ where f(8) = 1.01655 — 0.000196185 - 3.

This analysis implies that, for example, for reaching a hermite factor of 1.005, one has to
run BKZ with blocksize 8 = 59. Running BKZ with blocksize 50 it is possible to reach
a Hermite factor v = 1.0067. Our result is similar to that of [GNO8b]. For 3 = 20 we
compute 7 = 1.0126 compared to 1.0128 ([GNO08b]) and for § = 28 we get v = 1.0111
compared to 1.0109 ([GNOS8b]). Therefore we extend the analysis of Gama and Nguyen
when presenting our function for extrapolation of the possible Hermite factor for a given
block size parameter 3.

This result is very useful when attacking lattice based cryptosystems. Assume that our
random lattices represent the average case of lattice reduction for ideal and g-ary lattices,
that arise in lattice based cryptography. The security of most signature and encryption
schemes is guaranteed as long as the SIS problem is hard for g-ary or ideal lattices, re-
spectively [MRO8, RS10]. As the lattice determinant is always known, it is easy to map
a Hermite-SVP solution to a SIS solution. More precisely, when a vector v € Af]- with

|[v|| < v is required, this corresponds to a Hermite factor v = {/v/(det A-)1/™ needed

to render a crypto system insecure. Using our analysis, we can predict the blocksize pa-
rameter required for this. The prediction of the runtime of the chosen blocksize is the
concern of our second question.
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3.2 Runtime of BKZ Using Bigger Blocksizes

In [GNOS8Db], the authors state that BKZ reduction is only practical in blocksizes 3 up to
30 (they present results with blocksizes up to 40). With higher blocksizes, the runtime of
BKZ rises too fast to be practical, at least in high lattice dimensions. In this section, we
give evidence to this argument using runtime experiments with BKZ in high blocksizes.

We run BKZ with blocksize 3 = 40, 45, and 50 on five random lattices of each dimension
n € {30,35,...,90}. As stated before, higher lattice dimensions are intractable. Again,
the bit size of the entries of the input bases are in the order of magnitude 10n. The log-
arithmic plot of Figure 3 shows the results, including least squares fitting lines ¢z () that
help guessing the runtime of BKZ-(3 in bigger lattice dimensions.
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Figure 3: Runtime of BKZ-3 on random lattices, for 3 € {40,45,50}. The fitting lines are the
linear functions ¢3(x) that can be used to predict the runtime of BKZ-( in higher dimension > 90.

For lattice dimensions n < (3, BKZ-3 behaves like BKZ-n. This can be observed in Fig-
ure 3, where the lines of all three blocksizes are the same in small dimensions. Therefore,
lower dimension n < f3 are excluded when computing the fitting functions. The resulting
functions that we compute from our experiments are

t40(l‘) — 100.0690798-z—2.08621 SCCOI‘ldS,

t45(1') — 100.0748307-35—1.51248 seconds,

t50(1‘) — 100.0743183%70.523057 seconds .
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Using this we can for example predict the runtime (on state-of-the-art hardware compara-
ble to ours) of NTL’s BKZ-50 for a 108-dimension lattice to be around 1 year and for a
150-dimensional lattice around 1300 years. This concretizes the statements of Gama and
Nguyen that BKZ in higher blocksizes is intractable in high lattice dimensions.

In addition, our experiments show that, when running BKZ with blocksize 3 > 40, the
enumeration part takes more than 99% of the reduction time. In low blocksizes, the
enumeration usually takes less then 10% of the reduction time, stated for example in
[SE91, GNO8b]. This is an important fact, since, during the last years, there are numer-
ous improvements to enumeration algorithms, see [HSB* 10, GNR10, DS10, PS10a], for
example. These improvements will speed up BKZ in high blocksizes best, BKZ with low
blocksizes will be enhanced only slightly.

3.3 Running BKZ with Increasing Block Size

It is common practice to run BKZ with increasing blocksize, that means starting with low
blocksize (say, 8 ~ 3), fully BKZ-( reduce the basis, and increase the blocksize, until
a vector of desired length is found. The question that we want to answer in this section
is, if this approach is faster than directly starting with high blocksize, and if the reduction
quality is concerned by the chosen strategy. Is it faster to run BKZ in increasing block size,
using the pre-reduction of lower blocksizes to speed up the reduction in higher blocksize?

Again, we run BKZ on 5 - 5 random bases of dimension n € {200,300}, once with
increasing blocksize with 3 from 3 up to 15, once directly running BKZ-15. We measure
the total reduction time and the Hermite factor reached by the shortest output vector. The
results are presented in Figure 4. The graphs show average, maximum, and minimum
values of the runtime and the Hermite factor, respectively.

One notices that, concerning the runtime, starting BKZ directly with high blocksize 3
results in lower runtime in total. On average, the reduction finishes faster than in the
increasing blocksize case. Concerning output quality, we also notice a minor advantage
for the direct BKZ-15 case. This behaviour is surprising, since in both cases, the output
basis is BKZ-15 reduced, and with increasing blocksize, more time was spend reducing
the basis.

However, in practice it was unclear which blocksize will be necessary (and sufficient) to
find a vector of suitable size. Therefore it was good practice to run BKZ with increasing
blocksize, as a short vector might be reached much faster than when starting BKZ with
high blocksize. With this technique, Gama and Nguyen could find the secret key of NTRU-
107 lattices. The new strategy that one might apply is to use Proposition 1 to predict the
blocksize needed for a desired Hermite factor. Combining the results of both sections
in this paper leads to a new strategy, that will outperform the strategy with increasing
blocksize.
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Figure 4: Running BKZ on random lattices with increasing block size . The left pictures show
the runtime, the right figures present the Hermite factor v, both in dimensions 200 (top) and 300
(bottom). The solid data points were gained with increasing block size, the results depicted with
dotted lines were started directly with blocksize 5 = 15. The graphs show average, maximum, and
minimum values.

4 Conclusion

In this paper we have presented a prediction of the Hermite factor reachable with a given
blocksize. We have shown how the choice of big blocksize effects the BKZ algorithm.
These two results yield a new strategy for BKZ reduction, that replaces the strategy of
increasing blocksize.

It is an open problem if lattice reduction for ideal lattices is as hard as it is for random
lattices. So far, there is no algorithm that makes use of the special structure of ideal
lattices, and people believe that lattice reduction in the ideal lattice case is as hard as in
the regular case. In addition, it is unclear if g-ary lattices, which are more important for
cryptography than random lattices, behave different to random lattices. There is need for
exhaustive testing of the existing lattice reduction algorithms on g-ary and ideal lattices.

Unfortunately the NTL library is the only implementation of BKZ that is publicly avail-
able. It is evident that this version is no more up to date. Numerous improvements to SVP
solvers were made during the last years. Therefore, it is necessary to test BKZ including
these new enumeration and sieving variants to show its real strength today.

The theoretical analysis of BKZ is still in the early stages. Basic facts like worst-case
runtime are still not known. There is a lot of work left to do in this area.
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