
Increasing the reliability of single and multi core systems
with software rejuvenation and coded processing

Juergen Braun1, Juergen Mottok1, Christian Miedl2, Dirk Geyer2, Mark Minas3

1 - University of Applied Sciences Regensburg, LaS³,
Seybothstraße 2, D-93053 Regensburg,

{Juergen.Braun;Juergen.Mottok}@hs-regensburg.de
2 - AVL Software & Functions GmbH,

Im Gewerbepark B27, D-93059 Regensburg,
{Christian.Miedl;Dirk.Geyer}@avl.com
3 - Universität der Bundeswehr München,

D-85577 Neubiberg,
Mark.Minas@unibw.de

Abstract: The safety of electric vehicles has the highest priority because it helps
contribute to customer confidence and thereby ensures further growth of the
electromobility market. Therefore in series production redundant hardware
concepts like dual core microcontrollers running in lock-step-mode are used to
reach ASIL D safety requirements given from the ISO 26262.

Coded processing is capable of reducing redundancy in hardware by adding
diverse redundancy in software, e.g. by specific coding of data and instructions. A
system with two coded processing channels is considered. One channel is active
and one is in cold standby. When the active channel fails, the service is switched
from the active channel to the standby channel. It is imaginable that the two
channels with implemented coded processing are running with time redundancy on
a single core or on a multi core system where for example different ASIL levels
are partitioned on different cores.

In this paper a redundant concept based on coded processing and software
rejuvenation will be taken into account.

1. Introduction

Nowadays the importance of the reliability in safety-critical and life-critical systems is
well recognized [Bao05]. Redundancy does not only mean the duplication of systems.
By definition, all additional units and methods are included, that are implemented for
error detection and error avoidance. Such methods are for example integrated test units
as well as error-detecting codes and coded processing, like Safely Embedded Software
(SES) [Mot12]. With embedded multicore microcontrollers software aging [Par94] is
getting a more and more important point even for embedded systems. Thereby the
hardware fault tolerance is well understood since many years, but the software fault
tolerance is often the origin of most of the reliability problems. In a standard or low
performance embedded system there are nearly no dynamic factors, like the static
memory allocation, but in high performance or future embedded systems a dynamic

163

behaviour will be necessary. At the moment these issues have less relevance for safety-
critical systems. For instance, in the case of software that undergoes a safety certification
process, dynamic memory management is typically avoided [Cor11]. A preventive and
proactive solution to software aging is software rejuvenation involving the restoration of
a system to a clean internal state [Sar09]. The proactive fault management has to be
added as a complementary approach in addition to the traditional reactive recovery
mechanisms with subject to aging. At a certain time with the proactive fault management
a rejuvenation operation is scheduled, so that potential error conditions could be
removed. There are two different approaches for software aging and rejuvenation. The
measurement based are statistical analysis for predicting a time window where
rejuvenation should be prefered [Cas01] [Gar98] [Li02] [She03] [Vai99]. An optimal
rejuvenation time could not be determined with this statistical approach. The analytical
approach is done with a Markov process or with stochastic Petri net models. With this
models it is possible to compute the system availability [Doh00d] [Doh00n] [Gar95]
[Hua95] [Vai01]. During my research studies for coded processing I have been inspired
by the work [Kou10] for the following considerations to proof with a Continuous Time
Markov Chain that software rejuvenation between different coded processing channels
improves the availability of the embedded system significantly, compared with an
embedded system without any rejuvenation actions and without coded processing.

The paper is structured as follows. After the presentation of the principle of Coded
Processing based on the example of Safely Embedded Software in section 2, an
introduction of Software Rejuvenation is given in section 3. In section 4 the redundant
systems without and with Safely Embedded Software in combination with Software
Rejuvenation are modelled, which are the basis for section 5 in which the Mean Time To
Failure is calculated with the help of a Continuous Time Markov Chain. Section 6
contains some conclusions and an outlook for future work.

2. Coded Processing

The concept of coded processing is capable of reducing redundancy in hardware by
adding diverse redundancy in software, e.g. by specific coding of data and instructions.
Hardware and software coding can be combined using approaches like the Vital Coded
Processor [For89]. Consequently besides the actual safety-critical control program, also
the other programs can run on the same hardware. Thus it is possible to specifically
protect only the safety-critical parts of the control program. Coded Processing enables
the verification of safety properties and fulfills the condition of single fault detection
[Mot12]. Coded Processing does not constrict capabilities but rather supplements multi-
version software fault tolerance techniques like N version programming, consensus
recovery block techniques, or N self-checking programming [Mot12]. In this paper the
Safely Embedded Software approach is described in more detail.

164

2.1. Safely Embedded Software (SES)

The given SES approach generates the safety of the overall system in the application
software level. SES is based on the (AN+B)-code of the Coded Monoprocessor
transformation of original integer data xf into diverse coded data xc [Mot12].

Coded data fulfills this relation:

txfc DBxAx ++⋅= where
txADBD

BAxx

txt

xfc

,,

,,,,

0 ∀<+Ν∈

Ν∈Ζ∈ + (1)

The prime number A is important for safety characteristics like Hamming Distance and
residual error probability Pre = 1/A of the code [Mot12]. Hamming distance gives
information about the maximum number of fully detectable bit errors and residual error
probability Pre is the probability that the corruption of the data remains undetected after
performing the decoding procedure [Sch06]. Number A has to be prime because in case
of a sequence of i faulty operations with constant offset f, the final offset will be fi ⋅ . If

A is not a prime number then several factors of i and f may cause multiples of A. If a
prime number is used as A, this offset is only a multiple if i or f is divisible by A. This is
the same fact for the multiplication of one or two faulty operands. Additionally, so called
deterministic criteria like the above mentioned Hamming Distance and the Arithmetic
Distance must be considered for choosing an adequate prime number. Other functional
characteristics like necessary bitfield size and consequential handling of overflow are
also caused by the value of A. The simple transformation fc xAx ⋅= is illustrated in Fig.

1.

Figure 1: Simple transformation for xc = A * xf.

To ensure the correct memory addresses of the variables any user defined specific
number or the memory address of the variable itself could be used as static signature Bx
[Mot12]. The dynamic signature Dt ensures that the variable is used for example in the
correct task cycle or function call.

165

The two software channels (original data and coded data) could be verified for example
at the end of each task cycle before starting the output of the calculated values. Therefore
the instructions are coded in such a way that, either a comparator could verify the diverse

channel results for the condition tzfc DBzAz ++⋅= , or the coded channel could be

checked directly by the verification condition 0mod)(=−− ADBz tzc (cf. (1)).

3. Software Rejuvenation

Software rejuvenation is a technique which has been first proposed by Huang et. al. in
1995 [Hua95]. Since this time many papers have been published [Cor11] to characterize
and mitigate the Software Aging phenomenon. In long-running operational software, due
to software aging, the accumulation of errors leads for example to progressive resource
depletion and finally to the crash of the system [Bao05]. Software rejuvenation is a fault
reaction technique to prevent that failures in continuously running systems occur. At
certain points in the program flow the currently used variables and the corresponding
program counter will be stored on a stack. If an error is detected the rejuvenation could
switch the service from the active coded channel to the standby coded channel.
Consequently the execution of the function could be continued at this point in the
program flow using the other channel. This involves stopping the task of one coded
channel and switching the task to the other coded channel which was in standby. Due to
this environment diversity the transient failures in software could be corrected, because
the coded channel which is in standby could be restarted in an internal state with a
cleaned environment like the memory. The failure triggered rejuvenation is reactive, so
that the action is started after a failure. In addition the software rejuvenation process can
also be started automatically due to measurements or calculations which determine the
best time window for switching. This means that the action is startet preventive and
proactive. The likelihood of successfully completing the current task will be increased
by the following steps. The task will be switched periodically from one coded channel to
the second coded channel, while restarting the task at a previous checkpoint and in the
meantime the rejuvenation process will be started on the currently inactive channel. It
must be stressed that the periodical switching does not replace the switching due to an
error. This mechanism complements the switching due to an error, so that this case
becomes less likely in the system. When errors occur in the system, it is still necessary to
trigger the software rejuvenation spontaneously.

Software rejuvenation does not solve the root cause of the failures, consequently the
software aging will continue so that the software rejuvenation has to be executed
cyclically. Since software aging leads to transient failures in systems, environment
diversity can be employed pro-actively to prevent degradation or crashes [Vai99]. Such
errors are transient and they are non-deterministic or difficult to characterize.
Consequently these errors could occur after a long time without disturbing the proper
execution of the application before. Even now, software aging has been observed in
specialized software used in high-availability and safety-critical applications [Hua95].

166

The main aim of SES in the case of rejuvenation is to detect errors reliable. After the
detection of an error the switching to the standby unit is triggered and the rejuvenation is
started. Beside this the software rejuvenation is triggered periodically, so that after every
rejuvenation interval the task is restarted at a clean internal state. Due to this the
reliability of the system could be increased.

4. Modelling of the redundant system

Two models are discussed in this paper. The first model is a redundant system without
software rejuvenation and the second model is with coded processing and software
rejuvenation.

In this paper with software rejuvenation, always the first-level rejuvenation or partial
rejuvenation is meant. In the literature there are first-level and two-level rejuvenation
models available. First-level rejuvenation stopps only certain tasks of the system and
switches them to a redundant system. However the two-level rejuvenation, also called
full rejuvenation, could stop all running tasks and restarts the system. With two-level
rejuvenation depending on the condition of the software environment the different
rejuvenation actions (full or partial) will be triggered [Jin05][Kou05][Xie05]. This full
rejuvenation is in the automotive environment for the most systems not possible, because
the demanded reaction times are shorter than the time needed for the restart of the whole
system. For systems in the automotive environment a certain availability must be
guaranteed for the whole driving cycle.

Consequently in this paper with software rejuvenation always the first-level rejuvenation
is meant.

4.1. Markov Chain

The Markov chain is a stochastic process and named after Andrey Andreyevich Markov
[Hil07]. It consists of a finite number of states and represents the possible transitions
from one state to another. In the case of a Markov chain of first order, for each step it
does not matter what has been the previous sequence of steps. For determining the next
step it is only relevant which is the current state. Due to this fact the process is called
"memoryless". This is called the Markov property. The aim is to be able to calculate the
probability for the occurrence of certain states in the future.

With Markov chains it is possible to describe any redundant system. The states of the
Markov chain correspond to the possible system states, which represent the functional or
failure states of the components of the system. At a certain time the system is always in a
certain state of the Markov chain. Consequently all failure rates as well as their
appearance can be taken into account.

Each state is represented by a circle with a number in it. To improve the readability the
states could be additionally named, like “no channel failed”. The transitions between the
states are represented by arrows from the destination state to the target state. The arrows

167

are labeled with the transition rate, which represents the rate that the system goes from
this state to a certain state.

Electronic systems behave as if they would fail nearly at any time with the same failure
rate λ. There is an exception for the early failures and for failures due to aging [Bra12].
Based on these facts the traditional Weibull distribution is unable to model the complete
lifetime of electronic systems. Therefore the extended Weibull distribution has been
developed which matches such systems with a bathtub-shaped failure rate function. The
characteristics of the extended Weibull distribution are, that at the beginning the Weibull
distribution is dominating the gradient of the curve, at the end the function is increasing
rapidly according to a nominal distribution and in between the failure rate is almost
constant which corresponds to exponentially distributed random failures.

For simplification an ideal model is assumed for electronic systems [Bör04]. In this ideal
model the early and late failures are neglected.

4.2. System with Cold Redundancy without SES

A system with two channels is considered. One channel is active and one is in cold
standby. Two channels are running on a multi core system where for example different
ASIL levels are partitioned on different cores. The important point is that one channel is
active and one is in standby. When the active channel fails, the service is switched from
the active channel to the standby channel.

As shown in Fig. 2 we assume, that the active channel fails with constant failure rate λ1.
At the beginning no channel failed, so that the system is in state 1, where one channel is
active and the other channel is in cold standby. At this point no automatic switching at a
certain time is implemented. Consequently only in the case of an error the system
switches from the active channel to the standby channel and enters state 2. The system
enters state 3 with failure rate λ1, if another error occures. In state 3 the system must
enter the error state.

There is also the possibility that a failure occurs in both channels. In this case with rate
λ2 starting from state 1 the system must enter state 3 directly without traversing state 2.

Consequently there is no differentiation in the error state. This means that the error state
will be entered for example after a common cause failure, just as well after the
occurrence of transient errors due to electro migration.

168

Figure 2: system with cold redundancy (no rejuvenation)

4.3. Software Rejuvenation on a System with Cold Redundancy with SES

Again a system with two channels is considered. In this model each channel is coded
with SES wherupon one channel is active and one is in cold standby. The system
switches from the active channel to the standby channel in the case of an error as well as
cyclically at the time when the cyclic rejuvenation is started. Consequently there is an
automatic switching implemented at a certain time. As shown in Fig. 3, at the beginning
no channel failed, so that the system is in state 1, where one channel is active and the
other channel is in cold standby.

In the case of an error the system switches from the active channel to the standby
channel and enters state 2. The system will enter state 4 where the rejuvenation will be
started or the system will enter state 3, if another error occures during the checks of the
failed channel. In state 3 the system must enter the error state.

Additionally the rejuvenation process will be triggered cyclic. For the cyclic
rejuvenation process the system switches from the active channel to the standby channel,
so that the rejuvenation process could be started for the channel, which was the active
channel before and enters state 5. After the rejuvenation process, the coded channel is
available in cold standby again.

Compared to the previous model without sofware rejuvenation, also the case where
software rejuvenation can fail has to be considered. If the rejuvenation process (triggered
due to an error or cyclically) is not completed properly or is performed improperly, the
state 3 will be entered to bring the system into the error state. This is the result, because
the failed rejuvenation is a failure state, which indicates an abnormal function. The
consequence of this is, that the system fails in the same manner as before, if a failure
occurs on the active channel during the software rejuvenation process. Because of the
ongoing software rejuvenation process, no switching to the standby channel is possible.

169

Figure 3: system with coded channel in cold redundancy and rejuvenation

5. Continuous Time Markov Chain (CTMC)

With the help of Markov-models it is possible to calculate reliability values and safety
parameters like point-availability, availability, MTTF and reliability. The rates for the
state transitions can be specified for each transition from one state to another as well as
the probability that the system remains in the state. Constant failure rates are assumed
and an exponential distribution. Thus the transition rates are always 0≥λ .

5.1. Introduction

Normally the reliability problems are concerned with systems which consist of a number
of discrete and identifiable states and continuous in time. A stochastic chain with a
continuous parameter space is called markov chain iff. for all 0≥n , each sequence

tttt n <<<< ...10
:

))(|)((

))(,...,)(,)(|)((0011

nn

nnnn

xtXxtXP
xtXxtXxtXxtXP

===
==== −− (2)

The transition matrix Q represents the transition rates for all n states:



















−

−
−

=



















=

nnn

n

n

nnnn

n

n

A

A
A

qqq

qqq
qqq

Q

1

1

1

21

2221

1121

21

22221

11211

!!!!

!!!!

λλ

λλ
λλ (3)

170

The row sum has to be 1. If there is no transition from one state to another the transition

rate is 0. The elements of the matrix described with ijq represent the transition rate from

state i to state j where []nji ...1, ∈ . Therefore each row represents all transitions from

state i to another state and each column represents all transitions from another state to
state j.

For example the matrix Q could be subtracted from the identity matrix I to get the matrix
M:



















−−

−−
−−

=−=

nnn

n

n

A

A
A

QIM

!""!

"

21

2221

1121

λλ

λλ
λλ (4)

Where the exit rate iA of state i is defined as:

∑
≠=

=
n

ikk
ikiA

,1

λ
(5)

5.2. System with Cold Redundancy without SES

Based on the Markov chain Fig. 2 defined in chapter 4.2 in combination with (3) and (5)
the matrix Q could be defined for a system with cold redundancy:
















−

+−
=

100

10

)(1

11

2121

λλ
λλλλ

Q

(6)

The matrix G contains only of state 1 and 2, because the system is fully operational in
these states.









−

+−
=

1

121

10

)(1

λ
λλλ

G
(7)

171

For the mean time to failure (MTTF) calculation, which measures the average time to
failures, the matrix M is calculated:








 −+
=








−

+−
−







=−=

1

121

1

121

010

)(1

10

01

λ
λλλ

λ
λλλ

GIM
(8)

With this matrix M the matrix N could be calculated:

[]

















++=







 −+
==

−
−

1

2121

1

1

1211

1
0

11

0
λ

λλλλ
λ
λλλ

MN

(9)

For the calculation of MTTF value, the first row of the matrix N has to be summed up:

2121

11

λλλλ +
+

+
=MTTF

(10)

The following values are assumed:

h
1

10 71
−=λ

(11)

h
1

1005.0 7
12

−⋅=⋅= λβλ
(12)

For the determination of the transition rate
1λ the ISO 26262 [ISO11] was used. In the

ISO 26262 the random hardware failure rate of ASIL B and ASIL C systems is defined
as 10-7 h-1. According to the IEC 61508 part 6 [IEC00] a β-factor is used, to calculate the
rate

2λ . This is the rate of a failure of the safety-related system due to a common cause
failure. For the system without SES the given β-factor for redundant systems with poor
diagnostic tests has been choosen from IEC 61508.

Consequently with equation 10 to 12 the MTTF could be calculated:

yMTTF 170,2≈ (13)

172

5.3. Software Rejuvenation on a System with Cold Redundancy with SES

Again based on the Markov chain Fig. 3 defined in chapter 4.3 in combination with (3)
and (5) the matrix Q could be defined for a system with cold redundancy and software
rejuvenation:























+−
+−

+−
++−

=

)(100

0)(10

00100

0)(10

0)(1

8787

5454

3131

621621

λλλλ
λλλλ

λλλλ
λλλλλλ

Q

(14)

The matrix G contains only of state 1, 2, 4 and 5, because in these states the system is
fully operational.



















+−
+−

+−
++−

=

)(100

0)(10

0)(10

0)(1

877

544

331

61621

λλλ
λλλ

λλλ
λλλλλ

G

(15)

For the mean time to failure (MTTF) calculation, which measures the average time to
failures, the matrix M is calculated:



















+−
+−

−+
−−++

=

=



















+−
+−

+−
++−

−



















=

=−=

)(00

0)(0

0)(0

0)(

)(100

0)(10

0)(10

0)(1

1000

0100

0010

0001

877

544

331

61621

877

544

331

61621

λλλ
λλλ

λλλ
λλλλλ

λλλ
λλλ

λλλ
λλλλλ

QIM (16)

173

With this matrix M the matrix N could be calculated:

[] =



















+−
+−

−+
−−++

==

−

−

1

877

544

331

61621

1

)(00

0)(0

0)(0

0)(

λλλ
λλλ

λλλ
λλλλλ

MN

#










+++
+++

+−+++++
+++++

⋅=

754175431

874187431

754687546218743

87541875431

)())((

)()()(

)())()(()(

))(())()((

)det(

λλλλλλλλλ
λλλλλλλλλ

λλλλλλλλλλλλλλλ
λλλλλλλλλλλ

M










−++++
++−++++

++++−
+++

4315431621731

431673168731621

436873621736

543168731

))()((

)()())()((

)()(

))(()(

λλλλλλλλλλλλλ
λλλλλλλλλλλλλλλ

λλλλλλλλλλλλ
λλλλλλλλλ

#

75431687431875431621))(()())()()((

1
)det(

λλλλλλλλλλλλλλλλλλλλ ++−+−+++++
=M

(17)

For the calculation of MTTF value, the first row of the matrix N has to be summed up:

)))(()(

))(())()(((
)det(

1

543168731

87541875431

λλλλλλλλλ

λλλλλλλλλλλ

+++++

+++++++⋅=
M

MTTF
(18)

The following values are assumed:

h
1

10
31541

1 7
1

−⋅=λ
(19)

h
1

10
2

02.0

2

005.0 7
12

−⋅





 +=⋅= λβλ

(20)

hDiagnosispair

1
3600000
1

100
111

Re
3 ⋅===

ττ
λ

(21)

174

hjuvenation

1

3600000

1

300

11

Re
4 ⋅==

τ
λ

(22)

h
1

10 75
−=λ

(23)

hCyclicjuvenation

1

25.0

11

Re
6 ==

τ
λ

(24)

hjuvenation

1

3600000

1

300

11

Re
7 ⋅==

τ
λ

(25)

h
1

10 78
−=λ

(26)

According to the IEC 61508 part 6 [IEC00] a β-factor is used, to calculate the rate
2λ .

This is the rate of a failure of the safety-related system due to a common cause failure.
For the system with SES the given β-factor for diverse systems with good diagnostic
tests has been choosen from IEC 61508 with the ratio of dangerous undetectable and
dangerous detectable from [Bör04].

Consequently with equation 18 to 26 the MTTF could be calculated:

y3,420,000≈MTTF (27)

6. Conclusion

In this paper a software rejuvenation model is proposed, in which SES is supplemented
with the partial rejuvenation. Due to the SES more failures could be detected, so that it
gets more likely, that the system is working in state 1. Nevertheless the software
rejuvenation may not be successful under some circumstances. This leads to a failure of
the system, but in total the reliability gets higher due to the fact that former undetected
failures will be eliminated during the rejuvenation process.

As shown before with the help of the Markov modell of the two examplary systems it
was possible to point out a great improvement of the system reliability by the calculation
of a CTMC. Without coded processing and software rejuvenation the assumed system
will have a MTTF of 2,170 years (cf. (13)). This means, that one system will fail every
2,170 years, which sounds quite good. But if you assume, that this system is running in
one million cars, then about 460 cars will fail every year and this sounds no longer as
good as before. With coded processing and with software rejuvenation the assumed
system will have a MTTF of 3,420,000 years (cf. (27)). In the point of view like before,

175

this also means that only one car will fail every three to four years, if one million cars
are running with the system safeguarded by SES in combination with software
rejuvenation.

Of course the calculation of the MTTF could be done also for ASIL A and ASIL D
systems. In Tab. 1 again the hardware failure rates defined in the ISO 26262 [ISO11] are
used. It could be seen that the failure rate of the choosen hardware has a direct influence
on the MTTF of the system regardless of whether SES is used or not.

ASIL A ASIL B/C ASIL D

failure rate 10-6 h-1 10-7 h-1 10-8 h-1

MTTF without SES 217 y 2,170 y 21,700 y

MTTF with SES 342,000 y 3,420,000 y 34,200,000 y

Table 1: Comparisson of MTTF of ASIL A to D systems according ISO 26262.

A further step would be to do a Semi-Markov calculation using the extended Weibull-
function instead of the constant lambda values to be able to take the whole lifetime of an
electronic system into account. With a Semi-Markov modell it would be even possible to
calculate the optimal rejuvenation interval, which will improve the system’s availability
further.

Bibliography
[Bao05] Bao, Y.; Sun, X.; Trivedi, K.S.: A workload-based analysis of software aging and

rejuvenation. IEEE Transactions on Reliability, Vol. 54, No. 3, pages 541-548, 2005

[Bör04] Börcsök, J.: Electronic Safety Systems: Hardware Concepts, Models, and Calculations.
Hüthig, ISBN 978-3778529447, 2004

[Bra12] Braun, J.; Mottok, J.; Miedl, C.; Geyer, D.; Minas M.: Capability of single hardware
channel for automotive safety applications according to ISO 26262. In Proceedings of
the International Conference on Applied Electronics 2012 (AE2012) in Pilsen,
September 2012.

[Cas01] Castelli, V.; Harper, R. E.; Heidelberger, P.; Hunter, S.W.; Trivedi, K.S.; Vaidyanathan,
K.; Zeggert, W.P.: Proactive management of software aging. IBM Journal of Research &
Development, Volume 45 Issue 2, pages 311-332, March 2001

[Cor11] Cotroneo, D.; Natella, R.; Pietrantuono, R.; Russo, S.: Software Aging and
Rejuvenation: Where we are and where we are going. The 3rd International Workshop
on Software Aging and Rejuvenation (WoSAR 2011), 2011

176

[Doh00n] Dohi, T.; Goseva-Popstojanova, K.; Trivedi, K.S.: Analysis of software cost models
with rejuvenation. In Proceedings of the 5th IEEE International Symposium on High
Assurance Systems Engineering, pages 25-34, Albuquerque, New Mexico, November
2000

[Doh00d] Dohi, T.; Goseva-Popstojanova, K.; Trivedi, K.S.: Statistical non-parametric algorithms
to estimate the optimal software rejuvenation schedule. In Proceedings of the 2000
Pacific Rim International Symposium on Dependable Computing (PRDC 2000), pages
77-84, Los Angeles, CA, December 2000

[For89] Forin, P.: Vital Coded Microprocessor Principles and Application for Various Transit
Systems. IFAC Control, Computers, Communications, pages 79–84, Paris, 1989

[Gar95] Garg, S.; Puliafito, A.; Telek, M.; Trivedi, K.S.: Analysis of software rejuvenation using
Markov regenerative stochastic Petri Nets. In Proceedings of the Sixth International
Symposium on Software Reliability Engineering, pages 180-187, Toulouse, France,
October 1995

[Gar98] Garg, S.; van Moorsel, A.; Vaidyanathan, K.; Trivedi, K.S.: A methodology for
detection and estimation of software aging. In Proceeding of the International
Symposium on Software Reliability Engineering (ISSRE 1998), pages 283-292,
November 1998

[Hil07] von Hilgers, P.; Velminski, W.: Andrej A. Markov: Berechenbare Künste. Mathematik,
Poesie, Moderne. Diaphanes, ISBN 978-3935300698, 2007

[Hua95] Huang, Y.; Kintala, C.; Kolettis, N.; Fulton, N.D.: Software Rejuvenation: Analysis,
Module and Applications. In Proceedings of the 25th International Symposium on Fault
Tolerant Computer Systems, pages 381-390, Pasadena, California, June 1995

[IEC00] CEI/IEC 61508-6:2000: Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 6: Guidelines on the application of lEG 61508-2
and lEC 61508-3

[ISO11] ISO 26262: Road vehicles - Functional safety, International Organization for
Standardization, 2011

[Jin05] Jing, Y.; Jian, X.; Xue-lLong, Z.; Feng-Yu, L.; Modeling and availability analysis of
nested software rejuvenation policy. In Proceedings of IEEE Intl. Conf. on Systems,
Man and Cybernetics, Vol. 1, pages 34-38, 2005

[Kou05] Koutras, V.P.; Platis, A.N.: Optimizing the amount of the resources on a computer
system using software rejuvenation. In Proceedings of European Safety and Reliability
Conference, pages 1187-1192, 2005

[Kou10] Koutras, V.P.; Platis, A.N.: Semi-Markov performance modelling of a redundant system
with partial, full and failed rejuvenation. International Journal of Critical Computer-
Based Systems 2010, Vol.1 No.1/2/3, pages 59-85, 2010

[Li02] Li, L.; Vaidyanathan, K.; Trivedi, K.S.: An approach for estimation of software aging in
a web server. In Proceedings of the 2002 International Symposium on Empirical
Software Engineering, pages 91-102, Nara, Japan, October 2002

[Mot12] Mottok, J.; Schiller, F.; Zeitler, T.: Embedded Systems – Theory and Design
Methodology. Chapter 2: Safely Embedded Software for State Machines in Automotive
Applications, InTech, March 2012

177

[Par94] Parnas, D.L.: Software aging. In Proceedings of 16th International Conference on
Software Engineering, pages 279-287, ACM Press, New York, 1994

[Sar09] Saravakos, P.K.; Gravvanis, G.A.; Koutras, V.P.; Platis, A.N.: A Comprehensive
Approach to Software Aging and Rejuvenation on a Single Node Software System.
Proceedings of The 9th Hellenic European Research on Computer Mathematics & its
Applications Conference (HERCMA 2009), 2009

[Sch06] Schiller, F.; Mattes, T.: An Efficient Method to Evaluate CRC-Polynomials for Safety-
Critical Industrial Communication. Journal Of Applied Computer Science, Vol. 14, No.
1, 2006

[She03] Shereshevsky, M.; Crowell, J.; Cukic, B.; Gandikota, V.; Liu, Y.: Software aging and
multifractality of memory resources. In Proceedings of the 2003 International
Conference on Dependable Systems and Networks, pages 721-730, San Francisco, June
2003

[Vai99] Vaidyanathan, K.; Trivedi, K.S.: A measurement-based model for estimation of resource
exhaustion in operational software systems. In Proceedings of the 10th International
Symposium on Software Reliability Engineering (ISSRE 1999), pages 84-93, Boca
Raton, Florida, November 1999

[Vai01] Vaidyanathan, K.; Harper, R.E.; Hunter, S.W.; Trivedi, K.S.: Analysis and
implementation of software rejuvenation in cluster systems. In Proceedings of the 2001
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer System, pages 62-71, Cambridge, Massachusetts, USA, June 2001

[Xie05] Xie, W.; Yiguang, H.; Trivedi, K.S.: Analysis of a two-level software rejuvenation
policy. Reliability Engineering and System Safety, Vol. 87, No. 1, pages 13-22, 2005

178

