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Abstract: State recovery attacks comprise an important class of attacks on pseudo-
random generators. In this paper we analyze resistance of pseudorandom generators
against these attacks in terms of concrete security. We show that security of the Blum-
Micali pseudorandom generator against state recovery attacks is tightly related to the
security of the corresponding one-way function.
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1 Introduction

One of the most fundamental issues in modern cryptology is randomness. Randomness
is used for probabilistic encryption and digital signature algorithms. Nonces and session
keys in cryptographic protocols must be random. However in practice true randomness
is hard (if not impossible) to achieve. A possible solution to this problem is proposed by
the theory of cryptographically secure pseudorandom generators that starts with a seminal
paper of Yao [Ya82].

A pseudorandom generator is a deterministic algorithm that, given a truly random binary
sequence of length n, outputs a binary sequence of length M > n that looks random
for all efficient applications. The input to the generator is called the seed and the out-
put is called the pseudorandom sequence. Security of a pseudorandom generator is a
characteristic that shows how hard it is to tell the difference between the pseudorandom
sequences and truly random sequences. A pseudorandom generator is said to be provably
secure if distinguishing these two classes of sequences is as difficult as solving a well-
known and supposedly hard (typically number-theoretic) problem [Ya82]. For instance,
the Blum-Blum-Shub pseudorandom generator [BBS86] is secure under the assumption
that factoring large Blum integers is a difficult problem. For the pseudorandom generator
proposed by Kaliski [Ka88] the corresponding assumption is intractability of the elliptic
curve discrete logarithm.

In order to prove security of a pseudorandom generator one has to show that an algorithm
D that distinguishes the pseudorandom sequences from truly random sequences can be

53



reduced to an algorithm S that solves the corresponding difficult problem. The security
reduction is said to be tight if running time and success probability of these two algorithms
are about the same [BR96].

The pseudorandom generators mentioned above are based on the Blum-Micali (BM) con-
struction [BM84]. The BM pseudorandom generator is proved to be asymptotically secure
(see e.g. [GoO1]). Namely, it is shown that there exists a polynomial-time reduction from
the distinguisher D to the solver S. In fact asymptotic security implies that no polynomial-
time distinguishing attack exists. However this asymptotic statement says little about the
security of the pseudorandom generator in practice for a particular seed length and against
adversaries investing a specific amount of effort.

In practice it is important to know the concrete seed length that guarantees a certain level of
security. We need for concrete analysis a reduction that is as efficient as possible. A tight
reduction gives rise to a small modulus, which in turn ensures that the pseudorandom gen-
erator is efficient. To our knowledge, there exists no pseudorandom generator with tight
security reduction. The reductions [Al88, BM84, FS00, Ka88, VV84] are polynomial-
time but they are not tight. Moreover the reduction proposed by Fischlin et al. [FS00] for
the Blum-Blum-Shub generator is shown to be optimal. It implies that no tight security
reduction is possible for this pseudorandom generator. Inefficiency of security reductions
explains the major disadvantage of provably secure pseudorandom generators, namely they
are slow.

A way to improve tightness of the security reductions is to weaken Yao’s definition of se-
curity for pseudorandom generators. The fact that there exists no efficient distinguishing
attack on a pseudorandom generator means that every bit of the pseudorandom sequence
is unpredictable. Is it necessary to demand such a strong property of pseudorandom gener-
ators? Our work raises an interesting open problem: is it possible to weaken the definition
of security for pseudorandom generators in a reasonable way so that there exists a pseudo-
random generator with tight security reduction?

In this paper we analyze security of pseudorandom generators against a subclass of distin-
guishing attacks, namely state recovery attacks. A state recovery attack A on a pseudo-
random generator is an algorithm that, given a pseudorandom sequence, recovers the seed.
We show that in case of the BM pseudorandom generators there exists a tight security
reduction from the state recovery attack A to the solver S.

The rest of the paper is organized as follows. In Section 2 we recall the definition of se-
curity for pseudorandom generators proposed by Yao [Ya82]. We consider state recovery
attacks versus distinguishing attacks in Section 2.2. In Section 2.3 we give a simple ex-
ample of an efficient state recovery attack. Section 3 contains the main result of the paper.
In this section we prove robustness of BM generators against state recovery attacks. Two
important examples, namely the Blum-Blum-Shub generator and the Kaliski generator,
are discussed in Sections 3.1 and 3.2 respectively. In Section 4 we discuss the importance
of tight security reductions. We consider the BBS generator as an example. Section 5
concludes the paper.
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2 Security of Pseudorandom Generators
2.1 Distinguishing Attacks

We refer to a sequence of independent uniformly distributed bits as a truly random binary
sequence. Informally speaking, a pseudorandom generator is a deterministic algorithm
that, given a truly random binary sequence of length n, outputs a binary sequence of length
M > n that looks random.

Let G be some pseudorandom generator that outputs binary sequences of length M. Let
S be the set of the output sequences. Throughout this paper the notation ”€ g indicates
the process of selecting an element at random and uniformly over the corresponding set.
The running time of a probabilistic algorithm is defined to be the maximum of the expected
number of steps needed to produce an output, maximized over all inputs; the expected
number is averaged over all coin flips made by the algorithm [Kn97].

The following definitions are due to [Ya82].

DEFINITION 2.1 Let D : {0,1}™ — {0, 1} be a probabilistic algorithm that runs in time
T. Let ¢ > 0. D is called a (T, €)-distinguishing attack on pseudorandom generator G if

|Pr[D(s) = 1| s €r Sy] — Pr[D(s) = 1| s € {0,1}M]| > ¢,

where the probability is also taken over the internal coin flips of D.

DEFINITION 2.2 A pseudorandom generator is (T, €)-secure if there exists no (T, e€)-
distinguishing attack on this pseudorandom generator.

Note that the original definition of cryptographically secure pseudorandom generator [ Ya82]
is given in the asymptotic sense. It states that a pseudorandom generator is secure if for any
polynomial p no (p(n), 1/p(n))-distinguishing attack exists. However, for the concrete se-
curity analysis it is important to consider (7T, €)-distinguishing attacks for exact values of
T and e. The concrete version of the definition of cryptographically secure pseudorandom
generator first appears in [Kn97].

In general the distinguishing attack D does not have to determine the seed in order to
distinguish a pseudorandom sequence from a random sequence. For example, if the pseu-
dorandom sequence is unbalanced D can just output the majority bit of the sequence.

2.2 State Recovery Attacks

Let G be a pseudorandom generator that outputs binary sequences of length M. Let Sy,
be the set of the output sequences of G.

DEFINITION 2.3 Suppose there exists an algorithm A : {0,1}* — {0,1}" that, given
s €r S, outputs x € {0,1}" such that G(x) = s with probability € and outputs () with
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probability 1 — €. Here the probability is taken over all choices of s and over internal coin
Alips of A. Assume that A(s) = () for s ¢ Sys. Let T be the running time of A. Then A is
called a (T, €)-state recovery attack on pseudorandom generator G.

Actually a state recovery attack interprets a pseudorandom generator as a one-way func-
tion {0, 1} — {0,1}*. The more secure the one-way function the more time the state
recovery attack takes. The following lemma implies that the class of state recovery attacks
is a subclass of distinguishing attacks.

Lemma 2.4 Any (T, ¢)-state recovery attack is a (T, e — €2"~M)-distinguishing attack.

PROOF. The state recovery attack .4 can be transformed into a distinguishing attack D as
follows. On input s € {0,1}™ set D(s) = 0if A(s) = 0, otherwise set D(s) = 1. Then
Pr[D(s) =1|s €r Su] = eand Pr[D(s) = 1| s €g {0,1}M] = 2" M s0Disa
(T, e — 2"~ M)_distinguishing attack. O

Pseudorandom generator is a central building block of an important cryptographic primi-
tive, namely additive stream cipher. The pseudorandom generators used for the practical
stream ciphers are fast but not provably secure. Therefore new attacks on the stream ci-
phers are published frequently. Ekdahl [EkO3] proposes an efficient state recovery attack
against the Bluetooth standard and against the stream cipher A5/1, which is used in GSM
standard for mobile telephones. A series of papers [Kn98, Ma05] analyze state recovery
attacks on RC4 Keystream Generator.

The main result of this paper is that the security of the Blum-Micali pseudorandom gen-
erators [BM84] against state recovery attacks is tightly related to the security of the corre-
sponding one-way function. Thus security against state recovery attacks is guaranteed for
much smaller seed lengths. The new reduction is discussed in Section 3. Before presenting
the main result, we discuss a simple example of an efficient state recovery attack for linear
congruential generators.

2.3 Example of an Efficient State Recovery Attack

It is well-known that for any LFSR-based pseudorandom generator the initial state can
be found using the Berlekamp-Massey algorithm [Ma69]. Similar problems — but maybe
less well-known — concern the popular linear congruential generators. Even when all the
details of the generator are kept secret, a state recovery attack is quite easy to implement.

The linear congruential generator works as follows. Let A be a positive integer of bit
length a for some @ > 0. Let j, k, s1 € Z 4. The seed of the linear congruential generator
(LCG) is a quadruple (A, j,k, s1). The length of the seed n = 4a. The pseudorandom
sequence s = {s1, $2,...,Sp} is generated as follows:

s$; =7J8i—1+kmod A, i=2,3,...,B.
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The pseudorandom sequence is a sequence of integers s; € Z4, @ = 1,2,...,B. s11s
both a component of the seed and the first element of the pseudorandom sequence. The
length of the pseudorandom sequence is M = aB.

Although the LCG works well for a number of Monte Carlo problems it is not suitable for
cryptographic purposes. The reason is that it does not resist a state recovery attack.

Marsaglia [Ma68] shows that the LCG has a defect that cannot be removed by adjusting
the seed. Namely, if [-tuples (s1, so,...,51), (S2,83,...,81+1),-.., | > 3, produced by
the LCG are viewed as points in the unit cube of n dimensions, then all the points will
be found to lie in a relatively small number of parallel hyperplanes. This is the intuition
behind the following lemma proposed by Marsaglia [Ma68].

Lemma 2.5 Foralli,i=1,2,...,B — 3, A; is a multiple of A, where

S; Si+1 1
A; = det Si+1 Sig2 1
Siv2  Sivz 1

Suppose an adversary knows a few first s;’s. Greatest common divisor of several A;’s
gives the value of A. Then it can compute j and k& by solving the following system of
linear equations

{j51+k232 mod A

jsas + k= s3mod A
As a result the seed is revealed.

The above argument shows that there exists an efficient state recovery attack on the LCG.
To run this attack, the adversary does not have to know many output values s;. In practice
5 values s1, ..., S5 are enough.

3 The Blum-Micali Construction

A family of cryptographically strong pseudorandom generators is proposed by Blum and
Micali [BM84]. Let f be a one-way permutation defined over some domain D. Let b be
a hard-core predicate for f. The seed x; of the pseudorandom generator is a uniformly
distributed element of D. The pseudorandom sequence (the BM sequence) s € {0,1}M
is generated as follows:

si = 0(x;), Tiy1 = f(xi)
fort=1,..., M.

If an adversary does not know the seed it cannot distinguish the BM sequence from a ran-
dom sequence in polynomial-time with non-negligible advantage [BM84]. Therefore due
to Lemma 2.4 no polynomial-time state recovery attack on the BM generator is feasible.
It means that, as the seed length increases, no polynomial-time adversary can retrieve the
seed of the pseudorandom generator. However this asymptotic statement says little about
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the security of the pseudorandom generator in practice for a particular seed length and
against adversaries investing a specific amount of effort.

The security of the BM generator is proved by reduction (see e.g. [GoO1]). It is shown
that the problem of distinguishing BM sequences from random sequences can be reduced
to inverting f. The reduction proposed is polynomial time but it is not tight.

In this paper we prove the impossibility of state recovery attacks on BM generators in a
different way. We show that there exists a tight reduction between state recovery attacks
on a BM generator and inversion algorithms for the corresponding one-way function.

Theorem 3.1 Suppose the Blum-Micali pseudorandom generator is vulnerable against a
(T 4, €)-state recovery attack A. Then there exists a probabilistic algorithm S that, given
y €r D, calculates v = f~1(y) in time Ts = 2T 4 + c¢M with probability e, where c is
the computational complexity of f. The probability is taken over all choices of y and over
internal coin flips of S.

PROOF. On input y € D, algorithm S first constructs M bits of the BM sequence with
seed x and then uses A to retrieve x. In total there are three steps.

1. Generate so,...,55 : 52 = b(y), 53 = b(f(y)),...,sm = b(fM2(y)).
2. Calculate z; = A(%, $2, 83,...,8p) fori =0, 1.
3. If f(z;) = y for one of the values i € {0,1} set x = z;.

Since the complexity of Step 1 is ¢M the running time of algorithm S is T's = 2T 4 +cM.
The success probability of S is e. ]

In practice cM < T' 4. Hence T's and T 4 differ only by a factor of 2. Therefore the above
reduction is tight. This reduction is called linear-preserving in terms of [Ha99].

We analyze two members of the Blum-Micali family: the Blum-Blum-Shub (BBS) gener-
ator [BBS86], and the generator based on the elliptic curve discrete logarithm [Ka88].

3.1 The BBS Pseudorandom Generator

Let IV be a Blum integer, that is N = pq, where p, g are prime, p = ¢ = 3 mod 4. Denote
by n the bit length of N. Let Ex(z) = 22 mod N for z € Zy. Ey is referred to as the
Rabin function. Let Q Ry be the set of quadratic residues modulo N. It is known that F
permutes QR .

The seed x1 of the BBS generator is a random quadratic residue modulo N. The pseudo-
random sequence s € {0, 1}* is generated as follows:

S; = I mod 2, Ti4+1 = EN(LL'i)
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fori=1,..., M.
The BBS generator is a BM generator with D = QRy, f(z) = En(z),b(z) = x mod 2.

The following statement shows that a state recovery attack on the BBS generator can be
efficiently reduced to a factoring algorithm.

Corollary 3.2 Suppose the BBS pseudorandom generator is vulnerable against a (T 4,
€)-state recovery attack A. Then there exists a probabilistic algorithm F that factors the
modulus N in expected time Tr = 2¢ 71T 4 + O(e~*n2M).

PROOF. The proof uses a well-known fact that calculating square roots modulo N is
equivalent to factoring V.

Letz €gr ZN\QRy and y = En(z). According to Theorem 3.1 there exists an algorithm
S that, given y, calculates z € QR such that y = Ex(2) in time Tss = 274 + O(n?M)
(the complexity of squaring modulo NN is O(n?), where n is the length of N) with prob-

ability e. The probability is taken over all choices of x and over internal coin flips of
S.

The following two possibilities each have probability 1/2:

1. z=+x mod pand z = —z mod g,

2. z=—x mod pand z = +x mod g,

In Case 1 ged(z — ,N) = p and in Case 2 ged(z — 2, N) = ¢. Thus calculation of
ged(z — @, N) yields the factorization of N. The complexity of the ged evaluation is
negligible in comparison with O(n?M).

Algorithm F now works as follows. Select x €r Zy and use S to determine z. If S
succeeds calculate ged(z — x, V). If S fails select © € Zy\QRy once again etc. On
average JF repeats the above procedure €' times. Therefore T'r = ¢ 1Ts = 2¢ 1T +
O(e1n2M). O

Alexi et al. [AI88], U. Vazirani and V. Vazirani [VV84] show that the BBS pseudorandom
generator remains asymptotically secure if one extracts the first few least significant bits
of x; per iteration. Although the BBS generator with several output bits per iteration
is beyond the Blum-Micali construction security of this generator against state recovery
attacks follows from a straightforward generalization of Theorem 3.1.

Corollary 3.3 Suppose the BBS pseudorandom generator with j output bits per iteration
is vulnerable against a (T 4, €)-state recovery attack A. Then there exists a probabilistic
algorithm F' that factors the modulus N in expected time Tr: = 27 ¢ 1T 4+O0(e~'n2M).

PROOF. The proof of this statement is similar to the proof of Corollary 3.2. When
proving Corollary 3.2 we use Theorem 3.1 to construct algorithm S that inverts the Ra-
bin function in time Ts = 274 + O(n?M) with probability e. On Step 2 (see the
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proof of Theorem 3.1) S runs algorithm A twice. In case of the BBS generator with
j output bits per iteration the inversion algorithm S’ on Step 2 has to run A for 27
times and therefore Tss = 2/T4 + O(n?>M). Similarly to the proof of Corollary 3.2
Tr = 2671T51 = 2j€*1TA + O(efln2M). O

3.2 The Pseudorandom Generator Based on the Elliptic Curve Discrete Logarithm

A pseudorandom generator based on the elliptic curve discrete logarithm (ECDL genera-
tor) is proposed by Kaliski [Ka88].

Let p be a prime, p = 2 mod 3. Consider a curve E(F,,) that consists of points (z,y) €
I, x IF}, such that

v’ =2+,

where ¢ € ;. Kaliski [Ka88] shows that the points of E(F,) together with a point
at infinity O form a cyclic additive group of order p + 1. Let Q be a generator of this
group. The security of the pseudorandom generator [Ka88] is based on the assumption

that solving the discrete log problem over E(FF,) (given points @, Y, find o € Z1 such
that Y = «a(Q) is infeasible. Let

it P=(z,y);
o) = {p,ifpzo.

The ECDL generator is a BM generator with D = E(F),), f(P) = ¢(P)Q,
1,if p(P) > 1)/2;
P):{ EOP) 2 (p+ 1)/

0, otherwise.

The seed P; of the ECDL generator is a random point on the curve.

Corollary 3.4 Suppose the ECDL pseudorandom generator is vulnerable against a (T 4,
€)-state recovery attack A. Then there exist a probabilistic algorithm L that, given Y €
E(F,), calculates o € Zpy1 such that Y = aQ in expected time Ty = 2¢ T4 +
O(c1(log p)> M),

PROOF. The proof is based on Theorem 3.1 and on random-self-reducibility of the discrete
logarithm problem. The details follow.

According to Theorem 3.1 there exists an algorithm S that on input Z € E(F),) calcu-
lates X = f~1(Z) in time Ts = 2T 4 + O((log p)® M) with probability e.

LetY € E(F,). Algorithm £ works as follows. Select b €r Zj ;. Use S to determine
X = f7HbY). If S succeeds calculate « = b~ mod (p + 1) and o = a¢(X) (in this
case bY = f(X) = ¢(X)Q and thus Y = ap(X)Q). If S fails select b € Z;, ; once

again etc. On average L repeats the above procedure e ~! times. Therefore T, = ¢ T =
2¢71T4 + O(e t(log p)> M). O
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4 Concrete Result for the BBS generator

Consider the BBS pseudorandom generator with 1 output bit per iteration (see Section
3.1). Suppose our goal is to generate a pseudorandom sequence of length M = 107 such
that no distinguishing attack D can distinguish the sequence from truly random sequence
in time Tp = 280 with advantage ¢ = 0.01 (we use the same choice of parameters as in
[FS00, Ge05, Kn97]). The question is what bit length n of the modulus N guarantees this
level of security.

The security of the BBS generator relies on the intractability of factoring large Blum in-
tegers. The fastest general-purpose factoring algorithm today is the Number Field Sieve.
According to [LVO1] on heuristic grounds the Number Field Sieve is expected to require
time proportional to  exp((1.9229 + o(1))(In N)'/3(In1n N')?/) for a constant ~. Fol-
lowing [LVO1] we make an assumption that the o(1)-term can be treated as zero. Let
T'r(n) be the number of clock cycles needed to factor an n-bit integer. Then

Tr(n) ~ vexp(1.9229(n1n 2)*/3(In(n 1n 2))%/3).

We use one clock cycle as a unit of time. Experience from available data points suggests
that Tx(512) ~ 3 - 1017 [LVO1]. Therefore v ~ 2.8 - 10~ and

Tr(n) ~2.8-1073 - exp(1.9229(n1n 2)/3(In(n1n 2))?/3).

ASSUMPTION 4.1 No algorithm can factor a randomly chosen n-bit Blum integer faster
than in Tx(n) clock cycles.

The strongest security proof for of the BBS generator is proposed by Fischlin and Schnorr
[FS00].

Lemma 4.2 (Fischlin and Schnorr) Under Assumption 4.1, no (Tp, €)-distinguishing at-
tack on the BBS generator exists if

Tx(n)
Tp <
P = 6n(logy n)e—2M?

— 2"ne 2 M?log, (8ne ' M).

We observe that T'r > T’p. Hence the security reduction is not tight.

Lemma 4.2 implies that for M = 107 no (28°,0.01)-distinguishing attack on the BBS
exists if n > 6800. On the other hand due to Corollary 3.2 the security against (25°,0.01)-
state recovery attacks is guaranteed for n > 1100. Since the security reduction in case of
the state recovery attacks is tighter than in case of the distinguishing attacks the length
of the modulus that guarantees security against the state recovery attacks is significantly
smaller than the one that guarantees security against distinguishing attacks.

5 Conclusion

Provable security is a substantial and desirable property of cryptographic primitives. To
our knowledge, there exists no provably secure pseudorandom generator with a tight se-
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curity reduction. For this reason the provably secure pseudorandom generators are slow.
Often it makes them impractical.

One of the important examples of provably secure pseudorandom generators is the Blum-
Micali family. They are known to be asymptotically secure, shown using polynomial time
reductions which are far from tight. Moreover, in case of the BBS generator the reduction
cannot be tighter [FS00]. In this paper we show that there exists a tight security reduction
for a subclass of attacks, namely for state recovery attacks.

A way to improve tightness of the security reductions (and thus to make the pseudoran-
dom generators more efficient) is to weaken Yao’s definition of security for pseudorandom
generators. The fact that there exists no efficient distinguishing attack on a pseudoran-
dom generator means that every bit of the pseudorandom sequence is unpredictable. Is it
necessary to demand such a strong property of pseudorandom generators? For example,
suppose a pseudorandom generator is used for generating 1024-bit RSA keys. In this case
leakage of a few bits of the secret key does not affect the security of the scheme, since
the Number Field Sieve can not benefit from this information. Wanders [Wa87] points
out that a small deviation from Golumb’s randomness postulates results in even smaller
information leak per bit (namely, the information leak is quadratic in the deviation). Our
work raises an interesting open problem: is it possible to weaken the definition of secu-
rity for pseudorandom generators in a reasonable way so that there exists a pseudorandom
generator with tight security reduction?
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