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Abstract: In high dimensional databases, traditional full space clustering methods
are known to fail due to the curse of dimensionality. Thus, in recent years, subspace
clustering and projected clustering approaches were proposed for clustering in high
dimensional spaces. As the area is rather young, few comparative studies on the ad-
vantages and disadvantages of the different algorithms exist. Part of the underlying
problem is the lack of available open source implementations that could be used by re-
searchers to understand, compare, and extend subspace and projected clustering algo-
rithms. In this work, we discuss the requirements for open source evaluation software
and propose the OpenSubspace framework that meets these requirements. OpenSub-
space integrates state-of-the-art performance measures and visualization techniques to
foster clustering research in high dimensional databases.

1 Introduction

In recent years, the importance of comparison studies and repeatability of experimental

results is increasingly recognized in the databases and knowledge discovery communities.

VLDB initiated a special track on Experiments and Analyses aiming at comprehensive and

reproducible evaluations (e.g. [HCLM09, MGAS09, KTR10, SDQR10]). The conferences

SIGMOD followed by SIGKDD have established guidelines for repeatability of scientific

experiments in their proceedings. Authors are encouraged to provide implementations and

data sets. While these are important contributions towards a reliable empirical research

foundation, there is still a lack of open source implementations for many state-of-the-art

approaches. In this paper we present such an open source tool for clustering in subspaces

of high dimensional data.

Clustering is an unsupervised learning approach that groups data based on mutual simi-

larity [HK01]. In high dimensional spaces, subspace clustering and projected clustering

identify clusters in projections of the full dimensional space.
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Figure 1: Subspace and projected clustering research with and without a general repository for data,
algorithms, comparison, and evaluation.

It is a fundamental problem of unsupervised learning approaches that there is no generally

accepted “ground truth”. As clustering searches for previously unknown cluster structures

in the data, it is not known a priori which clusters should be identified. This means that

experimental evaluation is faced with enormous challenges. While synthetically generated

data is very helpful in providing an exact comparison measure, it might not reflect the

characteristics of real world data. In recent publications, labeled data, usually used to

evaluate the performance of classifiers, i.e. supervised learning algorithms, is used as a

substitute [SZ04, KKRW05, AKMS07a]. While this provides the possibility of measuring

the performance of clustering algorithms, the base assumption that clusters reflect the class

structure is not necessarily valid.

Some approaches therefore resort to the help of domain experts in judging the quality of

the result [KKK04, BKKK04, KKRW05]. Where domain experts are available, which is

clearly not always the case, they provide very realistic insights into the usefulness of a

clustering result. Still, this insight is necessarily subjective and not reproducible by other

researchers. Moreover, there is not sufficient basis for comparison, as the clusters that

have not been detected are unknown to the domain expert. This problem is even more

aggravated in high dimensional subspace or projected clustering. As the number of results

is typically huge, it is not easily possible to manually analyze the quality of different

algorithms or even different runs of the same algorithm.

As there is no ground truth, nor accepted benchmark data or measures for evaluating sub-

space and projected clustering, the experimental evaluation can be hardly set into relation

to other published results. Especially the results are incomparable, as there are no publicly

available common implementations neither for subspace/projected clustering algorithms

nor for evaluation measures (cf. Fig 1). As a consequence, progress in this research area

is slow, and general understanding of the advantages and disadvantages of different al-

gorithms is not established. The source code for experimental evaluation is most of the

time implemented by the authors themselves and often not made available to the general

public. This hinders further experimental study of recent advances in clustering. As te-

dious re-implementation is often avoided, only few comparisons between new proposals

and existing techniques are published.

For clustering (but also for classification and association rule mining), the open source tool

WEKA (Waikato Environment for Knowledge Analysis) has been very helpful in allowing
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researchers to analyze the behavior of different algorithms in comparison [WF05]. It pro-

vides measures for comparison, visualization of the results, and lets researchers add their

own algorithms and browse through the implementation of other techniques.

For subspace and projected clustering, such a general tool does not exist. In this paper,

we discuss the requirements for a successful open source tool that supports evaluation

and exploration of subspace and projected clustering algorithms and their cluster results.

Our framework OpenSubspace fulfills these requirements by integration of measurement

and visualization techniques for in-depth analysis. Furthermore, it will be useful in es-

tablishing benchmark results that foster research in the area through better understanding

of advantages and disadvantages of different algorithms on different types of data. It in-

cludes successful techniques in demonstration systems for visualization and evaluation of

subspace mining paradigms [MAK+08, AMK+08, GFKS10, GKFS10, MSG+10].

As anyone will be able to see the implementation, the code base can be continually re-

vised and improved. Researchers may analyze the algorithms on a far greater range of

parameter values than would be possible within the scope of a single conference or journal

publication (cf. Fig 1). Based on this, we published a thorough evaluation study on sub-

space/projected clustering techniques [MGAS09]. As open source basis for this study, this

publication provides an overview of techniques included in our OpenSubspace framework.

For scientific publications the open source implementations in OpenSubspace enable more

fine grained discussions about competing algorithms on a common basis. For authors of

novel methods OpenSubspace gives the opportunity to provide their source code and thus

deeper insight into their work. This enhances the overall quality of publications as com-

parison is not based any more on incomparable evaluations of results provided in different

publications but on a common algorithm repository with approved algorithm implemen-

tations. In Figure 1 we compare the current situation (on the left side) with the improved

situation having a common repository of both subspace/projected clustering and evalua-

tion measures (on the right side). Thus, OpenSubspace aims at defining a common basis

for research and education purposes maintained and extended by the subspace/projected

clustering community.

None of the existing data mining frameworks provide both subspace/projected clustering

as well as the full analytical and comparative measures for the full knowledge discovery

cycle. KNIME (Konstanz Information Miner) is a data mining tool that supports data flow

construction for knowledge discovery [BCD+09]. It allows visual analysis and integration

of WEKA. Orange is a scripting or GUI object based component system for data mining

[DZLC04]. It provides data modeling and (statistical) analysis tools for different data min-

ing techniques. Rattle (the R Analytical Tool To Learn Easily) is a data mining toolkit that

supports statistical data mining based on the open source statistical language R [Wil08].

Evaluation via a number of measures is supported. In all of these frameworks subspace

clustering or projected clustering are not included. ELKI (Environment for DeveLoping

KDD-Applications Supported by Index Structures) is a general framework for data min-

ing [AKZ08]. While it also includes subspace and projected clustering implementations,

the focus is on index support and data management tasks. With respect to evaluation and

exploration, it lacks evaluation measures and visualization techniques for an easy com-

parison of clustering results. Furthermore, as a stand alone toolkit it does not provide an

integration into popular tools like WEKA.
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2 Subspace and Projected Clustering

Clustering is an unsupervised data mining task for grouping of objects based on mutual

similarity [HK01]. In high dimensional data, the “curse of dimensionality” hinders mean-

ingful clustering [BGRS99]. Irrelevant attributes obscure the patterns in the data. Global

dimensionality techniques such as Principle Components Analysis (PCA), reduce the num-

ber of attributes [Jol86]. However, the reduction may obtain only a single clustering in the

reduced space. For locally varying attribute relevance, this means that some clusters will

be missed that do not show in the reduced space. Moreover, dimensionality reduction

techniques are unable to identify clusterings in different reduced spaces. Objects may be

part of distinct clusters in different subspaces.

Recent years have seen increasing research in clustering in high dimensional spaces. Pro-

jected clustering aims at identifying the locally relevant reduction of attributes for each

object. More specifically, each object is assigned to exactly one cluster (or noise) and

a corresponding projection. Subspace clustering allows identifying several possible sub-

spaces for any object. Thus, an object may be part of more than one cluster in different

subspaces.

2.1 Paradigms

While subspace and projected clustering are rather young areas that have been researched

for only one decade, several distinct paradigms can be observed in the literature. Our open

source framework includes representatives of these paradigms to provide an overview over

the techniques available. We provide implementations of the most recent approaches from

different paradigms (cf. Fig. 2):

Subspace clustering

Subspace clustering was introduced in the CLIQUE approach which exploits monotonicity

on the density of grid cells for pruning [AGGR98]. SCHISM [SZ04] extends CLIQUE

using a variable threshold adapted to the dimensionality of the subspace as well as efficient

heuristics for pruning. Both are grid-based approaches which discretize the data space for

efficient detection of dense grid cells in a bottom-up fashion.

In contrast, density-based subspace clustering defines clusters as dense areas separated by

sparsely populated areas. In SUBCLU, a density monotonicity property is used to prune

subspaces in a bottom-up fashion [KKK04]. PreDeCon extends this paradigm by intro-

ducing the concept of subspace preference weights to determine axis parallel projections

[BKKK04]. A further extension FIRES proposes an approximative solution for efficient

density-based subspace clustering [KKRW05]. In DUSC, dimensionality bias is removed

by normalizing the density with respect to the dimensionality of the subspace [AKMS07a].

Its extension INSCY focuses on efficient in-process removal of redundancy [AKMS08].

Recently, more general techniques have been proposed for optimization of the resulting

set of clusters to eliminate redundant results and to include novel knowledge in orthogonal

projections [MAG+09, GMFS09].

Projected clustering

Projected clustering approaches are partitioning methods that identify disjoint clusters in
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Figure 2: Algorithms implemented in OpenSubspace

subspace projections. PROCLUS extends the k-medoid algorithm by iteratively refining

a full-space k-medoid clustering in a top-down manner [AWY+99]. P3C combines one-

dimensional cluster cores to higher-dimensional clusters bottom-up [MSE06]. Its exten-

sion StatPC searches for non-redundant significant regions [MS08]. Further techniques

are DOC a randomized approach using a Monte Carlo algorithm to find projected clusters

represented by dense hypercubes [PJAM02] and MineClus an extension using the FP-tree

for iterative projected clustering [YM03].

2.2 Challenges

Both subspace clustering and projected clustering pose new challenges to the mining task

but especially to evaluation and exploration of the actual clustering results. In the follow-

ing, we will show that these challenges have not yet been addressed by recent open source

systems. Furthermore, they can not be solved by simply applying traditional techniques

available for low dimensional clustering paradigms.

The WEKA framework provides several panels for different steps in the knowledge dis-

covery cycle as well as for different data mining tasks (cf. Fig. 3). Besides structuring the

GUI for users of the framework, the API reflects these different tasks in being structured

according to classifiers, clustering algorithms, etc. This means that the Java class hier-

archy reflects the common properties of each of the tasks. From this, several challenges

arise in introducing a new data mining task, namely subspace/projected clustering, and

new evaluation and visualization methods.

Due to special requirements in high dimensional mining we cannot simply extend the clus-

tering panel in WEKA by adding new algorithms. We have to set up a new subspace panel

by introducing techniques specialized to the new requirements in all areas (mining, evalu-

ation and visualization). Subspace and projected clustering algorithms differ from cluster-

ing (or other data mining tasks such as classification) in that each cluster is associated with
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a possibly different subspace projection. As a consequence, the existing representation that

assumes that all objects are clustered with respect to the initially chosen dimensions, is not

valid. Moreover, the result is not necessarily partitioning. A single object may be part of

several subspace clusters. These two aspects are important for the subspace/projected clus-

tering panel, i.e. for the interface that describes common properties of these approaches.

Moreover, these aspects have to be taken into consideration for evaluation and visualiza-

tion as well. Following the same rationale, it is necessary to provide new APIs to allow

meaningful analytical and visual tools in the OpenSubspace framework. Any measure that

supports subspace and projected clustering evaluation needs to incorporate information

on the respective subspace projection of each cluster. Visualization techniques to provide

techniques for comparison of results in differing projections, as in [AKMS07b], cannot

plug into existing visualization interfaces for traditional clustering in WEKA for the same

reason.

As a consequence, OpenSubspace allows identifying any result with a corresponding set of

dimensions, i.e. the subspace in which the result cluster resides. This is taken into consid-

eration both for the subspace/projected clustering panel itself with the display of numeric

results and evaluation measures, as well as for the visualization panel. This streamlined

approach ensures that for all steps in the KDD cycle, representation in the correct subspace

projection is achieved.
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2.3 Lack of Ground Truth in Clustering

As briefly mentioned in the Introduction, clustering is a challenging task with respect to

evaluation, as there is usually no ground truth. This means that it is in the very nature of

clustering to search for yet unknown patterns in the data that provide novel and interesting

insights to the user. Moreover, even for historic data, the true patterns that were interesting,

are not known, either. This is in contrast to e.g. classification, where existing real world

data can be used to easily validate the performance of any existing or newly presented

classifier. Simply by checking the predicted class labels against the ones obtained from

historic data, the classification accuracy can be easily measured in a reproducible fashion.

In clustering, no such “labels” on historic data exists. Such “labels” would require an

exhaustive enumeration of all combinatorial possibilities and their comparison. This is

clearly infeasible even for reasonably small to medium datasets.

To allow for reproducible analysis, some publications resort to the measure of classifica-

tion accuracy [BZ07, MAK+09]. The underlying idea is to find an objective measure for

the performance of clustering. The assumption is that the class labels somehow reflect

the natural grouping of the data, and can therefore be used to judge the performance of

clustering algorithms as well. While this does provide some measure for comparison of

these approaches, the underlying assumption is not necessarily valid and can even, in the

worst case, produce random results. For example, an unsupervised clustering technique

might detect a group of objects covering different labels, which might be meaningful as

a clustering result. The given class labels, however, reflect only a single concept while

clustering and especially subspace clustering aim at detecting multiple unknown concepts.

The opposite case might happen as well: The clustering can split a set of objects with

common labels into two clusters. Both meaningful clustering results are punished by eval-

uation measures simply based on the labels. As a consequence, class labels might provide

only very limited insight into the performance of clustering algorithms.

Another approach taken in clustering evaluation is the use of synthetic data. Such artificial

databases overcome the above mentioned problems by the generating process, the best

clustering is already known. There are several limitations to this approach, however. First,

most synthetic datasets are generated just for a single publication to evaluate the benefits

of the proposed method. As such, they serve a very important purpose: they provide the

means to understand whether the proposed method indeed detects (subspace or projected)

clusters of the nature defined by the authors. Moreover, as the ideal clustering is known,

the performance of algorithms perform on this dataset can be checked without having to

resort to class labels. Even though some publications use very elaborate models to generate

datasets that follow distributions that are believed to be observed in practical applications,

there is obviously no guarantee that synthetic data is like real world data. Synthetic data,

by its very nature, represents what is thought to occur in the datasets we analyze, but

since we do not know which clusters might actually go unnoticed in real world data, these

properties cannot be known.

Some researchers suggest using the help of domain experts in getting an informed answer

to the quality of clustering results. Domain experts are obviously very helpful in judging

the practical usefulness of the results and in ranking several possibilities in relation. How-

ever, as is true for the above examples, alternatives that are not known, i.e. not presented

to the domain expert, cannot be taken into consideration. As a result, a very good cluster-
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ing solution might be available and would be much more important to the domain expert.

However, as this clustering is not retrieved, the domain expert cannot give a correspond-

ing judgment. Moreover, manual analysis performed by domain experts is very limited to

small result sizes and few parameter variations. Manual inspection of varied settings on a

variety of datasets, as would be required for in-depth analysis, is clearly not feasible for

humans. And, as mentioned before, the number of result clusterings in high dimensional

spaces tends to grow enormously with the number of attributes. As a consequence, domain

experts cannot judge typical outcomes of most subspace and projected clustering results.

Moreover, the results indicated by domain experts are subjective and cannot be reproduced

by other researchers.

As a consequence, any dataset used for evaluation is necessarily only a glimpse at the

performance of (subspace or projected) clustering algorithms. As we will see later on,

the open source idea provides a means to combine several of these glimpses into a larger

picture towards an integrated view of clustering performance. As both the source code for

validation of the results and the datasets are collected, a more integral picture is provided

which can be easily extended by applying these algorithms to the datasets.

2.4 Lack of Standard Evaluation Measures in Clustering

Another problem in the evaluation of subspace and projected clustering lies in the evalua-

tion measures themselves. This problem is closely related to the one of suitable datasets in

that different results cannot be easily compared. Measuring the quality of (subspace and

projected) clustering results is not straightforward. Even if the ground truth for any dataset

were available, there are different ways of assessing deviations to this ground truth and of

computing an overall performance score. For evaluation of clustering algorithms, large

scale analysis is typically based on pre-labelled data, e.g. from classification applications

[MSE06, BZ07]. The underlying assumption is that the clustering structure typically re-

flects the class label assignment. At least for relative comparisons of clustering algorithms,

this provides measures of the quality of the clustering result.

In the literature, several approaches have been proposed. Quality can be determined as

entropy and coverage. Corresponding roughly to the measures of precision and recall,

entropy accounts for purity of the clustering (e.g. in [SZ04]), while coverage measures

the size of the clustering, i.e. the percentage of objects in any subspace cluster. Open-

Subspace provides both coverage and entropy (for readability, inverse entropy as a per-

centage) [AKMS07a]. Inverse entropy measures the homogeneity in the clustering result

with respect to a class label. The measurement assumes a better clustering structure if

the detected clusters are formed by objects homogeneously labeled with the same class

labels. Besides the above mentioned problem of possible discrepancies in class labels and

clustering structure, homogeneity of class labels is only one aspect of a good clustering

structure. The coverage of the data set has to be measured separately to ensure that most

of the objects occur in at least one cluster. Furthermore, overall homogeneity itself can be

biased by many small homogeneous clusters dominating bigger inhomogeneous clusters.

Another approach is direct application of the classification accuracy. Accuracy of classi-

fiers (e.g. C4.5 decision tree) built on the detected patterns compared with the accuracy of

the same classifier on the original data is another quality measure [BZ07]. It indicates to
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Figure 4: Evaluation measures in OpenSubspace

which extend the subspace clustering successfully generalizes the underlying data distribu-

tion. This approach is refined to enhanced classification accuracy which takes the original

attributes and the ones that are derived as a combination of the original ones through the

clustering. By comparing the performance of classifiers on the original attributes only

with the performance of the same classifiers on original plus derived attributes, an insight

into the quality of the clustering is achieved. However, as discussed before, any measured

improvement is valid only with respect to the class labels. It is unclear, in which way the

findings generalize to data without class labels.

The F1 value is commonly used in evaluation of classifiers and recently also for sub-

space or projected clustering as well [MSE06]. The F1 measure compares the clusters that

are found by any particular (subspace or projected) clustering algorithm with an assumed

ground truth by taking the harmonic mean of precision and recall. This approach obvi-

ously suffers from the same drawbacks as any class label-based method, yet, additionally,

it is open to interpretation in high dimensional spaces. As clusters are detected in subspace

projections, any deviation might be punished with respect to the subspace projection and

with respect to the inclusion of positive and negative false alarms. However, the basis for

comparison is not as straightforward, as it might seem. Depending on whether individ-

ual clusters or the entire clustering are used for the assessment, different results might be

achieved. As a consequence, results based on variants of the F1 measure are not compara-

ble across publications as one is using different F1 measure definitions.

All mentioned measures simply compare the detected groups of objects against the class

label given for each object. Thus, these measures only provide a quality criterion for
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object clusters as they ignore the detected subspaces in each cluster. More enhanced sub-

space clustering measures take also the detected subspaces into account and compare them

against the possibly given relevant dimensions [PM06]. We have implemented such mea-

sures like Cluster Error (CE) and Relative Non-Intersecting Area (RNIA) in our frame-

work. However, they require not only class labeled data for evaluation but also the rele-

vant dimensions for each label. Such information is not provided in most real world data

sets (e.g. used in classification task). Relevant dimensions are only available for synthetic

data, as they are used and provided by the generators that hide subspace clusters in high

dimensional spaces. Although both CE and RNIA achieve more detailed measurements as

they take both objects and dimensions into account the missing ground truth is even more

obvious for these measures.

In addition to this, several other measures have been used. In general, they all require

some ground truth for assessing the performance of (subspace or projected) clustering

algorithms. And, since several different subspace clusters might combine into a single

“true” projected cluster, it is not always clear how to judge the result in its deviation from

the postulated ground truth. Consequently, published results cannot be compared simply

by their performance scores. Since there is no objective best measure for all approaches

that is commonly agreed upon, researchers cannot compare different algorithms based

solely on published results.

OpenSubspace provides the framework for using several, widely used, evaluation mea-

sures for subspace and projected clustering algorithms. In Figure 4 we present the evalua-

tion output with various measures for comparing subspace clustering results. This allows

easy extension of published results for various measures and direct comparison. Over

time, as more and more results are available on different datasets and with respect to dif-

ferent evaluation measures, a benchmark background is built. It provides the means for

in-depth understanding of algorithms and evaluation measures and fosters research in this

area based on individual researcher’s findings.

3 OpenSubspace Framework

With OpenSubspace we provide an open source framework tackling the challenges men-

tioned in the previous section. By fully integrating OpenSubspace into the WEKA frame-

work we build on an established data mining framework covering the whole KDD cycle:

pre-processing, mining, evaluation and visualization of the results, additionally including

user feedback to the mining algorithm to close the KDD cycle. With OpenSubspace we

focus on the mining, evaluation and exploration steps in this cycle (cf. Fig. 5). Provid-

ing a common basis for subspace/projected clustering as a novel mining step we achieve

a framework for fair comparison of different approaches. For evaluation and exploration

of the subspace and projected clusters OpenSubspace provides various evaluation mea-

sures for objective comparison of different clustering results. Furthermore, OpenSubspace

provides visualization methods for an interactive exploration. Please refer to our website

where we document our ongoing work in this project. It also contains more detailed in-

formation about OpenSubspace, its usage and extension. In the following, we will give an

overview on the major contributions of OpenSubspace to the subspace clustering commu-

nity:
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Figure 5: KDD cycle of OpenSubspace in WEKA

• Transparency of implementations

• Evaluation and comparison of algorithms

• Extensibility to further approaches

As we will show open source is the key property for all of these contributions. Open source

code enables us to compare and validate the correctness of algorithm implementations. It

gives us the basis for evaluating existing approaches on a common basis and leads thus to

a fair comparison in future publications. By having the code of recent approaches at hand

we enable the extension of existing algorithms to everyone and not only to the authors of

these approaches.

3.1 Transparency of Implementations

The basis for thorough and fair evaluation is a common basis for all implementations.

OpenSubspace provides such a basis for data access supporting both main and secondary

storage. Furthermore, the framework provides a common interface for subspace cluster-

ing implementations. Algorithms which extend this interface can be easily plugged into

OpenSubspace.

All of these algorithms are provided as open source. This transparency of the underlying

implementation ensures high quality algorithms in the framework. The research commu-

nity is able to review these implementations according to the original publication of the

algorithm. Even improved versions can be provided which go beyond the descriptions in

the publications using novel data structures, heuristics or approximation for specialized

purposes. The benefit of reviewing implementations based on open source is especially

useful as in most publications authors can only sketch their algorithms. This makes it dif-

ficult to re-implement such approaches. Various different interpretations of one approach

could arise if only closed implementations were available. Using these different imple-

mentations of the same approach leads to incomparable results in scientific publications

as evaluations have different bases. Open source repositories as in OpenSubspace prevent
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such differing implementations that might even be biased and does away with the need

for re-implementation for competing approaches. Overall OpenSubspace aims at a trans-

parent and thus fair basis for evaluations of various approaches for detecting meaningful

subspace clusters.

Explorer

ClusterPanel

ParameterBracketing

SubspaceClusterPanel

«interface»
SubspaceClusterer

SubspaceClusterResult

«interface»
SubspaceClusterEvaluation

WEKA Framework

PreprocessPanel

ClassifierPanel AssociationsPanel

ArffLoader

Filters

P3C Schism ... F1 Measure ...Entropy

OpenSubspace

evaluation interfacesubspace clustering interface

Visualizations

SubspaceVisualizations

Figure 6: UML class diagram of the OpenSubspace framework

For extending the OpenSubspace algorithm repository our framework incorporates two

open interfaces, which enable extensibility to further subspace clustering algorithms and

new evaluation measurements. In Figure 6 we show the main classes of our OpenSubspace

framework which extends the WEKA framework by a new subspace clustering panel.

Subspace clustering shows major differences compared to traditional clustering; e.g. an

object can be part of several subspace clusters in different projections. We therefore do

not extend the clustering panel, but provide a separate subspace clustering panel.

Recent subspace clustering algorithms described in Section 2.1 are implemented based on

this framework. The abstraction of subspace clustering properties in OpenSubspace allows

to easily add new algorithms through our new subspace clustering interface.
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3.2 Evaluation and Comparison of Algorithms

Given the framework with transparent implementations of subspace clustering algorithms

OpenSubspace enables researchers to evaluate their methods against competing approaches

available in our repository. We establish a basis for developing new methods to per-

form an objective evaluation on arbitrary subspace clustering algorithms. OpenSubspace

defines evaluation measurements based on labeled data sets. It includes measurements

like entropy, coverage, F1-value, Cluster Error, RNIA and accuracy used in recent sub-

space/projected clustering publications as a basis for thorough evaluations. The set of

measures is formally defened in our recent evaluation study providing additional experi-

ments and analyses on several clustering paradigms [MGAS09].

In OpenSubspace all of these evaluation methods are implemented and published as open

source as well. For a fair and comparative evaluation these measurements have to be

accessible to all researchers. Review and refinement of these measurements is essential as

there is always the possibility of different interpretations of these measures. As a ground

truth is not given for subspace clustering the data mining community has to develop new

evaluation measures that rate the quality of different approaches. This seems to be as

difficult as the mining task itself. Therefore, we do not only provide several evaluation

techniques (cf. Section 2.4) to measure the quality of the subspace clustering, but also an

open interface (cf. Fig. 6) to implement new measures. Further measures can be added by

our evaluation interface, which allows to define new quality criteria for subspace clustering

on a common basis for all algorithms.

Evaluation measures summarize the result set in typically one real valued rating; however,

visualization of results for more insight might be interesting. OpenSubspace, therefore,

includes specialized visualizations for subspace clustering results with the possibility for

interactive exploration. As stated before, subspace/projected clustering algorithms typi-

cally provide overwhelming result sets. Investigating these results is sometimes as difficult

as looking at the raw data. For some specialized or domain dependent mining tasks it is

even more important to investigate the actual clustering than to compare it with competing

approaches. OpenSubspace provides specialized visualization techniques which close the

KDD cycle by providing user feedback (cf. Fig. 5). Our framework provides interactive

exploration of the results and thus the opportunity to refine the mining step by exploring

different parameter settings and their resulting clustering output [MAK+08, AMK+08]. In

addition the different views detected by subspace clustering approaches can be visualized

and explored as well [GFKS10, GKFS10].

3.3 Visualization Techniques

OpenSubspace provides visualization techniques to present subspace clustering results

such that users can easily gain an overview of the detected patterns, as well as an in-depth

understanding of individual subspace clusters and their mutual relationship.

Gaining a meaningful overview is crucial in allowing users to assess the overall subspace

clustering result. As mentioned, subspace clustering is inherently challenging as both the

typical number of resulting subspace clusters is usually enormous as well as that clusters
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Figure 7: Visualization in OpenSubspace

in different projections are difficult to understand. Visualization techniques that were de-

veloped for full space clustering results rely on a common representation, i.e. no subspace

projections [AKMS07b]. Consequently, they cannot be applied to subspace clustering.

Our framework thus contains specialized techniques for visualization of subspace cluster-

ing. 2d and 3d models are an adequate representation for human cognitive abilities. Based

on a recently developed comparison measure for subspace clusters our system provides an

overview on the entire subspace clustering result by MDS (multidimensional scaling) plots

in both 2d and 3d [AKMS07b]. As illustrated in Figures 7, MDS approximates distances

in high dimensional spaces by two or three dimensions. While the 2d representation is a

static view that allows for easy reading, the 3d MDS plots allow users to interactively ex-

plore the overall subspace clustering result. They may move around the 3d representation

to focus on those subspace clusters they are most interested in. At any point, they may

choose individual subspace clusters in the plot to obtain more detailed information.

Thus, our MDS plots provide an overview on subspace clustering. Moreover, it helps

users in interactively determining the best parameter setting. For any subspace clustering

algorithm, some core parameters tend to have a large influence on the resulting output. We

therefore present a bracketing representation, i.e. a series of 2d MDS plots for different

parameters. Users thus get a clear visual impression of the effect of parameters and may

choose the best ones for a feedback loop that generates the desired subspace clustering.

For in-depth analysis of any subspace clustering algorithm, representation of the key fea-

tures of subspace clusters in a cognitively meaningful way is crucial. As subspace clus-

tering results represent patterns in different projections by their very nature, visualization

should contain information on the respective subspaces, the cluster values and additional
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information on the interestingness measures computed by the subspace clustering algo-

rithm. We use a color-coding scheme where the different axis in the HSV color space

are used to represent different aspects of subspace clusters in a very compact and easy to

understand manner [AKMS07b]. For easy navigation, subspace clusters can be zoomed

into, and understood using a color legend on values of the subspace clusters.

3.4 Interactive Exploration

The conceptual design for interactive exploration in OpenSubspace is based on the Visual

Exploration Paradigm [Kei02]: Starting from an overview over the subspace clustering

result the user can navigate through the visualized patterns. By selecting subjectively in-

teresting subspace clusters, the user may then obtain more detailed information where

desired. Detailed information is provided on three levels: for entire subspace clusterings,

for single subspace clusters, as well as for individual objects. Based on the discovered

knowledge, the user can give feedback to the system for further improved results. This

feedback loop enables the system to use the cognitive abilities of humans for better pa-

rameter settings and thus for meaningful subspace clusters.

Overview Browsing. Interactive exploration starts from an overview of all mined sub-

space clusters in which the user can browse. The automatically detected patterns are thus

presented to the user for a general impression of the result and a comparison of the re-

sulting clusters. As clusters are detected in arbitrary subspaces, they cannot be compared

based on the full space dimensionality. We thus incorporate a distance function that takes

the main characteristics of subspace clusters, their subspace dissimilarity and object dis-

similarity into account for visualization in an MDS plot [AKMS07b]. Based on such an

overall distance function, subspace clusters can be intuitively represented as circles in a 2d

or 3d space (Figure 7). This approximation of the original high dimensional information

to a 2d or 3d representation, allows human users to easily understand the result just by the

visual impression. We enriches this MDS information by additional visual features. The

size of a subspace cluster is represented as the diameter of the circle. Its dimensionality

is encoded by the color of the circle. This information allows users to identify similar

subspace clusters, those clusters of similar dimensionality, or of similar size, or to study

the overall distribution of these characteristics in the result for further analysis.

Parameter Bracketing. Parameter setting is in general a difficult task for most data

mining algorithms. This is especially the case for unsupervised techniques like cluster-

ing, where typically no prior knowledge about the data is available. This inherent prob-

lem of clustering is even more present in subspace clustering as the user has to provide

parametrization for detecting clusters in different subspaces. In general the problem can

be solved by guessing a parameter setting, looking at the result and then trying to choose

a better parameter setting. To speed up this tedious process for users and give them more

information to base their parameter choice on, we compute and visualize a series of dif-

ferent subspace clustering results at once, called bracketing of different parameter settings

for direct feedback. This means that users obtain a series of MDS plots (cf. upper part

of Figure 7) from which they pick the most appropriate one(s) for subsequent runs of the

subspace clustering algorithms. By directly comparing the results of different parameter

settings, parametrization is no longer a guess, but becomes an informed decision based
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on the visual analysis of the effects of parameters. Moreover, this process is far more

comfortable for users and allows reaching the desired subspace clustering result in fewer

steps.

Direct subspace cluster comparison. For a more detailed analysis of two different pa-

rameter settings the user can select two clusterings out of the presented series of MDS

plots by clicking on them in the bracketing representation. These two subspace clusterings

are then presented as larger plots in the lower part of the cluster overview screen. Once

again, detailed information for the subspace clusters can be obtain by picking individual

subspace clusters.

3d Browsing. For the overview browsing we provide static 2-dimensional MDS plots.

These static views provide a fixed perspective for easy comparison. For in-depth brows-

ing, where focusing to different parts of the subspace clustering is of interest, a flexible

navigation through MDS plots is provided. 3-dimensional MDS plot browsing allows

users to shift, rotate and zoom into the MDS plot using standard 2-dimensional input de-

vices or 3-dimensional input devices that allow for even more intuitive navigation. The

user may thus identify similar or dissimilar subspace clusters that are of specific interest.

In Figure 7, we show two 3-dimensional MDS plots representing two clustering results.

Interactive Concept Detection. In general, subspace clustering techniques were devel-

oped for the task of finding clusters in differing subspaces. Even more challenging is the

grouping of clusters according to their specific concepts, for example the clusters ’smok-

ers’, ’joggers’, or ’vegans’ are manifestations of the concept ’health awareness’. Some

recent approaches focus already on the task of grouping objects according to underlying

concept structures [CFD07, GMFS09, GFMS10]: they find clusters in strongly differing

subspace projections, providing the key for discovering the inherent concept structure.

However, since the concepts are generative, i.e. they actually induce the clusters, they

cannot be automatically concluded out of clusters. Accordingly, the mentioned subspace

clustering techniques achieve concept-based aggregations of objects but are not capable of

abstracting from these aggregations in the sense of named concepts.

In real-world applications, however, the interest lies in the explicit discovery and naming

of the underlying concepts. This task cannot be solved automatically by unsupervised

learning methods as subspace clustering but requires the domain knowledge of an expert.

OpenSubspace supports the user in revealing the concepts out of a given subspace clus-

tering [GFKS10, GKFS10]. It therefore provides the user with concept-oriented cluster

visualization and interactive exploration to enable him to uncover the inherent concept

structures. Each concept can be described by its occurring clusters on the one hand and its

characteristic attributes on the other hand. Since the related clusters are not known before-

hand, the idea is to capture the concepts through the structure of relevant attributes of the

clustering. The relevant attributes are of particular importance for a semantic labeling of

clusters and concepts. In the OpenSubspace framework, the user can take a closer look at

the concept compositions and one can give feedback to refine or to recalculate the concept

structures. Thus, the whole process of concept discovery in OpenSubspace is iterative and

highly dependent on user interaction.
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3.5 Extensibility of OpenSubspace

As a novel framework OpenSubspace provides the basis for further research. There are

several algorithms implemented in our subspace/projected clustering repository. For eval-

uation measures we have included recently used measures in this field [SZ04, MSE06,

BZ07, MAK+09, AKMS08]. However, as subspace clustering has just started to become

a broader research topic, these evaluation measures can be only seen as first steps that

are likely to be extended greatly in the near future. We included different visualiza-

tion techniques in OpenSubspace which we presented in recent demonstration systems

[MAK+08, AMK+08, GFKS10, GKFS10, MSG+10].

All three areas (mining, evaluation and visualization with interactive exploration) can be

extended by open interfaces. Due to the fact that the whole framework is given as open

source code it is easy to develop new algorithms, evaluation measures and visualizations.

For researchers who wish to develop their own novel algorithm in this field we provide an

easy way to integrate their approach into our framework and to perform a fair evaluation

with competing approaches. Thus it is a key property of OpenSubspace to define an open

basis for the development of new approaches, evaluation and visualization techniques.

We used and still use our framework for subspace clustering research but also for educa-

tion in advanced data mining courses. In both cases we got positive feedback from our

students who enjoyed easy and wide access and the predefined interfaces in our frame-

work. Furthermore, we got encouraging feedback also by the community for our recent

demonstration system which integrates extensible mining techniques into WEKA.

4 Conclusion

With OpenSubspace we provide an open source framework for the very active research

area of subspace clustering and projected clustering. The aim of our framework is to estab-

lish a basis for comparable experiments and thorough evaluations in the area of clustering

on high dimensional data. OpenSubspace is designed as the basis for comparative studies

on the advantages and disadvantages of different subspace/projected clustering algorithms.

Providing OpenSubspace as open source, our framework can be used by researchers and

educators to understand, compare, and extend subspace and projected clustering algo-

rithms. The integrated state-of-the-art performance measures and visualization techniques

are first steps for a thorough evaluation of algorithms in this field of data mining.

5 Ongoing and Future Work

OpenSubspace can be seen as the natural basis for our next task. We plan to develop evalu-

ation measures that meet the requirements for a global quality rating of subspace clustering

results. Evaluations with the given measurements show that none of the measurements can

provide an overall rating of quality. Some measurements give contradicting quality ratings

on some data sets. Such effects show us that further research should be done in this area.
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Visualization techniques give an overall impression on the groupings detected by the al-

gorithms. However, further research of meaningful and intuitive visualization is clearly

necessary for subspace clustering. The open source framework for subspace mining al-

gorithms has already encouraged researches in Visual Analytics and Human Computer

Interaction to work on more meaningful visualization and exploration techniques.

For an overall evaluation framework OpenSubspace provides algorithm and evaluation im-

plementations. However, further work has to be done to collect a bigger test set of high di-

mensional data sets. On such a benchmarking set one could collect best parameter settings

for various algorithms, best quality results and screenshots of subspace clustering result

visualizations as example clusters on these data sets. The aim of an overall evaluation

framework with benchmarking data will then lead to a more mature subspace/projected

clustering research field in which one can easily judge the quality of novel algorithms by

comparing it with approved results of competing approaches.
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