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Abstract—This paper discusses the design and implementation
of MPI’s general active target synchronization on the Intel Single-
Chip Cloud Computer, a non-cache-coherent many-core CPU.
Measurements show a performance benefit of a factor of four
compared to the default SCC-tuned MPI implementation and
demonstrate the feasibility of implementing efficiently a shared
memory protocol despite the lack of cache coherence. Further, a
classification of implementation designs of MPI’s general active
target synchronization is presented.

I. INTRODUCTION

Cache coherence has been present in multi-CPU and multi-
core CPUs since decades. However, with increasing memory
bandwidths the bandwidth of the coherence interconnect traffic
becomes challenging [1]. This problem gets even more critical
with increasing core count in many-core CPUs. Therefore, the
investigation of algorithms for non-cache-coherent architec-
tures becomes an important topic.

Previous work [2] has shown that true one-sided communi-
cation based on shared memory systems is feasible even when
cache coherence is managed in software. This paper presents
the design and performance analysis of MPI’s synchronization
methods used in the SCOSCo approach [2] for one-sided com-
munication (OSC) on the Intel Single Chip Cloud-Computer
(SCCO) [3], a non-cache-coherent (nCC) architecture.

Since version 2.0, the Message Passing Interface (MPI)
standard includes one-sided communication which has been
extended in the subsequent versions [4]. Figure 1 shows
pseudo-code for only two communicating processes.

Within the MPI standard, memory for remote memory
access (RMA) operations is logically attached to a window
object. Remote memory is addressed together with that win-
dow object and the rank, the numerical process identifier. The
creation of a window object is a collective operation, i.e. all
processes inside a group (communicator) have to participate
in the construction. MPI_WIN_CREATE can be used to create
a window inside a given communicator and associates that
communicator to the created window object. Subsequent RMA
operations, like PUT, GET and ACCUMULATE [4, §11.3],
operate with the returned window object, but must be non-
blocking according to the standard.
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Fig. 1. PSCW Synchronization in MPI One-Sided Communication

II. OSC SYNCHRONIZATION

While message-passing communication includes both data
transfer and synchronization between sender and receiver,
these functions are separated in the OSC model. In general,
RMA operations are only allowed after synchronization calls
have been issued. An origin performs accesses during an
access epoch only. Vice versa, a target allows such accesses
only within an exposure epoch.

Previous work already discussed the optimization of MPI’s
fence synchronization [5]. This paper addresses general active
target communication, which provides a flexible mechanism
to synchronize processes. Based on the names of the methods
that have to be invoked in that scheme, the synchronization is
often also referred to as PSCW synchronization. An example
of its usage for one origin and one target process is shown in
Figure 1.

In contrast to the fence synchronization, PSCW allows
to synchronize only a subset of the processes that created
the window object. In addition, it allows an application to
explicitly open access and exposure epochs. An origin opens
and closes an access epoch with the MPT_WIN_START and
the MPI_WIN_COMPLETE calls. In the START operation, an
origin names the processes it (potentially) communicates with
during the opened access epoch. The processes are given as
a list of ranks, called start group Gs. On the other hand, a
target invokes MPI_WIN_POST to open an exposure epoch
and names the processes from which RMA operations are
allowed (post group, Gp). However, the named processes
are actually not required to access the target’s window, but
only these are allowed to do so. At the end of an exposure
epoch, MPI_WIN_WAIT is issued to wait for a notification



TABLE I
CLASSIFICATION OF SYNCHRONIZATION PROTOCOLS FOR MPI ONE-SIDED
COMMUNICATION.

class epoch start communication overlap
deferred non-blocking delayed to epoch’s end no
immediate  blocking prompt yes
trigger-only  non-blocking  prompt yes

that RMA operations have been completed and the window
can be accesses without remote interference.

ITI. CLASSIFICATION OF MPI SYNCHRONIZATION
IMPLEMENTATIONS

MPI implementations may implement the synchronization
calls in different ways. Gropp and Thakur [6] define two
options: immediate and deferred.

For deferred synchronization (used in MPICH, e.g.), the
execution of methods that open epochs and perform RMA
operation is delayed until the end of an epoch. This allows
an MPI implementation to merge and optimize multiple of
such communication calls. The downside is that optimizations
like the overlap of communication and computation are not
possible.

Within the immediate class (employed by MVAPICH for
InfiniBand), the synchronization calls at the beginning of an
epoch (POST and START) perform the synchronization imme-
diately when they are invoked. Usually, this leads to blocking
implementations. However, origin and target are ready for
communication after synchronization. Since communication
calls need to be non-blocking, immediate synchronization
offers the possibility for communication computation overlap.

In addition to the classification from [6], we identify a
third class that combines the advantages from deferred and
immediate synchronization (see Table I). In the trigger-only
variant, the starting synchronization calls initiate operations
but do not block to wait for completion of the synchronization.
This task is shifted to the communication calls, like PUT and
GET, that check for those target processes to be synchronized.
If the synchronization is still not finalized, the communication
call blocks until its single target process has synchronized.
In such a case, the call violates the standard. The benefit
of this approach (presented in [7]) is that a process waits
for process synchronization when it is actually required. In
addition, after the initial synchronization with a particular
target is completed, all subsequent communication with that
process can be performed promptly.

IV. MPI PROCESS SYNCHRONIZATION ON THE SCC

No current MPI implementation efficiently supports PSCW
synchronization on an nCC many-core chip. This section
presents the design of such a scheme for the Intel SCC.

A. The Intel SCC

The Intel SCC [3] is an experimental tiled many-core
chip with 48 Pentium (P54C) cores. Each tile contains two

Fig. 2. Overview of the Intel SCC

cores. A router connects each of the 24 tiles to an on-chip
network as illustrated in Figure 2. Also, four DDR3 memory
controllers are attached to the network. The mesh interface
(MIU) unit on each tile translates memory accesses by the
cores to network packets and vice-versa. The unit performs
a configurable address translation that determines the actual
destination of a memory access. If more than one MIUs are
configured to translate to the same network address shared
memory is created. Further, the MIU contains one atomic test-
and-set register per core that has mutex-like semantics.

Although each core has two cache levels, the hardware
provides no support for cache coherence at all. This compli-
cates the usage of shared memory in the common sense. In
consequence, message passing is the most adequate program-
ming model for this on-chip cluster. To support this, each tile
possesses a 16 KB SRAM-based so-called Message Passing
Buffer (MPB) that enables fast on-chip data transfer without
using the external DDR3 memory.

In the default configuration, the MIU provides access to
16 MB per memory controller that is shared between all cores
and is called legacy shared memory. However, accesses to this
memory have to be performed carefully due to the missing
cache coherence.

In addition, different memory types are supported. Most
relevant for this work is the non-cacheable memory (NCM)
type which bypasses all cache levels. It has been shown that
usage of this memory can provide better latencies over other
(cached) memory types [8].

On top of SCC’s hardware, the MPI implementation
RCKMPI [9] was developed. It is based on MPICH [10],
thus inherently message-based, and exploits the MPB. Due to
the derivation from MPICH, the implementation of one-sided
communication, including the process synchronization, is also
message-based [11].

B. SCOSCo process synchronization

The design of the PSCW synchronization is developed in
the context of the implementation of SCOSCo [2], a software-
managed cache coherence protocol for one-sided communica-
tion.

To efficiently implement the PSCW synchronization pattern
on the SCC, the message based approach of RCKMPI is
dropped. Instead, the presented solution is based on an opti-
mization of MVAPICH for shared memory systems [7] which
belongs to the trigger-only class. It is demonstrated in the
following that this approach can be successfully implemented
on the non-cache-coherent Intel SCC.
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Fig. 3. Sequence diagram of the implemented synchronization protocol for two target processes (left and right) and a single origin (center).

The SCC’s ability to define shared memory is exploited
to store and access synchronization data. For this purpose,
a memory region called window database is reserved inside
the legacy shared memory (see above). Therein, the required
synchronization data structures are allocated. A bit vector for
the start of an epoch (called match vector) and completion
counters are used as space-efficient means for synchronization.
For polling these data structures efficiently, uncached memory
is used to circumvent coherence problems.

1) Window Creation: The synchronization data structures
are allocated in the legacy shared memory which is accessible
by all processes in the system. The allocation is distributed
among the four memory controllers to avoid contention of the
controllers when the match vector and completion counters are
polled. This issue was observed in preliminary experiments
especially when synchronization was executed in memory-
bound applications. Therefore, depending on the core a MPI
process is running on, it allocates the synchronization data
inside the legacy shared memory such that the nearest (Man-
hattan distance) memory controller is used for accesses.

The actual allocation is performed during the collective
window creation. Since it is unknown to a process whether
it becomes target or origin for the created window, space for
both match vector (for origins) and completion counter (for
targets) is reserved. The size of the bit vector is equal to the
window’s communicator size. Memory is allocated atomically
(with the help of the test-and-set registers) by reading and
advancing an offset, which is stored in the windows database,
by the amount of allocated memory.

The obtained offset of the reserved memory is exchanged
by an MPI all-to-all operation between all the n processes
which create the window. Consequently, each process knows
the base location of all other processes’ synchronization data.
Since the match vector size is known locally (and is equal
among all processes), the position of the completion counter
can be derived locally as well. This approach leads to data
duplication of the exchanged offsets which scales with n2.
However, it can be compensated by storing all offsets in

the shared memory as well. Anyhow, this is left out of the
prototypical implementation.

2) START and POST: When a POST operation is issued
by a target process, it iterates through the post group G, that
contains all origins (see Section II). To notify each of them,
the address of the according match vector in the legacy shared
memory is determined. Then, the test-and-set register of the
origin’s core is locked to prevent concurrent modifications (see
Algorithm 1) Subsequently, the byte containing the according
bit is read, locally modified and written back using uncached
memory. Cached memory is unsuitable for this use-case since
it would require an explicit write-back of the according cache
line. Such an operation is not supported by the SCC’s cores.
Only a write-back including an invalidation of the whole cache
is available in the instruction set. However, it is obviously far
slower than using uncached memory. In addition, the match
vector is not accessed by the targets for any other purpose
which makes caching unnecessary anyway.

Algorithm 1 Pseudocode for START and POST
function START(G: Group)
start_ranks < ranks of procs € G
end function

function PosT(G),: Group)
CC «+ |G,
for all origins € G, do
core <— CORE_OF_PROC(origin)
LocKk_TSR(core)
match_vector[core][local_rank] < 1
UNLOCK_TSR(core)
end for
end function

> init completion counter
> notify all origins

On the origin side, the START function performs only
bookkeeping operations, like storing the ranks of the processes



from the start group G (see Section II). Polling the match
vector is shifted to the communication calls, like PUT and
GET. However, these calls only check for the according target
process to have synchronized. Thus, the implementation is
classified as trigger-only (see Section III).

Polling is performed with uncached memory since cached
reads would prevent the origin to observe a post operation.
In addition, caching of the match vector is dangerous in any
case. Suppose a match vector is stored in the origin’s cache
and that it can successfully communicate with all targets of the
current access epoch. Independent from this, another target of
a subsequent access epoch (but of the same window) performs
its POST call and modifies the match vector in main memory.
Due to the missing coherence, the cached copy is unchanged,
but now becomes invalid. In case the origin’s cache evicts
the line (due to memory accesses by computation, e.g.) that
contains the cached and outdated match vector, it overrides
the manipulated match vector in the main memory. This would
cause a deadlock as the origin would check for a post operation
that actually took place but its effect was destroyed by the
origin itself and leads to an infinite loop.

However, to speed up polls of already synchronized targets,
a local and cacheable copy of the match vector is employed.
Inside a communication call the cached vector copy is checked
first. If there was no POST operation, the uncached match vec-
tor is polled and upon detection of the target’s post operation,
the cached copy is updated.

3) COMPLETE and WAIT: At the end of its access epoch,
i.e. in COMPLETE, the origin resets the entries corresponding
to the targets in G5 in the match vector and in its copy.
Subsequently, it decrements the targets’ completion counters.
However, the notification of completing an access epoch can
only be performed after an origin has successfully started its
matching exposure epoch. Only then, the target’s completion
counter is in a valid state and can be modified when the origin
completes. Thus, an origin first ensures that every targets in
G5 has synchronized (see Algorithm 2).

Then, it iterates through all targets and decrements their
completion counter. Similar to the targets’ accesses on the
match vector, the completion counter is accessed with un-
cached memory (see Figure 3). Further, to make the decrement
atomic, the test-and-set registers of the target’s core are used.

On the target’s side, the WAIT call polls the completion
counter with uncached memory as well to observe the decre-
ments made by the origins. Polling is performed until the
counter reaches zero.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the SCOSCo approach, the
runtime required for synchronization is analyzed. The experi-
ments were conducted on a SCC system with cores clocked at
533 MHz and 800 MHz for the mesh network and the memory
controllers. A total of 32 GB of RAM was installed on the sys-
tem. Each core runs Linux 3.1.4 with platform-relevant patches
applied. Software is cross-compiled using GCC 4.4.6, and
MPICH 3.1.3 was used as the foundation MPI implementation.

Algorithm 2 Pseudocode for COMPLETE and WAIT
function COMPLETE
for all targets € start_ranks do > see START
repeat > busy wait for all targets
until match_vector[local_core][target] ==
match_vector[local_core][target] < O
end for

for all targets € start_ranks do
core <— CORE_OF_PROC(target)
LoCK_TSR(core)
CCJcore] < CCJcore] — 1 > decrement remote CC
UNLOCK_TSR(core)
end for
end function

> notify all targets

function WAIT
repeat
until CC ==
end function

> busy waiting
> poll with uncached reads

The MPB-based CH3 channel from RCKMPI was merged
together with the modifications from [11] into the MPICH
sources. The synchronization functions were overridden to
implement the approach presented in this work. The resulting
MPI library was compiled with optimization enabled (-02).

A. Microbenchmark

For measuring the synchronization performance, a mi-
crobenchmark was created that does not include any one-
sided communication like PUT and GET. This enables a fair
comparison with other implementations, for example MPICH’s
deferred approach that performs queued communication in the
COMPLETE routine.

Algorithm 3 Microbenchmark Pseudocode
for : = 0...1000 do
if rank == 0 then
tsi < TIME(START(Gs = {1...k}))
tc,i < TIME(COMPLETE)
else
tp: < TIME(POST(G, = {0}))
tw,i < TIME(WAIT)
end if
end for

Consequently, the microbenchmark only uses the PSCW
methods (cf. Figure 1). Further, it consists of a single origin
process that synchronizes with a given number of k targets
as illustrated in Algorithm 3. The runtime of each of the four
PSCW routines is measured by reading the per CPU time-
stamp counter with the RDTSC instruction before and after the
call. The synchronization sequence is repeated 1001 times. In
case of the targets, all recorded times ¢, ; and ¢,,; from all k
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Fig. 4. Scaling of PSCW synchronization on the SCC for the target (top) and
origin (bottom) processes.

targets are collected and the medians ¢, and ¢,, are obtained
from the k%1001 samples. Besides outliers caused by process
scheduling only little deviation from the reported values was
observed: For all measurements, the first and third quartile of
the four measured timings never deviated by more than 5%
for origin and 10% for targets from the according median.

A synchronization at the beginning of each synchronization
loop is omitted since after one iteration the processes are syn-
chronized anyway. Additionally, using an MPI barrier caused
fluctuations in the measurements because the origin process
might leave the barrier later than some targets depending
on the number of started processes. In the experiments, the
benchmark was compiled with optimization enabled (-02).

B. Scaling

The microbenchmark was used to analyze the scaling of the
implemented synchronization scheme. It was executed for up
to 32 processes (1 origin, up to & = 31 targets). The SCC
provides more cores but using (nearly) all of them questions
the usage of the PSCW scheme. In such cases, fence is more
appropriate.

The results for target and origins are shown in Figure 4.
The cores with numbers up to 31 (see Figure 2) were used for
this analysis.

The presented results show a nearly constant runtime for the
START and POST operations. For POST, this can be accounted
to the usage of only one origin process in the experiment.
In case of START, the constant runtime is attributed to the
trigger-only design of the synchronization protocol which does
not involve any communication in that routine. Thus, the
observed latency is introduced by MPI library overhead only.

Contrary, the COMPLETE and WAIT runtime exhibit linear
scaling. Concerning the COMPLETE call, this has two reasons.
First, the origin needs to notify all targets which is done in
a loop and thus causes linear scaling behavior. To do so, it

300 LIS S L L, . L, S
origin (shared memory) ——
target (shared memory) -

250 |- origin (MPICH message based) - 7
target (MPICH message based) -5-

200

150 |- AR VAL Sl

100 - PN i

aggregated latency / us

50 1.7 R = 35 X .|

PRI Mt S S SR P P P
12 16 20 24 28 32
number of targets

Fig. 5. Comparison of target and origin synchronization times t, and t;.
Numbered labels inside the plot are given for the target processes.

has to wait for all target to be synchronized (cf. Section IV-B)
which also scales linearly. This consequently affects the WATT
on the target side which therefore shows linear scaling as well.

C. Comparison to MPICH’s Message based approach

Next, the SCOSCo synchronization was compared against
the default RCKMPI implementation that uses MPICH’s mes-
sage based CH3 synchronization [11] but transfers messages
over the on-chip MPB (see Section IV-A). The microbench-
mark and the methodology from Section V-B were reused.
However, the recorded median times of the origin, i.e. t; and
t., were summed, giving the total time ¢, required to perform
the PSCW synchronization on the origin side. The same was
done for the recorded median of the target times (¢, and
tw) leading to t;. Figure 5 shows the obtained ¢, and ¢ for
both RCKMPI/MPICH and SCOSCo as well as for different
number of targets.

The results reveal that despite RCKMPTI’s usage of the fast
on-chip message passing buffer [11], the performance of the
message-based synchronization from MPICH delivers laten-
cies more than four times higher (e.g., 13 targets: 25.8 us vs.
115.2 ps) than the SCC-aware approach. This can be explained
by the overhead of message assembly, sending, reception
and processing by MPICH’s internal progress engine. This
underlines that even in presence of a tuned implementation
for message transfer, a shared memory approach is more
appropriate on the SCC. Bearing in mind, this is possbile
without hardware support for cache coherence.

VI. SUMMARY AND CONCLUSION

We presented the design and implementation of the
SCOSCo PSCW synchronization on the Intel SCC, a non-
cache-coherent many-core system. The developed approach
leverages match vector and completion counters located in
shared memory. Even without cache coherence, the approach
delivers linear scaling and outperforms optimized message
based synchronization that utilizes fast on-chip memory. This



shows that efficient synchronization is feasible also on nCC

architectures.
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