

hallo

Kai-Uwe Sattler, Melanie Herschel,
Wolfgang Lehner (Hrsg.)

Datenbanksysteme für
Business, Technologie und Web

(BTW 2021)

13.–17. September 2021
in Dresden, Deutschland

Gesellschaft für Informatik e. V. (GI)

Lecture Notes in Informatics (LNI) — Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-311

ISBN 978-3-88579-705-0
ISSN 1617-5468

Volume Editors
Kai-Uwe Sattler
Technische Universität Ilmenau
FG Datenbanken und Informationssysteme
98684 Ilmenau, Deutschland
Email: kus@tu-ilmenau.de

Melanie Herschel
Universität Stuttgart
Institut für Parallele und Verteilte Systeme
70569 Stuttgart, Deutschland
Email: melanie.herschel@ipvs.uni-stuttgart.de

Wolfgang Lehner
Technische Universität Dresden
Professur für Datenbanken
01062 Dresden, Deutschland
Email: wolfgang.lehner@tu-dresden.de

mailto:kus@tu-ilmenau.de
mailto:melanie.herschel@ipvs.uni-stuttgart.de
mailto:wolfgang.lehner@tu-dresden.de

Series Editorial Board
Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Deutschland
(Chairman, oberweis@kit.edu)
Dieter Fellner, Technische Universität Darmstadt, Deutschland
Ulrich Flegel, Infineon, Deutschland
Ulrich Frank, Universität Duisburg-Essen, Deutschland
Michael Goedicke, Universität Duisburg-Essen, Deutschland
Ralf Hofestädt, Universität Bielefeld, Deutschland
Wolfgang Karl, KIT Karlsruhe, Deutschland
Michael Koch, Universität der Bundeswehr München, Deutschland
Peter Sanders, Karlsruher Institut für Technologie (KIT), Deutschland
Andreas Thor, HfT Leipzig, Deutschland
Ingo Timm, Universität Trier, Deutschland
Karin Vosseberg, Hochschule Bremerhaven, Deutschland
Maria Wimmer, Universität Koblenz-Landau, Deutschland

Dissertations
Steffen Hölldobler, Technische Universität Dresden, Deutschland
Thematics
Agnes Koschmider, Universität Kiel, Deutschland
Seminars
Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Deutschland

© Gesellschaft für Informatik, Bonn 2021
printed by Köllen Druck+Verlag GmbH, Bonn

This book is licensed under a
Creative Commons Attribution-NonCommercial 3.0 License.

Vorwort

Die “BTW-Konferenz” stellt innerhalb der deutschsprachigen Daten-Management-
Community eines der zentralen Events zum wissenschaftlichen Austausch dar. Seit über
30 Jahren wird die Serie der Fachtagungen “Datenbanksysteme für Business, Technologie
und Web” (BTW) des Fachbereichs “Datenbanken und Informationssysteme” (DBIS) der
Gesellschaft für Informatik (GI) im zweĳährigen Rhythmus an unterschiedlichen Orten
ausgetragen. Für 2021 war die Veranstaltung vom 08. - 12. März an der Technischen
Universität Dresden unter der Schirmherrschaft des Ministerpräsidenten des Freistaates
Sachsen, Michael Kretschmer, geplant – Konferenzräume waren gebucht, Keynote-Rednerin
und –Redner eingeladen, umfangreiche Sponsorenunterstützung sichergestellt und – auch
wichtig für eine BTW – ein attraktives Begleitprogramm ausgestaltet. Leider hat die
Corona-Pandemie die Durchführung einer Präsenzveranstaltung zu dem ursprünglich
geplanten Zeitpunkt unmöglich gemacht.

Ungeachtet dessen fand jedoch ein Begutachtungsprozess der eingereichten wis-
senschaftlichen Arbeiten statt, dessen Ergebnis in dem nun vorliegenden Band dokumentiert
ist. Erstmalig wurden dabei umfangreiche Änderungen zur Sicherung der Qualität (im
weiteren Sinne) eingeführt. Die sichtbarste Neuerung besteht in der Einführung eines
Track-Systems und damit einhergehend der Integration des Industrie-Tracks in den regulären
Begutachtungsprozess. Durch das thematisch organisierte Track-System konnte nun
sichergestellt werden, dass die Rückmeldungen der Gutachterinnen und Gutachter zielgenau
auf die Positionierung eines Beitrags passten. Folgende Tracks wurden definiert:

• Database Technology (Alexander Böhm; SAP SE)

• ML & Data Science (Matthias Böhm; TU Graz)

• Data Integration, Semantic Data Management, Streaming (Katja Hose; Aalborg
University)

• (Industrial) Use Cases & Applications (Stefanie Scherzinger; Universität Passau)

Der gesamte Begutachtungsprozess wurde von den beiden PC-Chairs Melanie Herschel
(Universität Stuttgart) und Kai-Uwe Sattler (Technische Universität Ilmenau) organisiert.
Als Proceedings Chair hat Alexander Krause (TU Dresden) zum Gelingen des vorliegenden
Bandes beigetragen. Als weitere Neuerung wurde der Review-Prozess so gestaltet, dass
Revisionen von Einreichungen ermöglicht wurden, so dass Anmerkungen und Hinweise
der Gutachterinnen und Gutachter in die wissenschaftlichen Arbeiten noch mit aufgenom-
men und entsprechend berücksichtigt werden konnten. Dieser explizite und bewusst sehr
stark gelebte Revisionsprozess hat zu einer deutlichen Verbesserung des gesamten Be-
gutachtungsablaufs geführt. Als letzte – durch einen Stempel an den jeweiligen Beiträgen
markiert - sichtbare Neuerung darf an dieser Stelle noch auf den Reproduzierbarkeits-
prozess hingewiesen werden. Alle angenommenen Arbeiten wurden eingeladen, die in

den Publikationen dokumentierten experimentellen Ergebnisse durch ein Mitglied der
Community wiederholen zu lassen. Diese als Mentoring und bewusst nicht als Kontrolle
positionierte Wiederholung wurde für knapp ein Drittel der in diesem Band publizierten
Beiträge durchgeführt – im internationalen Vergleich ein Riesenerfolg und Zeugnis einer
lebhaften und offenen Data-Management-Community!
So wichtig wie die Publikation eines wissenschaftlichen Ergebnisses ist, so notwendig
ist auch die Präsentation und eine sich anschließende offene Diskussion. Zum aktuellen
Zeitpunkt kann leider auf Grund der sehr volatilen Infektionslage noch keine klare Aussage
getroffen werden, ob wir – wie aktuell geplant – vom 13. bis 17. September 2021 eine BTW
an der Technischen Universität Dresden durchführen können. Auf jeden Fall wird es eine
Präsentation der angenommenen Beiträge geben, wenn in Präsenz nicht durchführbar dann
notwendigerweise in einem virtuellen Rahmen. In diesem Kontext ist somit auch auf die
Website der BTW2021 hinzuweisen (https://btw2021-dresden.de/), auf welcher neben
aktuellen Informationen auch alle weiteren Materialien zur Verfügung stehen.
Unabhängig von den weiteren Entwicklungen darf an dieser Stelle bereits den vielen
Menschen gedankt sein, die an der Vorbereitung der BTW2021 beteiligt waren und sind;
im Einzelnen geht unser Dank an

• alle Kolleginnen und Kollegen, die sich als Gutachterinnen und Gutachter aktiv
in den Begutachtungsprozess eingebracht haben oder sich in der Organisation von
Studierendenprogramm, Workshop- und Tutorienprogramm, Demoprogramm, Data-
Science Challenge und Dissertationspreis engagiert haben.

• alle Partner und Sponsoren, die uns trotz Pandemie eine umfangreiche Unterstützung
zugesagt haben.

• die GI-Geschäftsstelle für die Unterstützung bei der Finanzplanung und –abwicklung.

• die TU Dresden, die Fakultät Informatik der TU Dresden und den Lehrstuhl für
Datenbanken für tatkräftige Unterstützung in der organisatorischen Vorbereitung
– angefangen von der Öffentlichkeitsarbeit bis hin zur - hoffentlich benötigten –
Bereitstellung der Räumlichkeiten.

• und - last but not at least – an alle Autoren und Autorinnen, ohne deren Input in Form
wissenschaftlicher Beiträge eine BTW2021 nicht denkbar wäre!

Vielen Dank bereits jetzt an alle Beteiligten!
Dresden, im Februar 2021
Wolfgang Lehner (TU Dresden), Tagungsleitung
Johann-Christoph Freytag (HU Berlin), Ehrenvorsitzender
Ulrike Schöbel, Dirk Habich, Maik Thiele (TU Dresden), Lokale Organisation und Finanzen

https://btw2021-dresden.de/

Tagungsleitung
Wolfgang Lehner, Technische Universität Dresden

Organisationskomitee
Ulrike Schöbel, Technische Universität Dresden
Dirk Habich, Technische Universität Dresden
Maik Thiele, Technische Universität Dresden

Ehrervorsitzender
Johann-Christoph Freytag, Humboldt-Universität zu Berlin

Wissenschaftliches Programmkommittee

Vorsitzende
Melanie Herschel, Universität Stuttgart
Kai-Uwe Sattler, Technische Universität Ilmenau

Track Chairs
Alexander Böhm, SAP SE
Matthias Böhm, Technische Universität Graz
Katja Hose, Aalborg University
Stefanie Scherzinger, Universität Passau

Mitglieder
Ziawasch Abedjan, Leibniz Universität Hannover
Carsten Binnig, Technische Universität Darmstadt
Stefan Conrad, Heinrich-Heine-Universität Düsseldorf
Stefan Deßloch, Technische Universität Kaiserslautern
Jens Dittrich, Universität des Saarlandes
Florian Funke, Snowflake Inc, San Francisco
Michael Gertz, Universität Heidelberg
Anika Groß, Hochschule Anhalt
Michael Grossniklaus, Universität Konstanz
Torsten Grust, Universität Tübingen
Alfons Kemper, Technische Universität München
Meike Klettke, Universität Rostock
Birgitta König-Ries, Friedrich-Schiller-Universität Jena
Wolfgang Lehner, Technische Universität Dresden
Ulf Leser, Humboldt-Universität zu Berlin
Stefan Mandl, Exasol AG Nürnberg
Stefan Manegold, Centrum Wiskunde & Informatica (CWI), Amsterdam
Norman May, SAP SE, Walldorf
Sebastian Michel, Technische Universität Kaiserslautern
Thomas Neumann, Technische Universität München
Daniela Nicklas, Universität Bamberg
Marcus Paradies, DLR, Jena
Tilmann Rabl, HPI, Potsdam
Erhard Rahm, Universität Leipzig
Norbert Ritter, Universität Hamburg
Gunter Saake, Otto-von-Guericke-Universität Magdeburg
Kai-Uwe Sattler, Technische Universität Ilmenau
Harald Schöning, Software AG, Darmstadt
Holger Schwarz, Universität Stuttgart
Bernhard Seeger, Philipps-Universität Marburg
Thomas Seidl, Ludwig-Maximilians-Universität München
Christin Seifert, Universität Duisburg-Essen
Günther Specht, Universität Innsbruck
Knut Stolze, IBM Research & Development, Böblingen
Uta Störl, Hochschule Darmstadt
Jens Teubner, Technische Universität Dortmund
Jonas Traub, Technische Universität Berlin
Gottfried Vossen, Universität Münster
Lena Wiese, Fraunhofer ITEM, Hannover
Wolfram Wingerath, Baqend, Hamburg

Inhaltsverzeichnis

Wissenschaftliche Beiträge

Database Technology

Alexander Kumaigorodski, Clemens Lutz, Volker Markl
Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 19

Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas
Neumann, Alfons Kemper
B2-Tree: Cache-Friendly String Indexing within B-Trees 39

Julian Weise, Sebastian Schmidl, Thorsten Papenbrock
Optimized Theta-Join Processing . 59

Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May,
Robert Schulze, Alexander Böhm, Guido Moerkotte, Michael
Grossniklaus
Precise, Compact, and Fast Data Access Counters for Automated Physical
Database Design . 79

Jonas Dann, Daniel Ritter, Holger Fröning
Exploring Memory Access Patterns for Graph Processing Accelerators . . 101

Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, Thomas
Neumann
Umbra as a Time Machine: Adding a Versioning Type to SQL 123

ML & Data Science

Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner
Aggregate-based Training Phase for ML-based Cardinality Estimation . . 135

Nico Lässig, Sarah Oppold, Melanie Herschel
Using FALCES against bias in automated decisions by integrating fairness
in dynamic model ensembles . 155

Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl
Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive
Clustering . 175

Steffen Kläbe, Stefan Hagedorn
Applying Machine Learning Models to Scalable DataFrames with Grizzly 195

Data Integration, Semantic Data Management, Streaming

Stefan Lerm, Alieh Saeedi, Erhard Rahm
Extended Affinity Propagation Clustering for Multi-source Entity Resolution 217

Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan
Fischer
Flexible data partitioning schemes for parallel merge joins in semantic
web queries . 237

Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm
Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 257

Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl
Towards Resilient Data Management for the Internet of Moving Things . . 279

Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost,
Erhard Rahm
Graph Sampling with Distributed In-Memory Dataflow Systems 303

Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan
Combining Programming-by-Example with Transformation Discovery
from large Databases . 313

Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten
Binnig
Towards Learned Metadata Extraction for Data Lakes 325

Tanja Auge, Andreas Heuer
Tracing the History of the Baltic Sea Oxygen Level 337

(Industrial) Use Cases & Applications

Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler,
Holger Schwarz, Bernhard Mitschang
The Data Lake Architecture Framework 351

Lars Gleim, Liam Tirpitz, Stefan Decker
FactStack: Interoperable Data Management and Preservation for the Web
and Industry 4.0 . 371

Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann,
Stefanie Scherzinger
Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack . . . 397

Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia
Lenfers
Data Management in Multi-Agent Simulation Systems 423

Liste der Autorinnen und Autoren

Wissenschaftliche Beiträge

Database Technology

cba

Wolfgang Lehner et al. (Hrsg.): BTW21,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Fast CSV Loading Using GPUs and RDMA for In-Memory
Data Processing

Alexander Kumaigorodski1, Clemens Lutz2, Volker Markl3

Abstract: Comma-separated values (CSV) is a widely-used format for data exchange. Due to
the format’s prevalence, virtually all industrial-strength database systems and stream processing
frameworks support importing CSV input.

However, loading CSV input close to the speed of I/O hardware is challenging. Modern I/O devices
such as InfiniBand NICs and NVMe SSDs are capable of sustaining high transfer rates of 100 Gbit/s
and higher. At the same time, CSV parsing performance is limited by the complex control flows that
its semi-structured and text-based layout incurs.

In this paper, we propose to speed-up loading CSV input using GPUs. We devise a new parsing
approach that streamlines the control flow while correctly handling context-sensitive CSV features
such as quotes. By offloading I/O and parsing to the GPU, our approach enables databases to load
CSVs at high throughput from main memory with NVLink 2.0, as well as directly from the network
with RDMA. In our evaluation, we show that GPUs parse real-world datasets at up to 76 GB/s, thereby
saturating high-bandwidth I/O devices.

Keywords: CSV; Parsing; GPU; CUDA; RDMA; InfiniBand

1 Introduction

Sharing data requires the data provider and data user to agree on a common file format.
Comma-separated values (CSV) is currently the most widely-used format for sharing tabular
data [DMB17, Ne17, Me16]. Although alternative formats such as Apache Parquet [Ap17]
and Albis [Te18] exist, in the future the CSV format will likely remain popular due to
continued advocacy by open data portals [KH15, Eu20]. As a result, database customers
request support for loading terabytes of CSV data [Oz18]. Fast data loading is necessary to
reduce the delay before the data are ready for analysis.

Fresh data are typically sourced either from disk or streamed in via the network, thus loading
the data consists of device I/O and parsing the file format [Me13]. However, recent advances
in I/O technologies have lead to a data loading bottleneck. RDMA network interfaces and
NVMe storage arrays can transfer data at 12.5 GB/s and beyond [Be16, Ze19]. Research
suggests that CPU-based parsers cannot ingest CSV data at these rates [Ge19, SJ20].
1 TU Berlin, Germany, alxkum@gmail.com
2 DFKI GmbH, Berlin, Germany, clemens.lutz@dfki.de
3 TU Berlin & DFKI GmbH, Germany, volker.markl@tu-berlin.de

cba doi:10.18420/btw2021-01

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 19

https://creativecommons.org/licenses/by-sa/4.0/
mailto:alxkum@gmail.com
mailto:clemens.lutz@dfki.de
mailto:volker.markl@tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-01

2 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

In this paper, we investigate how I/O-connected GPUs enable fast CSV loading. We
stream data directly to the GPU from either main memory or the network using fast GPU
interconnects and GPUDirect. Fast GPU interconnects, such as AMD Infinity Fabric [AM19],
Intel CXL [CX19], and Nvidia NVLink [Nv17], provide GPUs with high bandwidth access
to main memory [Le20b], and GPUDirect provides GPUs with direct access to RDMA
and NVMe I/O devices [Nv20a]. Furthermore, next-generation GPUs will be tightly
integrated into RDMA network cards to form a new class of data processing unit (DPU)
devices [Nv20b]. To parse data at high bandwidth, we propose a new GPU- and DPU-
optimized parsing approach. The key insight of our approach is that multiple data passes in
GPU memory simplify complex control flows, and increase computational efficiency.

In summary, our contributions are as follows:

(1) We propose a new approach for fast, parallel CSV parsing on GPUs (Section 3).
(2) We provide a new, streamed loading strategy that uses GPUDirect RDMA [Nv20a]

to transfer data directly from the network onto the GPU (Section 4).
(3) We evaluate the impact of a fast GPU interconnect for end-to-end streamed loading

from main memory and back again (Section 5). We use NVLink 2.0 to represent the
class of fast GPU interconnects.

The remainder of this paper is structured as follows. In Section 2, we give a brief overview
of performing I/O on GPUs, and of related work on CSV parsing. Then, we describe our
contributions to CSV parsing and streaming I/O in Sections 3 and 4. Next, we evaluate
our work in Section 5, and discuss our findings on loading data using GPUs in Section 6.
Finally, we give our concluding remarks in Section 7.

2 Background and Related Work

In this section, we describe how GPUDirect RDMA and fast GPU interconnects enable
high-speed I/O on GPUs. We then give an overview of CSV parsing, and differentiate our
approach from related work on CSV loading.

2.1 I/O on GPUs

GPUs are massively parallel processors that run thousands of threads at a time. The
threads are executed by up to 80 streaming multiprocessors (SMs) on the Nvidia “Volta”
architecture [Nv17]. Each SM runs threads in warps of 32 threads, that execute the same
instruction on multiple data items. Branches that cause control flow to diverge thus slow
down execution (warp divergence). Within a warp, threads can exchange data in registers
using warp shuffle instructions. Up to 32 warps are grouped as a thread block, that can
exchange data in shared memory. The GPU also has up to 32 GB of on-board GPU memory.

20 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 3

I/O on the GPU is typically conducted via a PCIe 3.0 interconnect that connects the GPU to
the system at 16 GB/s. Recently, fast interconnects have emerged that provide system-wide
cache-coherence and, in the case of NVLink 2.0, up to 75 GB/s per GPU [IB18]. Databases
usually use these interconnects to transfer data between main memory and GPU memory,
thus linking the GPU to the CPU. However, GPUDirect RDMA and GPUDirect Storage
connect the GPU directly to an I/O device, such as an RDMA network interface (e.g.,
InfiniBand) or an NVMe storage device (e.g., a flash disk). This connection bypasses the
CPU and main memory by giving the I/O device direct memory access to the GPU’s
memory. Although the data bypasses the CPU, the CPU orchestrates transfers and GPU
execution.

GPUDirect Storage has been used in a GPU-enabled database to manage data on flash
disks [Le16]. In contrast, we propose to load data from external sources into the database.

In summary, fast interconnects and GPUDirect enable the GPU to efficiently perform I/O.
In principle, these technologies can be combined. However, due to our hardware setup,
in our experimental evaluation we distinguish between NVLink 2.0 to main memory, and
GPUDirect RDMA with InfiniBand via PCIe 3.0.

2.2 CSV Parsing

CSV is a tabular format. The data are logically structured as records and fields. Thus, parsers
split the CSV data at record or field boundaries to facilitate later deserialization of each
field. The parser determines the structure by parsing field (’,’) and record (’\n’) delimiters,
as CSV files provide no metadata mapping from its logical structure to physical bytes.
Quotes (’"’) make parsing more difficult, as delimiters within quotes are literal characters
and do not represent boundaries. The CSV format is formalized in RFC4180 [Sh05],
although variations exist [DMB17].

Parsing CSV input in parallel involves splitting the data into chunks that can be parsed by
independent threads. Initially, the parser splits the file at arbitrary bytes, and then adjusts the
split offsets to the next delimiter [Me13]. Detecting the correct quotation context requires a
separate data pass, most easily performed by a single thread [Me13]. As quotes come in
pairs, parallel context detection first counts all quotes in each chunk, and then performs a
prefix sum to determine if a quote opens (odd) or closes (even) a quotation [Ea16, Ge19].

CPU parsers have been optimized by eliminating data passes through speculative context
detection [Ge19, Le17], and replacing complex control flows with SIMD data flows [Ge19,
LL19, Le17, Me13]. In contrast to these works, we optimize parsing for the GPU by applying
data-parallel primitives (i.e., prefix sum) and by transposing the data into a columnar format.
These optimizations reduce warp divergence on GPUs, but add two data passes for a total of
3 passes (without context detection) or 4 passes (with context detection). We reduce the
overhead of these additional passes by caching intermediate data in GPU memory.

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 21

4 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Stehle and Jacobsen have presented a GPU-enabled CSV parser [SJ20]. Their parser tracks
multiple finite state machines to enable a generalization to other data formats, e.g., JSON
or XML. Our evaluation shows that this generality is computation-intensive and limits
throughput. In contrast, we explore loading data directly from an I/O device and a fast GPU
interconnect. These technologies require a fast CSV parsing approach. We thus minimize
computation by specializing our approach to RFC4180-compliant CSV data. However, our
approach is capable of handling CSV dialects [DMB17] by allowing users to specify custom
delimiters and quotation characters at runtime. In addition, our approach can detect certain
errors with no performance penalty, e.g., CSV syntax issues involving “ragged” rows with
missing fields and cell-level issues such as numerical fields containing units. Detected issues
can be logged and reported to the user.

3 Approach

In this section we introduce a new algorithm, CUDAFastCSV, for parsing CSV data that is
optimized for GPUs. Optimizing for GPUs is challenging, because parsers typically have
complex control flows. However, fast GPU kernels should regularize control flow to avoid
execution penalties caused by warp divergence. Therefore, our approach explores a new
trade-off: we simplify control flow at the expense of additional data passes, and exploit the
GPU’s high memory bandwidth to cache the data during these passes. This insight forms
the basis on which we adapt CSV parsing to the GPU architecture.

We first give a conceptual overview of our approach in Figure 1. Next, we describe and
discuss each step in more detail with its challenges and solutions in the following subsections.

Conceptually, the CSV input is first transferred to GPU memory from a data source, e. g.,
main memory or an I/O device. The input is then split into equally sized chunks to be
processed in parallel. With the goal to index all field positions in the input data, we first
count the delimiters in each chunk and then create prefix sums of these counted delimiters.
Using the prefix sums, the chunks are processed again to create the FieldsIndex. This index
allows the input data to be copied to column-based tapes in the next step. Tapes enable

Fig. 1: Conceptual overview of our approach

22 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 5

us to vectorize processing by transposing multiple rows into a columnar format. Creating
the FieldsIndex and tapes are logically separate steps, but can be fused into a single data
pass. Finally, each tape is deserialized in parallel. The resulting data are column-oriented
and can then be further processed on the GPU or copied to another destination for further
processing, e. g., to the host’s main memory.

In this default Fast Mode, the parser is unaware of the context and correct quotation scope
when fields are enclosed in quotation marks. To create a context-aware FieldsIndex, we
introduce the Quoted Mode, as fields may themselves contain field delimiters. Quoted Mode
is an alternative parsing mode that additionally keeps track of quotation marks. Quoted
Mode allows us to parallelize parsing of quoted CSV data, but it is more processing intensive
than the default parsing mode. However, as well-known public data sources indicate that
quotes are rarely used in practice45, the main focus of our work is on the Fast Mode.

In this section, we assume the CSV input already resides in GPU memory. In Section 4, we
present Streaming I/O, which allows incoming chunks of data to be parsed without the need
for the entire input data to be in GPU memory.

Overall, our data-parallel CSV parser solves three main challenges: (1) splitting the data into
chunks for parallel processing, (2) determining each chunk’s context, and (3) vectorized
deserialization of fields with their correct row and column numbers.

3.1 Parallelization Strategy

Parsing data on GPUs requires massive parallelism to achieve high throughput. In the
following, we explain how we parallelize CSV parsing in our approach.

Simply parallelizing by rows requires iterating over all data first. It also results in unevenly
sized row lengths. This causes subsequent parsing or deserialization threads in a warp to
stall during individual processing, thus limiting hardware utilization. Instead, Figure 2
shows how we split the input data at fixed offsets to get equally sized chunks. These chunks

Fig. 2: Splitting input into equally sized, independent, chunks

4Kaggle. https://www.kaggle.com/datasets?filetype=csv
5NYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 23

https://www.kaggle.com/datasets?filetype=csv
https://data.cityofnewyork.us/browse?limitTo=datasets

6 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

are independent of each other and individually processed by a warp. This avoids threads
from becoming idle as they transfer and process the same amount of data.

The choice of chunk size and how a warp loads and reads its chunks impacts the paralleliz-
ability of the delimiter-counting process and, ultimately, the entire parsing process. Because
coalesced byte-wise access is not enough to saturate the available bandwidth, we read four
bytes per thread, which correspond to the 128 bytes of a GPU memory transaction per warp.
However, we experimentally find that looping over multiple consecutive 128-byte chunks
per warp increases bandwidth even more, compared to increasing the number of thread
blocks. This reduces the pressure on the GPU’s warp scheduler and the CUDA runtime.

To identify chunk sizes that allow for optimal loading and processing, we evaluate several
kernels that each load chunks of different sizes. We discover that casting four consecutive
bytes to an int and loading the int into a register is more efficient than loading the bytes one
at a time. For input that is not a multiple of 128 bytes, a challenge here is to efficiently avoid
a memory access violation in the last chunk. Using a branch condition for bounds-checking
takes several cycles to evaluate. We avoid a branch altogether by padding the input data
with NULLs to a multiple of 128 bytes during input preparation. Conventionally, strings
are NULL-terminated, thus any such occurrence simply causes these padded bytes to be
ignored during loading and later parsing.

3.2 Indexing Fields

We can now start processing the chunks. Our goal in this phase is to index all of the
field positions of the input data in the FieldsIndex. This index is an integer array of yet
unknown size rows*columns with a sequence of continuous field positions. We construct
the FieldsIndex in three steps.

In the first pass over the chunks, every warp counts the field delimiters in its chunk. The
number of delimiters in each chunk is stored in an array. For optimization purposes, record
delimiters are treated as field delimiters, thus, creating a continuous sequence of fields.

Fig. 3: Computing the field offset for every chunk using a prefix sum

24 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 7

Fig. 4: Using the chunk’s prefix sum to infer field positions

In the second phase, we compute the chunks’ field offsets with an exclusive prefix sum, as
illustrated in Figure 3. At the end of the prefix sum calculation, the total number of fields
is automatically available. We divide the number of fields by the number of columns to
obtain the number of rows, and allocate the necessary space for the FieldsIndex array in
GPU memory. The number of columns is specified in the table schema.

In the third and final phase, the FieldsIndex can now be filled in parallel. We perform a
second pass over all the chunks and scan for field delimiters again. As shown in Figure 4,
the total number of preceding fields in the input data can instantly be inferred using the
prefix sum at a chunk’s position.

For a thread to correctly determine a field’s index when encountering its delimiter, however,
it also needs to know the total number of delimiters in the warp’s preceding threads. Thus,
for every 128 byte loop iteration over the chunk, threads first count how many delimiters
they have in their respective four byte sector. Since threads within a warp can efficiently
access each other’s registers, calculating an exclusive prefix sum of these numbers is fast.
These prefix sums provide the complete information needed to determine a field’s exact
position and index to store it in the FieldsIndex array. The length of a field can also be
inferred from the FieldsIndex.

3.2.1 Quoted Mode

For the Quoted Mode, additional steps are required to create a correct FieldsIndex.

When counting delimiters in the first phase, quotation marks are simultaneously counted in
a similar manner. After calculating the prefix sums for the delimiters, the prefix sums for
the quotation marks are created as well. In the third phase, during the second pass over the
chunks when counting delimiters again, quotation marks are also counted again, and prefix
sums are created for both within the warp.

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 25

8 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fig. 5: Additional pass in Quoted Mode to remove invalid delimiters

We then exploit the fact that a character is considered quoted whenever the number of
preceding quotation marks is uneven. Before writing a field’s position into the FieldsIndex
when encountering a record or field delimiter, first the number of total preceding quotation
marks at this position is checked. Should that number be uneven, a sentinel value of 0 is
written to the FieldsIndex at the index that the field’s position would otherwise have been
written to. The sentinel value represents an invalid delimiter. This approach also allows for
quotation symbols inside fields since, in accordance with RFC4180, quotation marks that
are part of the field need to be escaped with another quotation mark.

After the FieldsIndex is created, a stream compaction pass is done on the FieldsIndex to
remove all invalid, i. e., quoted, delimiters and remove gaps between valid, i. e., unquoted,
delimiters. We illustrate an example with valid and invalid field delimiters in Figure 5.
Separating this additional step from the actual FieldsIndex creation simplifies control flow
and helps to coalesce writes to memory.

3.3 Deserialization

Fig. 6: Deserialization

Efficient deserialization on the GPU is a many-sided problem.
Not only is the question of how to vectorize deserialization
challenging, but also how to keep the entire warp occupied.
A simple approach is to have every thread deserialize a
field. However, we must assume that neighboring columns
have different data types. Constructing a generic kernel
that can handle all data types involves many branches,
causing warp divergence. Additionally, using any row-based
approach requires adding lots of complexity to work in
parallel. Complexity that is likely to cause idle threads. Any

approach that is column-based, however, can make use of the fact that all fields in the
column have the same data type, thus, giving us an easy pattern to vectorize. Every thread in
the warp deserializes one field, allowing the entire warp to deserialize 32 fields in parallel.
Similar to SQL’s DDL (Data Definition Language), users specify a column’s maximum

26 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 9

length along its type for deserialization purposes. To keep the warp’s memory access pattern
coalesced, every thread first consecutively reads four aligned bytes into a dedicated register
until enough bytes were read to satisfy the specified length of the column. If all column
fields are contiguous in memory, the warp is likely able to coalesce memory accesses. In a
loop equal to the size of the specified column length, every thread can now read and convert
each digit from a register while calculating the running sum, as illustrated in Figure 6.

While this approach can lead to workload imbalances within a warp, i. e., when neighboring
fields in a warp have unequal lengths, this approach causes no warp divergence and only
uses one branch in the entire kernel.

3.4 Optimizing Deserialization: Transposing to Tapes

Since our deserializer uses a column-based approach, its memory access pattern only allows
for a coalesced and aligned memory access with full use of all the relevant bytes when given
the optimal circumstances. CSV, however, is a row-oriented storage format. The optimal
circumstances would only come into effect when there is just one column or the field’s
data types are identical along a multiple of 32 wide field count. To improve deserialization
performance for columns with various data types we introduce deserialization with tapes.
Tapes are buffers in which the parser temporarily stores fields in a column-oriented layout.
The column-oriented layout enables vectorized deserialization of fields.

We illustrate our approach with an example in Figure 7. A separate tape for every column is
created in an additional step during the parsing process. We assume that the length of each
column is specified by the table’s schema (e.g., CHAR(10)). We then define a tape’s width
(tapeWidth) equal to its specified column length. For every field in the FieldsIndex, the
input’s field value is copied to its column’s tape at an offset equal to the field’s row number:

C0?4�33A4BB(5 84;3) := C0?42>; (5 84;3) + A>F(5 84;3) × C0?4,83Cℎ2>; (5 84;3)
Field values that do not fully use their tapeWidth are right-padded with NULLs on the tape.

Fig. 7: Visual representation of deserialization tapes

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 27

10 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

For our Fast Mode, materializing the entire FieldsIndex in GPU memory can be skipped and
instead the chunk’s FieldsIndex is temporarily written to shared memory. When a chunk’s
FieldsIndex is complete, the field values can be directly copied onto the tapes. However, the
length of the chunk’s last field cannot be calculated from the chunk’s FieldsIndex alone.
Instead, we work around this obstacle by saving each chunk’s first delimiter offset along
the chunk’s delimiter count during the first step of the parsing process. Combining these
two steps saves us from materializing the FieldsIndex and from having to do a total of four
passes over the input data. However, we cannot perform this optimization in the Quoted
Mode, as the complete FieldsIndex is required to detect the quotation context.

4 Streaming I/O

We extend our approach to allow streaming of partitioned input data. This enables us to
start parsing the input before it is fully copied onto the GPU, i.e., reducing overall latency,
and for input that is too big to otherwise fit into the GPU’s memory.

The input is split into partitions before being copied to the GPU’s memory for individual
and independent parsing without the need for the complete input data to be on the GPU.
The partitions are equal in length and of size streamingPartitionSize.

4.1 Context Handover

In typesetting, widows are lines at the end of a paragraph left dangling at the top from the
previous page. Orphans are lines at the start of a paragraph left dangling at the bottom for
the next page. Both are separated from the rest of their paragraph. Partitioning our input data
creates a similar effect that we need to account for, as illustrated in Figure 8. In a partition,
we consider the last row an orphan, which will not be parsed. Instead we copy the orphan’s
bytes to a widow buffer. The next partition prepends available data from the widow buffer
to its partition data before starting the parsing process. The widow buffer’s size is defined
by a configuration variable. We set its default size to 10 KB, which is sufficient to handle
single rows spanning over 10,000 characters.

Fig. 8: Widows are taken from the previous partition, while orphans are left for the next partition

28 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 11

4.2 End-to-End Loading

Fig. 9: A WorkStream’s control and
data flow for its partition

We realize streaming as WorkStream items in our imple-
mentation, representing a CUDA stream and a partition
for processing. Every WorkStream item has a dedicated
partitionBuffer in the GPU’s device memory that is
used to copy its partition’s chunks into. For RDMA
input data, this partitionBuffer is also automatically
registered for GPUDirect transfers via RDMA.
In Figure 9, we show the four states of a WorkStream.
(1) First, an available WorkStream requests a remote
memory read, which (2) the remote host responds to

by copying the requested data directly into GPU memory. Afterwards, (3) the local CPU
schedules a kernel for the WorkStream for parsing. Finally, (4) the kernel is synchronized
after finishing and the partition’s result data can be optionally transferred to main memory.

5 Evaluation

In this section we evaluate the performance of parsing CSV data on GPUs.

5.1 Experiment Setup

In the following, we give an overview of our experimental evaluation environment.

Hardware. We use two identical machines for the majority of our testing (Intel Xeon
Gold 5115, 94 GB DDR4-2400, Nvidia Tesla V100-PCIe with 16 GB HBM2, Mellanox
MT27700 InfiniBand EDR, Ubuntu 16.04). A third machine was used for NVLink related
evaluations (IBM AC922 8335-GTH, 256 GB DDR4-2666, Nvidia Tesla V100-SXM2 with
16 GB HBM2, Ubuntu 18.04). For all our tests, we use only one NUMA node, i.e., a single
GPU and CPU with their respective memory.

Methodology. We measure the mean and standard error over ten runs with the help of high-
resolution timers. For GPU-related measurements, we adhere to Nvidia’s recommendations
when benchmarking CUDA applications [FJ19]. The time for the initialization of processes,
CUDA, or memory, is not included in these measurements. All input files are read from the
Linux in-memory file system tmpfs. With the exception of NVLink-related measurements,
we note that our measurements are stable with a standard error of less than 5% from the
mean. We measure the throughput in GB/s.

Datasets. For our evaluations we use a real-world dataset (NYC Yellow Taxi Trips
Jan-Mar 2019, 1.9 GB, 22.5M records, 14 numerical fields out of 18, short and con-
sistent record lengths), a standardized dataset (TPC-H Lineitem 2.18.0, 719 MB, 6M records,

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 29

12 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

16 fields of various data types and string fields with varying lengths), and a synthetic dataset
(int_444, 1 GB, 70M records, three fields of four random digits).

Databases and Parsers. In Section 5.2.2, we compare CUDAFastCSV in Fast Mode to
CPU and GPU baselines. OmniSciDB (v5.1.2), PostgreSQL (v12.2), HyPer DB (v0.5),
ParPaRaw [SJ20], RAPIDS cuDF (v0.14.0), and csvmonkey (v0.1). PostgreSQL and
csvmonkey are single-threaded, all other baselines parse in parallel on all CPU cores or on
the GPU. Except for PostgreSQL and ParPaRaw, we explicitly disable quotation parsing.

I/O. In Section 5.2.3, we stream the input data from four I/O sources to compare performance
against the potentially transfer bound parsing from Section 5.2.2. We stream data over
interconnects and InfiniBand using two datasets. In contrast to end-to-end parsing, results
are not copied back to the host’s main memory. On-GPU serves as a baseline with the input
data already residing in GPU memory. PCIe 3.0 serves as an upper bound for I/O devices on
the host. NVLink 2.0 is, in comparison to PCIe 3.0, a higher-bandwidth and lower-latency
alternative [Le20b]. In RDMA with GPUDirect one machine acts as the file server, while
another machine with CUDAFastCSV in Fast Mode streams the input data using RDMA
directly into the GPU’s memory using GPUDirect, bypassing the CPU and main memory.

5.2 Results

In this section, we present our performance results and comment on our observations.

5.2.1 Tuning Parameters

In this section, we evaluate the parameters for performance tuning and scalability that we
introduce in Section 3.

Chunk Size. The choice of the chunkSize in CUDAFastCSV determines how much of the
input data a warp processes. An increasing size requires more hardware resources per warp
but also reduces the overhead associated with scheduling, launching, and processing new
thread blocks or warps. Figure 10 shows the throughput as a function of the chunk size. The

0

25

50

75

100

128 1024 2048 3072 4096 5120 6144 7168 8192
Chunk size (bytes)

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 10: Impact of chunkSize on int_444

0

25

50

75

100

1 10 25 50 100 200 300 400
Input size (MB)

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 11: Performance of input size for int_444

30 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 13

observed performance reflects our design discussion in Section 3.1. The memory bandwidth
for small chunks initially increases when processing 128-byte multiples, but then drops,
e. g., before 2048 bytes. The drop stems from one less concurrent thread block running on
the SM due to a lack of available shared memory resources. A slight rise in performance
before every drop shows the improved resource utilization of the available resources. We
conclude that the best chunk size is 1024 bytes.

Input Size. Figure 11 shows the ramp up of CUDAFastCSV’s performance when given an
increasingly larger input file. While the 1 MB file only achieves 4.5 GB/s, the throughput
already strongly increases with a 10 MB file to 33.6 GB/s and continues to rise until it
approaches its limit of approximately 90 GB/s. We conclude that performance scales quickly
with regard to the input size, and maximum throughput is approached at 100 MB.

Streaming Size. In Figure 12, we define a baseline of approximately 12 GB/s for PCIe 3.0
as it represents the maximum possible throughput for that machine. In our results, the
throughput scales almost linearly with the streamingPartitionSize up until 10 MB before it
hits its maximum of 11 GB/s at 20 MB. For comparison, we include results from the same
experiment over NVLink 2.0. Ramp-up speed is very similar to PCIe 3.0 but keeps rising
when the limitations of PCIe 3.0 would otherwise set in. In contrast, with NVLink 2.0 we
achieve a peak throughput of 48.3 GB/s. Thus, NVLink 2.0 is 4.4× faster than PCIe 3.0.
However, our implementation is not able to achieve NVLink’s peak bandwidth due to
the limited amount of DMA copy engines, and due to the overhead from data and buffer
management required for streaming. This leads to delays, as transfers and compute are not
fully overlapped. We conclude that PCIe 3.0’s bandwidth is saturated quickly and its best
streamingPartitionSize is already achieved at 20 MB. NVLink 2.0 exposes PCIe 3.0 as a
bottleneck for end-to-end parsing in comparison.

Warp Index Buffer Size. The warpIndexBufferSize parameter in CUDAFastCSV limits the
maximum number of found fields in all chunk segments within a warp and is used to reserve
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required space in
global memory for the FieldsIndex. It can be altered from its default, 2048 bytes, to increase
parallelism when the underlying data characteristics of the CSV input data allow for it. As
such, less shared memory resources are allocated per thread block, allowing for additional

0
10
20
30
40
50

1 2 5 10 20 30 40 50 60 80 100 150 200
Streaming size (MB)

Th
ro

ug
hp

ut
(G

B/
s) PCIe 3.0

NVLink 2.0

Fig. 12: Impact of parameter
streamingPartitionSize on int_444

0

25

50

75

100

832 1024 2048 3072 4096 5120 6144 7168 8192
WarpIndexBuffer size (bytes)

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 13: Impact of oversized
warpIndexBufferSize on int_444

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 31

14 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

thread blocks to run concurrently on the SM. Figure 13 illustrates this behavior as the
amount of concurrent thread blocks steps down whenever the increasing size allocates too
many resources. For a chunk size of 1024, the smallest viable warpIndexBufferSize for the
int_444 dataset is 832. Maximum throughput of around 90.9 GB/s is kept up until 1536. The
default of 2048 falls into the 85.6 GB/s range. To accommodate for a worst-case scenario of
only having empty fields in a 1024 byte chunk, we would need a warpIndexBufferSize of
4096, which reduces our performance to 68.6 GB/s. Larger sizes reduce performance even
further. We conclude that the warpIndexBufferSize has a large impact on performance, as it
is dependent on the underlying structure of the input data.

5.2.2 Databases and Parsers

To evaluate end-to-end parsing performance of CUDAFastCSV, we benchmarked our
approach in Fast Mode against several implementations from different categories as
described in our experiment setup. We use the NYC Yellow Taxi and TPC-H dataset, residing
in the host’s main memory, and measure the time until all deserialized fields are available in
the host’s main memory in either a row- or a column-oriented data storage format.

NYC Yellow Taxi. The performance numbers reported for parsing and deserializing the
1.9 GB dataset in Figure 14 highlight the strength of CUDAFastCSV, which is only limited by
the PCIe 3.0’s available bandwidth. This is especially noteworthy, as deserialization includes
nine floating point numbers and five integers out of the 18 total fields. The GPU-based
implementation, cuDF with its new and updated CSV implementation, achieves only a
quarter of the performance of CUDAFastCSV. Our approach is at least 4x times faster
than all CPU-based approaches, i. e., PostgreSQL, HyPer DB, OmniSciDB, csvmonkey,
and *Instant Loading (measured by Stehle and Jacobsen [SJ20] using 32 CPU cores).
CUDAFastCSV over NVLink 2.0 more than triples the performance compared to PCIe 3.0.

0.03 0.08 0.17 2.54 0.25 2.52

10.4 10.1

33.2

0

10

20

30

PostgreSQL
HyPer

OmniSci
cuDF

csvmonkey
Inst.Load.*

ParPaRaw
ours-PCIe

-NVLink

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 14: Taxi end-to-end performance

0.04 0.14 0.15 2.29 0.35 N/A N/A

8.5

25.8

0

10

20

30

PostgreSQL
HyPer

OmniSci
cuDF

csvmonkey
Inst.Load.*

ParPaRaw
ours-PCIe

-NVLink

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 15: TPC-H end-to-end performance

32 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 15

16.2

60

25.9

0

20

40

60

ParPaRaw FastMode QuotedModeTh
ro

ug
hp

ut
(G

B/
s)

Fig. 16: On-GPU throughput of ParPaRaw
and CUDAFastCSV

Only ParPaRaw provides comparable perfor-
mance to CUDAFastCSV. To determine if
ParPaRaw is being limited by the interconnect
in this instance, we additionally measured its
on-GPU throughput for this dataset and com-
pared it to our implementation in Figure 16. In
comparison to ParPaRaw, our Quoted Mode
is 1.6x faster and our Fast Mode is even 3.7x
faster. The reason is that we are able to reduce

the overall amount of work, as we do not need to track multiple state machines, and our
approach is less processing-intensive as a result.

TPC-H Lineitem. Figure 15 shows CUDAFastCSV to have a slightly lower throughput
when compared to the previous dataset on both PCIe 3.0 and NVLink 2.0. The bottleneck
for this data set is the transfer of the larger result data back to the host, causing increasingly
longer delays between streamed partitions. For every 100 MB partition of TPC-H data
transferred to the GPU, approximately 118 MB of result data need to be transferred back
to the host, while the NYC Yellow Taxi data only need 93 MB per 100 MB. This causes
delays in input streaming and during processing, as kernel invocations are hindered by data
dependencies and synchronization. cuDF, another GPU-based implementation, shows a
similar drop in performance of approximately 10%. In contrast, some of the CPU-based
implementations were able to significantly improve their performance for the TPC-H dataset,
namely HyPer DB and csvmonkey, due to the smaller number of numeric fields that need to
be deserialized. NVLink 2.0 again more than triples the performance of CUDAFastCSV in
comparison to PCIe 3.0.

5.2.3 I/O

We present results for CUDAFastCSV when streamed over two interconnects and InfiniBand.
We evaluate performance using the NYC Yellow Taxi and TPC-H Lineitem datasets to
compare against the potentially transfer bound end-to-end parsing.

NYC Yellow Taxi. The baseline for Figure 17 is 60 GB/s, representing CUDAFastCSV’s
maximum possible performance over an interconnect to the GPU. As seen in the previous
section, while our implementation over PCIe 3.0 can fully saturate the bus, it is still less
than a fifth of the on-GPU performance. Again, throughput over NVLink 2.0 more than
triples and shows the limitations of the PCIe 3.0 system in comparison. Our RDMA with
GPUDirect approach, streaming the input data from a remote machine directly onto GPU
memory over the internal PCIe 3.0 bus, is at an expected sixth of the on-GPU performance.
It is unclear why the GPUDirect connection is slower than the local copy, as the network
is not the bottleneck. Li et al. [Le20a] present similar results, and suggest that PCIe P2P
access might be limited by the chipset.

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 33

16 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

60

11.2

38.2

9.4
0

20

40

60

on-GPU PCIe 3.0 NVLink 2.0 RDMA
GPUDirect

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 17: Taxi I/O streaming performance

48.5

11

30.2

9.2
0

20

40

60

on-GPU PCIe 3.0 NVLink 2.0 RDMA
GPUDirect

Th
ro

ug
hp

ut
(G

B/
s)

Fig. 18: TPC-H I/O streaming performance

TPC-H Lineitem. The baseline is established in Figure 18 with 48.5 GB/s. Similarly to the
taxi dataset, PCIe 3.0 is saturated but only at a sixth of the on-GPU performance, while
NVLink 2.0 performance is almost triple in comparison. For the RDMA with GPUDirect
approach we achieve similar performance for the TPC-H dataset. Overall, throughput for
this dataset is slightly lower for the baseline and for every interconnect, due to the increased
size of the result data and its consequences as described in the previous section.

5.2.4 Quoted Mode

The Quoted Mode is an alternative parsing mode that keeps track of quotation marks to
create a context-aware FieldsIndex. In contrast to the Fast Mode, the Quoted Mode involves
additional processing steps. We show a comparison between the two modes for three datasets
in Figure 19. For all three datasets, the Quoted Mode has roughly half the throughput of the
Fast Mode. The cause of this performance drop is the materialization of the FieldsIndex in
GPU memory combined with a subsequent stream compaction pass, which are avoided in
Fast Mode. We observe that the performance drops more for the NYC Yellow Taxi dataset
than for the TPC-H and int_444 datasets. The reason is that fields have less content on
average in NYC Yellow Taxi, thus the FieldsIndex is larger in proportion to the data size (i.e.,
more delimiters per MB of data). Nevertheless, throughput is still higher than that of other
implementations in our comparisons.

48.5
60

100.2

26.6 25.9

51.4

0

25

50

75

100

TPC-H Taxi int_444

Th
ro

ug
hp

ut
(G

B/
s) FastMode

QuotedMode

Fig. 19: Fast Mode vs. Quoted Mode

22 25

5148 41

82

49
60

100

60
76

130

0

50

100

TPC-H Taxi int_444

Th
ro

ug
hp

ut
(G

B/
s)

GP102
TU102
V100
GA102

Fig. 20: Comparison across generations

34 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 17

5.2.5 Hardware Scalability

In Figure 20, we compare four Nvidia GPU generations to assess the performance impact of
hardware evolution: Pascal, Turing, Volta, and Ampere. The lineup includes the server-grade
Tesla V100-PCIe GPU, and three high-end desktop-grade GPUs (Nvidia GTX 1080 Ti
with 11 GB GDDR5X, RTX 2080 Ti with 11 GB GDDR6, and RTX 3080 with 10 GB
GDDR6X). We measure the parsing throughput of our three datasets, with the data stored
in GPU memory. We observe that the throughput incrementally speeds up by factors of
1.61–2.18, 1.02–1.46, and 1.22–1.3 between the respective generations. The total increase
from Pascal to Ampere is 2.55–3.02 times.

To explain the reasons for the speed-up, we profile the parser on the Tesla V100. Profiling
shows that building the FieldsIndex and transposing to tapes accounts for 85% of the
execution time. The main limiting factor of this kernel are execution stalls caused by
instruction and memory latency. For the TPC-H dataset, warp divergence causes additional
overhead. Thus, throughput increases mainly due to the higher core counts (more in-flight
instructions) and clock speeds (reduced instruction latency) of newer GPUs. In contrast,
higher bandwidth at identical compute power (Volta vs. Turing, both having 14 TIPS for
Int32) only yields a significant speed-up when there is little warp divergence.

6 Discussion

In this section, we discuss the lessons we learned from our evaluation.

GPUs improve parsing performance. In comparison to a strong CPU baseline, our
measurements show that parsing on the GPU still improves throughput by 13x for the NYC
Yellow Taxi dataset. Compared to a weak baseline, throughput can even be improved by 73x
for the TPC-H Lineitem dataset. Thus, offloading parsing to the GPU can provide significant
value for databases.

Fast parsing of quoted data. We show that our approach is able to parallelize context
detection in Quoted Mode, and scale performance up to 51 GB/s. At this throughput, we are
near the peak bandwidth of NVLink 2.0.

Interconnect bandwidth limits performance. In all our measurements, PCIe 3.0 does not
provide sufficient bandwidth to achieve peak throughput. Using NVLink 2.0 instead, the
throughput increases by 2.8-3.4x. This improvement shifts the bottleneck to our pipelining
strategy. Removing this limitation would increase throughput further by 1.6x.

Network streaming is feasible. We show that streaming data from the network to the
GPU is possible and provides comparable performance to loading data from the host’s
main memory over PCIe 3.0. This strategy provides an interesting building block for data
streaming frameworks.

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 35

18 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

GPUs can efficiently handle complex data format features. Features, such as quoted fields,
decrease parsing throughput to 43-55% of the non-quoted throughput. However, this reduced
throughput is still higher than the bandwidth provided by PCIe 3.0 and InfiniBand. Thus,
the overall impact is no loss in performance. Only for faster I/O devices, e.g., 400 Gbit/s
InfiniBand, would Quoted Mode become a bottleneck.

GPUs facilitate data transformation. We show that GPUs efficiently transform row-
oriented CSV data into the column-oriented layout required by in-memory databases. As
saturating the I/O bandwidth requires only a fraction of the available compute resources,
GPUs are well-positioned to perform additional transformations for databases [No20].

Desktop-grade GPUs provide good performance per cost. For all our datasets, a desktop-
grade GPU is sufficient to saturate the PCIe 3.0 interconnect. At the same time, desktop-grade
GPUs cost only a fraction of server-grade GPUs (7000 EUR for a Tesla V100 compared
to 1260 EUR MSRP for a RTX 2080 Ti in 2021). Thus, buying a server-grade GPU only
makes sense for extra features such as NVLink 2.0 and RDMA with GPUDirect.

7 Conclusion

In this work, we explore the feasibility of loading CSV data close to the transfer rates
of modern I/O devices. Current InfiniBand NICs transfer data at up to 100 Gbit/s, and
multiple devices can be combined to scale the bandwidth even higher. Our analysis shows
that CPU-based parsers cannot process data fast enough to saturate such I/O devices, which
leads to a data loading bottleneck.

To achieve the required parsing throughput, we leverage GPUs by using a new parsing
approach and by connecting the GPU directly to the I/O device. Our implementation
demonstrates that GPUs reach a parsing throughput of up to 100 GB/s for data stored in
GPU memory. In our evaluation, we show that this is sufficient to saturate current InfiniBand
NICs. Furthermore, our NVLink 2.0 measurements underline that GPUs are capable of
scaling up to emerging 200 and 400 Gbit/s I/O devices. We envision that in the future,
loading data directly onto the GPU will free up computational resources on the CPU, and
will thus enable new opportunities to speed-up query processing in databases and stream
processing frameworks.

In conclusion, I/O-connected GPUs are able to solve the data loading bottleneck, and
represent a new way with which database architects can integrate GPUs into databases.

Acknowledgments
We thank Elias Stehle for sharing and helping us to measure ParPaRaw. This work was funded
by the EU Horizon 2020 programme as E2Data (780245), the DFG priority programme
“Scalable Data Management for Future Hardware” (MA4662-5), the German Ministry for
Education and Research as BBDC (01IS14013A) and BIFOLD — “Berlin Institute for

36 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 19

the Foundations of Learning and Data” (01IS18025A and 01IS18037A), and the German
Federal Ministry for Economic Affairs and Energy as Project ExDra (01MD19002B).

Bibliography
[AM19] AMD: AMD EPYC CPUs, AMD Radeon Instinct GPUs and ROCm Open Source

Software to Power World’s Fastest Supercomputer at Oak Ridge National Labora-
tory. https://www.amd.com/en/press-releases/2019-05-07-amd-epyc-cpus-radeon-
instinct-gpus-and-rocm-open-source-software-to-power, Accessed: 2019-07-05, May
2019.

[Ap17] Apache Software Foundation: Apache Parquet. https://parquet.apache.org/, Accessed:
2020-10-08, October 2017.

[Be16] Binnig, Carsten; et al.: The End of Slow Networks: It’s Time for a Redesign. PVLDB, 2016.

[CX19] CXL: Compute Express Link Specification Revision 1.1. https://www.
computeexpresslink.org, June 2019.

[DMB17] Döhmen, Till; Mühleisen, Hannes; Boncz, Peter A.: Multi-Hypothesis CSV Parsing. In:
SSDBM. 2017.

[Ea16] Eads, Damian: ParaText: A library for reading text files over multiple cores. https:
//github.com/wiseio/paratext, Accessed: 2020-09-09, 2016.

[Eu20] European Commission & Open Data Institute: European Data Portal e-Learning Programme.
https://www.europeandataportal.eu/elearning/en/module9/#/id/co-01, Accessed:
2020-08-31, March 2020.

[FJ19] Fiser, Bill; Jodłowski, Sebastian: Best Practices When Benchmarking CUDA Applications.
In: GTC - GPU Tech Conference. 2019.

[Ge19] Ge, Chang; et al.: Speculative Distributed CSV Data Parsing for Big Data Analytics. PVLDB,
2019.

[IB18] IBM POWER9 NPU team: Functionality and performance of NVLink with IBM POWER9
processors. IBM Journal of Research and Development, 62(4/5):9, 2018.

[KH15] Kim, James G; Hausenblas, Michael: 5-Star Open Data. https://5stardata.info, Accessed:
2020-08-31, 2015.

[Le16] Li, Jing; et al.: HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data Analytics.
PVLDB, 2016.

[Le17] Li, Yinan; et al.: Mison: A Fast JSON Parser for Data Analytics. PVLDB, 2017.

[Le20a] Li, Ang; et al.: Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch
and GPUDirect. IEEE Trans. Parallel Distrib. Syst., 2020.

[Le20b] Lutz, Clemens; et al.: Pump Up the Volume: Processing Large Data on GPUs with Fast
Interconnects. SIGMOD, 2020.

[LL19] Langdale, Geoff; Lemire, Daniel: Parsing gigabytes of JSON per second. VLDB J., 2019.

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing 37

https://www.amd.com/en/press-releases/2019-05-07-amd-epyc-cpus-radeon-instinct-gpus-and-rocm-open-source-software-to-power
https://www.amd.com/en/press-releases/2019-05-07-amd-epyc-cpus-radeon-instinct-gpus-and-rocm-open-source-software-to-power
https://parquet.apache.org/
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://github.com/wiseio/paratext
https://github.com/wiseio/paratext
https://www.europeandataportal.eu/elearning/en/module9/#/id/co-01
https://5stardata.info

20 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

[Me13] Mühlbauer, Tobias; et al.: Instant Loading for Main Memory Databases. PVLDB, 2013.

[Me16] Mitlöhner, Johann; et al.: Characteristics of Open Data CSV Files. OBD, 2016.

[Ne17] Neumaier, Sebastian; et al.: Data Integration for Open Data on the Web. In: Reasoning Web.
Lecture Notes in Computer Science, 2017.

[No20] Noll, Stefan; Teubner, Jens; May, Norman; Boehm, Alexander: Shared Load(ing): Efficient
Bulk Loading into Optimized Storage. In: CIDR. 2020.

[Nv17] Nvidia: Nvidia Tesla V100 GPU Architecture (Whitepaper). https://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, Accessed:
2019-03-26, 2017.

[Nv20a] Nvidia: GPUDirect. https://developer.nvidia.com/gpudirect, Accessed: 2020-09-08,
2020.

[Nv20b] Nvidia: Nvidia Introduces New Family of BlueField DPUs. https://nvidianews.
nvidia.com/news/nvidia-introduces-new-family-of-bluefield-dpus-to-bring-
breakthrough-networking-storage-and-security-performance-to-every-data-
center, Accessed: 2021-01-18, 2020.

[Oz18] Ozer, Stuart: How to Load Terabytes into Snowflake — Speeds, Feeds and Tech-
niques. https://www.snowflake.com/blog/how-to-load-terabytes-into-snowflake-
speeds-feeds-and-techniques, Accessed: 2020-08-31, April 2018.

[Sh05] Shafranovich, Yakov: RFC 4180. https://tools.ietf.org/pdf/rfc4180.pdf, Accessed:
2019-03-29, 2005.

[SJ20] Stehle, Elias; Jacobsen, Hans-Arno: ParPaRaw: Massively Parallel Parsing of Delimiter-
Separated Raw Data. PVLDB, 2020.

[Te18] Trivedi, Animesh; et al.: Albis: High-Performance File Format for Big Data Systems. In
(Gunawi, Haryadi S.; Reed, Benjamin, eds): USENIX ATC. 2018.

[Ze19] Zeuch, Steffen; et al.: Analyzing Efficient Stream Processing on Modern Hardware. PVLDB,
2019.

38 Alexander Kumaigorodski, Clemens Lutz, Volker Markl

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer.nvidia.com/gpudirect
https://nvidianews.nvidia.com/news/nvidia-introduces-new-family-of-bluefield-dpus-to-bring-breakthrough-networking-storage-and-security-performance-to-every-data-center
https://nvidianews.nvidia.com/news/nvidia-introduces-new-family-of-bluefield-dpus-to-bring-breakthrough-networking-storage-and-security-performance-to-every-data-center
https://nvidianews.nvidia.com/news/nvidia-introduces-new-family-of-bluefield-dpus-to-bring-breakthrough-networking-storage-and-security-performance-to-every-data-center
https://nvidianews.nvidia.com/news/nvidia-introduces-new-family-of-bluefield-dpus-to-bring-breakthrough-networking-storage-and-security-performance-to-every-data-center
https://www.snowflake.com/blog/how-to-load-terabytes-into-snowflake-speeds-feeds-and-techniques
https://www.snowflake.com/blog/how-to-load-terabytes-into-snowflake-speeds-feeds-and-techniques
https://tools.ietf.org/pdf/rfc4180.pdf

cba

Herausgeber et al. (Hrsg.): BTW2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

B2-Tree: Cache-Friendly String Indexing within B-Trees.

Josef Schmeißer1, Maximilian E. Schüle 2, Viktor Leis 3, Thomas Neumann 4, Alfons
Kemper 5

Abstract: Recently proposed index structures, that combine trie-based and comparison-based search
mechanisms, considerably improve retrieval throughput for in-memory database systems. However,
most of these index structures allocate small memory chunks when required. This stands in contrast to
block-based index structures, that are necessary for disk-accesses of beyond main-memory database
systems such as Umbra. We therefore present the B2-tree. The outer structure is identical to that of an
ordinary B+-tree. It still stores elements in a dense array in sorted order, enabling efficient range scan
operations. However, B2-tree is composed of multiple trees, each page integrates another trie-based
search tree, which is used to determine a small memory region where a sought entry may be found.
An embedded tree thereby consists of decision nodes, which operate on a single byte at a time, and
span nodes, which are used to store common prefixes. This architecture usually accesses fewer cache
lines than a vanilla B+-tree as shown in our performance evaluation. As a result, the B2-tree answers
point queries considerably faster.

Keywords: Indexing; B-tree; String

1 Introduction

Low overhead buffer managers are a fairly recent development which provide in-memory
performance in case the data does fit into RAM [Le18; NF20]. However, database systems
based on such a low overhead buffer manager still require efficient index structures which
harness this new architecture. While systems like HyPer [KN11] could use pure in-memory
based index structures, like the Adaptive Radix Tree (ART) [LKN13] or the more recent
Height Optimized Trie (HOT) [Bi18], these are no longer an option for Umbra [NF20]. Pure
in-memory index structures usually offer better performance than various B-tree flavors,
yet their tendency to allocate small varying sized memory chunks limits their range of
applicability.

With the presentation of LeanStore [Le18], Leis et al. revisited the role of buffer managers.
LeanStore is a storage engine designed to resolve the overhead issues of traditional buffer
management architectures [Ha08]. Its main feature is to abandon a hash table based pinning
1 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching josef.schmeisser@tum.de
2 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching m.schuele@tum.de
3 Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena viktor.leis@uni-jena.de
4 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching neumann@in.tum.de
5 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching kemper@in.tum.de

cba doi:10.18420/btw2021-02

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 39

https://creativecommons.org/licenses/by-sa/4.0/
mailto:josef.schmeisser@tum.de
mailto:m.schuele@tum.de
mailto:viktor.leis@uni-jena.de
mailto:neumann@in.tum.de
mailto:kemper@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-02

2 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

•

1

h
t
t
p
s
:
/
/
s

https://reddit.com/r/

• f •

2 4 c
o
m
p
s
c
i

f
u
n
n
y

n
e
w
s

t
u
m
u
n
i
c
h

https://

• u •

1 www.

• i •

3 4

u
m
b
r
a
-
d
b
.
c
o
m

d
b
.
i
n
.
t
u
m
.
d
e

i
n
.
t
u
m
.
d
e

t
u
m
.
d
e

Fig. 1: The B2-tree consists of decision nodes, similar to B+-tree nodes that contain separators and
pointers to sub-nodes, and span nodes for common prefixes.

architecture, which buffer managers usually use, in favor of a technique called pointer
swizzling [GUW09]. Umbra’s buffer manager extends this concept by the ability to serve
variable-sized pages with a minimum page size of 64 KiB [NF20]. This obviously affects the
architectural requirements imposed on index structures. The imposed constraint precludes
the use of most state-of-art pure in-memory based index structures. B-trees and their
variations, on the other hand, fit well into Umbra’s architecture. However, we found that
even a highly optimized B+-tree implementation is no longer competitive, with regard to
string indexing, in comparison to index structures like ART and HOT. Our B2-tree operates
on top of Umbra’s buffer manager and provides significant throughput improvements over
the original Umbra B+-tree.

Fig. 1 shows a small B2-tree. It hosts an embedded tree per B-tree page. This embedded
tree serves the purpose of directing incoming searches into narrowed down search spaces.
A search on the embedded tree yields a pair of slot indices which define a span wherein a
sought key may be found. Circular nodes point to the beginning of a search range, the upper
bound. Each search space is also highlighted by the distinct coloring of its records and the
corresponding node within the embedded tree.

Modern CPU architectures usually provide three layers of cache between their registers
and main memory in order to mitigate the imbalance between CPU performance and main
memory latency [SPB05]. Performing a naïve binary search over all the entries stored on
a reasonably large B-tree page usually results in high lookup costs. This is especially the
case when the B-tree page is used to store variable-sized records. One of the main reasons
is the binary search’s tendency to produce cache-unfriendly memory access patterns and
its relatively high amount of branch mispredictions during the search [LKN13]. Some
approaches try to mitigate these effects by using smaller nodes, often as small as a single
cache line, which are optimized for cache hierarchies of modern processors [JC10; RR99;
SPB05]. However, decreasing the page size down to the size of a single cache line may

40 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 3

be infeasible or at least undesirable. Letting the storage backend handle such small pages
would also lead to a considerable overhead. In the end, the choice of a certain page size will
always be a trade-off.

We argue, that traditional index-structures for disk-based database systems can be adapted
for beyond main-memory database systems. This work focuses on the development of an
index structure based on the versatile B-tree layout. Thereby, we try to resolve the previously
stated cache-unfriendliness of most B-trees variants. The presented approach hence aims
to increase the number of successful cache accesses by applying data access patterns with
higher locality. Our approach utilizes a secondary embedded index contained within each
page. This secondary index is used to direct incoming searches to narrow down the search
space within a given page. Consequently, fewer cache lines will be accessed during the
search. We have chosen to retain the B+-tree [Co79] leaf layout, where keys are stored
sequentially in accordance to their ordering. This allows us also to maintain the usual
strength of B+-trees—their high range scan throughput.

This work’s main contributions are:

• the B2-tree, a disk-based index structure tuned for cache-friendly, page-local lookups,

• the adaption of radix trees to disk-based index structures,

• and a comparison to the already optimized Umbra B+-tree.

The focus of this work lies on the development of an index structure operating on given pages
administered byUmbra’s buffermanager. Concurrency is another aspect, our proposal utilizes
an optimistic synchronization technique [Ch01], namely Optimistic Lock Coupling (OLC)
[LHN19].

This work is structured as follows: Sect. 2 gives a summary of related work on modern
index structures. Sect. 3 introduces the B2-tree, which consists of the description of span
and decision nodes as well as insertion and retrieval algorithms. Finally, Sect. 4 compares
our proposed index structures to Umbra’s B+-tree.

2 Related Work

While there has been constant development and research in the area of index structures,
recent approaches mainly focus on main-memory database systems. Many of those index
structures are therefore not designed to be used in conjunction with a paging based storage
engine, however, their general design may still provide valuable insight.

There are a couple of proposals which aim to improve the cache-friendliness of B-trees.
One of which is the Cache Sensitive B+-Tree (CSB+-Tree) [JC10]. Completely different
approaches are the so-called Cache-Oblivious B-tree and the Cache-Oblivious string B-tree

B2-Tree: Cache-Friendly String Indexing within B-Trees 41

4 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

[BDF05; BFK06]. Both proposals are based on an important building block, the packed-
memory array (PMA). The PMA maintains its elements in physically sorted order, however,
elements are not organized in a dense manner, instead, empty spaces will be deployed as
necessary [BH07].

The String B-Tree is a B-tree specifically optimized to manage unbounded-length strings
[FG99] while minimizing disk I/O. It is composed of Patricia tries [Mo68] as internal nodes
where each Patricia trie node stores only the branching character. This architecture enables
the use of a constant fanout independent of the lengths of the referenced strings since the
Patricia trie leafs only store logical pointers. For this reason, searches within the String
B-Tree have to progress optimistically. A search may thereby initially yield a result which
does not match the queried key. By comparing the resulting string with the actual query, the
length of the longest common prefix will be determined. This information is then used to
find the corresponding node within the Patricia trie in question. From there on the correct
path based on the actual difference between the resulting string and the queried key will be
taken.

Additionally, the choice of a concrete binary search implementation also plays an important
role. Index structures which depend heavily on binary search, like B-trees, require an
efficient implementation thereof to achieve the best possible performance. Khuong and
Morin suggest the use of their branch-free binary search implementation for arrays smaller
than the size of the L2 cache [KM17].

Masstree is another key-value store that has mainly been designed to provide fast operations
on symmetric multiprocessing (SMP) architectures [MKM12]. It stores all data in main
memory, hence it is constructed to be used within the context of main-memory database
system. Masstree’s design resembles a trie [Br59; Fr60] data structure with embedded
B+-trees as trie nodes.

3 The B2-tree

The B2-tree is a variation of the classic B-tree, its core structure is based on the B+-
tree layout. We extend the existing layout by embedding another tree into each page, as
emphasized by the name B2-tree. The term embedded tree refers to this tree structure,
it serves the purpose of improving the lookup performance while maintaining minimal
impact on the size consumption as well as on the throughput of insert and delete operations.
Our implementation also features some commonly known optimization techniques like the
derivation of a shortened separator during a split [Ga18; GL01; Gr11].

Other approaches that combine or nest different index structures have already proved their
potential. Masstree for instance showed considerable performance improvements [MKM12].
However, Masstree is not designed to be used in conjunction with paging based storage
engines. Another point of concern is the direct correlation between the outer trie height and

42 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 5

the indexed data. The inflexible maximum span length of eight bytes may lead to a relatively
low utilization and fanout of the lower tree levels when indexing strings, this is usually
caused by the sparse distribution of characters found in string keys. This is not unique to
Masstree: ART’s fanout on lower tree levels also decreases in such usage scenarios [Bi18].
B+-trees on the other hand feature a uniform tree height by design, since the tree height does
not depend on the data distribution. Comparison-based index structures such as the B+-tree
on the other hand are often outperformed by trie-based indexes in point accesses [Bi18].

Our approach intends to combine the benefits of both worlds, the uniform tree height of
B+-trees with the trie-based lookupmechanics, while still featuring a page based architecture.
Our trie-based embedded tree on each page serves the purpose of determining a limited
search space where the corresponding queried key may reside. However, we still utilize
a comparison-based search on these limited subranges. This design aims to improve the
general cache-friendliness of the search procedure on each page.

3.1 The Embedded Tree

In the following we will present the inner page layout of our B2-tree, the general outline
can be observed in Fig. 2. As already mentioned, the general page organization follows the
common B+-tree architecture, hence, payloads are only stored in leaf nodes. Leaf nodes
are also interlinked, like it is originally the case in a B+-tree, in order to maintain the high
range scan throughput usually achieved by B+-trees.

https://

1

• u •

2 www.

3
4 i 5

6

7

ri j

0 0

1 0

2 1

3 2

4 4

5 5

6 5

7 5

ri j key

2 0 https://umbra-db.com

3 1 https://wikipedia.org

4
2 https://www.db.in.tum.de

3 https://www.in.tum.de

5 4 https://www.tum.de

Span Node

Inner Decision Node

Virtual Node

Leaf Decision Node

Range Array

Page Entries

Fig. 2: The embedded tree structure together with an array responsible for translating the values
stored in the embedded tree (the 𝑟𝑖) into search ranges where sought key-value pairs may reside. Its
values are the exclusive upper bounds of offsets 𝑗 for the rightmost table (page entries). The grayish
virtual nodes are not part of the physically stored tree structure. Empty search ranges are omitted in
the rightmost table. This table shows the complete form of the stored keys, without their associated
payload.

The embedded tree itself is composed of a couple of different node types. First, we define the
decision node, it acts like a B-tree node by directing incoming queries onto the corresponding

B2-Tree: Cache-Friendly String Indexing within B-Trees 43

6 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

Inner Decision Node

header 0x11 0x22 0x33

key bytes

• • • •

child pointers

s1 s2 s3 s4

Leaf Decision Node

header 0x11 0x22 0x33

key bytes

ri+0 ri+1 ri+2 ri+3

range #

Span Node

header 0x0006

length

foobar

content

Fig. 3: Memory layout of all the embedded nodes deployed by B2-tree. Each node contains a one
byte large header. A flag inside the header determines whether a node contains pointers to subtrees or
references to search ranges.

child. Probably the main difference to a B-tree node, is the fact that these nodes operate on a
fixed size decision boundary represented by a single byte in our implementation, in contrast
to B+-tree nodes, which usually operate on multiple bytes at once. We hence decompose
keys into smaller units of information similar to how the trie data structure operates [Br59;
Fr60]. Nodes of this decision type direct the search to the first child where the currently
investigated byte of the search key is less or equal to the separator. The fanout of this
type of node is also limited in order to improve data locality. Another similarity to B-tree
nodes is the fact that they can be hierarchically arranged just like B-tree nodes. This node
type bears some similarity to the branch node found in Patricia tries [Mo68]. However,
Patricia’s branch nodes only compare for equality, our decision nodes use the range of
bytes to determine the position of a corresponding child. In Fig. 2 this type is illustrated as
divided rectangular shape. Fig. 3 illustrates the memory layout for this node type. Note that,
inner decision nodes and their leaf counterparts share the same layout, they just differ in
the interpretation of their two byte large payloads. Leaf nodes terminate the search for a
queried key even if it is not fully processed, the remainder of a queried key will then be
further processed by the subsequent comparison based search.

The second node type we define are span nodes. These store the byte sequence which forms
the longest common prefix found in the subtree rooted at the current node. Their memory
layout is shown in Fig. 3. This node type can be compared to the extension concept of the
Patricia trie [Mo68], however, span nodes have two additional outgoing edges to handle
non-equality. Note that, by using an order preserving storage layout for the nodes, there
is no necessity to store any next pointer within the span node, since the child node will
directly succeed the span node. In Fig. 2 span nodes are illustrated as rounded rectangles.
The deployment of span nodes is necessary to advance the queried key past the length of
a span if the current subtree has a common prefix. At the following key depth, decisions,

44 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 7

whether a queried key is part of a certain range, can be made once again by the deployment
of decision nodes.

Obviously, the content of a span node does not have to match the corresponding excerpt of
the queried key exactly. In case the stored span does not match, three scenarios can occur.
Firstly, the size of the span may actually exceed the queried key. In that case the input will
be logically padded with zero bytes. This may lead to the second case where the input is
shorter. Any further comparisons with subsequent nodes are therefore meaningless. Hence,
we introduce the concept of a virtual edge pointing from each span to its leftmost child, a
so-called virtual node. To the edge itself we will refer as minimum edge. In Fig. 2 such an
edge and its corresponding node is always colored gray to emphasize the aspect that it is
not part of the physical tree structure. We follow this edge every time the input is less than
the content of the span node. Note that encountering a fully processed input key implies
that the minimum edge of a span node has to be taken. Fig. 2 illustrates the usage of this
concept with the insertion of the Wikipedia URL after the construction of the embedded
tree. This URL does not match the second span node, hence, it is delegated to the virtual
node labeled “3”.

The last casewhere the input is greater than the span node’s content is completely symmetrical
to the minimum edge situation. Therefore, a second virtual edge and node pair exists for
every span node to handle the greater than case. We will cover the algorithmic details more
elaborately in Sect. 3.2.

Fig. 2 also illustrates the range array, which stores the positions of key-value pairs. These
define limited search spaces on the page. This array serves two purposes. First, it eliminates
the need to alter the actual contents of the embedded tree during insert and removal
operations, this simplifies modification operations significantly. Second, it enables the use
of the aforementioned minimum and maximum edges.

During a lookup on a page this array is used to translate the output 𝑟𝑖 of a query on the
embedded tree into a position 𝑗 on the actual page. Each lookup on the embedded tree itself
yields an index into this array. This array, on the other hand, contains indices into the page
indirection vector [Gr06], whereas the indirection vector itself points to any data that does
not fit into a slot within the indirection vector [Gr06]. A resulting index thereby specifies an
upper limit for the search of a queried key, whereas the directly preceding element specifies
the lower limit. In Fig. 2 the annotated positions are colored differently in accordance to
their origin. The very first position is colored green, this special element ensures that the
lower limit for a search can always be determined. Indices originating from virtual edges
are colored gray, whereas blue is used for regular positions. We denote these indices as
𝑟𝑖 where 𝑖 represents the corresponding position within the array of prefix sums. Each 𝑟𝑖
occupies two bytes within each leaf node, the memory layout is illustrated in Fig. 3.

Insertion and removal operations, which are to be performed on the overlying page, also
affect the embedded tree. More precisely, this affects the search range given by the embedded

B2-Tree: Cache-Friendly String Indexing within B-Trees 45

8 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

tree where the actual operation took place and all subsequent search ranges, since adjusting
an upper boundary of one particular search range also implies that subsequent search ranges
have to be shifted in order to retain their original limits. This is achieved by simply adjusting
the values within the range array for the directly affected search range and every following
search range.

3.1.1 Construction

One aspect we have not covered so far is the construction of the embedded tree structure.
The construction routine is triggered each time a page is split or merged and also periodically
depending on the number of changes since the last invocation.

The construction routine always starts by determining the longest common prefix of the
given range of entries beginning at the very first byte of each entry. We will refer to the
position of the currently investigated byte as key depth, which is zero within the context
of the first invocation. On the first invocation, this spans the entire range entries on the
current page. Based on the length of the longest common prefix a root node will be created.
If the length of the longest common prefix is zero, a decision node will be created, else a
span node. In the latter case, the newly created node contains the string forming the longest
common prefix. Afterwards, the construction routine recurses by increasing the key depth
to shift the observation point past the length of the longest common prefix.

The creation of a decision node is more involved, here we investigate the byte at the current
key depth of the key in the middle of the given range. Subsequently, with the concrete value
of this byte, a search on the entries right to that key is performed. This search determines
the lower bound key index with regard to that value at the current key depth. In some cases,
the resulting index may lie right at the upper limit of the given key range. For this reason,
we also search in the opposite direction and take the index which divides the provided range
of keys more evenly. This procedure is repeated on both resulting subranges until either the
size of a subranges falls below a certain threshold or until the physical node structure of
the current decision node does not contain enough space to accommodate another entry.
Once a decision node is constructed, the construction routine recurses on each subrange,
however, this time the key depth remains unchanged. This process is repeated until each
final subrange is at most as large as our threshold value.

3.2 Key Lookup

On the page level, the general lookup principle is performed as in a regular B+-tree. The
only difference is the applied search procedure. We start by querying the embedded tree
which yields an upper limit for the search on the page records within the indirection vector.
With the upper limit known, the lower limit can be obtained by fetching the previous entry

46 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 9

from the range array. Afterwards, a regular binary search on the limited range of entries
will be performed.

Querying the embedded tree not only yields the search range but also further information
about the queried key’s relationship to the largest common prefix prevailing in the resulting
search range. The concrete relationship is encoded in skip, the stored value corresponds to
the length of the largest common prefix within the returned search range. It also indicates
that the key’s prefix is equivalent to this largest common prefix. This information can be
exhibited to optimize the subsequent search procedure by only comparing the suffixes.

Algorithm 1 Traversal of the embedded tree structure.

1: function Traverse(node, key, length, skip)
2: if IsSpan(node) then
3: (exh, diff) ← CmpSpan(node, key, length, skip)
4: if diff > 0 then
5: return MaximumLeaf(node)
6: else if diff < 0 or exh then
7: return MinimumLeaf(node)
8: else
9: spanLength← GetSpanLength(node)
10: key← key + spanLength
11: length← length − spanLength
12: skip← skip + spanLength
13: Traverse(child, key, length, skip)
14: end if
15: else
16: child← GetChild(node, key, length)
17: if IsLeaf(node) then
18: return (child, skip)
19: else
20: Traverse(child, key, length, skip)
21: end if
22: end if
23: end function

Algorithm 1 depicts a recursive formulation of the embedded tree traversal algorithm. It
inspects each incoming node whether it is a span node or not. We compare the stored span
with the corresponding key excerpt at the position defined by skip, in case a span node is
encountered. The difference between the stored span and the key excerpt will be the result of
this comparison. We also determine whether the key is fully processed in this step, meaning
that the byte sequence stored within the span node exceeds the remaining input key. Three
cases have to be differentiated at this point.

Firstly, the obtained difference stored in diff may be greater than zero, hence, the span
did not match. However, this also implies that the remaining subtree cannot be evaluated
for this particular input key. One of the outgoing virtual edges must therefore be taken.
Implementation-wise, this edge is realized by a call to MaximumLeaf. It traverses the

B2-Tree: Cache-Friendly String Indexing within B-Trees 47

10 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

remaining subtree by choosing the edges corresponding to the largest values. The final result
is thus the rightmost node of the remaining subtree.

The second case, where the excerpt of the input key is smaller, is mostly analog. However,
the condition must now not only include the result, whether diff is smaller than zero, but
also the result, whether the input key has been fully processed during the span comparison
or not. An input key that is shorter than the sum of all span nodes, which led to the
key’s destination search range, will be logically padded with zeros. This leads to another
interesting observation. Consider two keys with different lengths and their largest common
prefix being the complete first key, all remaining bytes of the second key are set to zero.
The index structure has to be able to handle both keys. However, from the point of view
of the embedded tree, both keys will be considered as equal. This also implies that the
embedded structure has to ensure that both keys will be mapped into the same search range.
It is therefore up to the construction procedure to handle such situations accordingly. The
subsequent binary search has to handle everything from there on.

The third and last case, where the key excerpt matches the span node, should be the usual
outcome for most input keys. We obviously have to account for the actual length of the span
to advance the queried key beyond this byte sequence. Hence, the point of observation on the
key has to be shifted accordingly. This is also the case where skip is adjusted accordingly. It
holds the accumulated length of all span nodes which were encountered during the lookup,
or an invalid value if one of the span nodes did not match or more precisely if diff evaluated
to a non-zero value. The subsequent call to either MaximumLeaf or MinimumLeaf thereupon
returns an invalid value for the skip entry in the result tuple.

3.3 Key Insertion

We have already briefly discussed, how the insertion of new entries, affects the embedded
tree, and its yielded results. Two cases have to be addressed. Either there is enough free
space on the affected page to accommodate the insertion of a new entry, or the space does
not suffice. A new entry can be inserted as usual if the page has enough free space left.
However, this will also require some value adjustments within the range array in order to
reflect the change. The latter case, where the page does not hold enough free space for the
new entry, will lead to a page split. Splitting a page additionally results in roughly half of
the embedded tree being obsolete.

For a simple insertion that does not lead to a page split, updating the embedded tree is trivial.
We first determine the affected 𝑟𝑖 in the range array where the insertion takes place. The
updated search range is then defined by the preceding value and the value at 𝑟𝑖 , which has
to be incremented, since the search range grew by exactly one entry. In Fig. 2 these index
values are denoted as 𝑗 , and they are stored within the range array. However, this change
must also be reflected in all subsequent search ranges. Therefore, all the following entries
within the range array have to be incremented as well, in order to point to their original

48 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 11

elements. By conducting this change, subsequent index values will then span all the original
search spaces, which were valid up to the point where the insertion occurred.

The case where an insertion triggers a page split has to be handled differently. A split
usually implies that approximately half of the embedded tree represents the entries on the
original page whereas the other half would represent the entries on the newly created page.
Consequently, the index values defining the search ranges of one page are now obsolete.
Although, the structure could be updated to correctly represent the new state of both pages,
we instead opted to reconstruct the embedded trees. This allows us to utilize the embedded
structure to a higher degree, since the current prevailing state of both pages can be captured
more accurately. Having a newly split page also ensures that roughly half of the available
space is used. We can thus construct a more efficient embedded tree, which specifies
smaller search ranges. In turn, smaller ranges can be used to direct incoming searches more
efficiently.

3.4 Key Deletion

Deletion is handled mostly analogously. However, the repeated deletion of entries, which
define the border between two ranges, may lead to empty ranges. This is no issue per se: The
subsequently executed search routine just has to handle such a scenario accordingly. As it is
the case with insertions, the deletion of entries also requires further actions. Directly affected
search ranges have to be resized accordingly. Hence, the corresponding 𝑗 values within the
range array have to be decremented in order to reflect those changes. All subsequent values
also have to be decremented in order to point to their original elements on the page.

3.5 Space Requirements

Another interesting aspect is the space requirement of the embedded tree structure. In the
following we will analyze the worst-case space consumption in that regard. We start by
determining an upper bound for the space consumption of a path through the embedded tree
to its corresponding section of the page which defines a search range.

For now, we only consider the space required by the structure itself, not the contents
of span nodes. The complete length of all the contents of span nodes forms the longest
common prefix of a certain page section, which our second part of this analysis takes into
account. Furthermore, a node in the context of the following first part refers to a compound
construction of a decision node and a zero-length span node, this represents the worst-case
space consumption scenario, where each decision node is followed by a span. Similar to
the analysis of ART’s worst-case space consumption per key [LKN13], a space budget
𝑏(𝑛) in byte for each node 𝑛 is defined. This budget has to accommodate the size required
by the embedded tree to encode the path to that section. 𝑥 denotes the worst-case space

B2-Tree: Cache-Friendly String Indexing within B-Trees 49

12 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

consumption for a path through the embedded tree in byte. The total budget for a tree is
recursively given by the sum of the budgets of its children minus the fixed space 𝑠(𝑛)
required for the node itself. Formally, the budget for a tree rooted in 𝑛, can be defined as

𝑏(𝑛) =
{
𝑥 isTerminal(𝑛)∑

𝑐∈children(𝑛) 𝑏(𝑐) − 𝑠(𝑛) else.

Hypothesis: ∀𝑛 : 𝑏(𝑛) ≥ 𝑥.
Proof. Let 𝑏(𝑛) ≥ 𝑥. We give a proof by induction over the length of a path through the tree.
Base case: The base case for the terminal node 𝑛, i. e. a page section, is trivially fulfilled
since 𝑏(𝑛) = 𝑥.
Inductive step:

𝑏(𝑛) =
∑︁

𝑐∈children(𝑛)
𝑏(𝑐) − 𝑠(𝑛)

≥ 𝑏(𝑐1) + 𝑏(𝑐2) − 𝑥 (a node has at least two children)
≥ 2𝑥 − 𝑥 = 𝑥 (induction hypothesis).

Conclusion: Since both cases have been proved as true, by mathematical induction the
statement 𝑏(𝑛) ≥ 𝑥 holds for every node 𝑛. �

An upper bound for the payload of the span nodes is obtained by assigning the complete
size of the prefix of each section to the section itself. Assigning the complete prefix directly
to a section implies that the embedded tree does not use snippets of the complete prefix for
multiple sections, therefore, each span node has a direct correlation with a search range
defined by the embedded tree. The absence of shared span nodes, thus, maximizes the space
consumption for the embedded tree. An upper bound for the space consumption of the
embedded tree is given by ∑

𝑟 ∈searchRanges(𝑝) (𝑙 (𝑟) + 𝑥)
where 𝑙 (𝑟) yields the size of the longest common prefix of the search range 𝑟 within page 𝑝.
We can therefore conclude that the additional space required by the embedded tree mostly
depends on the choice of how many search ranges are created and the size of common
prefixes within them. Our choice of roughly 32 elements per search range yielded the optimal
result on all tested datasets, however, this is a parameter which may require further tuning in
different scenarios. In our setting, the space consumption of the embedded structure never
exceed 0.5 percent of the page. Note that, the prefix of each key within the same search
range does not have to be stored, the B2-tree may therefore also be used to compress the
stored keys.

In the following we will analyze how modern CPUs may benefit from B2-tree’s architecture.
Both AMD’s and Intel’s current x86 lineup feature L1 data caches with a size of 32 KiB,

50 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 13

8-way associativity, and 64-byte cache-lines. Our previous worst-case space consumption
showed that the size of the embedded tree is mostly influenced by the size of common
prefixes. The constant parameter 𝑥, on the other hand, can be set to 15, which is the size of
a decision node and an empty span node. With the aforementioned setup of 32 elements
per search range and a page size of 64 KiB, we can assume that the embedded structure,
excluding span nodes, fits into a couple of cache lines, our evaluation also supports this
assumption.

Efficient lookups within the limited search ranges are the second important objective of
our approach. With the indirection vector being the entry point for the subsequent binary
search, it is beneficial to prefetch most of the accessed slots. In our implementation, each
slot within the indirection vector occupies exactly 12 bytes. Therefore, with 32 elements
per search range, only six cache-lines are required to accommodate the entire section of
the indirection vector. Recall that it is a common optimization strategy to store the prefix
of a key within the indirection vector as unsigned integer variable. The B2-tree, however,
utilizes this space to store a substring of each key since the prefixes are already part of the
embedded tree. We will refer to this substring as infix. It can also be observed that the stored
infix values within the indirection vector are usually more decisive, since the embedded
tree already confirmed the equality for all the prefix bytes. Overall, this implies that fewer
indirection steps, to fetch the remainder of a key, have to be taken.

3.6 Concurrency

B2-tree was designed with concurrent access via optimistic latching approaches taken into
consideration. While this approach adapts well to most vanilla B-tree implementations, other
architectures may require additional logic. This section covers all necessary adaptions and
changes required by the B2-tree in order to ensure correctness in the presence of concurrent
accesses.

Optimistic latching approaches often require additional checks in order to guarantee thread
safety. Leis et al. [LHN19] list two issues that may arise through the use of speculatively
locking techniques such as OLC. The first aspect concerns the validity of memory accesses.
Any pointer obtained during a speculative read may point to an invalid address due to
concurrent write operations to the pointer’s source. Readers have hence to ensure that the
read pointer value was obtained through a safe state. This issue can be prevented by the
introduction of additional validation checks. Before accessing the address of a speculatively
obtained pointer, the reader has to compare its stored lock version with the version currently
stored within the node. Any information obtained before the validation has to be considered
as invalid if those versions differ. Usually, an operation will be restarted upon encountering
such a situation.

Secondly, algorithms have to be designed in a manner that their termination is guaranteed
under the presence of write operations performed by interleaving threads. Leis et al. discuss

B2-Tree: Cache-Friendly String Indexing within B-Trees 51

14 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

one potential issue concerning the intra-node binary search implementation as such. They
note that its design has to ensure that the search loop can terminate under the presence of
concurrent writes [LHN19]. Optimistically operating algorithms, therefore, have to ensure
that no accesses without any validation to speculatively obtained pointers are performed
and that termination under the presence of concurrent writes is guaranteed.

However, the presented traversal algorithm does not guarantee termination without the
introduction of further logic. One main aspect concerns the observation that span nodes can
contain arbitrary byte sequences. It is hence possible to construct a key containing a byte
sequence that resembles a valid node. Such a node may also contain links pointing to itself.
An incoming searcher may then end up in a cycle due to previous modifications performed
by an interleaving writer which had conducted modifications to the embedded structure in
said manner.

To prevent issues such as the one described, certain countermeasures have to be taken.
We have to ensure that the traversal progresses with every new node. Furthermore, node
pointers must not exceed the boundary of their containing page. We could have used the
validation scheme presented by Leis et al. [LHN19]. This would require a validation on the
optimistic lock’s version after each node fetch. However, we can also use the fact, that in
our implementation each parent node has a smaller address than any of its children. We
furthermore have to ensure that each obtained node pointer lies within the boundary of
the current page. Note that any search range obtained through the embedded tree is also a
possible candidate leading to invalid reads. We hence have to ensure that each obtained
boundary value also lies within the boundary of the currently processed page. Our binary
search implementation, which will be performed directly afterwards, trivially fulfills the
previously described termination requirement.

Insert and delete operations do not require any further validation steps, since they do not
depend on any unvalidated speculative reads and exclusive locks will be held during such
operations anyway.

4 Evaluation
In the following we evaluate various aspects of our B2-tree and compare them to the Umbra
B+-tree. Note that the Umbra B+-tree is our only reference due to the lack of any other page
based index structure capable of running on top of Umbra’s buffer manager. In the following
we analyze B2-tree’s performance as well as its scalability, the space requirements for the
embedded tree, and the time required to construct the embedded tree.

4.1 Experimental Setup

All the following experiments were conducted on an Intel Core i9 7900X CPU at stock
frequency paired with 128 GB of DDR4 RAM. Furthermore, index structures do not have

52 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 15

0.0 0.5 1.0

M lookups / s

Wikipedia titles

0.0 0.5 1.0

M lookups / s

Random strings

0.0 0.5 1.0

M lookups / s

URL

B2-tree Umbra B+-tree

(a) Lookup throughput in million operations per second.

0.00 0.25 0.50 0.75

M inserts / s

Wikipedia titles

0.00 0.25 0.50 0.75

M inserts / s

Random strings

0.00 0.25 0.50 0.75

M inserts / s

URL

(b) Insert throughput in million operations per second.

Fig. 4: Single-threaded throughput comparison of the B2-tree and the Umbra B+-tree grouped by the
used dataset and imposed workload.

to access background memory, everything will be kept in main memory, unless otherwise
stated. B2-tree as well as the standard B+-tree have been compiled to use 64 KiB pages
which is the smallest page size Umbra’s buffer manager provides. The evaluation system
runs on Linux with GCC 9.3, which has been used to compile all index structures.

Our reference will be the Umbra B+-tree as already stated. This particular B+-tree imple-
mentation uses some commonly known optimizations like the choice of the smallest possible
separator within the neighborhood of separators around the middle of each page, and a data
locality optimization where the first bytes of each key are stored within its corresponding
entry in the indirection vector [GL01; Gr06; Gr11].

4.2 Datasets

We have used a couple of different datasets in our evaluation. Those datasets were chosen to
resemble real-world workloads to a certain degree. Indexing of URLs and EnglishWikipedia
titles6 should resemble real-world scenarios. We also included a completely synthetic dataset
consisting of randomly drawn strings, this dataset will be denoted as Random dataset.

6 https://dumps.wikimedia.org/enwiki/20190901/enwiki-20190901-all-titles.gz

B2-Tree: Cache-Friendly String Indexing within B-Trees 53

https://dumps.wikimedia.org/enwiki/20190901/enwiki-20190901-all-titles.gz

16 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

distinct
count

average
length

median
length

min
length

max
length

Wikipedia 48 454 094 21.82 17 1 257
Random 30 000 000 68.00 68 8 128
URL 6 393 703 62.14 59 14 343

Tab. 1: Parameters of the used datasets.

Tab. 1 summarizes some of the most important characteristics of the used datasets. The
Random dataset is generated by a procedure which generates each string by drawing values
from two random distributions. Thereby, the first distribution determines the length of the
string which is about to be generated. Subsequently, the second distribution is used to draw
every single character in sequence until the final destination length is reached.

4.3 Lookup Performance

In the following we will compare the point lookup throughput of our B2-tree against our
reference. The lookup benchmark queries each key from the randomly shuffled dataset
which has been used for the construction of the index itself. Fig. 4a summarizes the results
of our string lookup benchmark whereas Fig. 4b shows the influence of B2-tree’s more
efficient lookup approach onto the insert throughput. B2-tree’s lookup throughput is roughly
twice as high as that of its direct competitor. Keys in the URL and Wikipedia datasets
often share large common prefixes, discriminative bits are therefore often not part of the
integer field within the indirection vector of Umbra’s B+-tree. In these situations, the B2-tree
has an advantage since the entries within the indirection vector are more likely to contain
discriminative bits. The Random dataset, on the other hand, features very short common
prefixes and a larger amount of discriminative bits between the bit string representation of
keys. It is therefore not surprising that the performance gap between the Umbra B+-tree and
our B2-tree is smaller on this dataset.

Approach Inst. IPC L1D-Miss LLC-Miss BR-Miss

Random
B2-tree 1402 0.39 38.32 10.17 15.9

Umbra B+-tree 2519 0.51 44.63 20.02 19.84

URL
B2-tree 1839 0.49 45.69 11.35 22.74

Umbra B+-tree 3382 0.51 79.58 28.88 16.15

Wikipedia
B2-tree 1593 0.38 46.02 13.84 22.76

Umbra B+-tree 3147 0.43 61.7 30.82 28.22

Tab. 2: Performance counters per lookup operation. The best entry in each case is highlighted in
bold type. B2-tree mostly dominates the Umbra B+-tree which is in accordance with the previously
discussed throughput numbers.

54 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 17

Recording performance counters during experiments usually facilitates further insights,
Tab. 2 therefore contains an exhaustive summary. Comparing the averaged amount of
instructions required per lookup between the B+-tree and our B2-tree already reveals a
considerable advantage in favor of the latter approach. This advantage also exists between
the observed amount of L1 data cache misses (L1D-Miss) and last level cache misses
(LLC-Miss), where the latter metric reveals that the standard B+-tree produces roughly twice
as many misses. This is most likely related to the redesigned search procedure. Thereby,
binary search is performed on a smaller search range. Furthermore, the contents of the infix
fields within the indirection vector are usually more decisive than the contents wherein
stored by the Umbra B+-tree. As a result, the comparison procedure, which will be invoked
by the binary search procedure, can often refrain from performing any comparisons on
the suffixes stored within the area where the remainder of the records are stored. This also
reduces the total amount of cache accesses. For the B2-tree one might expect fewer branch
mispredictions, since the infix values are usually more decisive, however, the metric for the
amount of mispredicted branches (BR-Miss) per lookup reveals no significant differences
between both approaches. This is most likely the result of the additional logic performed
during the lookups on the embedded tree.

4.4 Scalability

Additionally, to evaluating B2-tree’s single-threaded point lookup and range scan throughput,
we also analyzed its scalability. We ran the same workload as in the single-threaded point
lookup experiment. The results of this experiment are shown exemplarily for the URL
dataset in Fig. 5. Note that we omitted the results for the remaining datasets due to them
being very similar.

2 4 6 8 10

threads

2

4

6

8

10

M
lo

ok
u

p
s

/
s

B2-tree

Umbra B+-tree

Fig. 5: Scalability on the URL dataset.

Also, the performance difference between our standard B+-tree and B2-tree remains as the
number of threads increases. Overall, the B2-tree scales well for still being a B+-tree from
an implementation point of view. This also correlates with previous work which did analyze
the lookup throughput of B+-trees in combination with OLC [Le18; Wa18].

B2-Tree: Cache-Friendly String Indexing within B-Trees 55

18 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

4.5 Throughput With Page Swapping

The experiment was set up as follows: in the first phase, all the keys of the Wikipedia titles
were inserted into an empty index structure. If necessary, pages were swapped out into a
temporary in-memory file by the buffer manager. In the second phase, the retrieval time for
each key of the randomly shuffled input was measured.

0 2 4 6 8 10

swapped pages [%]

0.0

0.2

0.4

0.6

0.8

1.0

M
lo

ok
u

p
s

/
s

B2-tree

Umbra B+-tree

Fig. 6: Lookup throughput on the URL dataset with index structures utilizing Umbra’s buffer manager.

Fig. 6 shows the results of the comparison between these two index structures in dependence
of the percentage of swapped out pages. The B2-tree outperforms the Umbra B+-tree for
every tested percentage of swapped out pages. However, note that both curves eventually
converge as the workloads become increasingly I/O bound.

4.6 Space Consumption

Another important aspect of the presented approach is the total amount of additionally
required space on each page. Recall that we use 64 KiB large pages. We were able to fit the
complete embedded tree structure in just a couple of hundred bytes as Tab. 3 affirms.

dataset size [%]
Wikipedia titles 0.48
Random strings 0.49
URLs 0.52

Tab. 3: Averaged space consumption for the complete embedded tree in percent of the page size.

The space utilization of the embedded tree has therefore never been a source of concern
in our point of view. However, it should be noted that the size of the embedded tree is
variable, and that it will be influenced by the structure of the input data. Especially long
shared prefixes have an impact on the overall space consumption of the embedded tree.

56 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

The B2-Tree 19

5 Conclusion

We presented the B2-tree which speeds up lookup operations by embedding an additional
tree into each tree node. The B2-tree showed considerable performance improvements in
comparison to an optimized B+-tree. This is related to the total number of instructions
required per lookup, which in this case is lower than the number required by the Umbra
B+-tree. Our B2-tree, therefore, provides considerable improvements regarding the point
lookup throughput. The overhead inflicted by the construction of an embedded tree during
each page split is no point of concern as our experimental analysis showed. Furthermore, the
additional space required for the embedded structure is mostly negligible, as our evaluation
confirmed.

References

[BDF05] Bender, M.A.; Demaine, E. D.; Farach-Colton, M.: Cache-Oblivious B-Trees.
SIAM J. Comput. 35/2, pp. 341–358, 2005.

[BFK06] Bender, M.A.; Farach-Colton, M.; Kuszmaul, B. C.: Cache-oblivious string
B-trees. In: Proceedings of SIGMOD 2006. Pp. 233–242, 2006.

[BH07] Bender, M.A.; Hu, H.: An adaptive packed-memory array. ACM Trans.
Database Syst. 32/4, p. 26, 2007.

[Bi18] Binna, R.; Zangerle, E.; Pichl, M.; Specht, G.; Leis, V.: HOT: A Height
Optimized Trie Index for Main-Memory Database Systems. In: Proceedings
of SIGMOD 2018. Pp. 521–534, 2018.

[Br59] Briandais, R.D. L.: File searching using variable length keys. In: Papers
presented at the the March 3-5, 1959, western joint computer conference.
Pp. 295–298, 1959.

[Ch01] Cha, S. K.; Hwang, S.; Kim, K.; Kwon, K.: Cache-Conscious Concurrency
Control of Main-Memory Indexes on Shared-Memory Multiprocessor Systems.
In: Proceedings of VLDB 2001. Pp. 181–190, 2001.

[Co79] Comer, D.: Ubiquitous B-Tree. ACM Comput. Surv. 11/2, pp. 121–137, June
1979.

[FG99] Ferragina, P.; Grossi, R.: The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. J. ACM 46/2, pp. 236–280,
1999.

[Fr60] Fredkin, E.: Trie memory. In: CACM. 1960.
[Ga18] Galakatos, A.; Markovitch, M.; Binnig, C.; Fonseca, R.; Kraska, T.: A-Tree: A

Bounded Approximate Index Structure. CoRR abs/1801.10207/, 2018.
[GL01] Graefe, G.; Larson, P.-Å.: B-Tree Indexes and CPU Caches. In (Georgakopou-

los, D.; Buchmann, A., eds.): IEEE Data Eng. 2001. Pp. 349–358, 2001.

B2-Tree: Cache-Friendly String Indexing within B-Trees 57

20 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

[Gr06] Graefe, G.: B-tree indexes, interpolation search, and skew. In: Workshop on
Data Management on New Hardware, DaMoN 2006. P. 5, 2006.

[Gr11] Graefe, G.: Modern B-Tree Techniques. Found. Trends Databases 3/4, pp. 203–
402, 2011.

[GUW09] Garcia-Molina, J.W.H.; Ullman, J. D.; Widom, J.: DATABASE SYSTEMS
The Complete Book Second Edition.” 2009.

[Ha08] Harizopoulos, S.; Abadi, D. J.; Madden, S.; Stonebraker, M.: OLTP through
the looking glass, and what we found there. In: Proceedings of SIGMOD 2008.
Pp. 981–992, 2008.

[JC10] Jin, R.; Chung, T.-S.: Node Compression Techniques Based on Cache-Sensitive
B+-Tree. In: 9th IEEE/ACIS ICIS 2010. Pp. 133–138, 2010.

[KM17] Khuong, P.-V.; Morin, P.: Array Layouts for Comparison-Based Searching.
ACM Journal of Experimental Algorithmics 22/, 2017.

[KN11] Kemper, A.; Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In: Proceedings of ICDE
2013. Pp. 195–206, 2011.

[Le18] Leis, V.; Haubenschild, M.; Kemper, A.; Neumann, T.: LeanStore: In-Memory
Data Management beyond Main Memory. In: Proceedings of ICDE 2018.
Pp. 185–196, 2018.

[LHN19] Leis, V.; Haubenschild, M.; Neumann, T.: Optimistic Lock Coupling: A
Scalable and Efficient General-Purpose Synchronization Method. IEEE Data
Eng. Bull. 42/1, pp. 73–84, 2019.

[LKN13] Leis, V.; Kemper, A.; Neumann, T.: The adaptive radix tree: ARTful indexing
for main-memory databases. In: Proceedings of ICDE 2013. Pp. 38–49, 2013.

[MKM12] Mao, Y.; Kohler, E.; Morris, R. T.: Cache Craftiness for Fast Multicore Key-
value Storage. In: Proceedings of EuroSys 2012. Bern, Switzerland, pp. 183–
196, 2012.

[Mo68] Morrison, D. R.: PATRICIA—Practical Algorithm To Retrieve Information
Coded in Alphanumeric. J. ACM 15/4, pp. 514–534, Oct. 1968.

[NF20] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-Memory
Performance. In: Proceedings of CIDR 2020. 2020.

[RR99] Rao, J.; Ross, K. A.: Cache Conscious Indexing for Decision-Support in Main
Memory. In: Proceedings of VLDB 1999. Pp. 78–89, 1999.

[SPB05] Samuel, M. L.; Pedersen, A.U.; Bonnet, P.: Making CSB+-Tree Processor
Conscious. In: Workshop on Data Management on New Hardware, DaMoN
2005, Baltimore, Maryland, USA, June 12, 2005. 2005.

[Wa18] Wang, Z.; Pavlo, A.; Lim, H.; Leis, V.; Zhang, H.; Kaminsky, M.; An-
dersen, D.G.: Building a Bw-Tree Takes More Than Just Buzz Words. In:
Proceedings of SIGMOD 2018. Pp. 473–488, 2018.

58 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper

cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

Optimized Theta-Join Processing through Candidate
Pruning and Workload Distribution

Julian Weise1, Sebastian Schmidl2, Thorsten Papenbrock3

Abstract: The Theta-Join is a powerful operation to connect tuples of different relational tables
based on arbitrary conditions. The operation is a fundamental requirement for many data-driven
use cases, such as data cleaning, consistency checking, and hypothesis testing. However, processing
theta-joins without equality predicates is an expensive operation, because basically all database
management systems (DBMSs) translate theta-joins into a Cartesian product with a post-filter for
non-matching tuple pairs. This seems to be necessary, because most join optimization techniques,
such as indexing, hashing, bloom-filters, or sorting, do not work for theta-joins with combinations of
inequality predicates based on <, ≤, ≠, ≥, >.
In this paper, we therefore study and evaluate optimization approaches for the efficient execution of
theta-joins. More specifically, we propose a theta-join algorithm that exploits the high selectivity of
theta-joins to prune most join candidates early; the algorithm also parallelizes and distributes the
processing (over CPU cores and compute nodes, respectively) for scalable query processing. The
algorithm is baked into our distributed in-memory database system prototype A2DB. Our evaluation
on various real-world and synthetic datasets shows that A2DB significantly outperforms existing
single-machine DBMSs including PostgreSQL and distributed data processing systems, such as
Apache SparkSQL, in processing highly selective theta-join queries.

Keywords: theta-join; query optimization; distributed computing; actor programming

1 Theta-Join Processing

A join is a powerful operation in relational database theory that allows us to combine tuples
of the same or different relational instances. The most popular join operator is the equi-join
⊲⊳ that combines tuples based on the equality of certain attribute values. The equi-join
serves most basic tuple combination scenarios, such as tuple reconstruction in normalized
schemata, knowledge enrichment via data integration, and the resolution of foreign-key
relationships. The theta-join ⊲⊳Θ is a generalized join variant that combines tuples based on
arbitrary join conditions Θ including but not limited to value equality. A join condition is a
boolean statement on the attribute values of two tuples. Following related work, we express
any such statement as a conjunction of predicates based on <, ≤,≠, ≥, >.
1 Hasso Plattner Institute for Digital Engineering gGmbH, University of Potsdam, Information Systems, Prof.-Dr.-

Helmert-Str. 2-3, 14482 Potsdam, Germany julian.weise@hpi-alumni.de
2 Hasso Plattner Institute for Digital Engineering gGmbH, University of Potsdam, Information Systems, Prof.-Dr.-

Helmert-Str. 2-3, 14482 Potsdam, Germany sebastian.schmidl@hpi.de
3 Hasso Plattner Institute for Digital Engineering gGmbH, University of Potsdam, Information Systems, Prof.-Dr.-

Helmert-Str. 2-3, 14482 Potsdam, Germany thorsten.papenbrock@hpi.de

cba doi:10.18420/btw2021-03

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 59

https://creativecommons.org/licenses/by-sa/4.0/
mailto:julian.weise@hpi-alumni.de
mailto:sebastian.schmidl@hpi.de
mailto:thorsten.papenbrock@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-03

2 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Geo-spacial querying. Theta-joins are used whenever tuples need to be paired up in a
specific way. In temporal or geo-spacial querying, for example, tuples often need to match
in certain value ranges. The query "Combine all City-tuples with those State-tuples in
which they are geographically located"(see Figure 1), for instance, matches tuples based on
longitude (Long) and latitude (Lat) range information.

d� (�8CH) ⊲⊳(.!>=6<8=≤�.!>=6∧(.!>=6<0G ≥�.!>=6∧(.!0C<8=≤�.!0C∧(.!0C<0G ≥�.!0C d(((C0C4)

Fig. 1: A geo-spatial query that builds tuples of cities and their corresponding states.

Data cleaning. Another important area of application for theta-joins is rule-based data
cleaning. Given a data quality rule or an integrity constraint, such as "TaxPayers with higher
income need to pay more taxes than TaxPayers with lower income", we can formulate the
negated constraint as a theta-join query (see Figure 2) to retrieve all data inconsistencies
w. r. t. this constraint from the data and clean them afterwards.

d) 1 ()0G%0H4A) ⊲⊳) 1.� =2><4<) 2.� =2><4∧) 1.) 0G'0C4>) 2.) 0G'0C4 d) 2 ()0G%0H4A)

Fig. 2: A data cleaning query retrieving all inconsistent tuple pairs w. r. t. a given integrity constraint.

Hypothetis testing. The use of theta-joins in the area of hypothetis testing works very
similar to the data cleaning use case: Given a hypothethis statement, such as "Countries
that invest more in education have less child poverty and a higher educational level than
Countries that invest less in education", we can query all pairs of countries that contradict
this statement via a theta-join (see Figure 3).

d�(�>D=CAH) ⊲⊳�.�(?4=3>�.�(?4=3∧(�.�%>E≥�.�%>E∨�.�!4E4;≤�.�!4E4;) d� (�>D=CAH)

Fig. 3: A hypothesis testing query that collects contradicting tuple pairs.

Hypothesis and integrity statements are often formulated manually by domain experts.
They can, however, also be discovered automatically with modern data mining and data
profiling algorithms. Functional dependencies, order dependencies and denial constraints
are only a few types of statements that can meanwhile be retrieved automatically [AGN15].
While it has been shown that the mined statements are useful for tasks, such as consistency
checking and data cleaning [Bo07; Co17], the amount and complexity of the statements
puts significant pressure onto the theta-join operations used for their evaluation.

Although the theta-join is an essential part of relational algebra, its common physical
implementation in data query engines is a nested-loop join, i. e., the Cartesian product, in
combination with a filter operation. Consider for example the theta-join shown in SQL
Query 1, which targets the San Francisco Employee Compensation dataset4.

4 https://data.sfgov.org/City-Management-and-Ethics/Employee-Compensation/88g8-5mnd (08-August-2020)

60 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

https://data.sfgov.org/City-Management-and-Ethics/Employee-Compensation/88g8-5mnd

Optimized Theta-Join Processing 3

SELECT a.eID, b.eID
FROM EmployeeCompensation a, EmployeeCompensation b
WHERE a.jobCode = b.jobCode

AND a.salaries < b.salaries
AND a.eID != b.eID

SQL Query 1: Identify pairs of employees performing the same job but being paid differently.

We executed the query on different query engines including PostgreSQL5, SparkSQL6 and
Amazon Redshift7, which all produced a query plan similar to the one shown in Listing 2:
an equi-join on the equality predicates followed by a post-filter on the inequality predicates.

Merge Join
Merge Cond: (a.jobcode = b.jobcode)
Join Filter: ((a.salaries < b.salaries) AND (a.ID <> b.ID))
-> Sort: Sort Key: a.jobcode
-> Seq Scan on EmployeeCompensation a

-> Materialize
-> Sort: Sort Key: b.jobcode
-> Seq Scan on EmployeeCompensation b

Listing 2: The PostgreSQL query plan for SQL Query 1.

With the high selectivity of the equi-join, the query offers a relatively good performance.
However, considering the queries of the use cases discussed above, most of them do not
employ equality operators. So replacing the equality operator in Query 1 with an inequality
operator causes the query engines to produce queries plans similar to the one shown in
Listing 3: a nested-loop join with a large post-filter.

Nested Loop
Join Filter: ((a.jobcode <> b.jobcode)
AND (a.salaries < b.salaries) AND (a.ID <> b.ID))
-> Seq Scan on EmployeeCompensation a
-> Materialize
-> Seq Scan on EmployeeCompensation b

Listing 3: PostgreSQL Query Plan for SQL Query 1 without equality operator

Because the established hashing-, indexing- and sorting-based optimizations are not
applicable for complex join conditions with inequality predicates, the systems fall back to
the quadratic comparison of all tuples without employing any optimization. The performance
of the nested-loop join in all systems is, therefore, dramatically worse than the performance

5 https://www.postgresql.org/ (08-August-2020)
6 https://spark.apache.org/sql/ (08-August-2020)
7 https://aws.amazon.com/redshift/ (08-August-2020)

Optimized Theta-Join Processing 61

https://www.postgresql.org/
https://spark.apache.org/sql/
https://aws.amazon.com/redshift/

4 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

of an equi-join. This is problematic when executing theta-joins on real-world datasets as the
costs scale quadratically with the datasets’ size.

Although there is probably no solution for the quadratic complexity of theta-joins, we
can still optimize the join performance by pruning join candidates (and, hence, their join
condition tests) and by distributing the join workload to multiple machines (and, hence,
scale out the processing). In this paper, we develop a theta-join algorithm that implements
these two optimizations for our distributed in-memory database system prototype A2DB.
A2DB is an actor-based and, therefore, inherently parallel and distributable database, which
is designed for analytical query workloads. It builds upon the actor model, which is a
reactive programming paradigm that uses actors as its universal computational primitives.
An actor is essentially an object with strictly private state that communicates with other
actors using asynchronous messaging. The architecture of this system follows the idea of an
actor database system [Be18; SSP19], in which all database state is encapsulated in actors.
Our database prototype and, hence, also our theta-join algorithm are implemented using the
akka toolkit8, which is the most popular actor model implementation for the Java Virtual
Machine.

Join candidates pruning. Our first optimization is based on the observation that theta-join
results in real-world use cases are small (often even empty) and grow rather linearly with the
size of the data: Geo-spacial queries result in manageable overlaps, data cleaning queries
should return relatively few data quality issues, and hypothesis checking queries are expected
to return empty results (or very small results if the hypothesis is not quite correct). For
this reason, most real-world theta-joins have a high selectivity. In this paper, we propose
a theta-join algorithm that calculates and evaluates the selectivity of the individual join
predicates; selective predicates are, then, used to prune the candidate space.

Join workload distribution. Because theta-join results have a quadratic worst-case size in
the length of the input dataset, the candidate pruning effects are not always sufficient to
process larger join queries. For this reason, our theta-join algorithm facilitates parallelization
and can be scaled out to multiple compute nodes. The ability to scale also naturally exploits
the distributed storage of data in the A2DB system.

In the following, we first discuss related work in the area of (theta-)join processing and the
limitations of existing approaches (Section 2). We then explain how data is maintained and
distributed (Section 3). With these basic details explained, we first describe our distributed
theta-join algorithm (Section 4) and then its selectivity-based join strategies (Section 5).
In an extensive evaluation, we then compare the performance of our theta-join algorithm
with the performance of the data processing systems PostgreSQL (single node), SparkSQL
(12 node cluster) and Amazon Redshift (12 node cloud) to demonstrate that A2DB can
process selective theta-joins significantly faster than the state-of-the-art Carthesian product
plus post-filter approach (Section 6).

8 https://akka.io (08-August-2020)

62 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

https://akka.io

Optimized Theta-Join Processing 5

2 Related Work

In this section, we give an overview of existing work in the area of theta-join processing.
We take a brief look at the origin of join operations in the relational model but focus our
investigation on efficient and distributed answering of theta-joins.

Relational Joins were first discussed by Codd in 1970 as a concept of combining tuples
based on attribute equality in his proposal for the relational data model. He later extended his
proposal by combining tuples also with non-equality operators, which was the introduction
of the theta-join operator [Co79]. Early subsequent work then mainly focused on the
equality-based join operation and suggested various implementations and optimizations to
calculate these equi-joins efficiently [Go75]. Prominent examples are hash, sort-merge, and
nested-loop joins, as well as techniques utilizing indexes [ME92].

Parallel and Distributed Equi-Join Processing techniques have been examined extensively
in response to the development of multi-core machines. Specifically, researchers identified
challenges and proposed solutions for typical problems in multi-threaded and distributed
systems, such as shared state and workload partitioning [ESW78; VG84]. A prominent
optimization for calculating joins in distributed systems, which was proposed by Bernstein,
utilizes semi-joins to extract join candidates [BC81]. In this way, the communication
overhead and, hence, query processing time could be decreased significantly. Most of the
techniques proposed in this area can, however, not be applied to theta-joins, because they do
not support complex theta predicates.

Efficient Theta-Join Processing is the goal of the IE-Join algorithm by Khayyat et
al. [Kh15]. The algorithm applies a sophisticated sort-merge approach by first sorting the
values of up to two join attributes and implicitly identifying candidate sets. Via permutation
arrays and clever bitset operations, the algorithm tests all predicates of the join condition
successively while effectively pruning candidates on the way. In this way, IE-Join is orders
of magnitude faster than both PostgreSQL and SparkSQL. Despite its superior performance,
the proposed approach is inherently limited to only two join predicates. Adapting IE-Join to
more than two predicates requires exactly the strategies proposed in this paper: a strategy to
choose the two IE-Join predicates and a post-processing step for all non-chosen predicates.

Distributed Theta-Join Processing optimizations mostly target batch processing and data
flow engines, such as Apache MapReduce or Apache Spark. These engines are effective
in processing equi-joins, because distributed grouping and aggregation of tuples is baked
into their core feature set, but ineffective for theta-joins, because the grouping does not
innately support inequality operators. The 1-Bucket-Theta algorithm by Okcan et al. [Ok11]
is a theta-join processing approach on MapReduce that splits the quadratic comparison
space into buckets, which are then processed distributedly by different machines to share
the comparison load. M-Bucket-Theta enhances the 1-Bucket-Theta algorithm in that the
algorithm can detect empty regions in the matrix and prune non-contributing join candidates.
Because the algorithm depends on a single comparison matrix, theta-joins with more than

Optimized Theta-Join Processing 63

6 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

one predicate are handled by concatenating the predicates’ attributes into one key. For this
reason, M-Bucket-Theta can handle theta-joins with only one predicate effectively. The work
of Koumarelas et al. [KNG18] proposes several strategies to optimize M-Bucket-Theta’s
efficiency for low-selectivity queries. By manipulating the matrix of the mapping phase such
that larger regions of it can be pruned, the strategies reduce the algorithm’s communication
and computation costs by up to 45% and 50% respectively. Despite these performance
improvements, the theta-join algorithm still cannot handle multiple predicates. Because
multiple-predicate theta-joins are a given for most use cases, such as hypothesis testing and
data cleansing, we do not evaluate these approaches in this work.
To join more than two relations at once, Zhang et al. studied the problem of decomposing a
multi-way theta-join into multiple binary joins and proposed different strategies and a cost
model for optimizing the overall processing time [ZCW12]. For the execution of chained
joins, the authors rely on variations of M-Bucket-Theta. In this paper, we consider multi-way
theta joins as orthogonal work and focus on efficiently joining two relations.
Besides the MapReduce-based theta-join approaches, Apache Spark supports join processing
with arbitrary join conditions innately with its relational module SparkSQL [Ar15]. The data
flow engine offers DataFrames as an abstraction for distributed datasets and an SQL engine
to query these datasets. Although the engine also falls back on Broadcast-Nested-Loop-Joins
when processing theta-joins, the framework is significantly faster than MapReduce.
The capability of distributed theta-join processing can also be found in many commercial
DBMSs, such as Amazon Redshift. Redshift is a distributed data warehouse solution hosted
exclusively in the Amazon Web Services (AWS) cloud. It distributes data across a cluster of
configurable size and involves all nodes in query answering. Redshift in particular claims
itself to be an efficient and scalable solution for experimenting with (possibly huge) amounts
of data [Gu15], which makes it a perfect baseline for our experimental evaluations.

3 Data storage in A2DB

Before we introduce our theta-join algorithm, we need to explain how our database system
prototype A2DB stores and handles data. A2DB is an actor-based, distributed in-memory
relational DBMS for analytical query workloads that facilitates a leader-follower architecture:

Leader Node: One dedicated node in the A2DB cluster takes the role of a leader. It is
responsible for bookkeeping the follower node’s membership state, accepting queries and
loading data into the database.

Follower node: An A2DB follower is a node in the cluster that is responsible for maintaining
and querying portions of the data. Which portions, i. e., partitions of the data a follower is
responsible for is defined by the leader node.

Follower nodes play an active role in query processing: The leader node breaks every
submitted query, such as a theta-join, into multiple work packages and assigns them to
individual follower nodes. Once a follower node receives a work package, it requests

64 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Optimized Theta-Join Processing 7

necessary data from other nodes, decides the best local query execution strategy, processes
the local results, and sends the results of the query back to the master.

The partitioning of the data in A2DB follows the PAX concept: The entire relational dataset
is sliced horizontally into equally sized partitions and every partition is stored columnar-wise
on one follower node. For every column in a partition, A2DB maintains column-specific
metadata, such as the column’s min and max values in this partition and a pre-calculated
sorting of the partition tuples w. r. t. this column. During query processing, the extreme
values can be used to prune this partition and the pre-sortings support sort-based query
operators, such as sort-merge joins.

Strictly following the actor programming model, all partitions in A2DB are represented
as autonomous actors, which is, in private, non-parallelizable actor state. To access data
owned by another actor (e. g., in a join scenario), partition holder actors need to ask other
partition holder actors via asynchronous messaging for certain tuples, columns, or values.

4 Theta-Join Workload Distribution
When theta-joining two relations ' and (, the query engine needs to validate each possible
combination of tuples from both relations against the join condition Θ. Hence, up to
|' | × |(| comparisons need to be performed. Our first approach to efficiently process these
comparisons is to distribute the workload to any given number of nodes. When a query
is issued, the data is already horizontally partitioned on these nodes. In this section, we
propose a reactive join strategy that decomposes and distributes the Θ evaluations. Figure 4
visualizes the general idea of our approach with an example: A2DB splits the join space of
two relations ' and (and their partitions '8 and (8 into node-joins, such as '� ⊲⊳Θ (�, and
each node-join then into partition-joins, such as %'1 ⊲⊳Θ ((1. A partition-join comprises
two partitions %'8 and %(8 and constitutes the smallest work-package in the system. In
the example, the theta-join consists of four node-joins and each node-join consists of four
partition-joins – usually, though, an A2DB cluster consists of more nodes and partitions.

Figure 5 depicts the process of executing a theta-join: When the leader node receives a
theta-join query, it creates the node-join matrix that partitions the join into node-joins. It
then opens a query session, which causes all follower nodes to calculate their local node-join,
i. e., all '� ⊲⊳Θ (�, '� ⊲⊳Θ (� etc. To perform a partition-join, a processor evaluates all
tuple combinations ((C', C() | C' ∈ %'8 , C(∈ %(9) against the join conditionΘ and sends the
matching tuples to the result set of the theta-join on the leader. Whenever a follower node
finishes a node-join, the leader serves the follower with another node-join. This reactive
work pulling mechanism keeps all cluster nodes busy until the join is completed. The leader
coordinates this process so that, in the end, all partition-joins are executed. Later in this
section, we discuss the leader’s node-join selection strategy in more detail.

Every node-join is calculated on one follower node. On that node, the calculation is strongly
parallelized and consists of three overlapping steps, which are also shown in Figure 5: The

Optimized Theta-Join Processing 65

8 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Relation R Relation S

r7
r8
r10

r11
r12
r13

s7
s8
s10

s11
s12
s13

PR3

PR4

PS3

PS4

r1
r2
r3

r4
r5
r6

s1
s2
s3

s4
s5
s6

PR1

PR2

PS1

PS2

N
od

e
A

N
od

e
B

Node A Node B

PR1⋈θPS1

PR1⋈θPS2 PR2⋈θPS2

PR2⋈θPS1

RA⋈θSA

PR3⋈θPS3

PR3⋈θPS4 PR4⋈θPS4

PR4⋈θPS3

RB⋈θSB

PR3⋈θPS1

PR3⋈θPS2 PR4⋈θPS2

PR4⋈θPS1

RB⋈θSA

PR1⋈θPS3

PR1⋈θPS4 PR2⋈θPS4

PR2⋈θPS3

RA⋈θSB

N
ode A

N
ode B

Fig. 4: Distribution of the theta-join calculations over two nodes.

work generation step splits the node-join into partition-join tasks. The data loading step
then fetches all necessary remote partition data on demand from the other node of the
current node-join; the step makes sure that every partition is retrieved only once and it is
skipped by the self node-joins, e. g., '� ⊲⊳Θ (�. Once a remote partition is available, the
execution step can start to join this partition with every local partition; every partition-join
is executed reactively on one actor and, hence, in parallel to other partition joins. Once
all partition-joins are calculated and their results are send to the leader, the node-join is
completed and the follower is ready for the next node-join.

In the following, we discuss the orchestration of the node-joins (Section 4.1), the provisioning
of partitions (Section 4.2), and the actual join processing (Section 5).

4. θ-Join1. θ-Join 3. Partition Join2. Node Join

R ⋈θ S

RA ⋈θ SB

RA ⋈θ SA

RB ⋈θ SA

RB ⋈θ SB

PR3 ⋈θ PS3

PR3 ⋈θ PS4

PR4 ⋈θ PS4

PR5 ⋈θ PS5

PR5 ⋈θ PS6

PR6 ⋈θ PS5

[...]

[...]

[...]

[...]

3. Execution

2. Data-Loading

1. Work Generation

1. Work Generation

2. Data-Loading

3. Execution

Row-based-Join Strategy Column-based-Join Strategy

Row-based-Join Strategy Column-based-Join Strategy

Result Set
R ⋈θ S

[...]

[...]

Fig. 5: Overview of the entire distributed theta-join processing process.

66 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Optimized Theta-Join Processing 9

4.1 Execution Plan

The execution plan is essentially a dynamically created actor on the leader that represents
the distributed execution of a theta-join query. It opens a cluster-wide session (involving
session actors on all follower nodes), orchestrates the intermediate query processing steps
and collects the query result. Through the session actors, all follower nodes know each other
and can communicate on a peer-to-peer basis.

With the execution plan, A2DB aims to orchestrate the node-joins in an optimal way. It
does so by sending out node-joins as work packages to the followers’ query executors.
The initial task for each follower’s executor is to calculate the local node-join. Afterwards,
the executors start pulling further node-joins from the execution plan and the task of the
execution plan is to serve these requests in a best possible way. This means primarily that
every node-join should be handled by a node that owns at least one of the node-join’s sides,
i. e., '� ⊲⊳Θ (� should be handled by node � or �. Furthermore, we assign both node-join
directions to the same node, i. e., '� ⊲⊳Θ (� and (� ⊲⊳Θ '� are one work package that goes
to either node � or node �. In this way, partitions are not send in both directions. However,
by assigning the node-joins naively in, for instance, node order, the execution plan quickly
encounters requests by a node, whose partitions have all already been joined elsewhere,
and therefore cannot serve this node with optimal work. Because followers usually finish
their node-joins unevenly fast, the execution plan cannot plan the node-join distribution in
advance and, instead, chooses the node-joins reactively based on three heuristics:

1. Data Locality: Assign a node-join that involves the partitions of the requesting node,
if possible. This rule has the highest priority and overrules all other heuristics.

2. Selection Flexibility: Assign a node-join with the least often joined node. By joining
the least often joined node next, the execution plan maintains the highest possible
flexibility for future join selections – it effectively tries to avoid situations where all
node-joins of a particular requesting node are already done. For this, the execution
plan counts the number of already assigned node-joins per node.

3. Query Politeness: Assign a node-join with the least often requested node. If all
potential join partner have the same join counts, selecting the least often requested
partner should avoid uneven loads for sending out local partitions. For this heuristic,
the execution plan also counts the number of partition requests per node.

Work assisting: Despite these heuristics, the execution plan cannot always meet the first
rule, especially at the end of the execution. So if a node cannot be served with a node-join
involving itself, the execution plan assigns a node-join according to rule two and three. We
refer to the process of taking over foreign node-joins as work assisting. The processing of
such node-joins requires the execution node to fetch partitions from two nodes instead of
one, which is more expensive. Hence, to decide whether work assisting is actually beneficial,
the execution plan tracks three additional runtime metrics per node: the average execution
time of node-joins C0E4A064, the execution time for the current node-join C4;0?B43 , and the
average partition transfer delay C34;0H . Then, work stealing is done only if the expected

Optimized Theta-Join Processing 67

10 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

remaining execution time (C0E4A064− C4;0?B43) is larger than the expected additional network
delay of executing the next node-join as a foreign-node-join (C34;0H).

Work stealing: If work assisting is no longer possible, follower nodes may support other
follower nodes in finalizing their current node-joins by “stealing” some partition-joins. In
contrast to work assisting, work stealing does not take over an entire node-join but some
portion of the remaining partition-joins. For this, the execution plan actor instructs the work
requesting follower to steal half of the partition-joins from the follower with the shortest
current node-join time C4;0?B43 , which should be the follower with the heuristically most
unfinished partition-joins. The stealing follower than retrieves these partition-join tasks
from the target follower in a peer-to-peer fashion. Both followers report their join results
directly to the leader; the leader takes care that no follower is “robbed” more than once.

4.2 Context-specific Partition Provisioning

Before a follower node requests partitions from another follower node, it first exchanges
both the join condition Θ and the headers of the involved partitions (see Section 3) with the
other follower. The join condition and header metadata help the follower nodes to exchange
only required, i. e., context specific partition data. Given the node-join '� ⊲⊳\ (�, then only
a portion of (’s partitions on node � are relevant for the node-join on node �:

1. � requires only those attribute values from �’s partitions that are used in Θ. Thanks
to the column-oriented format of the partitions, these attributes can easily be selected.

2. � requires only those records from �’s partitions that intersect with �’s partitions
w. r. t. all of Θ’s attribute-specific join operators, which are <, ≤, =,≠, ≥, >. The
overlap can be checked quickly with the partition’s min and max values of each
attribute.

As an example for condition 2, if two partitions %'8 and %(9 have no overlap in attribute G,
i. e., %'8 .G<8= > %(9 .G<0G and the join condition is '.G < (.G or '.G ≤ (.G, then A2DB
does not transmit %(9 , because the join of these partitions is empty. If %'8 and %(9 overlap
partially, the records are filtered so that the range (min and max) of the transmitted values
matches all Θ conditions. In other words, given '.G < (.G, node � sends only those local
%(9 records where %(9 .G > %'8 .G<8=. With this minimal checking overhead, A2DB can
prune many partition values from the sending process.

5 Theta-Join Candidate Pruning

As already shown in Figure 5, the node-join processing consist of three steps: work generation,
data loading, and execution. The work generation splits the node-join into partition-joins
and puts the resulting tasks into a task queue. To not overload the memory or network

68 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Optimized Theta-Join Processing 11

and to allow other followers to steal work from the task queue, data loading and execution
operate on a pull-based execution model: Free worker actors consume partition-join tasks,
which first causes missing partition data to be loaded and, once the data arrives, be joined.
Via slight over-provisioning and data pre-fetching, the A2DB follower nodes maximize
both CPU and network utilization. The final partition-join execution step takes as input the
partitions %'8 and %(9 , the partition header metadata, and the join condition Θ.

5.1 Predicate-specific Selectivity Calculation

Before A2DB starts the actual join calculation, it first determines the selectivity of each join
predicate %'8 .G ⊲⊳o %(9 .G in Θ with o ∈ {<, ≤, =,≠, ≥, >}. Based on the selectivities, each
follower can later choose the best join strategy for its current partition-join. To calculate
the selectivity for each join predicate, A2DB exploits the pre-calculated sortings of every
attribute in a way that requires at most 2 · (|%'8 | + |%(9 |) tuple comparisons. For this, we
interpret each predicate as a |%'8 | × |%(9 | matrix of record pairs. We then draw two lines into
this matrix that separate matching tuples from non-matching tuples w. r. t. the predicate’s
join operator o. Figure 6 shows example results for all operators. To calculate the selectivity,
we simply sum up all ranges of matching tuples and divide the result by |%'8 | · |%(9 |.

X

Y

2 3 5 7 11

4

5

5

7

9

X

Y

2 3 5 7 11

4

5

5

7

9

<

(a) <

X

Y

2 3 5 7 11

4

5

5

7

9

≤

(b) ≤

X

Y

2 3 5 7 11

4

5

5

7

9

≠

(c) ≠

X

Y

2 3 5 7 11

4

5

5

7

9

=

(d) =

X

Y

2 3 5 7 11

4

5

5

7

9

>

(e) >

X

Y

2 3 5 7 11

4

5

5

7

9

≥

(f) ≥
Fig. 6: Exemplified join matrices for all join operators supported by A2DB

To calculate the border lines efficiently, a partition-join worker starts with two pointers ; and
A in the left-upper corner of the matrix. It then compares the records at the pointer locations
and advances the ; pointer in a way that it follows the left index of matching tuples and
A follows the right index of matching tuples. So for example, if %'8 (;) o %(9 (;) is true,
i. e., the records’ values at pointer location ; match, ; advances downwards; otherwise, it
advances to the right. For the same comparison, A advances to the right for matches and
downwards, otherwise. The calculation ends when both pointers arrive at the bottom of
the matrix. Note that this procedure does not work for ≠, because ≠ defines two areas
of matching tuples; hence, A2DB calculates ≠ as = and inverts the resulting counts. The
matching tuple pairs are technically stored in an |%'8 | long array of ranges (see Figure 7).
We call this the join candidate set for predicate o. The range indexes are given by the ; and
A pointers whenever these pointers move downwards. The selectivity calculation is executed
for all join predicates of Θ in parallel and finishes when all branches are done.

Optimized Theta-Join Processing 69

12 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

X

Y

2 3 5 7 11

4

5

5

7

9

[2, 4]

[3, 4]

[3, 4]

[4, 4]

[4, 4]

X

Y

2 3 5 7 11

4

5

5

7

9

<

(a) <

[2, 4]

[2, 4]

[3, 4]

[4, 4]

X

Y

2 3 5 7 11

4

5

5

7

9

≤

[2, 4]

(b) ≤

X

Y

2 3 5 7 11

4

5

5

7

9

≠

[0, 4]

[0, 2]

[0, 2]

[0, 3]

[4, 5]

[4, 5]

[5, 5]

[0, 4]

(c) ≠

X

Y

2 3 5 7 11

4

5

5

7

9

=

[2, 2]

[2, 2]

[3, 3]

∅

∅

(d) =

[0, 2]

[0, 3]

[0, 1]

[0, 1]

[0, 1]

X

Y

2 3 5 7 11

4

5

5

7

9

>

(e) >

X

Y

2 3 5 7 11

4

5

5

7

9

≥

[0, 1]

[0, 2]

[0, 2]

[0, 3]

[0, 3]

(f) ≥
Fig. 7: Representation of matching tuples pairs in ranges

5.2 Partition-Join Strategies

The intersection of all candidate sets, i. e., all tuple pair sets of all predicates, is the theta-join
result for %'8 ⊲⊳Θ %(9 . However, because the join matrices (mostly) use different sortings,
the calculated ranges cannot be intersected directly. There are basically two join strategies
that we can follow at this point: row-oriented joining and column-oriented joining.

Row-oriented Join Strategy: The row-oriented joining strategy takes a set of join candidates,
which is, for example, the candidate set of one join predicate, and checks each candidate
against the entire join condition Θ. This immediately validates the entire join tuple, i. e.,
one result row. Because Θ is formulated in conjunctive normal form, the predicate testing
for one tuple pair stops immediately and discards the pair if a predicate is invalid.

Column-oriented Join Strategy: The column-oriented joining strategy successively
intersects the sets of matching tuple pairs of all join predicates. Thereby, the strategy
basically tests one predicate after the other vertically for all result tuples, i. e., column-wise
for each join attribute. To intersect two candidate sets, which are represented as lists of
tuple ranges based on attribute-specific sortings, A2DB first translates both candidate sets
into matrices with same tuple sortings in both dimensions. Both resulting matrices are
represented as |%'8 |-long array of sparse bitsets (1-bits for matches; 0-bits for no-matches).
After this transformation, A2DB can efficiently intersect these candidate sets. The costs for
the transformation and intersection depend on the selectivities of the two join predicates.

Both the row- and the column-oriented join strategy profit from considering the most selective
predicates, which is the one with the lowest selectivity factor, first: The candidate set of the
most selective predicate is the smallest and, hence, prunes the most candidate evaluations
when chosen as initial candidate set for row-oriented joining; similarly, intersecting the
sparsest candidate sets first in column-oriented joining maximizes the pruning effect of
every intersection step and, hence, the overall compute efficiency. For this reason, A2DB
sorts the predicates by their selectivity factors and uses the most selective predicates first –
regardless of the join strategy, which it needs to choose right after sorting the predicates.

Choosing the row-oriented strategy effectively uses one candidate set for pruning. However,
if there is no single predicate with a high selectivity (low selectivity factor) and further
predicates are needed to sufficiently prune the candidate space, this strategy alone looses a lot

70 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Optimized Theta-Join Processing 13

of pruning potential. On the other hand, choosing the column-oriented strategy exploits all
pruning aspects, but because the transformation of range-based into bitset-based candidate
sets is expensive, translating all candidate sets outweighs the pruning effect. Considering the
examples in Figure 6 shows that, for instance, neither (b) nor (f) are particular effective, but
their intersection, which is (d), is highly selective; the candidate set (c) is neither alone nor
in any combination effective enough to compensate its translation costs. For these reasons,
we propose a strategy selection heuristic that combines both approaches.

Strategy Selection Heuristic: All workers decide the join strategy for their current partition-
join task based on the local selectivities and independently of one another. After all predicates
are sorted in ascending order according to their selectivity factors, a worker follows the
following decision heuristic:

1. Only one predicate: If the join condition Θ consists of only one predicate, A2DB
simply returns the candidate set of that one predicate, which is the result of the current
partition-join.

2. 100% selective: If the most selective predicate matches no tuple pair, the partition-join
result is empty, because the predicate with the highest selectivity defines an upper
bound for the number of join results; hence, an empty set is returned.

3. 95 – 100% selective: If the most selective predicate matches only at most 5%, it alone
is so selective that column-oriented joining is not promising. For this reason, the
worker uses only the first predicate’s candidate set as input for row-oriented joining.

4. < 95% selective: If no highly selective predicate exists, the worker intersects the
two most selective predicates via column-oriented joining and feats the resulting
candidates into row-oriented joining.

The last case uses only the first two predicates for column-oriented joining, because we
observed that the first two predicates usually have such a strong combined pruning effect that
adding a third predicate does not pay off. Different settings of the proposed 95% decision
threshold can cause faster execution times depending on various factors, such as dataset size,
cluster size and cluster speed, but thresholds around 95% showed the best and also very
similar (hence robust) performance results in our experiments. This is due to the generally
high selectivity of most real-world theta-join queries and the fact that all workers choose
their strategies independently.

Whenever a worker finishes a partition-join, it sends the results to the leader node and
fetches the next partition-join from the work queue. After completing all partition-joins, the
current node-join is completed and the follower pulls the next node-join from the leader’s
execution plan. Once all node-joins are done, the execution plan actor reports the final result
to the query issuing client and closes the join session.

Optimized Theta-Join Processing 71

14 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

6 Evaluation

We now evaluate A2DB’s theta-join performance against the theta-join performance of three
state-of-the-art data query engines: PostgreSQL as a modern representative for a single
machine (non-distributed) DBMS, Amazon Redshift as a distributed and highly scalable
relational DBMS, and Apache SparkSQL as a distributed batch-processing system with
theta-join capabilities. For the experiments, we configured these systems as follows:

A2DB runs on a 12 node cluster, where each node has an Intel Xeon E5-2630 v4 CPU (20
threads), 32 GiB RAM and 1 GiBit/s Ethernet. The nodes run Ubuntu 18.04.4 and Java 1.8
with G1 garbage collector. A2DB uses a maximum partition size of 5,000 tuples for datatses
smaller than 500,000 tuples and a maximum partition size of 10,000 tuples, otherwise. In
this way, each node hosts at least one maxed out partition in all evaluations.

PostgreSQL version 10.12 uses one of the nodes described above, but with 64 GiB RAM.
We optimized the default configuration of PostgreSQL to achieve a better performance for an-
alytical workloads as suggested in the official documentation9: We set the shared_buffers
to 25% of the system’s main memory, which is 16 GiB. The work_mem is increased to
512 MB, to not exhaust the memory but still provide enough memory for executing queries
mainly in memory. We also increased the temp_buffers to 512 MB.

Apache SparkSQL version 2.4.4. uses the same cluster than A2DB. The driver program
is written in scala version 2.12 and uses the Hadoop distributed file system as storage
technology for the datasets and the query results.

Amazon Redshift needs to be hosted on different hardware in the AWS cloud. Its cluster
consists of 12 dc2.large nodes and runs Redshift version 1.0.17498. Each node is an EC2
cloud computing resource with an Intel E5-2686 v4 CPU (two threads), 15 GiB RAM,
and 160 GiB NVMe SSDs. To run only one query at a time, we changed the query queue
configuration to prohibit concurrent query execution and use all available memory.

Because the hardware for Redshift differs, we define the following rules for comparing the
query times of the four systems: A2DB is truly better than PostgreSQL only if it is at least
11 times faster than PostgreSQL (because it has 11 times more nodes); A2DB is better than
Redshift only if it is at least 10 times faster (because it has 10 times more threads) and
A2DB is clearly slower if Redshift is faster despite its disadvantage – otherwise, we cannot
specify which query processing time is better as we do not know Redshift’s scalabilty with
the number of local threads (note that Redshift is also highly optimized and specifically
tuned for being executed on AWS hardware); A2DB and SparkSQL are directly comparable.

For our experiments, we use synthetic and real-world datasets, which are differently sized
subsets of four base recordsets (see Table 1): The synthetic TPC-H benchmark dataset, the
employee compensation dataset DataSF of San Francisco, the US Bureau of Transportation

9 https://www.postgresql.org/docs/10/runtime-config-resource.html (08-August-2020)

72 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

https://www.postgresql.org/docs/10/runtime-config-resource.html

Optimized Theta-Join Processing 15

dataset Flight, and the extended edited synoptic Cloud reports dataset. For the purpose of
identifying single rows, we extended all datasets with an additional surrogate key, which is
a dedicated, monotonic increasing integer id column. We cut down the Cloud dataset to five
million records, because all systems struggled with its entire size.

Dataset # Rows # Columns Size on disk Domain Real-World

TPC-H 6,001,215 25 1,639 MB Order Management 7

DataSF 968,373 22 197 MB Public Administration 3

Flight 7,268,232 15 701 MB Flight Control 3

Cloud 384,584,555 28 521 MB Weather 3

Tab. 1: Recordsets used for dataset creation

Our theta-join workload consists of 12 manually crafted theta-join queries. None of the
queries contains equality predicates (=). Hence, common join algorithms and optimizations
do not apply for any of them. Instead, all predicates are based on <, ≤, ≠, ≥, >. The number
of predicates in the queries varies between 2 and 13: TPC-H (5,2), DataSF (2,4,3), Flight
(3,4,5,4), and Cloud (5,13,4). We always execute each query with two warm-up executions
and report the arithmetic mean of the last five executions. A2DB’s theta-join algorithm, the
base recordsets and our theta-join SQL queries are available online10.

6.1 Equi-Join vs. Theta-Join

To demonstrate the remarkable performance gap between equi-join and theta-join executions,
our first experiment compares the performance of an equi-join with the performance of a
theta-join. To create the equi-joins for this comparison, we take the two TPC-H queries
from our theta-join workload and exchange all their non-equality operators with equality
operators. Table 2 shows the measured execution times on the TPC-H datatset.

Recordset Dataset Query Results PSQL♦ SparkSQL Redshift∗ A2DB

TPC-H orig.

Q1 0 † 29,345,373 18,630,581 9,371,830
Q1-Eq 6,366,031 25,616 8,998 332,475 158,315

Q2 30,980,486 † 24,839,845 31,970,932 440,435
Q2-Eq 833,567 12,942 5,774 4,483,270 64,198

†: Timeout after 24 hours *: 2 instead of 20 hyper-threads ♦: 1 instead of 11 nodes

Tab. 2: Query Execution time (in ms) comparison of Equi- vs. Theta-Join

The results show that the equi-joins perform orders of magnitude better than the theta-joins
on all systems. This is because the systems can use sophisticated equi-join algorithms, such
as (distributed) sort-merge joins, and, therefore, do not need to compare all tuple pairs. Note
that the performance gain for equi-joins is not necessarily tied to smaller results: Q1’s result
gets larger when being turned into an equi-join, while Q2’s result gets smaller, and in both
cases the equi-join is faster. Even though A2DB’s theta-join algorithm is not optimized for

10 https://hpi.de/naumann/s/a2db-theta-joins (30-November-2020)

Optimized Theta-Join Processing 73

https://hpi.de/naumann/s/a2db-theta-joins

16 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

equality predicates, it also achieves considerably faster execution times for equi-joins. For
theta-join query Q2, A2DB is clearly more efficient than all state-of-the-art competitors.

6.2 Query Performance

For a broader performance comparison of A2DB and its competitors, we now measure the
query times for all 12 theta-join queries on different subsets of our evaluation datasets. The
results of this experiment are listed in Table 3.

The query times show that A2DB significantly outperforms existing single-node DBMSs,
such as PostgreSQL, and distributed batch-processing systems, such as Apache Spark, in
processing highly selective theta-join queries. PostgreSQL in particular struggles to answer
many theta-join queries within 24 hours that A2DB can process in minutes. Considering
the setup differences for Redshift and A2DB, which is that Redshift has 10 times fewer
threads but also over-optimizes on its hardware, both systems compete quite well. As we
know that Redshift does not use join techniques, join operators or join plans optimized
for theta-joins, we can conclude that its technical optimizations can actually compete with
A2DB’s algorithmic optimizations. However, A2DB clearly outperforms Redshift on some
queries, such as TPC-H-Q2, Flight-Q1, and Flight-Q4, which are particularly selective.
A2DB’s selectivity calculations for the individual predicates comes at the expense of extra
processing time (e. g., Cloud-Q2), but the overhead is usually negligible w. r. t. the high and
quadratic tuple matching costs (e. g., TPC-H-Q2).

A2DB performs particularly well on TPC-H-Q2, Flight-Q1 and Flight-Q4, because it success-
fully identifies the most selective predicate, e. g., p_retailprice >= l_extendedprice
for TPC-H-Q2 with a selectivity factor of about 1%, and prunes the candidates accordingly.
On most other queries, such as SF-Q2, no single, super selective predicate exists and A2DB
needs to combine predicates for candidate pruning. With 13 predicates, query Cloud-Q2 is
the largest query in the workload. Interestingly, neither PostgreSQL nor Redshift show a
significant performance difference on Cloud-Q2 compared to the other queries; A2DB is
more affected by this high number of predicates, because the join matrix calculations take
a larger share of the entire query processing time. In summary, A2DB performs best on
highly selective theta-join queries with possibly few predicates, which is exactly the kind of
theta-join query that we observe in most use cases.

6.3 Scaling Follower Nodes

To utilize all available resources for query answering, A2DB parallelizes and distributes
the theta-join processing across a cluster of compute nodes. We now evaluate A2DB’s
horizontal scalability by measuring the query execution time for both TPC-H queries on an
increasing number of follower nodes to evaluate the effectiveness of the distribution. The

74 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Optimized Theta-Join Processing 17

Dataset Subset Query PostgreSQL♦ SparkSQL Redshift∗ A2DB

TPC-H

100k TPC-H-Q1 2,392,800 ±1.2% 87,587 ±02.7% 4,770 ±00.9% 4,497 ±04.7%
TPC-H-Q2 2,107,905 ±1.6% 79,581 ±32.5% 9,038 ±07.8% 248 ±15.7%

500k TPC-H-Q1 56,685,284 ±0.0% 231,617 ±03.8% 120,770 ±01.4% 88,944 ±00.7%
TPC-H-Q2 54,921,837 ±0.0% 402,951 ±05.7% 221,565 ±01.6% 3,461 ±04.2%

1M TPC-H-Q1 † 863,338 ±02.4% 490,846 ±00.8% 335,696 ±00.9%
TPC-H-Q2 † 752,133 ±04.0% 886,364 ±00.1% 12,572 ±00.6%

original TPC-H-Q1 † 29,345,373 ±00.0% 18,630,581 ±00.0% 9,371,830 ±00.6%
TPC-H-Q2 † 24,839,845 ±00.0% 31,970,932 ±00.0% 440,435 ±00.8%

SFData

100k
SF-Q1 19,745 ±0.1% 10,814 ±05.6% 381 ±03.7% 374 ±04.5%
SF-Q2 1,395,888 ±4.3% 107,340 ±01.5% 6,044 ±00.3% 9,228 ±07.2%
SF-Q3 1,374,122 ±4.3% 101,629 ±03.5% 4,710 ±03.7% 6,861 ±03.3%

500k
SF-Q1 509,051 ±0.1% 24,232 ±11.9% 8,343 ±02.3% 4,962 ±03.7%
SF-Q2 34,557,816 ±0.7% 263,941 ±03.5% 149,412 ±00.0% 124,786 ±05.4%
SF-Q3 32,563,594 ±0.0% 257,551 ±01.5% 110,397 ±03.1% 99,494 ±04.0%

original
SF-Q1 1,855,169 ±0.1% 67,183 ±10.7% 65,422 ±21.6% 16,849 ±01.5%
SF-Q2 † 878,780 ±02.8% 554,790 ±01.1% 230,320 ±65.6%
SF-Q3 † 836,345 ±00.8% 413,278 ±00.4% 316,181 ±06.1%

Flight

100k

Flight-Q1 1,191,327 ±1.0% 120,986 ±57.6% 73,647 ±00.4% 280 ±48.9%
Flight-Q2 1,304,863 ±2.4% 132,064 ±59.9% 73,395 ±00.2% 4,844 ±03.3%
Flight-Q3 1,088,810 ±2.0% 152,851 ±31.4% 36,106 ±00.7% 675 ±03.1%
Flight-Q4 1,327,722 ±2.5% 155,010 ±35.7% 74,711 ±00.2% 226 ±21.7%

500k

Flight-Q1 29,650,984 ±0.4% 1,043,191 ±04.2% 126,333 ±02.8% 1,329 ±07.0%
Flight-Q2 16,834,932 ±0.6% 1,231,222 ±04.1% 129,090 ±03.0% 91,106 ±02.0%
Flight-Q3 17,578,355 ±0.7% 301,850 ±04.7% 72,648 ±03.3% 11,569 ±01.8%
Flight-Q4 16,777,141 ±0.6% 1,041,470 ±15.6% 128,522 ±02.9% 2,000 ±05.0%

1M

Flight-Q1 † 800,759 ±03.5% 503,496 ±00.6% 2,318 ±05.6%
Flight-Q2 67,258,984 ±0.0% 925,637 ±02.1% 516,183 ±00.6% 347,167 ±01.1%
Flight-Q3 74,540,859 ±0.0% 870,808 ±05.6% 295,086 ±01.2% 50,471 ±01.1%
Flight-Q4 66,986,894 ±0.0% 855,871 ±03.7% 514,542 ±00.7% 8,802 ±10.3%

original

Flight-Q1 † 38,000,013 ±02.8% 27,037,084 ±00.0% 224,395 ±04.6%
Flight-Q2 † 42,649,266 ±00.0% 27,662,430 ±00.0% 18,298,443 ±00.6%
Flight-Q3 † 40,199,029 ±00.0% 15,917,689 ±00.0% 2,556,697 ±00.8%
Flight-Q4 † 39,766,269 ±00.0% 28,007,283 ±00.0% 433,267 ±04.5%

Cloud

100k
Cloud-Q1 1,162,777 ±0.0% 173,795 ±32.0% 65,921 ±02.3% 2,634 ±10.9%
Cloud-Q2 1,142,804 ±0.4% 223,127 ±27.5% 67,101 ±01.6% 3,987 ±02.3%
Cloud-Q3 1,178,760 ±0.0% 154,900 ±39.3% 73,966 ±24.5% 2,824 ±03.4%

500k
Cloud-Q1 17,881,648 ±0.8% 365,068 ±59.0% 115,802 ±03.3% 48,062 ±01.2%
Cloud-Q2 20,666,685 ±0.1% 356,302 ±11.0% 125,579 ±03.1% 57,959 ±02.8%
Cloud-Q3 24,579,790 ±0.3% 329,993 ±06.0% 200,597 ±31.5% 52,287 ±01.3%

1M
Cloud-Q1 73,539,017 ±0.0% 940,311 ±02.3% 460,299 ±00.8% 177,332 ±00.2%
Cloud-Q2 84,057,122 ±0.0% 1,115,216 ±09.2% 497,687 ±00.5% 224,698 ±01.0%
Cloud-Q3 † 947,624 ±03.7% 897,059 ±35.2% 192,318 ±00.2%

5M
Cloud-Q1 † 19,298,715 ±00.0% 12,129,946 ±00.1% 3,985,490 ±00.3%
Cloud-Q2 † 23,178,835 ±00.0% 11,521,068 ±00.0% 5,519,018 ±01.1%
Cloud-Q3 † 19,259,093 ±00.0% 11,058,125 ±04.7% 4,407,499 ±00.1%

†: Timeout after 24 hours *: 2 instead of 20 hyper-threads ♦: 1 instead of 11 nodes

Tab. 3: Average query execution times in ms (and maximum measurement deviations) over five
measurements for different subsets of all datasets; on average, the measurement deviations are 0.8% for
PostgreSQL, 11.4% for SparkSQL, 3.8% for Redshift and 4.0% for A2DB (if we exclude measurements
with sub-second duration). The best execution times are highlighted.

Optimized Theta-Join Processing 75

18 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

minimal cluster configuration has one leader and one follower node; the largest tested cluster
has one leader and eleven follower nodes. We execute query TPC-H-Q1 (empty result)
on TPC-H 500k and query TPC-H-Q2 (relatively large result) on TPC-H 1M. Figure 8
plots the query execution times in milliseconds and a reference line for ideal, i. e., linear
scalability. The measurements for both queries show that the proposed theta-join processing
scales linearly with the number of follower nodes; for this reason, we conclude that A2DB’s
workload distribution strategy works well. Furthermore, the higher communication costs for
larger cluster setups have no major impact on the overall performance, which underlines our
observation that A2DB’s theta-join processing is CPU bound.

0 5 10
0

200,000
400,000
600,000
800,000

1,000,000

#Follower Nodes

Ru
nt

im
e

[m
s] A2DB

Ideal

0 5 10
0

50,000

100,000

150,000

#Follower Nodes

Ru
nt

im
e

[m
s] A2DB

Ideal

Fig. 8: TPC-H-Q1 on TPC-H 500k and TPC-H-Q2 on TPC-H 1M with varying cluster sizes.

6.4 Work Stealing

As followers sometimes finish their work earlier than others, �2DB implements work
assisting (WA) and work stealing (WS) to keep all nodes well utilized. The next experiment
evaluates the effectiveness of the two strategies by comparing the query times with these
optimizations to the ones without them. The measurements in Table 4 show that the benefit
of balancing workload at the end of the join processing is 6–10% query time reduction.
Hence, both strategies effectively accelerate the join processing; the lively redistribution of
work between the nodes at the end succeeded to keep all nodes busy.

Recordset Dataset Query Without WA/WS With WA/WS Difference

TPC-H
100k Q1 95,030 88,944 - 6,4%

Q2 3,873 3,461 - 10,6%

1M Q1 373,410 335,696 - 10,1%
Q2 13,596 12,572 - 7,5%

Tab. 4: Query runtimes on TPC-H with and without work assisting and work stealing.

6.5 Context-Specific Attribute Provisioning

To reduce the network overhead when fetching remote data, A2DB applies context-specific
attribute provisioning to send only required values. We now evaluate the effectiveness of

76 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

Optimized Theta-Join Processing 19

this strategy by measuring the number of attribute values that are transferred and the number
of non-relevant attribute values that are filtered. Figure 9 visualizes these numbers for the
TPC-H and Flight queries. The measurements show that with context-specific attribute
provisioning, we save about 0% (TPC-H-Q1) to 27% (Fligh-Q1) values on network traffic.
Hence, the savings are dataset-specific, but can be quite substantial. Although not all queries
profit from the filtering, most queries in our workload filter at least 10% values in this way.

Q1 Q20

0.5

1

1.5

2

2.5

3
·108

2.
5
·1

08

7.
54
·1

07

8,
50

5 2.
46
·1

07

#A
ttr

ib
ut

es

Transferred Saved

(a) TPC-H 500k

Q1 Q20

0.2

0.4

0.6

0.8

1

·109

1
·1

09

3.
02
·1

08

36
,5

82 9.
84
·1

07

Transferred Saved

(b) TPC-H 1M

Q1 Q2 Q3 Q40
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
·108

1.
08
·1

08

2
·1

08

2.
05
·1

08

1.
72
·1

08

4.
17
·1

07

32
,1

80

4.
47
·1

07

2.
81
·1

07

Transferred Saved

(c) Flight 500k

Q1 Q2 Q3 Q40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
·109

4.
39
·1

08

8
·1

08 9.
14
·1

08

6.
91
·1

08

1.
61
·1

08

1.
29
·1

05

8.
57
·1

07

1.
09
·1

08

Transferred Saved

(d) Flight 1M

Fig. 9: Amount of transferred (blue) and saved (red) attributes values for the TPC-H and Flight queries
with the context-specific attribute provisioning.

7 Summary
In this paper, we proposed a novel theta-join algorithm that accelerates the processing of
selective theta-join queries via predicate-based candidate pruning and reactive workload
distribution. Our experiments show that with these (and probably also further) optimizations,
theta-joins can be processed orders of magnitude faster than state-of-the-art join strategies
in modern data processing engines. In this way, we motivate a more careful optimization of
theta-joins beyond naive nested-loop joins in modern database management systems. The
selectivity-based predicate selection approach and the strategy-driven join technique can
also be used to extend existing theta-join algorithms, such as IE-Join [Kh15] or 1-Bucket-
Theta [Ok11], so that they can handle arbitrary many join predicates as well. Although such
combinations could lead to further improvements, their construction and evaluation is not
in the scope of this paper and we have to leave them to future work.

References
[AGN15] Abedjan, Z.; Golab, L.; Naumann, F.: Profiling Relational Data: A Survey. The

VLDB Journal 24/4, 2015.
[Ar15] Armbrust, M.; Xin, R. S.; Lian, C.; Huai, Y.; Liu, D.; Bradley, J. K.; Meng, X.;

Kaftan, T.; Franklin, M. J.; Ghodsi, A.; Zaharia, M.: Spark SQL: Relational
Data Processing in Spark. In: Proceedings of the International Conference on
Management of Data (SIGMOD). 2015.

Optimized Theta-Join Processing 77

20 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

[BC81] Bernstein, P. A.; Chiu, D.-M. W.: Using Semi-Joins to Solve Relational Queries.
Journal of the ACM 28/1, 1981.

[Be18] Bernstein, P. A.: Actor-Oriented Database Systems. In: Proceedings of the
International Conference on Data Engineering (ICDE). 2018.

[Bo07] Bohannon, P.; Fan, W.; Geerts, F.; Jia, X.; Kementsietsidis, A.: Conditional
Functional Dependencies for Data Cleaning. In: Proceedings of the International
Conference on Data Engineering (ICDE). 2007.

[Co17] Cong, G.; Fan, W.; Geerts, F.; Jia, X.; Ma, S.: Improving Data Quality:
Consistency and Accuracy. In: Proceedings of the VLDB Endowment. 2017.

[Co79] Codd, E. F.: Extending the Database Relational Model to Capture More Meaning.
ACM Transactions on Database Systems (TODS) 4/4, 1979.

[ESW78] Epstein, R.; Stonebraker, M.; Wong, E.: Distributed Query Processing in a
Relational Data Base System. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 1978.

[Go75] Gotlieb, L. R.: Computing Joins of Relations. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 1975.

[Gu15] Gupta, A.; Agarwal, D.; Tan, D.; Kulesza, J.; Pathak, R.; Stefani, S.; Srini-
vasan, V.: Amazon Redshift and the Case for Simpler Data Warehouses. In:
Proceedings of the International Conference on Management of Data (SIG-
MOD). 2015.

[Kh15] Khayyat, Z.; Lucia, W.; Singh, M.; Ouzzani, M.; Papotti, P.; Quiané-Ruiz, J.-A.;
Tang, N.; Kalnis, P.: Lightning Fast and Space Efficient Inequality Joins. In:
Proceedings of the VLDB Endowment. 2015.

[KNG18] Koumarelas, I.; Naskos, A.; Gounaris, A.: Flexible partitioning for selective
binary theta-joins in a massively parallel setting. Distributed and Parallel
Databases 36/2, 2018.

[ME92] Mishra, P.; Eich, M. H.: Join Processing in Relational Databases. ACM Com-
puting Surveys 24/1, 1992.

[Ok11] Okcan, A.: Processing Theta-Joins Using MapReduce. In: Proceedings of the
International Conference on Management of Data (SIGMOD). 2011.

[SSP19] Schmidl, S.; Schneider, F.; Papenbrock, T.: An Actor Database System for Akka.
In: Proceedings of the Conference Datenbanksysteme in Business, Technologie
und Web Technik (BTW). 2019.

[VG84] Valduriez, P.; Gardarin, G.: Join and Semijoin Algorithms for a Multiprocessor
Database Machine. ACM Transactions on Database Systems (TODS) 9/1, 1984.

[ZCW12] Zhang, X.; Chen, L.; Wang, M.: Efficient Multi-Way Theta-Join Processing
Using MapReduce. In: Proceedings of the VLDB Endowment. 2012.

78 Julian Weise, Sebastian Schmidl, Thorsten Papenbrock

cba

Herausgeber et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Precise, Compact, and Fast Data Access Counters for
Automated Physical Database Design

Michael Brendle1, Nick Weber2∗, Mahammad Valiyev3∗, Norman May4, Robert Schulze4,
Alexander Böhm4, Guido Moerkotte5, Michael Grossniklaus6

Abstract: Today’s database management systems offer numerous tuning knobs that allow an adaptation
of database system behavior to specific customer needs, e. g., maximal throughput or minimal memory
consumption. Because manual tuning by database experts is complicated and expensive, academia
and industry devised tools that automate physical database tuning. The effectiveness of such advisor
tools strongly depends on the availability of accurate statistics about the executed database workload.
For advisor tools to run online, workload execution statistics must also be collected with low runtime
and memory overhead. However, to the best of our knowledge, no approach collects precise, compact,
and fast workload execution statistics for a physical database design tool. In this paper, we present
data structures that solve the problem of providing workload execution statistics with high precision,
low memory consumption, and low runtime overhead. In particular, we show how existing approaches
can be combined and for which advisor tools, new data structures need to be designed. We evaluate
our data structures in a prototype of a commercial database and show that they outperform previous
approaches using real-world and synthetic benchmarks.

1 Introduction

Modern database management systems (DBMS) offer a plethora of tuning knobs to adapt
the system behavior to specific customer needs [Ag04; Ra02]. As a result, finding an
optimal configuration that meets all requirements (e. g., with respect to throughput or
memory consumption) is usually a difficult task performed by experts. Since manual
database tuning by experts is expensive or even infeasible in managed database-as-a-service
(DBaaS) environments, academia and industry devised tools for automated physical database
design [Lu19]: (1) Index advisors improve query performance by creating (clustered)
indexes on columns frequently referenced in selective query predicates [Ag04; Ko20;
Na20]. (2) Data compression advisors reduce the table memory consumption, and thus,
the amount of data read and processed by physically compacting columns [Da19; Le10].
(3) Buffer pool size advisors lower the Total Cost of Ownership (TCO) by setting the buffer
1 University of Konstanz, P.O. Box 188, 78457 Konstanz, Germany michael.brendle@uni-konstanz.de
2 Celonis SE, Theresienstr. 6, 80333 Munich, Germany n.weber@celonis.com
3 Technical University of Munich, Boltzmannstraße 3, 85748 Garching mahammad.valiyev@tum.de
4 SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany firstname.lastname@sap.com
5 University of Mannheim, 68131 Mannheim, Germany moerkotte@uni-mannheim.de
6 University of Konstanz, P.O. Box 188, 78457 Konstanz, Germany michael.grossniklaus@uni-konstanz.de
* Work done while at SAP SE

cba doi:10.18420/btw2021-04

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 79

https://creativecommons.org/licenses/by-sa/4.0/
mailto:michael.brendle@uni-konstanz.de
mailto:n.weber@celonis.com
mailto:mahammad.valiyev@tum.de
mailto:firstname.lastname@sap.com
mailto:moerkotte@uni-mannheim.de
mailto:michael.grossniklaus@uni-konstanz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-04

2 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

pool size to the working set size such that memory costs are minimized without impairing
performance [Da16; St06]. Finally, (4) table partitioning advisors enable partition pruning,
an effective method of reducing the amount of data to be read [ABI19; Ag04; Cu10; Ra02;
Se16]. Furthermore, separating frequently accessed (hot) and rarely accessed (cold) data
into disjoint partitions can increase the buffer pool hit ratio.

All aforementioned physical database design tools require an objective function, e. g., the
workload performance or memory footprint, while respecting given constraints, e. g., a
memory budget or maximum workload execution time. To do this, advisor tools consider a
set of potential new physical layout alternatives (e. g., by enumeration). For each alternative,
the advisor calculates a change in the objective function based on the data, the workload, and
the current physical layout. Accurate statistics about the executed workload are of particular
importance for the effectiveness of many advisors. For example, index advisors rely on
precise knowledge of query predicate selectivities, data compression advisors depend on
understanding how much data is sequentially read (e. g., scans) or randomly accessed (e. g.,
index join), buffer pool size advisors are based on page access statistics, whereas table
partitioning advisors build upon row- or value-level access statistics.

Obviously, there is a trade-off between the accuracy of workload execution statistics and
their runtime and memory overhead. Ideally, workload execution statistics are collected
with low overhead, such that advisor tools can be executed online to adapt to dynamically
changing workloads. However, in practice, workload execution statistics are either gathered
offline, e. g., by executing a representative sample of the workload on a separate node [Ag04;
Cu10; Ra02], or collected with low precision, e. g., by tracking access frequencies at page
granularity instead of per row and attribute, combined with sampling [FKN12; Hu19; No20].
As a result, to the best of our knowledge, no approach collects precise, compact, and fast
workload execution statistics for an advisor tool.

In this work, we formalize, analyze, and solve the problem of providing workload execution
statistics with high precision, low memory consumption, and low runtime overhead as input
to automated physical database design tools. Our contributions are as follows:

• we demonstrate and discuss four practical use cases of automated physical database
design advice that require workload execution statistics as input (Section 2);
• we define the workload execution statistics that need to be collected, and we subse-

quently formalize the problem (Section 3);
• we discuss and classify related work with respect to their precision, space efficiency,

and runtime overhead (Section 4);
• we present data structures for collecting precise, compact, and fast workload execution

statistics (Section 5); and
• we implement our data structures prototypically in SAP HANA and show for each

use case that workload execution statistics are provided with high precision and low
memory and runtime overhead using real-world and synthetic benchmarks (Section 6).

80 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

3

2 Use Cases of Physical Database Design Advice

This section introduces four use cases of automated physical database design advice in
column stores that require workload execution statistics �(C0C about a workload , . For
now, it suffices to think of, as a set of SQL statements and �(C0C as statistics about,
collected during the execution of, .

We argue that automated physical database design tools can be categorized according to
their objective function, aiming either for maximum performance or minimum memory
footprint. Besides that, advisor tools need to fulfill given constraints, e. g., a memory budget
or a maximum workload execution time. In Section 2.1, we introduce an index advisor and
a data compression advisor that focus on in-memory performance, i. e., speeding up query
response times of given workloads. Section 2.2 presents a buffer pool size advisor and a
table partitioning advisor that optimize for memory footprint.

In the following, R denotes a set of = relations, and A('8) is the set of <8 attributes of
relation '8 ∈ R. Further, � (�8, 9) = {E8, 9 ,1, .., E8, 9 ,: , .., E8, 9 ,38, 9 } refers to the active domain
of attribute �8, 9 ∈ A('8) with E8, 9 ,1 < .. < E8, 9 ,: < .. < E8, 9 ,38, 9 , where 38, 9 is the number
of distinct values in �8, 9 . Finally, '8 [rid8] .�8, 9 ∈ � (�8, 9) is the value of the row with row
id rid8 ∈ [1, |'8 |] of attribute �8, 9 ∈ A('8), where |'8 | is the cardinality of '8 ∈ R.

2.1 Automated Physical Database Design for Maximizing Performance

Creating a (clustered) index on a column improves the performance if the workload includes
selective filter predicates. Traversing the index is then faster than performing a full column
scan. Besides that, we assume that a memory budget is given to create indexes only on those
attributes where they yield the largest benefit [Ag04; Ko20; Ra02].

Use Case 1 (Index Advisor) LetA8,B ∈ ℘(A('8)) be a set of attributes from the power set
of all attributes that is uniquely identified by B ∈ [1, |℘(A('8)) |], �8,B a single-/multi-column
index defined over A8,B, and I the set of all possible indexes over all relations. An index
advisor proposes an index configuration �� ⊆ I such that the estimated execution time Ê of
a workload, based on workload execution statistics �(C0C is minimized while the estimated
additional memory consumption M̂ of the indexes adheres to a given memory budget "�:

arg min
��⊆I

Ê (��,,, �(C0C) subject to M̂(��) ≤ "�.

Applying compression to a column may reduce its size, and thus, the amount of data
processed by sequential scans. In contrast, compression may deteriorate the time to
dereference individual row ids (e. g., during projections) since the decompression of
individual rows or blocks may incur multiple random memory accesses, depending on the

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
81

4 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

compression technique. In practice, robust performance is often preferred, and a column
would only be compressed if the speed of critical SQL statements does not decline compared
to an uncompressed column [Da19; Le10]).

Use Case 2 (Data Compression Advisor) Let C8, 9 be a set of compressed and uncom-
pressed storage layouts for an attribute �8, 9 ∈ '8 , �D8, 9 ∈ C8, 9 be the uncompressed
storage layout, and ,crit ⊆ , be the subset of (business) critical SQL statements in the
workload, defined by the user. A data compression advisor proposes for each attribute
�8, 9 ∈ A('8) of each relation '8 ∈ R a physical storage layout �8, 9 ∈ C8, 9 such
that the estimated execution time Ê of a workload , based on workload execution
statistics �(C0C is minimized, while for each critical SQL statement @ ∈ ,crit, the esti-
mated execution time Ê does not exceed the estimated execution time Ê without compression:

arg min
∀'8 ∈R∀�8, 9 ∈A('8):�8, 9 ∈C8, 9

Ê ({�8, 9 | 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <8},,, �(C0C)
subject to ∀@ ∈ ,crit : Ê ({�8, 9 | 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <8}, @, �(C0C)

≤ Ê ({�D8, 9 | 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <8}, @, �(C0C).

2.2 Automated Physical Database Design for Memory Footprint Reduction

A buffer pool size advisor aims for a minimal buffer pool size such that a performance
constraint, e. g., a maximum workload execution time, is still fulfilled. To do this, a buffer
pool size advisor needs to identify the workload’s working set and configure the buffer pool
size so that all hot pages can still be held in DRAM.

Use Case 3 (Buffer Pool Size Advisor) A buffer pool size advisor proposes a minimal
buffer pool size � ∈ N such that the estimated execution time Ê of a workload, based on
workload execution statistics �(C0C does not violate a given threshold (!�:

arg min
�∈N

� subject to Ê (�,,, �(C0C) ≤ (!�.

A buffer pool is a simple and practical approach to retain data’s hot working set in DRAM.
Its most significant drawback is that mixing hot and cold data within the same page pollutes
the buffer cache and works against its effectiveness. Table range partitioning separates hot
and cold data into disjoint range partitions, and hence, improves the buffer pool hit ratio.

Use Case 4 (Table Partitioning Advisor) Let S8 be a set of range partitioning specifica-
tions for a relation '8 ∈ R. A table partitioning advisor proposes a buffer pool size � ∈ N,
and for each relation '8 ∈ R a range-partitioning (8 ∈ S8 such that the buffer pool size � is
minimized, while the estimated execution time Ê of workload, with workload execution
statistics �(C0C does not violate a maximum workload execution time (!�.

arg min
�∈N,'8 ∈R:(8 ∈S8

� subject to Ê ({(8 | 1 ≤ 8 ≤ =}, �,,, �(C0C) ≤ (!�.

82 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

5

3 Problem Statement

We now formalize the problem of providing workload execution statistics �(C0C with high
precision, low memory consumption, and low runtime overhead as input to automated
physical database design tools. We start this section by defining �(C0C for a workload,
and show exemplary �(C0C after executing JCC-H Query 3 [BAK18].

Definition 1 (Workload Execution Statistics) We define a workload , as a multiset of
SQL statements7 and) (@) as the physical execution plan of a SQL statement @ ∈ , . For a
workload, , we define workload execution statistics �(C0C:
F1 (Index Advisor): For each executed SQL statement @ ∈ , , �(C0C stores for each

selection f? ('8) on a base relation '8 ∈ R in the physical execution plan) (@) that
consists of an index-SARGable predicate ?, a tuple (|f? ('8) |, F (?)), where |f? ('8) |
is the output cardinality of f? ('8) and F (?) are the free attributes contained in ?.

F2 (Data Compression Advisor): For each executed SQL statement @ ∈ , , �(C0C stores
for each attribute �8, 9 ∈ '8 a pair (B8, 9 , A8, 9), where B8, 9 is the number of rows in �8, 9
that were sequentially accessed by @ (e. g., by a selection f? ('8) ∈) (@), where ?
contains �8, 9), and A8, 9 is the number of rows that were randomly accessed in �8, 9 by @
(e. g., by a projection Π�8, 9 ∈) (@)).

F3 (Buffer Pool Size Advisor): For each executed SQL statement @ ∈ , , �(C0C stores the
access frequency 5%8, 9,D to each page %8, 9 ,D ∈ P8, 9 , D ∈ [1, |P8, 9 |] (i. e., %8, 9 ,D stores for
a set of rows the values '8 [rid8] .�8, 9), where P8, 9 is the set of all pages of �8, 9 ∈ '8 .

F4 (Table Partitioning Advisor): For each executed SQL statement @ ∈ , , �(C0C stores
the access frequency 5E8, 9,: for each value E8, 9 ,: ∈ � (�8, 9), where 5E8, 9,: is the sum of
• the number of sequential reads of �8, 9 by @ such that ∃'8 [rid8] .�8, 9 = E8, 9 ,: , rid8 ∈
[1, |'8 |] that is part of the matching rows (e. g., by a selection f? (4) ∈) (@) where
? references �8, 9 and E8, 9 ,: satisfy ?)8, and

• the number of random reads of rows in �8, 9 by @ such that '8 [rid8] .�8, 9 =
E8, 9 ,: ,∀rid8 ∈ [1, |'8 |] (e. g., by a projection Π�8, 9 ∈) (@)).

|f? ('8) | F (?)
3,774,696 { O_ORDERDATE }
299,496 { C_MKTSEGMENT }

Tab. 1: Collected statistics �(C0C F1
for selections f? ('8) of JCC-H Q3.

We execute JCC-H Q3 [BAK18] to demonstrate �(C0C.
Figure 1 shows the optimal query execution plan,
identified by SAP HANAs query optimizer [MBL17].

Table 1 shows �(C0C F1 for an index advisor.
Since the most selective predicate is applied to
C_MKTSEGMENT, an index advisor might propose
an index on this attribute. Depending on the memory
budget, the advisor might also recommend an index on O_ORDERDATE. The selection on
L_SHIPDATE is not recorded since it is not performed on a base relation in the plan.

7 We consider multisets of SQL statements to account for realistic workloads with repeated queries.
8 We record only accesses to rows that match the predicate since we assume that a range partition generated for a

value E8, 9,: is pruned if the value does not satisfy the predicate.

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
83

6 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

𝜎O_ORDERDATE<1993-05-29 𝜎C_MKTSEGMENT=‘FURNITURE’

⋈O_CUSTKEY=C_CUSTKEY
HJ

⋈O_ORDERKEY=L_ORDERKEY
INL

𝜎L_SHIPDATE>1993-05-29

ΓO_ORDERKEY

Sortrevenue desc, O_ORDERDATE, top 10

𝜋L_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY

sum(L_EXTENDEDPRICE * (1 – L_DISCOUNT)) as revenue

LINEITEM

CUSTOMERORDERS

Fig. 1: Optimal query execution plan for JCC-H
Q3, identified by SAP HANAs query optimizer.

�8, 9 B8, 9 A8, 9

C_CUSTKEY 0 299,496
C_MKTSEGMENT 1,500,000 0
O_ORDERKEY 0 1,015,311
O_CUSTKEY 0 3,774,696
O_ORDERDATE 15,000,000 377,432
O_SHIPPRIORITY 0 10
L_ORDERKEY 0 3,045,935
L_DISCOUNT 0 1,074,616
L_EXTENDEDPRICE 0 1,074,616
L_SHIPDATE 0 3,045,935

Tab. 2: Collected statistics �(C0C F2 about the
number of rows that were sequentially (B8, 9) and
randomly (A8, 9) read for each �8, 9 .

Table 2 shows �(C0C F2 for a data compression advisor. Since C_MKTSEGMENT exposes
only sequential but no random reads, a data compression advisor might suggest compression.
A data compression advisor might also propose compression of O_ORDERDATE since the
amount of data processed by sequential scans is reduced. However, random accesses would
slow down the time of dereferencing individual row ids due to compression. Therefore, the
data compression advisor needs to consider the trade-off between the gain of speeding up
sequential reads and the loss of slowing down random accesses.

Figure 2 shows for each 256KB page %8, 9 ,D (x-axis) of L_EXTENDEDPRICE the ac-
cess frequency 5%8, 9,D (y-axis), i. e., �(C0C F3. Due to dictionary compression in SAP
HANA [MBL17], pages contain either value-id array chunks (600 pages) or dictionary data
(40 pages). Since only ≈75% of the value-id array pages are accessed, a buffer pool size
advisor might propose reducing the buffer pool size such that all hot pages can still be held
in DRAM.

Figure 3 shows for each value E8, 9 ,: of the active domain of O_ORDERDATE (x-axis)
the access frequency 5E8, 9,: (y-axis), i. e., �(C0C F4. A table partitioning advisor might
propose a (hot) range-partition for data items with O_ORDERDATE between 1993-01-29
and 1993-05-28 since only those values are accessed frequently. In contrast, data items with
O_ORDERDATE larger than 1993-05-28 have an access frequency of 0 and a corresponding
(cold) table partition will be pruned by the predicate on O_ORDERDATE.

Problem 1 The problem we consider is to provide workload execution statistics �(C0C,
which are precise (i. e., as accurate as possible), compact (i. e., the memory footprint
compared to the data set size should be as small as possible), and fast (i. e., the runtime
overhead during workload execution should be as low as possible).

84 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

7

1
10

100
1000

10000
100000

A
cc

es
sF

re
qu

en
cy

5 %
[lo

g
sc

al
e]

Data Vector Dictionary

0
%8, 9 ,1 %8, 9 ,300 %8, 9 ,600

Page P

Fig. 2: Collected statistics �(C0C F3 about the
access frequency 5%8, 9,D of each page %8, 9 ,D of
L_EXTENDEDPRICE for JCC-H Q3.

1
10

100
1000

10000
100000

’92
-01

-01

’93
-01

-29

’93
-05

-28

’98
-08

-02

A
cc

es
sF

re
qu

en
cy

5 E
8,
9,
:

[lo
g

sc
al

e]

0

Value v

Fig. 3: Collected statistics �(C0C F4 about
the access frequency 5E8, 9,: of each value
E8, 9 ,: ∈ � (O_ORDERDATE) for JCC-H Q3.

4 Related Work

This section discusses and classifies related approaches of collecting workload execution
statistics �(C0C with respect to the precision for use cases F1 to F4, space efficiency, and
runtime overhead. The considered approaches are summarized in Table 3.

The first type of workload execution statistics are row-level data access counters. Project
Siberia [LLS13] analyzes log samples to estimate the access frequency of rows, and SAP
ASE [Gu18] caches runtime access patterns of rows. In row stores, this approach yields
precise access frequencies of pages (F3). To also track access frequencies of active domain
values precisely (F4), separate counters per domain value and attribute are needed, which
results in high memory consumption and runtime overhead. Furthermore, with row-level
counting, it is unable to deduce the output cardinality of selections (F1). Finally, the total
number of rows that were accessed sequentially or randomly can only be tracked if separate
counters of each access type exist (F2).

Another class of workload execution statistics are graphs. In Schism [Cu10] and Clay [Se16],
each row is represented as a node, and edges connect rows if accessed within the same
transaction. The weight of an edge denotes the number of transactions that accessed both
rows. Graphs are as precise as row-level data access counters. However, the memory and
runtime overhead depends on the workload. If transactions touch only a few rows, an
adjacency list results in low memory and runtime overhead. In contrast, if transactions touch
many rows, both an adjacency list or a matrix result in high memory and runtime overhead.

To further improve the memory and runtime overhead, block-level data access counters
were proposed. For example, X-Engine [Hu19] leverages access frequencies at extent level
collected during workload execution, and HyPer [FKN12] uses for each virtual memory
page flags of the CPU’s MMU to identify cold pages. Block-level data access counters
provide precise access frequencies of pages (F3). The tracking accuracy for accesses to the
active domain (F4) depends heavily on the workload and falls short in the presence of heavy

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
85

8 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

Approach for collecting workload execution statistics Precise �(C0C Compact Fast

F1 F2 F3 F4

Row-level data access counters [Gu18; LLS13] 7 3 3 3 7 7

Graph representation [Cu10; Se16] 7 3 3 3

Block-level data access counters [FKN12; Hu19] 7 3 3 3

SQL statements + What-if API [Ag04; Ra02] 3 7

Memory access tracing [No20] 7 7 3 3 7 7

Our approach 3 3 3 3 3 3

Tab. 3: Comparison between different approaches for collecting workload execution statistics �(C0C
as input to advisor tools with respect to their precision, space efficiency, and runtime overhead.

hitters. The total number of rows sequentially or randomly accessed is available if separate
counters for each access type are maintained (F2). The access granularity cannot be tracked
as row-level access counters (F1). While block-level access counters are compact, their
runtime overhead depends on the workload. In the worst-case, all counters of all blocks
accessed need to be incremented (e. g., during a full column scan).

A traditional approach of collecting workload execution statistics is to feed the workload’s
SQL statements into offline physical design advisors, which rely on the query optimizer’s
what-if API [Ag04; Ra02]. While the collected SQL statements are compact, the most
significant drawback is that physical accesses to the data are not tracked. Thus, the approach
fails to provide accurate statistics as it relies on estimates.

Instead of collecting workload execution statistics inside the database, memory access
tracing [No20] uses the PEBS mechanism of Intel processors to trace memory accesses,
which are mapped to the data to determine precise access frequencies of pages (F3) and
values of the active attribute domain (F4). While only single memory accesses are traced,
the access granularity (F1) and access type (F2) cannot be identified. Since memory traces
are logged and analyzed offline, the memory and runtime overhead is high.

In sum, no approach collects precise, compact, and fast workload execution statistics �(C0C
for a physical database design tool. In the next section, we show how existing approaches
can be combined and for which advisor tools new data structures need to be designed.

5 Data Access Counters

We begin describing our approach by explaining how precise, compact, and fast workload
execution statistics for an index advisor can be collected (Section 5.1). Afterwards, we
present data structures for a data compression advisor (Section 5.2), a buffer pool size
advisor (Section 5.3), and a table partitioning advisor (Section 5.4).

86 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

9

5.1 Use Case 1: Index Advisor

The most popular approaches of providing workload execution statistics for index advisors
(�(C0C F1) consider SQL statements as input to the optimizer’s what-if API. As a result,
those approaches are limited in their performance due to what-if analysis and rely on
the availability of precise cardinality estimates. To address these limitations, we track the
actual output cardinalities of selections f? ('8) at query execution time. Since tracking
the exact output cardinalities |f? ('8) | of all selections would consume too much memory,
we introduce a threshold parameter q ∈ (0, 1] to capture only selections with an output
cardinality less than q · |'8 | since only selective predicates benefit from indexes [KAI17].
To reduce the memory overhead further, we group the actual output cardinalities into
intervals [1A , 1A+1), 1 ∈ R>0, 0 ≤ A ≤ d;>61 (q · |'8 |)e and instead only count the number
of selections per interval. The estimated output cardinality for selections that are recorded to
the interval [1A , 1A+1) is

√
1A · 1A+1. Hence, we determine an error (i. e., the ratio between

the actual and recorded output cardinality) of
√
1 for arbitrary complex predicates. In our

experiments in Section 6, we set the interval base parameter 1 to 2, such that the actual and
recorded output cardinalities differ at most by a factor of

√
2.

Since an index advisor may recommend multi-column indexes, we would need one set
of intervals (i. e., [1A , 1A+1), 1 ∈ R>0, 0 ≤ A ≤ d;>61 (q · |'8 |)e) per combination of free
attributes per relation, i. e., in total, 2<8 − 1 (= |℘(A('8)) \ {}|) set of intervals. As a result,
the memory consumption of our approach using 32-bit counters for a relation '8 with
<8 attributes would be (d;>61 (q · |'8 |)e + 1) · (2<8 − 1) · 4 bytes. To meet the memory
requirements, we propose lazy counters, only created if (1) the corresponding combination
of free attributes actually occurred in selection predicates and (2) the selectivity of this
attribute combination is below q. We argue that this number of attribute combinations
is significantly smaller than the number of all attribute combinations. For example, for
LINEITEM with scale factor 10 (i. e., 16 attributes and 60,000,000 rows) and 1 = 2, counters
for all combinations of free attributes constitute 0.32% of the data set size of LINEITEM in
SAP HANA (1.90 GB), while our lazy counters constitute only 0.02% of the data set size.

Section 6 demonstrates that our approach has a high precision as well as a low memory and
runtime overhead. We summarize the presented data structure in the following:

Access Counter 1 (Index Advisor)
Physical Accesses: We consider each selection f? ('8) consisting of an index-SARGable
predicate, and its actual output cardinality |f? ('8) |, collected during query execution.
Lazy Counters: For a base 1 ∈ R and a set of attributes A8,B ∈ ℘(A('8)), we create and
maintain integer counters - 83G8,B,0, . . . , -

83G
8,B,A . . . , -

83G
8,B, d;>61 (q · |'8 |) e if there exists a selection

f? ('8) ∈) (@), @ ∈ , such that A8,B ⊆ F (?) and |f? ('8) | < q · |'8 |.
Interval Counting: A counter - 83G8,B,A is incremented by 1 for a selection f? ('8) ∈) (@), @ ∈
, if |f? ('8) | > 0 and A = d;>61 (|f? ('8) |)e and |f? ('8) | < q · |'8 |. For |f? ('8) | = 0,
- 83G8,B,0 is incremented by 1.

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
87

10 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

- 83G1,1,23
- 83G1,1,22
- 83G1,1,21

. . .

- 83G1,1,11
. . .

- 83G1,1,0

A1,1 = {O_ORDERDATE}

0
0
2

. . .

1
. . .

0

- 83G1,2,23
- 83G1,2,22
- 83G1,2,21

. . .

- 83G1,2,9
. . .

- 83G1,2,0

0
0
0

. . .

1
. . .

0

{O_ORDERDATE, O_SHIPPRIORITY} = A1,2

|fO_ORDERDATE>1992-05-22 (ORDERS) | = 14, 673, 977

|fO_ORDERDATE=1996-05-28 (ORDERS) | = 1, 142, 442

|fO_ORDERDATE=1992-05-28 (ORDERS) | = 1, 142, 946
|fO_ORDERPRIORITY=’1-URGENT’∧

O_ORDERDATE=1997-10-05 (ORDERS) | = 298

|fO_ORDERDATE=1997-10-05 (ORDERS) | = 1428

7

Fig. 4: Illustration of our approach for collecting workload execution statistics for an index advisor.

Figure 4 shows for five selections on ORDERS with scale factor 10 (15, 000, 000 rows)
how the access counters with base 1 = 2 are updated. We show the access counters for
selection predicates containing attribute O_ORDERDATE (left), and selection predicates
containing O_ORDERDATE and O_ORDERPRIORITY (right). The first selection on
O_ORDERDATE matches 14, 673, 977 rows, and thus no counter is updated for q = 0.1.
The counter - 83G1,1,21 is updated twice, by the second (d;>62 (1, 142, 442)e = 21) and the third
selection (d;>62 (1, 142, 946)e = 21). The fourth selection updates the counter - 83G1,2,9 for
the attribute set of O_ORDERDATE and O_SHIPPRIORITY as 298 rows match, and two
attributes are referenced in the predicate.

As future work, we plan to collect for a join 4 ⊲⊳�8̂, 9̂=�8, 9 '8 , where 4 is an expression (e. g.,
f? ('8̂)), the cardinality of expression 4 (i. e., |4 |) for attribute �8, 9 of relation '8 . The
reason is that an index on an attribute �8, 9 may improve the performance if |4 | is small.
Traversing the index on �8, 9 is then faster than building a hash table on �8, 9 .

5.2 Use Case 2: Data Compression Advisor

In Section 4, we have shown that existing approaches of collecting workload execution
statistics for data compression advisors (�(C0C F2) do not consider the type of access (i. e.,
sequential vs. random access). We propose to count both the number of rows accessed
sequentially and randomly by the workload. Maintaining just two counters per attribute
fulfills the space efficiency requirement. Section 6 shows that our approach also achieves a
low runtime overhead. Note that besides workload execution statistics, characteristics of
the data (e. g., number of distinct values, value distribution, or whether the data is sorted)
are also needed to propose an optimal compression layout (Use Case 2) [Da19]. Moreover,
these statistics are typically available in databases today with sufficient quality. However,
workload execution statistics are essential in estimating the performance benefit, particularly
for (business) critical queries. We summarize the presented access counter in the following:

88 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

11

Access Counter 2 (Data Compression Advisor)
Physical Accesses: We consider the physical data accesses during execution of workload, .
Access Type: For each attribute �8, 9 ∈ '8 , we create and maintain an integer counter -B8, 9 ,
which tracks the number of rows sequentially read, and an integer counter -A8, 9 , which tracks
the number of rows randomly accessed.

𝜎O_ORDERDATE<1993-05-29 𝜎C_MKTSEGMENT=‘FURNITURE’

⋈O_CUSTKEY=C_CUSTKEY
HJ

⋈O_ORDERKEY=L_ORDERKEY
INL

𝜎L_SHIPDATE>1993-05-29

ΓO_ORDERKEY

Sortrevenue desc, O_ORDERDATE, top 10

𝜋L_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY

sum(L_EXTENDEDPRICE * (1 – L_DISCOUNT)) as revenue

LINEITEM

CUSTOMERORDERS

C_CUSTKEY

C_MKTSEGMENT

O_ORDERKEY

O_CUSTKEY

O_ORDERDATE

O_SHIPPRIORITY

L_ORDERKEY

L_DISCOUNT

L_EXTENDEDPRICE

L_SHIPDATE

0
1, 500, 000

0

0
15, 000, 000

0

0

0

0

0

299, 496

0
1, 015, 311

3, 774, 696

377, 432

10
3, 045, 935

1, 074, 616

1, 074, 616

3, 045, 935

�8, 9 -B8, 9 -A8, 9

Fig. 5: Illustration of the data structure for collecting �(C0C F2 for a data compression advisor.

Figure 5 shows for JCC-H Q3 how -B8, 9 and -A8, 9 are updated. Note that these statistics
are actual values from the execution with SAP HANA. Data accesses by an operator in
the plan and updating the corresponding counter are highlighted using a unique color.
The selection on O_ORDERDATE causes 15, 000, 000 sequential row accesses, while
the join between ORDERS and CUSTOMER causes 299, 496 random row accesses to
C_CUSTKEY and 3, 774, 696 random accesses to O_CUSTKEY (a customer has on average
10 orders). The projection on O_SHIPPRIORITY generates 10 random row accesses due to
the top-10 query.

5.3 Use Case 3: Buffer Pool Size Advisor

Block-level data access counters provide precise access frequencies of pages if the block size
equals the page size. However, keeping track of accesses that span multiple pages requires
updating |P8, 9 |-many block counters. Instead of updating for each query the frequencies
of all touched pages individually, we propose to update only the respective start and end
page counters: If a query accesses the pages [%8, 9 ,E , %8, 9 ,F), %8, 9 ,E , %8, 9 ,F ∈ P8, 9 , the
corresponding counter to page %8, 9 ,E is incremented, while the counter of page %8, 9 ,F+1 is
decremented since %8, 9 ,F is the last accessed page. This enables counter updates in constant
time. Since we decrement the counter of the following page, in total |P8, 9 + 1| counters
are needed to be able to decrement a counter for accesses to the last page %8, 9 , |P8, 9+| . After

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
89

12 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

statistics collection, the final page access frequencies are derived by calculating the prefix
sum of the counters up to the target page. We argue that the statistics are considerably
more often updated than read (e. g., after a sampling phase) and that we thus meet the
runtime overhead requirements. Furthermore, the memory overhead is low because only a
single 64-bit signed integer counter per page is stored. For example, in SAP HANA [Sh19]
the memory footprint varies between 0.2% (64 bit/4 KB) and 0.00005% (64 bit/16 MB),
depending on the page size. We present the data structure below:

Access Counter 3 (Buffer Pool Size Advisor)
Physical Accesses: We consider the physical data accesses by the workload, .
Start/End Block Counting: For each attribute �8, 9 ∈ '8 , we create and maintain inte-
ger counters -%8, 9,1, . . . , -

%
8, 9,E , . . . , -

%
8, 9, (|P8, 9+1 |) . For physical accesses to pages in the

range [%8, 9 ,E , %8, 9 ,F [, %8, 9 ,E , %8, 9 ,F ∈ P8, 9 , counter -%8, 9,E is incremented by 1, and
counter -%

8, 9, (F+1) is decremented by 1. The access frequency 5%8, 9,D for page %8, 9 ,D is
defined as 5%8, 9,D =

∑D
E=1 -

%
8, 9,E .

%8, 9 ,1 %8, 9 ,2 %8, 9 ,3 %8, 9 ,4 . . . %8, 9 , |P8, 9 |Pages %8, 9 ,D of O_ORDERDATE

+1 +1 −1 0 . . . +1 −2Access Counters -%8, 9,D
1 2 1 1 . . . 2Access Frequency 5%8, 9,D

ΠO_ORDERDATE (e)
+1 −1 +1 −1

fO_ORDERDATE>′1992−01−01′ (Orders) . . .
+1 −1

W
or

kl
oa

d
,

A
cc

es
s

Co
un

te
r3

Fig. 6: Illustration of the data structure for collection �(C0C F3 for a buffer pool size advisor.

Figure 6 shows for a selection and a projection on O_ORDERDATE how the page accesses
are counted. The selection changes counter -%8, 9,1 by +1 and counter -%

8, 9, (|P8, 9+1 |) by −1,
while the projection increments only the counter of the accessed page by +1 and decrements
the counter of the following page by −1. Note that for accesses to the last page, the counter
-%
8, 9, (|P8, 9+1 |) is decremented. We compute the prefix sum of the counters up to the target

page to obtain the access frequencies of individual pages, e. g., page %8, 9 ,2 has an access
frequency of 2 (= -%8, 9,1 + -%8, 9,2).

5.4 Use Case 4: Table Partitioning Advisor

A naïve approach of tracking the access frequencies of values in the active attribute domain
(�(C0C F4) is to group values into value ranges and to increment a value range counter by
one whenever a value or sub-range of the value range is read. With the counter representing

90 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

13

the access frequency of each value in the range, frequencies are overestimated substantially.
Instead, we propose to count the number of actually accessed values. A single random read
would increase the counter by one, whereas a full column scan would increment the counter
by the number of values in the range (i. e., the block size). The access frequency of a value
is then obtained by dividing the value range counter by the block size. The calculated access
frequencies are nevertheless prone to skewed access patterns. More specifically, access
frequencies of heavy hitters are underestimated, whereas frequencies of rarely accessed
values (i. e., the long tail) are overestimated.

To improve precision in such situations, we propose to employ the space-saving algorithm
and its stream-summary data structure [MAE05] in order to monitor the top-ℎ most
frequently accessed values of a value range. However, depending on ℎ, not all values stored
in the stream-summary are true heavy hitters. To identify actual heavy hitters from the values
stored in the stream-summary, we additionally consider each values’ value range counter.
Since the stream-summary substantially overestimates access frequencies of rarely accessed
values, we argue that the estimated frequency of a heavy hitter must not be significantly
larger than its corresponding value range counter. Since the stream-summary also tends
to overestimate heavy hitters, we tolerate a slightly larger estimated access frequency.
Therefore, we introduce a tolerance parameter _, such that the estimated access frequency
of the stream-summary is only considered if its estimate is at most _-times larger than its
corresponding value range counter.

To calculate the access frequency of a value, we first check if the corresponding value range
contains heavy hitters. If this is the case, we subtract their accumulated access count from
the value range counter. The estimated access frequency of values from the long tail is
given by the remaining block count divided by the number of values from the long tail in
the value range. The estimated access frequency of heavy hitters is simply taken from the
stream-summary.

Our approach can be tuned to fulfill the space requirement by configuring the block size
and the number of heavy hitter candidates tracked by the stream-summary data structure.
We show in Section 6 that our approach also achieves high precision while having a low
runtime overhead. The presented data structure is summarized in the following:

Access Counter 4 (Table Partitioning Advisor)
Block Counting: For each attribute �8, 9 ∈ '8 , we create counters - E0;8, 9 ,0, . . . , -

E0;
8, 9 ,1 , . . . ,

- E0;
8, 9 , b38, 9/18, 9 c , where the block size 18, 9 is the number of values grouped into a block.

Stream-summary: For each attribute �8, 9 ∈ '8 , we create a stream-summary data struc-
ture ((ℎ8, 9 such that � (((ℎ8, 9) is the domain of the monitored top-ℎ most frequently accessed
values. For a value E8, 9 ,: , the estimated access frequency is given by ((ℎ8, 9 (E8, 9 ,:) if
E8, 9 ,: ∈ � (((ℎ8, 9), otherwise 0.
Physical Accesses: We consider the physical data accesses during execution of workload, .
For a sequential read on �8, 9 , - E0;8, 9 ,1 is incremented by the number of values that fall into

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
91

14 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

the given block and have at least one matching row. The values are also inserted into ((ℎ8, 9 .
For a random read '8 [rid8] .�8, 9 = E8, 9 ,: , rid8 ∈ [1, |'8 |], - E0;8, 9 , d:/18, 9 e is incremented by 1,
and the value is inserted into ((ℎ8, 9 .

Access Frequency: The estimated access frequency 5̂E8, 9,: is calculated as follows:

5̂E8, 9,: =

{
((ℎ8, 9 (E8, 9 ,:) if 8B�� (E8, 9 ,:)⌈(
- E0;
8, 9 , b:/18, 9 c − =D<���224BB4B

)
/(18, 9 − =D<��)⌉

otherwise,

where 8B�� (E8, 9 ,:) =
{

1 if E8, 9 ,: ∈ � (((ℎ8, 9) ∧ ((ℎ8, 9 (E8, 9 ,:) ≤ _ · - E0;8, 9 , b:/18, 9 c
0 otherwise.

=D<�� =
∑ d:/18, 9 e ·18, 9−1

:′= b:/18, 9 c ·18, 9
8B�� (E8, 9 ,:′)

=D<���224BB4B =
∑ d:/18, 9 e ·18, 9−1

:′= b:/18, 9 c ·18, 9
8B�� (E8, 9 ,:′) · ((ℎ8, 9 (E8, 9 ,:′).

.1 2 3 4 5 6 7 32 33 34 35 36 37 38 39 64 60
M

Values E8, 9 ,: of O_ORDERKEY

0 2 8 4 . . . 4-E0;
8, 9 ,1

18, 9 = 4
5̂E8, 9,: = 4 5̂E8, 9,: = 6
E8, 9 ,: = 6 E8, 9 ,: = 35

Stream Summary ((ℎ8, 9

0 1 1 6 1 1 . . . 1Est. Access Frequency 5̂E8, 9,:

ZO_ORDERKEY=L_ORDERKEY(4)
fO_ORDERKEY>30 (Orders) . . .

W
or

kl
oa

d
,

A
cc

es
sC

ou
nt

er
4

Fig. 7: Illustration of the data structure for collection �(C0C F4 for a partitioning advisor.

Figure 7 shows for a selection and a join of attribute O_ORDERKEY how the access
frequencies of values are estimated based on the block counter and the stream-summary.
For example, the value 35 stored in the stream-summary is a heavy hitter as 6 is not larger
than _ · - E0;8, 9 ,2 with _ = 1.2. Therefore, the counter - E0;8, 9 ,2 is decremented by 6, which results
in an estimated access frequency of 1 for the values from the long tail, i. e., 33, 34, and 36.
In contrast, value 6 is not classified as a heavy hitter as the estimated access frequency 4 is
more than _-times larger than - E,;8, 9 ,1 with _ = 1.2.

92 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

15

6 Experimental Evaluation

We evaluate the presented access counters with respect to their precision, space efficiency,
and runtime overhead using real-world and synthetic benchmarks for an index advisor
(Section 6.1), a data compression advisor (Section 6.2), a buffer pool size advisor (Sec-
tion 6.3), and a table partitioning advisor (Section 6.4). We implemented our access counters
prototypically in SAP HANA [MBL17]. First, we discuss the experimental setup.

Our test system is equipped with an Intel Xeon E7-8870 v4 CPU (4 sockets) and 1 TB
DRAM. Secondary storage is provided by a RAID controller of 8 disks of type HGST
HUC101812CSS204 HDD with 10k rpm and a SAS 12 Gbit/s interface.

The first workload is the synthetic TPC-H benchmark [TP18] with scale factor 10, consisting
of 22 templated queries. To create a challenging environment for our access counters, we
consider as second workload the JCC-H benchmark [BAK18] (scale factor 10), which
extends TPC-H with data and query skew. For example, special shopping events such as Black
Friday are reflected by corresponding spikes in O_ORDERDATE. To cover the experiments in
an acceptable time, we excluded queries Q9, Q16, Q20, and Q21 for JCC-H since parameter
combinations led to query execution times larger than five minutes due to the data and
query skew. Our third workload is the Join Order Benchmark (JOB) [Le15]. JOB consists
of 33 different query templates (113 different queries in total) and uses real-world data from
IMDb with data skew and correlations that aggravate estimation errors.

For the evaluation, we randomly generated for each benchmark a workload of 200 queries.
The following table shows how often each templated query occurs in each workload:
Query ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
TPC-H 8 11 11 5 14 16 9 5 8 11 5 11 10 7 12 4 8 8 10 9 9 9
JCC-H 11 15 7 14 19 9 9 12 – 7 14 10 12 8 9 – 9 14 10 – – 11
JOB 5 6 4 4 7 11 4 5 5 3 6 2 9 4 6 11 12 16 17 7 4 9 5 5 5 7 3 8 5 3 5 7 10

6.1 Use Case 1: Index Advisor

We start by evaluating Access Counter 1 for collecting workload execution statistics for an
index advisor. Since we group actual output cardinalities into intervals [1A , 1A+1) and count
only the number of selections per interval, we calculate the precision of our approach by
dividing the estimated output cardinality (i. e.,

√
1A · 1A+1) by its actual output cardinality:

i83G = �|f? ('8) |/|f? ('8) |. In our experiments, we set the interval base parameter 1 to 2.
Hence, the actual and recorded output cardinalities differ at most by a factor of

√
2.

Figure 8 shows for six attributesA8,B ⊆ F (?),∀f? ('8) ∈) (@),∀@ ∈ , of each benchmark
the precision i83G , i. e., the ratio of estimated and actual output cardinalities. Overestimation
is shown on the top, underestimation at the bottom. Each boxplot shows the 0.00, 0.25, 0.5,

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
93

16 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

0.75, and 1.00 percentiles. We observe for all attributes and all benchmarks that i83G of all
selections is at most

√
2 in accordance with our choice of 1.

2−1

√
2−1

1

√
2

2

L_D
ISC

OUNT

L_Q
UANTIT

Y

L_R
ECEIPT

DATE

L_S
HIPD

ATE

O_O
RDERDATE

P_
TYPE

Pr
ec

isi
on
i
83
G

[lo
g

sc
al

e]

(a) TPC-H (SF 10)

2−1

√
2−1

1

√
2

2

L_C
OMMITDATE

L_D
ISC

OUNT

L_R
ECEIPT

DATE

L_S
HIPD

ATE

O_O
RDERDATE

P_
TYPE

Pr
ec

isi
on
i
83
G

[lo
g

sc
al

e]

(b) JCC-H (SF 10)

2−1

√
2−1

1

√
2

2

N.NAME

CI.N
OTE

MI.IN
FO

MI.N
OTE

MC.N
OTE

K.K
EYWORD

Pr
ec

isi
on
i
83
G

[lo
g

sc
al

e]

(c) JOB

Fig. 8: Precision of our approach for collecting workload execution statistics for an index advisor.

Precise Counting Our Approach
Workload TPC-H JCC-H JOB TPC-H JCC-H JOB
Precision i83G 1.0 1.0 1.0 ≤

√
2 ≤

√
2 ≤

√
2

Memory Overhead 10.6% 10.6% 8.4% < 0.1% < 0.1% < 0.1%
Runtime Overhead 1.4% 1.5% 1.6% 1.7% 2.6% 3.1%

Tab. 4: Precision, space efficiency, and runtime overhead compared to precise counters.

Table 4 shows the results with respect to precision, space efficiency, and runtime overhead
of precise counting (i. e., one counter per output cardinality) and our approach (i. e., lazy
counters and interval counting). While precise counting achieves perfect precision, its
memory overhead varies between 8.4% and 10.6% and is thus substantial. Our approach
instead still attains reasonably accurate estimates, differing at most by a factor of

√
2. The

memory overhead is also negligible due to lazy counting in combination with intervals.
Both approaches yield a low runtime overhead since only the actual output cardinalities of
selections are tracked. We conclude that our access counters are precise, compact, and fast.

6.2 Use Case 2: Data Compression Advisor

Workload TPC-H JCC-H JOB
Precision 100% precise
Memory Overhead < 0.1% < 0.1% < 0.1%
Runtime Overhead 4.7% 8.3% 9.1%

Tab. 5: Precision, space efficiency, and runtime overhead
for our access counters of a data compression advisor.

We now evaluate Access Counter 2 for
collecting workload execution statistics
for a data compression advisor. Table 5
shows the results with respect to pre-
cision, space efficiency, and runtime
overhead. Our approach is 100% pre-
cise since, for each attribute, the exact
number of rows accessed sequentially

94 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

17

and randomly by the workload is counted. Maintaining just two 64-bit integer counters
per attribute is also space-efficient. For example, for the Join Order Benchmark with 108
attributes in 21 relations, the total memory consumption is only 1.73 KB (= 108 · 16 bytes).
Compared to the data set size in SAP HANA (2.28 GB), this represents only 0.00008%. As
the runtime overhead is also low (between 4.7% and 9.1%), we conclude that our access
counters for a data compression advisor are precise, compact, and fast.

6.3 Use Case 3: Buffer Pool Size Advisor

In the third experiment, we evaluate Access Counter 3 for collecting workload execution
statistics for a buffer pool size advisor. Table 6 shows the results with respect to the precision,
space efficiency, and runtime overhead of naïve block-level counting (i. e., updating the
frequencies of all touched pages) and our approach (i. e., updating only the frequencies
of start and end pages). Both approaches are 100% precise since, for each memory page,
all physical accesses are tracked. Compared to the data set size, the memory overhead is
at most 0.2% compared to the tables data size, given the smallest page size of 4 KB in
SAP HANA (64 bit/4 KB) [Sh19]. We use one signed 64-bit integer counter per page as
counters may become negative. The runtime overhead of naïve block-level counting varies
between 8.3% and 21.8%. Our approach results only in a runtime overhead between 5.2%
and 13.5%, as updates to the counter are done in constant time for queries that span multiple
pages. We conclude that our access counters are precise, compact, and fast.

Naïve Block-Level Counting Our Approach
Workload TPC-H JCC-H JOB TPC-H JCC-H JOB
Precision 100% precise 100% precise
Memory Overhead ≤ 0.2% ≤ 0.2% ≤ 0.2% ≤ 0.2% ≤ 0.2% ≤ 0.2%
Runtime Overhead 8.3% 13.1% 21.8% 5.2% 9.2% 13.5%

Tab. 6: Precision, space efficiency, and runtime overhead compared to naïve block access counters.

6.4 Use Case 4: Table Partitioning Advisor

Finally, we evaluate Access Counter 4 for collecting workload execution statistics for a
table partitioning advisor. To fulfill the space efficiency requirement, we limit the access
counters’ memory footprint to 1% compared to the column size (encoded column and
dictionary). For example, for O_ORDERDATE (23 MB, 2406 distinct values), we create
one counter per domain value, while for O_ORDERKEY (105MB, 15,000,000 distinct
values), domain values are grouped into ranges of 115 values each. We also maintain a
stream-summary for attributes with a block size larger than one to track the top-100 most
frequently accessed values. Finally, we set _ = 1.2, i. e., a value is classified as heavy hitter
if its access frequency estimated by the stream-summary is at most 1.2× larger than its
value range counter. We experimentally evaluated _ = 1.2 as a good choice. To calculate the

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
95

18 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

precision of a value i8, 9 ,: , we divide the estimated access frequency by the actual access
frequency, i. e., i8, 9 ,: = 5̂E8, 9,:/ 5E8, 9,: .

In the JCC-H benchmark, 29 of 61 attributes yield a block size larger than one, i. e., cannot
grant 100% precision within a memory budget of 1% of the column size. Figure 9 shows the
precision i8, 9 ,: of three approaches and six representative attributes with a block size larger
than one. Overestimation is shown on the top, underestimation at the bottom. The boxplot
displays the 0.0001, 0.25, 0.5, 0.75, and 0.9999 percentiles. Outliers are highlighted as dots
above or below the boxplot.

10−3
10−2
10−1
100
101
102
103
104
105
106
107

L_E
XTENDEDP

L_O
RDERKEY

L_P
ARTKEY

O_C
UST

KEY

O_O
RDERKEY

PS
_P

ARTKEY

Pr
ec

isi
on
i
8,
9,
:

[lo
g

sc
al

e]

(a) Naïve block-level counters

10−3
10−2
10−1
100
101
102
103
104
105
106
107

L_E
XTENDEDP

L_O
RDERKEY

L_P
ARTKEY

O_C
UST

KEY

O_O
RDERKEY

PS
_P

ARTKEY

Pr
ec

isi
on
i
8,
9,
:

[lo
g

sc
al

e]

(b) Our approach (− stream-sum.)

10−3
10−2
10−1
100
101
102
103
104
105
106
107

L_E
XTENDEDP

L_O
RDERKEY

L_P
ARTKEY

O_C
UST

KEY

O_O
RDERKEY

PS
_P

ARTKEY

Pr
ec

isi
on
i
8,
9,
:

[lo
g

sc
al

e]

(c) Our approach (+ stream-sum.)

Fig. 9: Precision of our approach (with and without the stream-summary data structure) compared to
naïve block-level access counters for a table partitioning advisor, executing the JCC-H benchmark.

Figure 9(a) shows the precision of naïve block-level counters, i. e., the block counter is
incremented by one whenever a value or sub-range of the block is read. The results confirm
the statement in Section 5.4 that access frequencies are overestimated substantially.

Figure 9(b) shows the precision of our approach that counts the number of actually accessed
block values, while the access frequency of a value is obtained by dividing the total number
of accessed values by the block size. We observe that our approach dramatically improves
precision by several orders of magnitude, most of the estimates are within a bound of factor
2. However, for all six attributes, heavy hitters are underestimated, and rarely accessed
values are overestimated (shown on the top and bottom of Figure 9(b)).

Figure 9(c) shows the precision obtained by adding a stream-summary to identify heavy
hitters. To emphasize the difference with and without the stream-summary, we mark these
values in Figure 9(b) in red, which are estimated correctly in Figure 9(c). For example, the
heavy hitters of L_ORDERKEY (shown in red at the bottom in Figure 9(b)) are estimated
precisely in Figure 9(c). Accordingly, rarely accessed values of the corresponding block
are overestimated without the stream-summary (shown at the top of Figure 9(b)) but

96 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

19

estimated precisely with the stream-summary. We observe similar results for O_CUSTKEY,
L_PARTKEY, and L_EXTENDEDPRICE.

We omit measurements of the precision for the TPC-H benchmark since the results are very
similar compared to the JCC-H benchmark by ignoring the heavy hitters.

In the Join Order Benchmark, 47 of 108 attributes yield a block size larger than one.
Figure 10 shows the precision i8, 9 ,: for six representative attributes. We again observe
that naïve block-level counters overestimate access frequencies substantially (Figure 10(a)),
while our approach improves the precision by 1-2 orders of magnitude (Figure 10(b)).
However, we do not observe substantial improvement by adding a stream-summary like for
the JCC-H benchmark (Figure 10(c)). The reason is that the JCC-H benchmark exhibits
heavy hitters by design, while the Join Order Benchmark exposes only limited data and
query skew.

10−3
10−2
10−1
100
101
102
103
104
105
106
107

CI.P
ERSO

N_ID

CHN.NAME

CN.NAME

ML.M
OVIE_ID

T.T
ILE

PI.
PE

RSO
N_ID

Pr
ec

isi
on
i
8,
9,
:

[lo
g

sc
al

e]

(a) Naïve block-level counters

10−3
10−2
10−1
100
101
102
103
104
105
106
107

CI.P
ERSO

N_ID

CHN.NAME

CN.NAME

ML.M
OVIE_ID

T.T
ILE

PI.
PE

RSO
N_ID

Pr
ec

isi
on
i
8,
9,
:

[lo
g

sc
al

e]

(b) Our approach (− stream-sum.)

10−3
10−2
10−1
100
101
102
103
104
105
106
107

CI.P
ERSO

N_ID

CHN.NAME

CN.NAME

ML.M
OVIE_ID

T.T
ILE

PI.
PE

RSO
N_ID

Pr
ec

isi
on
i
8,
9,
:

[lo
g

sc
al

e]

(c) Our approach (+ stream-sum.)

Fig. 10: Precision of our approach (with and without the stream-summary data structure) compared to
naïve block-level access counters for a table partitioning advisor, executing the Join Order Benchmark.

Table 7 shows the space efficiency and runtime overhead of row-level access counters, naïve
block-level access counters, and our approach, with and without the stream-summary data
structure. While row-level data access counters are 100% precise, their memory overhead is
high, and the runtime overhead is also notable. In contrast, naïve block-level access counters
and our approach (without stream-summary) use a fixed memory budget of 1% and achieve

Block-Level Counters & Our approach
Row-Level Counters Our approach (− s.s.) (+ stream summary)

Workload TPC-H JCC-H JOB TPC-H JCC-H JOB TPC-H JCC-H JOB
Memory Overhead 10.80% 10.82% 20.53% ≤ 1% ≤ 1% ≤ 1% ≤ 1% ≤ 1% ≤ 1%
Runtime Overhead 3.9% 14.7% 15.6% 2.1% 9.7% 9.6% 13.8% 22.7% 23.6%

Tab. 7: Memory and runtime overhead for our approach compared to row and block-level counters.

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
97

20 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

low runtime overhead. However, naïve block-level access counters are imprecise, while our
approach achieves precise estimates (Figures 9 and 10). Adding the stream-summary data
structure further improves the precision (Figure 9) at the cost of increasing the runtime
overhead. Therefore, we argue that our approach (without the stream-summary) is preferred
if the runtime overhead is critical. Otherwise, the stream-summary data structure may be
added to improve the precision with low memory overhead.

7 Conclusion

We presented data structures that solve the problem of providing workload execution
statistics with high precision, low memory consumption, and low runtime overhead to
automated physical database design tools. Since no approach in the literature collects
precise, compact, and fast workload execution statistics for an advisor tool, we presented
how existing approaches can be combined and for which advisors new data structures have
to be designed. Our evaluation showed that our data access counters outperform related
work to provide precise, compact, and fast workload execution statistics for an index advisor,
a data compression advisor, a buffer pool size advisor, and a table partitioning advisor using
real-world and synthetic benchmarks.

References

[ABI19] Athanassoulis, M.; Bøgh, K. S.; Idreos, S.: Optimal Column Layout for Hybrid
Workloads. Proc. VLDB Endow. 12/13, pp. 2393–2407, Sept. 2019.

[Ag04] Agrawal, S.; Chaudhuri, S.; Kollar, L.; Marathe, A.; Narasayya, V.; Syamala, M.:
Database Tuning Advisor for Microsoft SQL Server 2005. In: Proceedings of
the Thirtieth International Conference on Very Large Data Bases. VLDB ’04,
VLDB Endow., pp. 1110–1121, 2004.

[BAK18] Boncz, P.; Anatiotis, A.-C.; Kläbe, S.: JCC-H: Adding Join Crossing Corre-
lations with Skew to TPC-H. In (Nambiar, R.; Poess, M., eds.): Performance
Evaluation and Benchmarking for the Analytics Era. Springer International
Publishing, Cham, Switzerland, pp. 103–119, 2018.

[Cu10] Curino, C.; Jones, E.; Zhang, Y.; Madden, S.: Schism: A Workload-Driven
Approach to Database Replication and Partitioning. Proc. VLDB Endow. 3/1–2,
pp. 48–57, Sept. 2010.

[Da16] Das, S.; Li, F.; Narasayya, V. R.; König, A. C.: Automated Demand-Driven
Resource Scaling in Relational Database-as-a-Service. In: Proceedings of
the 2016 International Conference on Management of Data. SIGMOD ’16,
Association for Computing Machinery, New York, NY, USA, pp. 1923–1934,
2016.

98 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

21

[Da19] Damme, P.; Ungethüm, A.; Hildebrandt, J.; Habich, D.; Lehner, W.: From a
Comprehensive Experimental Survey to a Cost-Based Selection Strategy for
Lightweight Integer Compression Algorithms. ACM Trans. Database Syst. 44/3,
June 2019.

[FKN12] Funke, F.; Kemper, A.; Neumann, T.: Compacting Transactional Data in Hybrid
OLTP & OLAP Databases. Proc. VLDB Endow. 5/11, pp. 1424–1435, July
2012.

[Gu18] Gurajada, A.; Gala, D.; Zhou, F.; Pathak, A.; Ma, Z.-F.: BTrim: Hybrid in-
Memory Database Architecture for Extreme Transaction Processing in VLDBs.
Proc. VLDB Endow. 11/12, pp. 1889–1901, Aug. 2018.

[Hu19] Huang, G.; Cheng, X.; Wang, J.; Wang, Y.; He, D.; Zhang, T.; Li, F.; Wang, S.;
Cao, W.; Li, Q.: X-Engine: An Optimized Storage Engine for Large-Scale
E-Commerce Transaction Processing. In: Proceedings of the 2019 International
Conference on Management of Data. SIGMOD ’19, Association for Computing
Machinery, New York, NY, USA, pp. 651–665, 2019.

[KAI17] Kester, M. S.; Athanassoulis, M.; Idreos, S.: Access Path Selection in Main-
Memory Optimized Data Systems: Should I Scan or Should I Probe? In:
Proceedings of the 2017 ACM International Conference on Management of
Data. SIGMOD ’17, Association for Computing Machinery, New York, NY,
USA, pp. 715–730, 2017.

[Ko20] Kossmann, J.; Halfpap, S.; Jankrift, M.; Schlosser, R.: Magic Mirror in My
Hand, Which is the Best in the Land? An Experimental Evaluation of Index
Selection Algorithms. Proc. VLDB Endow. 13/12, pp. 2382–2395, July 2020.

[Le10] Lemke, C.; Sattler, K.-U.; Faerber, F.; Zeier, A.: Speeding Up Queries in
Column Stores. In (Bach Pedersen, T.; Mohania, M. K.; Tjoa, A. M., eds.): Data
Warehousing and Knowledge Discovery. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 117–129, 2010.

[Le15] Leis, V.; Gubichev, A.; Mirchev, A.; Boncz, P.; Kemper, A.; Neumann, T.: How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9/3, pp. 204–215,
Nov. 2015.

[LLS13] Levandoski, J. J.; Larson, P.-Å.; Stoica, R.: Identifying hot and cold data in
main-memory databases. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE). ICDE ’13, IEEE, pp. 26–37, 2013.

[Lu19] Lu, J.; Chen, Y.; Herodotou, H.; Babu, S.: Speedup Your Analytics: Automatic
Parameter Tuning for Databases and Big Data Systems. Proc. VLDB Endow.
12/12, pp. 1970–1973, Aug. 2019.

[MAE05] Metwally, A.; Agrawal, D.; El Abbadi, A.: Efficient Computation of Frequent
and Top-k Elements in Data Streams. In (Eiter, T.; Libkin, L., eds.): Database
Theory - ICDT 2005. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 398–
412, 2005.

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
99

22 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

[MBL17] May, N.; Böhm, A.; Lehner, W.: SAP HANA – The Evolution of an In-
Memory DBMS from Pure OLAP Processing Towards Mixed Workloads.
In (Mitschang, B.; Nicklas, D.; Leymann, F.; Schöning, H.; Herschel, M.;
Teubner, J.; Härder, T.; Kopp, O.; Wieland, M., eds.): Datenbanksysteme für
Business, Technologie und Web (BTW 2017). Gesellschaft für Informatik,
Bonn, pp. 545–546, 2017.

[Na20] Nathan, V.; Ding, J.; Alizadeh, M.; Kraska, T.: Learning Multi-Dimensional
Indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’20, Association for Computing Machinery,
New York, NY, USA, pp. 985–1000, 2020.

[No20] Noll, S.; Teubner, J.; May, N.; Böhm, A.: Analyzing Memory Accesses with
Modern Processors. In: Proceedings of the 16th International Workshop on
Data Management on New Hardware. DaMoN ’20, Association for Computing
Machinery, New York, NY, USA, 2020.

[Ra02] Rao, J.; Zhang, C.; Megiddo, N.; Lohman, G.: Automating Physical Database
Design in a Parallel Database. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’02, Association
for Computing Machinery, New York, NY, USA, pp. 558–569, 2002.

[Se16] Serafini, M.; Taft, R.; Elmore, A. J.; Pavlo, A.; Aboulnaga, A.; Stonebraker, M.:
Clay: Fine-Grained Adaptive Partitioning for General Database Schemas. Proc.
VLDB Endow. 10/4, pp. 445–456, Nov. 2016.

[Sh19] Sherkat, R.; Florendo, C.; Andrei, M.; Blanco, R.; Dragusanu, A.; Pathak, A.;
Khadilkar, P.; Kulkarni, N.; Lemke, C.; Seifert, S.; Iyer, S.; Gottapu, S.;
Schulze, R.; Gottipati, C.; Basak, N.; Wang, Y.; Kandiyanallur, V.; Pendap, S.;
Gala, D.; Almeida, R.; Ghosh, P.: Native Store Extension for SAP HANA. Proc.
VLDB Endow. 12/12, pp. 2047–2058, Aug. 2019.

[St06] Storm, A. J.; Garcia-Arellano, C.; Lightstone, S. S.; Diao, Y.; Surendra, M.:
Adaptive Self-Tuning Memory in DB2. In: Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases. VLDB ’06, VLDB Endowment,
pp. 1081–1092, 2006.

[TP18] TPC: TPC Benchmark H Standard Specification, http://www.tpc.org/tpc_
documents_current_versions/pdf/tpc-h_v2.18.0.pdf, 2018.

100 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

cbe

Publisher et al. (Hrsg.): Conference,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Exploring Memory Access Patterns for Graph Processing
Accelerators

Jonas Dann1, Daniel Ritter1, Holger Fröning2

Abstract: Recent trends in business and technology (e. g., machine learning, social network analysis)
benefit from storing and processing growing amounts of graph-structured data in databases and
data science platforms. FPGAs as accelerators for graph processing with a customizable memory
hierarchy promise solving performance problems caused by inherent irregular memory access patterns
on traditional hardware (e. g., CPU). However, developing such hardware accelerators is yet time-
consuming and difficult and benchmarking is non-standardized, hindering comprehension of the
impact of memory access pattern changes and systematic engineering of graph processing accelerators.

In this work, we propose a simulation environment for the analysis of graph processing accelerators
based on simulating their memory access patterns. Further, we evaluate our approach on two state-of-
the-art FPGA graph processing accelerators and show reproducibility, comparablity, as well as the
shortened development process by an example. Not implementing the cycle-accurate internal data
flow on accelerator hardware like FPGAs significantly reduces the implementation time, increases the
benchmark parameter transparency, and allows comparison of graph processing approaches.

Keywords: DRAM; FPGA; Graph processing; Irregular memory access patterns; Simulation

1 Introduction

Recently, areas in computer science like machine learning, computational sciences, medical
applications, and social network analysis drove a trend to represent, store, and process
structured data as graphs [Be19, DRF20]. Consequently, graph processing gained relevance
in the fields of non-relational databases and analytics platforms. As a possible solution to
the performance problems on traditional hardware (e. g., CPUs) caused by irregular memory
accesses and little computational intensity inherent to graph processing [Be19, DRF20,
Lu07], FPGA accelerators emerged to enable unique memory access pattern and control
flow optimizations [DRF20]. FPGAs, compared to CPUs or GPUs with their fixed memory
hierarchy, have custom-usable on-chip memory and logic resources that are not constrained
to a predefined architecture. Example 1 illustrates the effect of irregular memory accesses
for breadth-first search (BFS) with an edge-centric approach. When not reading sequentially
from DRAM, bandwidth degrades quickly [Dr07], due to significant latency introduced by
DRAM row switching and partially discarded fetched cache lines.
1 SAP SE, {firstname.lastname}@sap.com
2 Heidelberg University, holger.froening@ziti.uni-heidelberg.de

cba doi:10.18420/btw2021-05

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 101

https://creativecommons.org/licenses/by-nc/3.0/
{firstname.lastname}@sap.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-05

2 Jonas Dann, Daniel Ritter, Holger Fröning

r0

r1

0 1 0 2

0 5 1 5

Edge rows

e0 e1

e2 e3

Cache line

r2 2 0 2 3
e4 e5

r3

r4

3 2 3 5

4 5 5 1
e6 e7

e8 e9

r5 0 1 1 -1

r6 -1 -1
v4 v5

v0 v2v1 v3

e2
v0

v5

v1

v3

v4

v2

Value rows

Fig. 1: Illustration of irregular memory accesses for breadth-first search

Example 1. Let each cache line consist of two values, the current BFS iteration be 1 with
root v0, and e2 be the current edge to be processed. Figure 1 shows an example graph with a
simplified representation in DRAM memory. The graphs edge array is stored in rows r0–r4
and the current value array is stored in r5 and r6. We begin by reading edge e2 which incurs
activating r1 in the memory and reading a full cache line. Then, we activate r5 and read the
first cache line containing v0 and v1, but only use v0. Finally, we activate r6 to read v5 and
write the new value 1 to the same location, while wasting bandwidth of one value on each
request (i. e., reading and not writing the value of v4 respectively).

While FPGA-based graph processing accelerators show good results for irregular memory
access pattern acceleration (e. g., [Ya18, Zh19]), programming FPGAs is time-consuming
and difficult compared to CPUs and GPUs where the software stack is much better developed
[Ab19, BRS13]. Additionally, software developers currently lack the skill-set needed for
high-performance FPGA programming, making development even more cumbersome.
Aside from that, there are deficiencies in benchmarking of graph processing accelerators
due to a large number of FPGAs on the market (almost every article uses a different FPGA),
but also lack of accepted benchmark standards (cf. [DRF20]). This leads us to the two main
challenges in the field: (1) time-consuming and difficult development of accelerators for
irregular memory access patterns of graph processing, (2) differences in hardware platforms
and benchmark setups hindering reproduction and comparison.

To solve challenges (1) and (2), we propose a simulation environment for graph processing
accelerators (based on the idea in Fig. 2a) as a methodology and tool to quickly reproduce
and compare different approaches in a synthetic, fixed environment. On a real FPGA, the
on-chip logic implements data flow on on-chip (in block RAM (BRAM)) and off-chip state
and graph data in the off-chip DRAM. Based on the observation that the access to DRAM
is the dominating factor in graph processing, we however only implement an approximation
of the off-chip memory access pattern in our environment working on the graph and state
independently of the concrete (difficult to implement) data flow on the FPGA and feed that
into a DRAM simulator. While the performance reported by such a simulation may not
perfectly match real performance measurements, we see a high potential to better understand
graph processing accelerators. This results in the following hypothesis:

Hypothesis. Memory access patterns dominate the overall runtime of graph processing
such that disregarding the internal data flow results in a reasonable error of a simulation.

102 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 3

DRAM
stats

0xA6 R
0xA7 R
0x01 W

0xA6 R
0xA7 R
0x01 W

DRAM simulator

~

FPGA Simulation env.
Access pattern

simulation

Graph State

RAM
Graph

StateBRAM

State

Logic

(a) Memory access simulation idea

SpMV PR SSSP WCC BFS PR WCC
0

25

50

75

100

E
rr

or
 (

%
)

HitGraph AccuGraph

(b) Reproducibility error from simulation

Fig. 2: Graph processing memory simulation idea and achieved reproducibility error

Our simulation approach significantly reduces the time to test new graph processing
accelerator ideas and also enables design support and deeper inspection with DRAM
statistics as well as easy parameter variation. In a recent survey [DRF20], we found multiple
graph processing accelerator approaches (e. g., AccuGraph [Ya18], ForeGraph [Da17],
HitGraph [Zh19], and Zhang et al. [ZL18] among others). Based on criteria like reported
performance numbers on commodity hardware and sufficient conceptual details, we chose
two state-of-the-art systems – namely HitGraph [Zh19] and AccuGraph [Ya18] – with
orthogonal approaches representing the currently most relevant paradigms, edge- and vertex-
centric graph processing, and evaluate our approach on their concepts. Figure 2b shows
box plots of the percentage error e = 100×|s−t |

t we achieve for simulation performance s and
ground truth performance t (taken from the respective article) grouped by accelerators and
algorithms. Without single-source shortest-paths (SSSP) on HitGraph, we get a reasonable
mean of 14.32%. We explain why this single algorithm performs so much worse and
why there are outliers for AccuGraphs weakly-connected components (WCC) algorithm in
Sect. 4.1. In this work, we make the following contributions:

1. We propose a simulation environment for graph processing accelerator engineering
and memory access abstractions based on our hypothesis.

2. We conduct a comprehensive reproducibility study for the two representative graph
processing accelerators HitGraph and AccuGraph and uncover deficiencies in perfor-
mance measurement practices.

3. We show the reduced effort of engineering new ideas with our simulation environment
by example of two novel optimizations to AccuGraph.

This article is structured as follows. In Sect. 2 we introduce basic concepts of graph processing,
FPGA-addressable DRAM, and DRAM simulation. In Sect. 3 we conceptually specify
the simulation environment, request flow abstractions, and their application to HitGraph
and AccuGraph. In Sect. 4 we reproduce and compare the performance measurements of
HitGraph and AccuGraph. We show the engineering benefits of our approach in Sect. 5,
before discussing related work in Sect. 6 and concluding in Sect. 7.

Exploring Memory Access Patterns for Graph Processing Accelerators 103

4 Jonas Dann, Daniel Ritter, Holger Fröning

Pointers 0 1 2 3

v0

v5

v1

v3

v4

v2

v0

Neighbors v2 v0 v0 v2 v0

0 0 1 2
v5 v3 v3 v4

Partition 1

0 1 1 2 -1Values 2
v1 v2 v3 v4 v5

src
v0

dst v1

v0 v0 v1 v2

0 1 1 2 -1Values 2
v1 v2 v3 v4 v5

(a) Horizontally partitioned edge list (b) Horizontally partitioned in-CSR

v0
v2 v5 v5 v3

v2
v0

Edges
e0

v2

v3 v4 v5v3
v5 v5 v1

e1 e2 e3 e4

e6 e7 e8 e9

e5

4 64
v1

2 2 4

Partition 0

Pointers

Neighbors
src
dstEdges

0 1 2 3 4 5 6

0 1 2 3 4

Fig. 3: Graph partitioning and data structures

2 Background
We start this section by briefly specifying graphs, how graph processing can be implemented,
and what problems can be solved on graphs. Thereafter, we shortly introduce the memory
hierarchy of FPGAs and more specifically how DRAM works internally. Lastly, we motivate
the selection of Ramulator [KYM16] as our DRAM simulator and briefly explain how
Ramulator models memory and is configured for our purpose.

2.1 Graph Processing

A graph G = (V, E) is an abstract data structure consisting of a vertex set V and an edge
set E ⊆ V × V . Intuitively, they are used to describe a set of entities (vertices) and their
relations (edges). Figure 3 shows two possible data structure representations (both with two
partitions) of the example graph. Horizontally partitioned means dividing up the vertex
set of the graph into intervals and assigning edges to the partition which interval contains
their source vertex. Figure 3a shows the example graph as a horizontally partitioned edge
list (used by HitGraph [Zh19]), which stores the graph as arrays of edges with a source
and a destination vertex. For example, edge e0 connects source v0 to destination vertex
v1. Figure 3b shows the same graph as a horizontally partitioned compressed sparse row
(CSR) format of the inverted edges (used by AccuGraph [Ya18]), meaning all source and
destination vertices of the edges in E are swapped before building a CSR data structure on
them. CSR is a data structure for compressing sparse matrices (in this case the adjacency
matrix of the graph) with two arrays. The values of the pointers array at position i and i + 1
delimit the neighbors of vi stored in the neighbors array. For example, for v5 in partition 1
the neighbors are the values of the neighbors array between 2 and 4, i. e., v3 and v4.

Depending on the underlying graph data structure, graphs are processed based on two
fundamentally different paradigms: edge- and vertex-centric graph processing. Edge-centric
systems (e. g., HitGraph) iterate over the edges as primitives of the graph on an underlying
edge list. Vertex-centric systems iterate over the vertices and their neighbors as primitives
of the graph on an underlying adjacency list (e. g., CSR). Further, for the vertex-centric
paradigm, there is a distinction into push- and pull-based data flow. A push-based data flow
denotes that values are pushed along the forward direction of edges to update neighboring
vertices. A pull-based data flow (e. g., applied by AccuGraph) denotes that values are pulled
along the inverse direction of edges from neighboring vertices to update the current vertex.

104 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 5

Row buffer

Rows
DRAM cell

Precharge
Activation

Bank Bank...
Rank

DRAM module

Memory controller

Logic BRAM
FPGA

Channel

Fig. 4: DRAM (adapted from [KYM16])

In the context of this article, we consider the five graph problems implemented by HitGraph
and AccuGraph: BFS, SSSP, WCC, sparse matrix-vector multiplication (SpMV), and
PageRank (PR). The problems specify their implementations to varying degrees. For
example, BFS denotes a sequence of visiting the vertices of a graph. Starting with a root
vertex as the frontier, in each iteration, every unvisited neighbor of the current frontier
vertices is marked as visited, assigned the current iteration as its value, and added to the
frontier of the next iteration.

In contrast, SSSP only specifies the desired output, i. e., for each vertex v ∈ V the shortest
distance to the root vertex. The shortest distance equals the smallest sum of edge weights of
any path from the root to v. If every edge is assumed to have weight 1, the result is equal to
BFS. Similarly, WCC specifies as output for each vertex its affiliation to a weakly-connected
component. Two vertices are in the same weakly-connected component if there is an
undirected path between them. There is no requirement on how these outputs are generated.

Finally, SpMV and PR specify the execution directive. SpMV multiplies a vector (equal to
V) with a matrix (equal to E) in iterations. PR is a measure to describe the importance of
vertices in a graph. It is calculated by recursively applying p(i) = 1−d

|V | +
∑

j∈NG (i)
p(j)
dG (j) for

each i ∈ V with damping factor d, neighbors NG and degree dG .

2.2 Memory Hierarchies of Field Programmable Gate Arrays

As a processor architecture platform, FPGA chips map custom architecture designs (i. e., a
set of logic gates and their connection) to a grid of resources (e. g., look-up tables, flip-flops,
and block RAM (BRAM)) connected with a programmable interconnection network. The
memory hierarchy of FPGAs is split up into on-chip and off-chip memory. On-chip, FPGAs
contain BRAM in the form of SRAM memory components. On modern FPGAs, there is
about as much BRAM as there is cache on modern CPUs (all cache levels combined), but
contrary to the fixed cache hierarchies of CPUs, BRAM is memory finely configurable to
the application. For storage of larger data structures, DRAM (e. g., DDR33 or DDR44) is
attached as off-chip memory. Subsequently, we briefly introduce the internal structure of
DDR3 and DDR4 to understand its implications on graph processing.

The internal organization of DDR3 memory is shown in Fig. 4, which at the lowest level
contains DRAM cells each representing one bit. The smallest number of DRAM cells

3 JESD79-3 DDR3 SDRAM Standard
4 JESD79-4 DDR4 SDRAM Standard

Exploring Memory Access Patterns for Graph Processing Accelerators 105

6 Jonas Dann, Daniel Ritter, Holger Fröning

Row

0
1 0 1

Bank Rank Column Channel

1211 310 49 ...
1 011 0

13
0 1 0

1415 12
1

161718293031
01 01 0 1

...
Address

Bit indices

Component

Fig. 5: DRAM addressing

(e. g., 16) that is addressable is called a column. Several thousand (e. g., 1, 024) columns
are grouped together into rows. Further, independently operating banks combine several
thousand (e. g., 65, 536) rows with a row buffer each.

Requests to data in a bank are served by the row buffer based on three scenarios: (1) When
the addressed row is already buffered, the request is served with low latency (e. g., tCL:
11ns). (2) If the row buffer is empty, the addressed row is first activated (e. g., tRCD : 11ns),
which loads it into the row buffer, and then the request is served. (3) However, if the row
buffer currently contains a different row from a previous request, the current row has to be
first pre-charged (e. g., tRP: 11ns) and only then the addressed row can be activated and
the request served. Additionally, there is a minimum latency between switching rows (e. g.,
tRAS: 28ns). Thus, for high performance, row switching should be minimized.

Since one bank does not provide sufficient bandwidth, 8 parallel banks further form a rank.
Multiple ranks operate in parallel but on the same I/O pins, thus increasing capacity of the
memory, but not bandwidth. Finally, the ranks of the memory are grouped into channels.
Each channel has its own I/O pins to the FPGA such that the bandwidth linearly increases
with the number of channels. DDR4 contains another hierarchy level called bank groups,
which group two to four banks to allow for more rapid processing of commands.

Data in DRAM is accessed by giving the memory a physical memory address that is split
up into multiple parts internally representing addresses for each component in the DRAM
hierarchy (cf. Fig. 5). Based on this, different addressing schemes are possible. An example
addressing scheme that aids distribution of requests over channels might first address the
channels, meaning subsequent addresses go to different channels, then address columns,
ranks, banks, and rows. To further improve memory bandwidth, modern DRAM returns
multiple bursts of data for each request (also called prefetching). For DDR3 and DDR4, each
request returns a total of 64 Bytes over 8 cycles which we call a cache line in the following.

2.3 DRAM Simulators – Ramulator

To speed up the engineering of graph processing on FPGA accelerators, a DRAM Simulator
is an integral part of our simulation environment (cf. Fig. 2a). For our purposes we
need a DRAM simulator that supports DDR3 (for HitGraph [Zh19]) and DDR4 (for
AccuGraph [Ya18]). We chose Ramulator [KYM16] for this work over other alternatives
like DRAMSim2 [RCJ11] and USIMM [Ch12] because – to the best of our knowledge –
it is the only DRAM simulator which supports (among many others like LPDDR3/4 and
HBM) both of those DRAM standards (DDR3/4).

106 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 7

Ramulator models DRAM as a tree of state machines (e. g., channel, rank, bank in DDR3)
where transitions are triggered by user or internal commands. However, Ramulator does
not make any assumptions about data in memory. Purely the request and response flow
is modelled with requests flowing into Ramulator and responses being called back. The
Ramulator configuration parameters that are relevant to our work are: (1) DRAM standard,
(2) channel count, (3) rank count, (4) DRAM speed specification, (5) DRAM organization.

3 Memory Access Simulation Environment
In this section, we first introduce the simulation environment based on the implications
of our hypothesis and show the abstractions we developed to implement memory access
patterns. Thereafter, we show how this can be applied to real graph processing accelerators.
As motivated in Sect. 1, we chose HitGraph [Zh19] and AccuGraph [Ya18] for that.

3.1 Simulation Environment

As we established in Sect. 1, one of the main challenges with evaluating new graph processing
ideas on FPGAs is time-consuming and difficult development of the accelerator. Thus, the
goal of our simulation environment is reducing development time and complexity within
reasonable error when compared to performance measurements on hardware. To achieve
this goal we relax the necessity of cycle accurate simulation of on-chip data flow due to
our hypothesis: Memory access patterns dominate the overall runtime of graph processing
such that disregarding the internal data flow results in a reasonable error of a simulation.
Modelling the off-chip memory access pattern means modelling request types, request
addressing, request amount, and request ordering. Request type modelling is trivial since
it is clear when requests read and write data. For request addressing, we assume that the
different data structures (e. g., edge list and vertex values) lie adjacent in memory as plain
arrays. We generate memory addresses according to this memory layout and the width of
the arrays types in Bytes. Request amount modelling is mostly based on the size n of the
vertex set, the size m of the edge set, average degree deg, and partition number p. We only
simulate request ordering through mandatory control flow caused by data dependencies of
requests. We assume that computations and on-chip memory accesses are instantaneous by
default. In the following we introduce memory abstractions we developed for modelling
request and control flow.

Figure 6 shows an overview of the memory access abstractions and their icons grouped by
their role during memory access as producer, merger, and mapper.
Producer At the start of each request stream, a producer (Fig. 6a) is used to turn control
flow (dashed arrow) triggers into a request stream (solid arrow). The producer might be
rate limited, but if only a single producer is working at a time or requests are load balanced
down-stream, the requests are just created in bulk.
Mergers Multiple request streams might then be merged with mergers, since Ramulator
only has one endpoint. We have deduced abstractions to merge requests in a direct (Fig. 6b),

Exploring Memory Access Patterns for Graph Processing Accelerators 107

8 Jonas Dann, Daniel Ritter, Holger Fröning

(f) Filter: (g) Callback:

(a) Producer: (b) Direct:

(e) Cache line:

0123

(c) Round-robin: (d) Priority:
Mappers

Producer Mergers

0
9

Fig. 6: Memory access abstractions

round-robin (Fig. 6c), and priority-based (Fig. 6d) fashion. If there are multiple request
streams that do not operate in parallel, direct merging is applied. If request streams should
be equally load-balanced, round-robin merging is applied. If request streams should take
precedence over each other, priority merging is applied. For this, a priority is assigned to
each request stream and requests are merged based on that.
Mappers Additionally to request creation with producers and ordering with mergers, we
also found abstractions for request mappers. Thus, we introduce cache line buffers (Fig. 6e)
for sequential or semi-sequential accesses that merge subsequent requests to the same cache
line into one request. We do buffering such that multiple concurrent streams of requests
benefit from it independently by placing it as far from the memory as necessary to merge
the most requests. For data structures that are placed partially in on-chip memory (e. g.,
prefetch buffers and caches), and thus partially not require off-chip memory requests, we
introduce request filters (Fig. 6f) that discard filtered requests. For control flow, we use a
callback (Fig. 6g) abstraction. We disregard any delays in control flow propagation and just
directly let the memory call back into the simulation. If requests are served from a cache
line or filter abstraction, the callback is executed, if it is present.

In our simulation environment we instantiate a graph processing simulation and a Ramulator
instance, and tick them according to their respective clock frequency. For graph processing
simulation we focus on configurability of all aspects of the simulation such that we can
quickly run differently parameterized performance measurements. Our simulation works on
multiple request streams that are merged into one and fed into Ramulator. This leads us to a
immensely reduced implementation time and complexity, gives us more insight into the
systems, and provides portability of ideas developed in the simulation environment.

3.2 HitGraph
HitGraph [Zh19] is an edge-centric graph processing accelerator that claims to be among
the best performing systems. The basic idea is to partition the graph horizontally into p
partitions, stored as edge lists (cf. Sect. 2.1), and process the partitions in two phases in each
iteration. First, updates are produced for each edge in each partition in the scatter phase.

108 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 9

n/p

Ramulator

m/p

1

Controller

1

Scatter Gather

Crossbar
Prefetch

Edges

Update

n/p

Updates

< m/p

Prefetch

Write

PE

Fig. 7: HitGraph request and control flow

Second, all updates are applied to their respective vertex for each partition in the gather
phase. The main goal behind this approach is to completely eliminate random reads to data
and largely reduce the amount of random writes such that only semi-random writes remain.
All reads to values of vertices are served from the prefetched partition in BRAM and all
reads to either edges or updates are sequential. Writing updates is sequential, while writing
values is the only semi-random memory access. Figure 7 shows the request and control flow
modelling with our simulation environment. Execution starts with triggering a controller
that itself triggers iterations of edge-centric processing until there were no changes to vertex
values in the previous iteration. In each iteration, the controller first schedules all partitions
for the scatter phase, before scheduling all partitions to the gather phase. Partitions are
assigned beforehand to channels of the memory (four channels in [Zh19]) and there is a
processing element (PE) for each channel. After all partitions are finished in the gather
phase, the next iteration is started or the accelerator terminates.
Scatter The scatter phase starts by prefetching the n

p values of the current partition into
BRAM. Those requests go to a cache line abstraction, such that requests to the same cache
line do not result in multiple requests to Ramulator. After all requests are produced, the
prefetch step triggers the edge reading step that reads all m

p edges of the partition. This is
only an average value since the exact number of edges in a partition might vary because of
skewed vertex degrees. For each edge request, we attach a callback that triggers producing
an update request and merge them with a cache line abstraction. The update requests might
be filtered by an optimization resulting in less than one update per edge. The target address
depends on its destination vertex that can be part of any of the p partitions. Thus, there is a
crossbar that routes each update request to a cache line abstraction for each partition, which
sequentially writes it into a partition-specific update queue. After all edges have been read,
the edge reader triggers the controller, which either triggers the next partition or waits on all
memory requests to finish before switching phases.
Gather Similar to scatter, the gather phase starts with prefetching the n

p vertex values
sequentially. After value requests have been produced, the prefetcher triggers the update
reader, which sequentially reads the update queue written by the scatter phase before. For

Exploring Memory Access Patterns for Graph Processing Accelerators 109

10 Jonas Dann, Daniel Ritter, Holger Fröning

Ramulator

n deg

Controller
1/deg

n/p

Prefetch Values

Pointers

Neighbors Write

0
9

Fig. 8: AccuGraph request and control flow

each update we register a callback that triggers the value write. The value writes are not
necessarily sequential, but especially for iterations where a lot of values are written, there
might be a lot of locality. Thus, new values are passed through a cache line abstraction.
Parallelization All request streams in each PE are just merged directly into one stream
without any specific merging logic, since mostly only one producer is producing requests at a
time. However, edge and update reading is rate limited to the number of pipelines in each PE
(which is set to 8 in the original article). Since all PEs are working on independent channels
and Ramulator only offers one endpoint for all channels combined, we employ a round robin
merge of the PE requests in order not to starve any channel. In addition, HitGraph applies
optimizations to update generation. As a first step, the edges are sorted by destination vertex
in each partition. This enables merging updates to the same destination vertex before writing
them to memory, reducing the amount of updates u from u = m to u < n × p, and providing
locality to the gather phases value writing. As a second optimization, an active bitmap with
cardinality n is kept in BRAM that saves for each vertex if its value was changed in the last
iteration. This enables update filtering, by filtering out updates from inactive vertices which
saves a significant amount of update writes for most algorithm and data set combinations.
As a final optimization, partitions with unchanged values or no updates are skipped, which
saves time spent for prefetching of values and edge/update reading for some algorithms.
Configuration HitGraph is parameterized with the number of PEs p, pipelines q, and the
partition size k. The number of PEs p is fixed to the number of memory channels because
each PE works on exactly one memory channel. The pipeline count q is limited by the
bandwidth available per channel given as the cache line size divided by the edge size. Lastly,
the partition size is chosen such that p × m vertices fit into BRAM. HitGraph is able to use
all available bandwidth due to fitting p and q to use all memory channels and whole cache
lines of each channel per cycle. Hence, adding more compute (i. e., PEs or pipelines) would
not help to solve the problem more efficiently which is in line with our hypothesis, i. e.,
memory access dominates the performance.

3.3 AccuGraph

AccuGraph [Ya18] is a vertex-centric graph processing accelerator with pull data flow. The
basic idea is to partition the graph horizontally, store it as in-CSR data format and pull

110 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 11

updates form destination vertices (cf. Sect. 2.1). The original article proposes a flexible
accumulator able to merge many updates to vertex values per cycle. Figure 8 shows the
request and control flow modelling of AccuGraph. The controller is triggered to start
the execution. It iterates over the graph until there are no more changes in the previous
iteration. Each iteration triggers processing of all partitions. Partition processing starts with
prefetching the n

p source vertex values sequentially. Thereafter, values and pointers of all
destination vertices are fetched. The value requests are filtered by the values that are already
present in BRAM from the partition prefetching. Pointers are fetched purely sequentially.
Those two request streams are merged round robin, because a value is only useful with the
associated pointers. For every value fetched in this way, neighbors are read from memory
sequentially. Since the neighbors of subsequent vertices are in sequence in CSR, this is fully
sequential. An internal accumulator collects the changes caused through the neighbors and
writes them back to memory, when all neighbors were read. The value changes are also
directly applied to the values currently present in BRAM for a coherent view of vertex values.
This is filtered such that only values that changed are written. All of these request streams
are merged by priority, with write request taking the highest priority and neighbors the
second highest because otherwise the computation pipelines would be starved. Additionally,
we rate-limit neighbors loading to the number of edge pipelines present in the accelerator.
Configuration AccuGraph is parameterized by the number of vertex and edge pipelines (8
and 16 in the original article) and the partition size. Similar to HitGraph’s PE and pipeline
fitting, the number of edge pipelines is specifically chosen to allow processing one cache line
of edges per clock cycle and thus use the entire bandwidth of the memory, again in line with
our hypothesis. The original article also describes an FPGA-internal data flow optimization
which allows to approximate pipeline stalls, improving simulation accuracy significantly.
The vertex cache used for the prefetched values is partitioned into 16 BRAM banks on the
FPGA which can each serve one vertex value request per clock cycle. Since there are 16
edge pipelines in a standard deployment of AccuGraph, performance deteriorates quickly,
when there are stalls. Thus, we implement stalls of this vertex cache in the control flow
between the neighbors and write producers. A neighbors request callback is delayed until
the BRAM bank can serve the value request.

4 Evaluation
In this section, we validate our simulation approach by reproducing the results reported for
HitGraph [Zh19] and AccuGraph [Ya18], by indeed showing a reasonable simulation error
compared to the measurements on real FPGA hardware. In addition, we illustrate for the
first time, how these completely different graph processing approaches can be compared.

We take the same data sets (Table 1) and graph problems reported in the original articles to
replicate their experiments. Only the two data sets live-journal and wiki-talk are used in both
articles. HitGraph also measured performance on high diameter, constant degree graphs
(i. e., roadnet-ca and berk-stan) and two instances of rmat synthetic graphs. AccuGraph
measured performance on additional social graphs. Both selections of data sets contain

Exploring Memory Access Patterns for Graph Processing Accelerators 111

12 Jonas Dann, Daniel Ritter, Holger Fröning

Name Abbr. Vertices Edges Dir. Degs. Avg. ø SCC

live-journal lj 4, 847, 571 68, 993, 773 - 14.23 16 0.790
wiki-talk wt 2, 394, 385 5, 021, 410 - 2.10 11 0.047
twitter5 tw 41, 652, 230 1, 468, 364, 884 - 35.25 75 0.804
rmat-24-16 r24 16, 777, 216 268, 435, 456 - 16.00 19 0.023
rmat-21-86 r21 2, 097, 152 180, 355, 072 - 86.00 14 0.103
roadnet-ca rd 1, 971, 281 2, 766, 607 � 2.81 849 0.993
berk-stan bk 685, 231 7, 600, 595 - 11.09 514 0.489
orkut or 3, 072, 627 117, 185, 083 � 76.28 9 1.000
youtube yt 1, 157, 828 2, 987, 624 � 5.16 20 0.980
dblp db 425, 957 1, 049, 866 � 4.93 21 0.744
slashdot sd 82, 168 948, 464 - 11.54 13 0.868

Abbr.: Abbreviation; Dir.: Directed; Degs.: Degree distribution on log. scale; Avg.: Average degree; ø: Diameter;
SCC: Ratio of vertices in the largest strongly-connected component to n; -: yes, �: no

Tab. 1: Graph data sets used by HitGraph and AccuGraph (all graphs from SNAP [LK14])

Approach Type Channels Ranks Speed Organization
HitGraph DDR3 4 2 1600K 8Gb_x16
AccuGraph DDR4 1 1 2400R 4Gb_x16
Comparability DDR4 1 1 2400R 8Gb_x16

Tab. 2: DRAM configurations

Approach Weighted SpMV SSSP PR WCC BFS Vertex Pointer
HitGraph - 32 32 32 32 - 32 -
AccuGraph � - - 32 32 8 32 32
Comparability � - 32 32 32 32 32 32

Tab. 3: Data structure configurations (type width in bits)

directed graphs, while WCC only yields correct results for undirected graphs. This does not
concern our reproducibility measurements but needs to be considered in the future.

4.1 Reproducibility

We measure the quality of the simulation as the percentage error e = 100×|s−t |
t of the

simulation performance measurement s compared against the ground truth t reported by the
respective article. The HitGraph numbers are extracted from a table and the AccuGraph
numbers are taken from a chart. To reproduce the experiments as closely as possible, we
parameterized the simulation environment according to configurations from the original
articles. Table 2 shows the memory configurations of the reproducibility studies and the
comparability study. Table 3 shows the data structure configurations. HitGraph uses weighted
graphs and uniformly wide value types for all problems. AccuGraph uses unweighted graphs

5 Not officially listed on the SNAP [LK14] website anymore

112 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 13

Approach PEs Pipelines Elements Vertex pipelines Edge pipelines VS ES
HitGraph 4 8 256, 000 - - - -
AccuGraph - - ∞ 8 16 8 8
Comparability 1 16 1, 024, 000 8 16 8 8

PEs: Processing elements; VS: Vertex pipeline size; ES: Edge pipeline size

Tab. 4: Parameter configurations

0

25

50

75

100

E
rr

or
 (

%
)

SpMV PR

bk wt rd lj tw r21 r24
Graph

0

25

50

75

100

E
rr

or
 (

%
)

SSSP

bk wt rd lj tw r21 r24
Graph

WCC
0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

R
un

ti
m

e
(s

)

0

2

4

6

0.0

2.5

5.0

7.5

R
un

ti
m

e
(s

)

Average error Error Ground truth Simulation

Fig. 9: HitGraph measurements

and an optimized 8 bits wide unsigned integer for BFS (problematic for constant degree
graphs). Table 4 shows the respective graph processing accelerator parameters described
in Sect. 3.1 and how they are configured. Both approaches share the partition size as a
parameter. For the reproducibility study, AccuGraph is assumed to fit all vertices in BRAM
for BFS and only for PR and WCC measurements on live-journal and orkut, the partition
size is set to 1, 700, 000 vertices.

Figure 9 shows the HitGraph performance measurements for SpMV, PR, SSSP, and WCC as
runtime in seconds (raw numbers can be found in Tab. 5). Overall, we observe a consistent
outlier in the twitter graph. However, we notice that the HitGraph article reports the diameter
of the twitter graph as being 15, while we report it as being 75 (cf. Tab. 1). Thus, we assume
that our version of the graph is different and exclude it from all error averages in this article
while still showing it in the plots for completeness (error source 1). SpMV and PR result in
the same simulation performance, but since ground truth values are slightly different, we
get a different error. In the original article, the authors measure only a single iteration of

Exploring Memory Access Patterns for Graph Processing Accelerators 113

14 Jonas Dann, Daniel Ritter, Holger Fröning

bk wt rd lj tw r21 r24
Graph

0

1

2

3

C
oe

ffi
ci

en
t

of
 v

ar
ia

ti
on

0

25

50

75

100

A
ve

ra
ge

 e
rr

or
 (

%
)

Coefficient of variation Average error

Fig. 10: HitGraph SSSP runtime variation study

SpMV and PR. However, we found that for very short runtimes of single iteration executions
differences of a few cycles can already cause large deviations leading to the errors we
observe for SpMV and PR (error source 2). We advise using multiple iterations of such
algorithms in benchmarks in the future.

SSSP shows by far the worst error, with some simulations running much shorter in simulation
than in the ground truth measurements. This can be explained by the problem’s dependence
on the input root vertex (error source 3). The HitGraph authors randomly choose 20 root
vertices and report the average runtime. However, wiki-talk and the rmat graphs have many
strongly-connected components (SSCs) with just one or a few vertices (cf. Tab. 1). This
causes algorithms like SSSP or BFS to immediately terminate after one iteration over the
graph with very little runtime which results in large variation in performance measurements
for root vertices from many small and few big SSCs shown in Fig. 10. The error is strongly
correlated to the coefficient of variation in the runtimes (given by σ

µ with the standard
deviation σ and the mean µ). This leads us to the conclusion that 20 random root vertices
are not enough to stabilize the runtime measurements for graphs with such structure. We
advocate for sharing how roots are picked in the future.6 Moreover, the HitGraph article
does not specify how edge weights are set in the graph, which can also influence runtimes of
SSSP (error source 4). We initialized all weights to 1. We regard WCC as the most reliable
indicator for simulation quality because it does not depend on input variables and runs
long enough so fixed overheads are irrelevant. We observe a low simulation error for WCC,
which reassures us that the off-chip memory access modelling works well for HitGraph.
Besides the twitter graph (which we explicitly excluded), the simulation almost perfectly
matches the ground truth.

Figure 11 shows performance measurements for AccuGraph for BFS, PR, and WCC as
billions of read edges per second (GREPS) (raw numbers can be found in Tab. 6). We
calculate REPS as the number of actually read edges m × i (where i is the number of
iterations) divided by the runtime r, which the original article calls traversed edges per
second (TEPS). However, this is misleading since the well-known Graph500 benchmark

6 We generated the 20 random root vertices with the mt19937 generator in C++ with seed 3483584297.

114 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 15

sd db yt wt lj or
Graph

0

25

50

75

100

E
rr

or
 (

%
)

BFS

sd db yt wt lj or
Graph

PR

sd db yt wt lj or
Graph

WCC

0

1

2

3

0

1

2

3

0

1

2

3

G
R

E
P

S

Average error Error Ground truth Simulation

Fig. 11: AccuGraph measurements

0 20 40 60
Average degree

2

3

M
R

E
P

S

BFS PR WCC

Fig. 12: AccuGraph performance by average degree

defines TEPS as the number of edges in a graph m divided by the runtime r. Thus, we
rename the performance measure to REPS. As we already saw in Fig. 2b, the average error
is very similar for all problems and fits the relative performance of the graph data sets well.

The only consistent outlier is the youtube graph which relatively performs better in all
simulation measurements than is suggested by the ground truth measurements (error source
5). The original article notes that the performance of AccuGraph logarithmically depends
on the average degree of vertices which we also reproduced (cf. Fig. 12). Thus, youtube
should perform the way our measurements suggest, because it has a slightly higher average
degree than the dblp graph. This may be an anomaly in the measurements performed by
the AccuGraph authors. WCC is slightly slower in our simulations than they are on the
accelerator and PR is slightly faster. There may be a fixed overhead that we are measuring
in our experiments and is not measured in theirs. The better performance of PR, however, is
expected, since we do not take the longer latencies and incurred pipeline stalls of floating
point arithmetics into account (error source 6).

4.2 Comparability

With these encouraging reproducibility errors and the deeper insight in the approaches
configurations, Fig. 13 shows a comparison of HitGraph and AccuGraph on an equal
configuration (cf. Comparability in Tab. 2 – Tab. 4). It is not easily possible to use AccuGraph
with weighted edges, such that we chose unweighted edges for these measurements. Also it

Exploring Memory Access Patterns for Graph Processing Accelerators 115

16 Jonas Dann, Daniel Ritter, Holger Fröning

sd db yt wt lj or rd bk r21 r24
Graph

1

10

100

1000

R
un

ti
m

e
(m

s)

(a) Runtime

sd db yt wt lj or rd bk r21 r24
Graph

1

10

100

1000

It
er

at
io

ns

(b) Iterations
HitGraph AccuGraph

Fig. 13: HitGraph vs. AccuGraph on comparable configurations (with improvement of
AccuGraph over HitGraph for runtime)

was not possible to expand AccuGraph to use four memory channels, such that we took
the AccuGraph DRAM configuration, but increased the memory size to 8GB to be able to
accommodate the rmat graphs. However, even this DRAM configuration does not fit the
twitter graph which we thus excluded. Moreover, we configured HitGraph to process up to
16 edges each cycle just like AccuGraph and set the partition size to a reasonable 1, 024, 000
vertices. We show performance numbers of WCC on all graphs used in either of the original
articles, since we got the lowest error for WCC. This includes high diameter graphs (e. g.,
roadnet and berkley-stanford) that AccuGraph has not been tested on yet.

For the two graphs that both systems were originally tested on, AccuGraph (∼ 1728 MREPS)
reported slightly higher numbers than HitGraph (1665 MREPS) on wiki-talk and HitGraph
(3322 MREPS) reported much higher numbers on live-journal than AccuGraph (∼ 2406
MREPS) in the original articles. However, this is contrary to the absolute numbers we report
here as runtime in seconds (Fig. 13a). HitGraph performs worse on all graphs (the numbers
in the runtime chart are the factor calculated by dividing the HitGraph runtime by the
AccuGraph runtime). Even the simulation inaccuracy of a mean percentage error of 8.997%
for WCC measured in Sect. 4.1 cannot change this. This leads us to a first observation that
REPS (used as a performance indicator in the original articles) is not a reliable performance
measure due to it hiding differences in runtime.

When comparing the two approaches, we notice that AccuGraph needs fewer iterations for
WCC than HitGraph (cf. Fig. 13b). AccuGraph converges on a solution quicker because it
updates values directly. Due to the two-staged approach of HitGraph, it always works on the
values of the past iteration. Lower iteration count is exhibited especially by measurements
on high average degree, low-diameter graphs (e. g., slash-dot and orkut). Additionally,
AccuGraph shows relatively higher performance for small graphs (e. g., slash-dot and
dblp). In this scenario, all vertex value reads besides the partition prefetch are served from
low-latency, on-chip BRAM, because there is only one partition. The last two factors for
AccuGraphs higher performance are: HitGraph needs more requests to read the edges of the
graph and the updates, and HitGraph reads 64bit per edge while AccuGraph only reads 32bit

116 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 17

per edge due to the CSR format. We thus expect a performance advantage of at least factor 2
on all measurements which is not achieved by AccuGraph on the rmat-24-16 graph. This is
due to the partition skipping optimization of HitGraph (not available for AccuGraph). This
leads to our second observation that AccuGraph has a categorical advantage over HitGraph
because of its direct application of value changes and compressed graph format.

4.3 Summary – Error Analysis

We saw that our simulation environment is able to reproduce the ground truth performance
measurements of the original articles with reasonable error (Sect. 4.1). This is possible for
bandwidth-bound algorithms (like HitGraph and AccuGraph) despite the radical hypothesis
of disregarding FPGA internals. Especially if relative performance behaviour of approaches
is so significantly different (cf. Sect. 4.2), an average error of e. g., 8.997% for WCC is
reasonable to make sound relative comparisons. However, we also identified six sources of
errors which we discuss in the following. For measurements with insufficiently specified
input parameters like start vertices (error source 3) and edge weights (error source 4) we
see large errors for some graphs. Additionally, we attribute at least some of the error to noise
in the measurements. For example, very low runtime measurements like individual iterations
of SpMV and PR (error source 2) can lead to significant noise. We see overestimation of
runtime due to missing modelling of pipeline bubbles that slow down request generation
or missing modelling of e. g., floating point units that perform complicated calculations
(error source 6). Lastly, there remain two graphs in twitter and youtube for which we
cannot explain performance differences based on our simulation but rather attribute these
differences to different data sets or different usage of them (error sources 1 and 5).

One not easily quantifiable, possible error source (error source 7) we want to add here is
interpretation based on understanding of the original article’s description of their approach.
This was e. g., especially necessary for data structures with missing data type specifications.
To aid researchers trying to understand the approaches we specified the data types in Tab. 3
and advise to completely specify such parameters in the future to aid reproduction of results.

Without SSSP, we see a low mean error of 14.32%. Thus, for certain use cases, we confirm
our hypothesis: Memory access patterns dominate the overall runtime of graph processing
such that disregarding the internal data flow results in a reasonable error of a simulation. We
advise that the simulation should be used in use cases where relative performance behaviour
is compared rather than where absolute performance should be estimated. Additionally, if
the relative performance behaviour is close for the compared approaches our simulation
approach might lead to inaccurate conclusions.

5 Example for Faster Graph Accelerator Engineering
In this section, we illustrate how our approach helps to speed up graph processing accelerator
engineering by the example of two enhancements of AccuGraph that we found while
analyzing the performance in the previous section. Note that instead of implementing the

Exploring Memory Access Patterns for Graph Processing Accelerators 117

18 Jonas Dann, Daniel Ritter, Holger Fröning

sd db yt wt lj or rd bk r21 r24
Graph

1.0

1.1

1.2

Im
pr

ov
em

en
t

BFS

sd db yt wt lj or rd bk r21 r24
Graph

1.0

1.1

1.2

WCC
Prefetch Skip. Partition Skip. Both

Fig. 14: Runtime improvement of optimizations over baseline

enhancements on the FPGA itself, our simulation approach is used to quickly assess the
altered designs for the different data sets as well as potentially different DRAM types, thus
reducing the overall engineering time by a form of rapid graph accelerator prototyping.
Enhancement ideas AccuGraph writes all value changes through to off-chip memory and
also applies them to BRAM if they are in the current partition. Thus, BRAM and off-chip
memory are always in sync. Nevertheless, at the beginning of processing a partition, the
value set is prefetched even if the values are already present in BRAM. Thus, the first
optimization we propose is prefetch skipping in this case. Especially for the rmat-24-16
graph we also saw the effectiveness of partition skipping with HitGraph (cf. Fig. 13).
Thus as a second optimization, we propose adding partition skipping to AccuGraph. Both
optimizations can easily be added to AccuGraphs control flow by directly triggering the
value and pointer reading producers or completely skipping triggering of execution for
certain partitions respectively. For prefetch skipping we compare the currently fetched
partition with the next partition to prefetch and skip prefetching if they are the same. For
partition skipping we keep track if any value of the vertices of a partition were changed and
skip the partition if none changed. The optimizations also work in combination.
Results To prove their effectiveness, we measure the effect of both optimizations for BFS
and WCC separately and combined (Fig. 14). For all small graphs with only one partition we
see an improvement based on prefetch skipping. Partition skipping is not applicable to those
graphs. For some other graphs we see an improvement based on partition skipping. Prefetch
skipping only sometimes contributes a small improvement but only when combined with
partition skipping. PR as a stationary algorithm is not shown, since no partitions can be
skipped by definition. For prefetch skipping there are similar performance improvements on
PR compared to BFS and WCC. Overall we see no decrease in performance, suggesting
that both optimizations should always be applied.

Note that these insights on the two enhancement ideas were possible in a relatively short
amount of time, compared to engineering on an actual FPGA. Developing and testing a
complicated FPGA design usually takes weeks, while the implementation of a new graph
accelerator approach in our simulation environment takes days or even just hours if the

118 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 19

approach is well understood before. Additionally, the iteration time is much improved.
Synthesis runs for compiling hardware description code to FPGA take hours up to a day
without many possibilities of incremental synthesis, while a complete compilation of our
simulation environment takes 33.5 seconds on a server with the possibility of easily utilizing
parameters and incremental compilation. As a downside, the simulation runs longer than a
synthesized design on an FPGA would. However, the user is not limited by special hardware
that is only available in limited numbers (FPGAs). Many runs can be executed in parallel on
one or even multiple servers. Especially for the very fragmented FPGA market, virtualized
offers for FPGAs might not be available for specific boards.

6 Related Work
To the best of our knowledge, there are no prior works on only using the off-chip memory
requests paired with a DRAM simulator to make graph processing accelerators more
comprehensible and performance measurements reproducible and comparable.
Cache miss runtime estimation [MBK02] describe a cost model to approximate query
runtimes in relational databases based on cache misses of memory requests. They focus
on CPU cache hierarchies which allow much less fine-granular data placement than FPGA
memory hierarchies (cf. Sect. 2.2). Additionally, they do not perform simulations of requests
but model performance theoretically based on the model parameters of number of cache
misses and cache latency not applicable to FPGAs.
Comprehensibility [ZCP15] introduces a DRAM model and simulation for HitGraph. The
simulation also generates the sequence of requests, but instead of simulating DRAM runtime,
it assumes that every request results in a row buffer hit and models the performance along
the cycles needed for processing the data and approximated pipelines stalls. However, they
do not show performance numbers generated with this simulation. [Ya19] uses Ramulator
as the underlying DRAM simulator for a custom cycle-accurate simulation of the accelerator
Graphicionado [Ha16]. However, this incurs very high implementation time.
Reproducibility Regarding reproducibility, there are prior works on ways to report perfor-
mance results in such a way that it suits the own approach on parallel computing systems
[Da95, HB15]. The graph processing accelerator domain seems to suffer from similar
problems and lack of widely accepted standards in benchmarking.
Comparability Ramulator [KYM16] was previously used in a work studying the interactions
of complex workloads and DRAM types [Gh19]. They uncovered how the internal structure
and characteristics of DRAM (DDR3 and DDR4 in our work) relate to performance gains
or losses on otherwise fix benchmarks. This may be a future angle to improve graph
processing accelerator performance by fitting the DRAM type to the algorithms and data
sets. Similarly to our work, [Xu17] raises awareness to lacking comparability in graph
processing approaches, but on CPU-based cloud platforms. They find tradeoffs in approaches
between different workloads and differently structured graphs.

Exploring Memory Access Patterns for Graph Processing Accelerators 119

20 Jonas Dann, Daniel Ritter, Holger Fröning

7 Discussion and Outlook
In this article, we propose a simulation environment for graph processing accelerator
approaches based on our hypothesis: Memory access patterns dominate the overall runtime
of graph processing such that disregarding the internal data flow results in a reasonable
error of a simulation. The simulation environment models request flow fed into a DRAM
simulator (i. e., Ramulator [KYM16]) and control flow based on data dependencies. We
developed a set of memory access abstractions and applied these to FPGA implementations
(i. e., HitGraph [Zh19] and AccuGraph [Ya18]) representing the two dominating graph
processing approaches (i. e., edge- and vertex-centric).

Even though the simulation environment disregards large parts of the graph processing
accelerator, we showed that it is able to reproduce ground truth measurements with a
reasonable error for most workloads. In our analysis of the large errors for some workloads
we found insufficiencies in benchmark setups and attribute some error to the radical
hypothesis of our approach. We further utilized the simulation environment to compare the
two approaches on a fixed configuration, revealing insufficiencies in existing performance
measurements of graph processing accelerators. Lastly, we show that our simulation approach
significantly reduces the iteration time to develop and test graph processing approaches for
hardware accelerators by example of two optimizations for AccuGraph that we propose. In
addition, our approach allows for deeper inspection with DRAM statistics as well as easy
parameter variation without a fixed hardware platform.

In future work, we will extend the approach to an analytical performance model and study
the relationship between DRAM types (e. g., HBM, HMC, or LPDDR) and workload types,
as well as further graph processing accelerator approaches in more detail. Additionally,
there are open questions on how to reduce the relative errors of the simulation environment.
This could, e. g., be achieved by studying the simulation environment in more depth on a
graph accelerator we implemented and fully control the benchmark setup for.

References
[Ab19] Abadi, Daniel; Ailamaki, Anastasia; Andersen, David; Bailis, Peter; Balazinska, Magdalena

et al.: The Seattle Report on Database Research. SIGMOD Rec., 48(4):44–53, 2019.

[Be19] Besta, Maciej; Peter, Emanuel; Gerstenberger, Robert; Fischer, Marc; Podstawski, Michal;
Barthels, Claude et al.: Demystifying Graph Databases: Analysis and Taxonomy of Data
Organization, System Designs, and Graph Queries. CoRR, abs/1910.09017, 2019.

[BRS13] Bacon, David F.; Rabbah, Rodric M.; Shukla, Sunil: FPGA Programming for the Masses.
ACM Queue, 11(2):40, 2013.

[Ch12] Chatterjee, Niladrish; Balasubramonian, Rajeev; Shevgoor, Manjunath; Pugsley, Seth;
Udipi, Aniruddha; Shafiee, Ali; Sudan, Kshitij; Awasthi, Manu; Chishti, Zeshan: USIMM:
the Utah SImulated Memory Module. University of Utah, Tech. Rep., pp. 1–24, 2012.

[Da95] Davison, Andrew: Twelve Ways to Fool the Masses When Giving Performance Results on
Parallel Computers. pp. 38–42, 1995.

120 Jonas Dann, Daniel Ritter, Holger Fröning

Exploring Memory Access Patterns for Graph Processing Accelerators 21

[Da17] Dai, Guohao; Huang, Tianhao; Chi, Yuze; Xu, Ningyi; Wang, Yu; Yang, Huazhong:
ForeGraph: Exploring Large-scale Graph Processing on Multi-FPGA Architecture. In:
FPGA. pp. 217–226, 2017.

[Dr07] Drepper, Ulrich: What Every Programmer Should Know About Memory. Red Hat, Inc,
11, 2007.

[DRF20] Dann, Jonas; Ritter, Daniel; Fröning, Holger: Non-Relational Databases on FPGAs: Survey,
Design Decisions, Challenges. CoRR, abs/2007.07595, 2020.

[Gh19] Ghose, Saugata; Li, Tianshi; Hajinazar, Nastaran; Cali, Damla Senol; Mutlu, Onur:
Demystifying Complex Workload-DRAM Interactions: An Experimental Study. Proc.
ACM Meas. Anal. Comput. Syst., 3(3):60:1–60:50, 2019.

[Ha16] Ham, Tae Jun; Wu, Lisa; Sundaram, Narayanan; Satish, Nadathur; Martonosi, Margaret:
Graphicionado: A High-Performance and Energy-Efficient Accelerator for Graph Analytics.
In: MICRO. pp. 56:1–56:13, 2016.

[HB15] Hoefler, Torsten; Belli, Roberto: Scientific Benchmarking of Parallel Computing Systems:
Twelve Ways to Tell the Masses When Reporting Performance Results. In: SC. pp.
73:1–73:12, 2015.

[KYM16] Kim, Yoongu; Yang, Weikun; Mutlu, Onur: Ramulator: A Fast and Extensible DRAM
Simulator. IEEE Comput. Archit. Lett., 15(1):45–49, 2016.

[LK14] Leskovec, Jure; Krevl, Andrej: , SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data, June 2014.

[Lu07] Lumsdaine, Andrew; Gregor, Douglas; Hendrickson, Bruce; Berry, Jonathan: Challenges
in Parallel Graph Processing. Parallel Processing Letters, 17(01):5–20, 2007.

[MBK02] Manegold, Stefan; Boncz, Peter A.; Kersten, Martin L.: Generic Database Cost Models
for Hierarchical Memory Systems. In: PVLDB. pp. 191–202, 2002.

[RCJ11] Rosenfeld, Paul; Cooper-Balis, Elliott; Jacob, Bruce: DRAMSim2: A Cycle Accurate
Memory System Simulator. IEEE Comput. Archit. Lett., 10(1):16–19, 2011.

[Xu17] Xu, Chongchong; Zhou, Jinhong; Lu, Yuntao; Sun, Fan; Gong, Lei; Wang, Chao; Li, Xi;
Zhou, Xuehai: Evaluation and Trade-offs of Graph Processing for Cloud Services. In:
IEEE ICWS. pp. 420–427, 2017.

[Ya18] Yao, Pengcheng; Zheng, Long; Liao, Xiaofei; Jin, Hai; He, Bingsheng: An Efficient Graph
Accelerator with Parallel Data Conflict Management. In: PACT. pp. 8:1–8:12, 2018.

[Ya19] Yan, Mingyu; Hu, Xing; Li, Shuangchen; Akgun, Itir; Li, Han; Ma, Xin; Deng, Lei; Ye,
Xiaochun; Zhang, Zhimin; Fan, Dongrui; Xie, Yuan: Balancing Memory Accesses for
Energy-Efficient Graph Analytics Accelerators. In: ISLPED. pp. 1–6, 2019.

[ZCP15] Zhou, Shijie; Chelmis, Charalampos; Prasanna, Viktor K.: Optimizing memory perfor-
mance for FPGA implementation of PageRank. In: ReConfig. pp. 1–6, 2015.

[Zh19] Zhou, Shijie; Kannan, Rajgopal; Prasanna, Viktor K.; Seetharaman, Guna; Wu, Qing:
HitGraph: High-throughput Graph Processing Framework on FPGA. IEEE Trans. Parallel
Distrib. Syst., 30(10):2249–2264, 2019.

[ZL18] Zhang, Jialiang; Li, Jing: Degree-aware Hybrid Graph Traversal on FPGA-HMC Platform.
In: FPGA. pp. 229–238, 2018.

Exploring Memory Access Patterns for Graph Processing Accelerators 121

http://snap.stanford.edu/data

22 Jonas Dann, Daniel Ritter, Holger Fröning

A Appendix
Graph

Algorithm Measurement type berkstan wikitalk roadnet live-journal twitter rmat-21 rmat-24

SpMV Ground truth 0.0032 0.0050 0.0028 0.0362 0.6525 0.0567 0.1435
Simulation 0.0026 0.0066 0.0027 0.0411 0.8184 0.0484 0.0770

PR Ground truth 0.0030 0.0045 0.0027 0.0327 0.5904 0.0534 0.1403
Simulation 0.0026 0.0066 0.0027 0.0411 0.8184 0.0484 0.0770

SSSP Ground truth 0.7824 0.0255 1.1133 0.5921 5.5768 0.9671 0.9213
Simulation 1.2554 0.0027 1.3436 0.3872 6.2380 0.0725 0.1111

WCC Ground truth 1.7690 0.0460 1.4800 0.4130 6.6170 0.4500 1.1080
Simulation 1.8578 0.0461 1.4526 0.4694 9.4139 0.4653 0.9307

Tab. 5: HitGraph measurements in seconds
Graph

Algorithm Measurement type slashdot dblp youtube wikitalk live-journal orkut

BFS Ground truth 2.867 2.397 1.899 1.653 3.370 3.638
Simulation 2.880 2.515 2.530 1.999 2.946 3.192

PR Ground truth 2.242 1.931 1.560 1.318 1.921 2.587
Simulation 2.518 1.944 1.978 1.283 1.926 2.920

WCC Ground truth 2.950 2.468 1.954 1.729 2.407 3.365
Simulation 2.634 2.183 2.284 1.532 2.254 2.998

Tab. 6: AccuGraph measurements in GREPS

122 Jonas Dann, Daniel Ritter, Holger Fröning

cba

(Hrsg.): BTW 2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Umbra as a Time Machine: Adding a Versioning Type to SQL

Lukas Karnowski1, Maximilian E. Schüle2, Alfons Kemper3, Thomas Neumann4

Abstract: Online encyclopaedias such as Wikipedia rely on incremental edits that change text strings
marginally. To support text versioning inside of the Umbra database system, this study presents the
implementation of a dedicated data type. This versioning data type is designed for maximal throughput
as it stores the latest string as a whole and computes previous ones using backward diffs. Using this
data type for Wikipedia articles, we achieve a compression rate of up to 11.9 % and outperform
the traditional text data type, when storing each version as one tuple individually, by an order of
magnitude.

1 Introduction

Version management of texts is still an important issue due to various use cases. The
highlighted example is Wikipedia [Sc17], where people work decentrally on the creation
of articles. In order to review their work, version management is mandatory, as it allows
administrators to restore any previous version. As even versions of 2001—the founding
year of Wikipedia—are accessible, an efficient storage of the data is necessary. Such a data
storage should allow fast retrieval of previous versions, new versions to be inserted quickly
and consume as little memory as possible.

Temporal databases such TQuel [Sn87] or as included in the SQL:2011 standard [KM12]
restrict each tuple’s validity to an added time range. In contrast, systems for relational dataset
versioning such as Decibel [Ma16] lock on a higher granularity to track the history of whole
tables. VQuel [Ch15], OrpheusDB [Hu17] and LiteTree5 aim at combining SQL [Sc19] and
versioning, but do not compress similar text strings. A stand-alone system that includes text
compressing is Forkbase [Li20] but it is not interoperable with database systems.

CREATE TABLE wikidiff (title text, content difftext);

INSERT INTO wikidiff (SELECT 'example', BUILD('first', 'first␣version', 'second␣version'));

SELECT GET_CURRENT_VERSION(difftext) FROM wikidiff;

List. 1: Proposed data type DiffText for text versioning.

To measure the potential of compressing text strings, we have benchmarked storing strategies
on popular relational database systems using the Wikipedia page edit history. This work
1 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching, lukas.karnowski@tum.de
2 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching, m.schuele@tum.de
3 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching, kemper@in.tum.de
4 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching, neumann@in.tum.de
5 https://github.com/aergoio/litetree

cba doi:10.18420/btw2021-06

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 123

https://creativecommons.org/licenses/by-sa/4.0/
mailto:lukas.karnowski@tum.de
mailto:m.schuele@tum.de
mailto:kemper@in.tum.de
mailto:neumann@in.tum.de
https://github.com/aergoio/litetree
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-06

2 L. Karnowski, M. Schüle, A. Kemper, T. Neumann

continues the study about versioning in main-memory database systems [SKS+19]: We
propose a versioning data type, that can be used as an SQL attribute to store multiple
versions of a text within one tuple (see List. 1). The developed data type for the Umbra
database system [NF20] is presented in Section 2 by considering the diff algorithm, the
memory layout and the implementation of the operations. Section 3 provides an evaluation
of the data type’s performance. Finally, Section 4 summarises the findings.

2 DiffText Data Type

In this section, we propose a DiffText data type to compress multiple versions of a text string
as one database attribute within a tuple. The data type is based on the BLOB or TEXT data
type that is available in many database systems to store byte sequences of any length. It thus
inherits their properties with regard to the memory layout. This includes flexible size within
a tuple to be enlarged as required, which is necessary when adding new versions. The data
type is used as an SQL attribute: its values are overwritten on updates and copied for each
occurrence as a column. This section presents the used algorithm for compressing strings,
the data type’s memory layout and necessary operations to retrieve versions out of a tuple.

2.1 Delta-Compression Algorithm

The DiffText data type applies delta compression to multiple versions of a string. It relies on
difference-based versioning as it stores at least the latest version as a snapshot and restores
the remaining ones using relative changes to the current version (backward diffs).

The idea is to access each byte of both versions only once. A function find_diff()

determines the first and the last differing byte between two consecutive versions. First, both
texts were compared from the beginning until the first differing byte has been found. The
process is then repeated from the end of the texts. All bytes between these two boundaries
found are called a patch and are part of the resulting diff even if they have bytes in common.

Example: The first step of the call find_diff(aacbb, adddbb) terminates after the second
byte (𝑎 ≠ 𝑑). The second step terminates after the third character from the back (𝑐 ≠ 𝑑).
The resulting diff is the string ddd, called patch, with the additional information that the
second and third characters in the first text must be replaced. A complete diff thus consists
of three parts, patch, start and end. The interval at which the patch must be applied is called
patchStart and patchEnd.

When more than two versions exist, an order must be defined in which direction the patches
will be applied. We decide in favour of backward diffs: The most current version is always
available as a complete text, whereas older versions are stored as the difference to the
version that was inserted afterwards.

124 Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

Umbra as a Time Machine 3

Example: Assuming a newer version 𝑇2 replaces the current one 𝑇1. Having two similar
text strings, the function find_diff() calculates the diff 𝐷𝑇2→𝑇1 =: 𝐷1, so that 𝑇1 can be
reconstructed out of 𝑇2 and 𝐷1. The entire text of 𝑇1 is then discarded and replaced by 𝐷1.
If another version 𝑇3 is added, the diff 𝐷𝑇3→𝑇2 =: 𝐷2 will be calculated and saved to replace
𝑇2. If we want to reconstruct 𝑇1, we will first apply 𝐷2 to get 𝑇2 and then apply 𝐷1 to get 𝑇1.

This process creates a chain of diffs that must be applied to restore older versions. Specifically,
the number of involved patches increases with the number of inserted versions. For this
reason, it is advisable to periodically save the complete version instead of calculating a
diff. This allows constant access times in O(1) to any version. Assuming that every third
version should be complete and two additional versions 𝑇4, 𝑇5 are inserted, the chain of diffs
would look like in Figure 1. Only two versions are complete and the remaining ones can be
restored using diffs.

𝐷𝑇2→𝑇1 𝐷𝑇3→𝑇2 T3 𝐷𝑇5→𝑇4 T5

Fig. 1: Chain of diffs, with every third version as a complete snapshot (bold).

2.2 Memory Layout

To enable efficient operations later on, all versions of a text string are stored as one object.
This leads us to the memory layout, which corresponds to the output of the presented
algorithm out of patches and corresponding ranges. The actual patch is saved separately
from the start and end of the diff. Figure 2 shows the schematic representation of the memory
layout of the DiffText data type and Figure 3 the associated code.

Current Offset + Length arraySize diffsToFullCount offset full patchStart patchEnd ... Patches … Current Version Text

Header
Variable Length Data

Version Array Diffs and Full versions

Fig. 2: Structure of a DiffText tuple.

struct DiffTextRepresentation {

uint32_t currentOffset; // Offset of current version in data section

uint32_t currentLength; // Length of current version

uint32_t arraySize; // The size of the version pointer’s array

uint16_t diffsToFullCount; // Counter of diffs until next full version

struct { // Array of pairs, pointing into the data section

uint32_t offset; // Offset of version in data section

bool full; // Is this a full version?

uint32_t patchStart; // Start of patch

uint32_t patchEnd; // End of patch

} versionPointers[];

// Data section follows this struct immediately

};

Fig. 3: Source-code of the DiffText representation.

Umbra as a Time Machine: Adding a Versioning Type to SQL 125

4 L. Karnowski, M. Schüle, A. Kemper, T. Neumann

The layout starts with a header that indicates the size of the subsequent area. This variable-
sized area contains all versions as diffs and is further divided into two parts: The first part
contains a version array out of an offset, a flag full, and a range (patchStart, patchEnd).
patchStart and patchEnd indicate the position that need to be changed in order to restore
the previous version. The offset acts as a pointer to the last area in which the associated
patch is located. Consequently, the last memory section is the concatenation of all patches
and complete versions from which any version can be restored.

Since the latest version is always stored as a complete snapshot, the header contains an offset
to the latest version in the data area in order to accelerate its access. The header also contains
the current number of diffs that must be applied to restore a version (diffsToFullCount).
Its value is incremented when a new version has been added. After reaching a predefined
number, instead of calculating a patch, a complete snapshot will be saved, as presented in
Section 2.1. This method ensures that each version can be extracted in O(1). As the text’s
length is not stored, the tag full in the version array indicates whether the corresponding
version has been stored as a complete snapshot instead of a patch.

For the offsets in the data area, 32 bit numbers have been used as Umbra’s text-based data
types are limited to 232 bytes. This restrains theDiffText data type as all versions concatenated
may not exceed a maximum size of 4 GiB. 16 bit was chosen for diffsToFullVersion, to
avoid diff chains longer than 65536 as the runtime increases linearly with the number of
patches.

Furthermore, only the offset is saved and the length of the patch is omitted. This is possible
as the offset of the subsequent diff determines the end of the previous one. An exception is
made for the current version, whose length is saved for fast retrieval.

2.3 Example for a DiffText object

For a better understanding of the memory layout, this section demonstrates the construction
of a DiffText object by the following example: The initial version “First” will be changed to
“First Version” by adding “Version”. Then the current version is set to “Second Version”.
The resulting DiffText objects are listed in Figure 4.

126 Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

Umbra as a Time Machine 5

currentOffset 0
currentLength 5
arraySize 0

diffsToFullCount 0
Data First

(a) One only version: “First”

currentOffset 0
currentLength 13

arraySize 1
diffsToFullCount 1

offset 0
full 𝑓 𝑎𝑙𝑠𝑒

patchStart 5
patchEnd 13

Data

First
␣Vers
ion

(b) First modification to “First Ver-
sion”.

currentOffset 5
currentLength 14

arraySize 2
diffsToFullCount 2

offset 0
full 𝑓 𝑎𝑙𝑠𝑒

patchStart 5
patchEnd 13
offset 0
full 𝑓 𝑎𝑙𝑠𝑒

patchStart 0
patchEnd 6

Data

First
Secon
d␣Ver
sion

(c) Second modification to “Sec-
ond Version”.

Fig. 4: States of a DiffText object when updating its entry with the following versions: (a) “First”,
(b) “First Version” and (c) “Second Version”. The current version is reconstructed out of the text
string in Data using currentOffset and currentLength.

Figure 4a shows the initial state with only one version. The version array is empty (arraySize
= 0) and the only content in the variable-sized memory area is the current version “First”.

After updating the entry, Figure 4b shows the second state with the version array containing
one entry. Since backward diffs are used, this entry contains information on how to restore
the previous version “First Version” from the current version “First”. In this case, the
content has to be cut off after “First”. Accordingly, the coded patch in the version is a
character string with a length of 0 (offset = 0). Since no length is stored in the version
array, the length is implicitly calculated from the start of the subsequent version. In this case
the following version is the current one, which is why the field currentOffset is considered.
The length of the patch is therefore currentOffset-versionPointers[0].offset=0. The
fields patchStart and patchEnd indicate at which point the patch must be inserted: In this
case, the interval [5, 13) corresponds to the added character string “␣version”.

Figure 4c depicts the final state after inserting “Second Version”. The version array now
contains two entries: the first entry remains unchanged, whereas the second specifies how
to restore “First Version” out of “Second Version”. This is done by replacing the word
“Second” with “First”, so the patch must contain the latter character string. The interval
[0, 5) results from the offset entry in the array and currentOffset in the header, i.e. the
first five characters in the data area (“First”). This patch is inserted in-between patchStart

and patchEnd in the area [0, 6) of the current version, which corresponds to the already
mentioned replacement of the first word.

Umbra as a Time Machine: Adding a Versioning Type to SQL 127

6 L. Karnowski, M. Schüle, A. Kemper, T. Neumann

Also of interest is the field diffsToFullCount, which is equal to arraySize in our example.
If more versions are inserted and diffsToFullCount reaches a predefined threshold value,
a complete version will be saved, which is indicated by the tag full in the version array.
diffsToFullCount is then reset to 0 and the process starts again.

2.4 Implementation of the Corresponding Operations

Since the data type was developed in Umbra, which currently does not support UPDATE
operations, a copy of the previous state must be created for each operation. The data type
supports the following functions:

• BUILD(𝑇1, . . . , 𝑇𝑁) creates a DiffText object from a set of 𝑁 versions. 𝑇1 corresponds
to the oldest version and 𝑇𝑁 to the latest one. This can be used for recovery operations,
for example, when creating backups out of bare text strings.

• APPEND(𝐷,𝑇1, . . . , 𝑇𝑁) is a generalisation of the BUILD operation. It expects a DiffText
object 𝐷, to which the versions 𝑇1...𝑁 are appended.

• SET_CURRENT_VERSION(𝐷, 𝑇) is a specialisation of APPEND, as it modifies a single
version only, the standard operation for adding a new version.

• GET_VERSION_BY_ID(𝐷, 𝑁) extracts version 𝑁 from the given DiffText object. SQL
is typically indexed starting with 1, with lower numbers indicating older versions and
higher numbers corresponding to newer versions.

• GET_CURRENT_VERSION(𝐷) returns the latest version. If the data type contains 𝑀
versions in total, it is equivalent to GET_VERSION_BY_ID(𝐷, 𝑀). For performance
reasons, a separate and optimised operation is offered to retrieve the latest version.
The structure of the DiffText data type is designed to extract the latest version as
quickly as possible. This will be discussed later in more detail.

In addition, EXPAND(𝐷, 𝑀, 𝑁) is a unary database operator that extracts the versions within
the interval [𝑀, 𝑁] out of a single DiffText object. It expects a relation with a DiffText
column as input and returns 𝑁 − 𝑀 + 1 output tuples per input tuple. For performance
reasons, newer versions appear first (the output order is 𝑇𝑁 , 𝑇𝑁−1, . . . , 𝑇𝑀).

This subsection presents the implementation of the previously presented operations for the
DiffText data type.

2.4.1 Accessing Versions

Accessing an arbitrary version demands for the complete reconstructed text string. This
is trivial for GET_CURRENT_VERSION, which is stored as a snapshot. In addition, its access

128 Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

Umbra as a Time Machine 7

does not require to query the version array, only the offset and the length are read from the
header. Furthermore, instead of allocating memory for the returned string, a view to the
substring containing the snapshot is sufficient as return value.

The same optimisation will apply if the version requested by GET_VERSION_BY_ID is available
as a snapshot (full = true in Figure 3). If this is not the case, a new buffer must be created
for the return string. For performance reasons, the buffer size must be determined in advance.
This is not trivial, since any diffs in-between might increase, decrease or leave the length of
the resulting text unchanged. For this reason, GET_VERSION_BY_ID consists of 3 steps:

1. Finding the next complete version. This iterates from the requested version upwards
through the version array until a complete snapshot is found. This could also be the
latest version, this special case must be considered, since the most current version is
not contained in the version array.

2. Calculating the buffer size. This requires again an iteration but in reverse order. In
each step, the patchStart and patchEnd fields are used to calculate the resulting
buffer size. The required buffer size is the maximum of all sizes found during all
iterations.

3. Applying patches. In the last step, the version array is iterated downwards again and
the corresponding diff is applied in each step. After this process, the requested version
is available in the allocated buffer and ready to be returned.

This explains the separation into patchStart/patchEnd information and the actual patches
within the memory layout: The first two steps do not require the actual patch, but only the
meta information of each diff. This ensures optimal cache utilisation.

A further optimisation applies to EXPAND: Instead of iteratively calling GET_VERSION_BY_ID

for each requested version, the patch is applied incrementally, starting with the last requested
version. The implementation first calls GET_VERSION_BY_ID for the last requested version
and then uses a function getPreviousVersion(D,T) to determine the predecessors. This
implies that the order of the versions of the EXPAND operator is exactly counter-intuitive:
starting with newer and ending with older versions. For performance reasons, however, this
sequence is advantageous because only one step in the version array has to be carried out
for each tuple output.

2.4.2 Creating a DiffText object

The trivial case when creating a DiffText object is with exactly one existing version. For this,
the currentLength of the DiffTextRepresentation is set to the length of the single version.
The remaining fields are initialised with 0, the version array is empty and the variable data
area contains the current version only.

Umbra as a Time Machine: Adding a Versioning Type to SQL 129

8 L. Karnowski, M. Schüle, A. Kemper, T. Neumann

If more than one version exists, the resulting object will hold all information for their
restoration. For this purpose, the diff is formed between two adjacent text strings by iterating
once over all bytes and forming the patch between the current and the subsequent version. If
the buffer already contains the text string to be inserted, no patches will be copied, but the
corresponding offsets have to be saved. After all patches have been created, the texts are
iterated again and the part relevant for the diff is copied into the data section of the newly
created DiffText object. Thus BUILD consists of two phases (1) Calculating the diffs and
(2) copying the patches to the final buffer.

APPEND is a generalisation of BUILD, because in addition to the new versions, an existing
DiffText object is specified, to which the versions are appended. Apart from this, APPEND
does not differ to BUILD, why it will not be discussed in more detail. The same applies to
SET_CURRENT_VERSION, the specialisation of APPEND, which reuses the two phases mentioned
above.

3 Evaluation

This section discusses the performance of the implementedDiffText data type. TheWikipedia
dumps from 09/01/2019 were used as test data, specifically pages 971896 to 972009. The
measurements have been conducted on an Ubuntu 18.04 LTS server with an Intel Xeon
CPU E5-2660 v2 processor with 2.20 GHz (20 cores) and 256 GiB DDR4 RAM.

The full dump has an uncompressed size of 119.9 MiB. First we evaluate the memory
consumption after all available versions have been inserted. We add all versions of all pages
in a DiffText object to better estimate the memory consumption. The result is shown in
Figure 6. Instead of a patch, a complete snapshot will be stored every 50th version. This
threshold, which restricts the chain length of patches, is referred to as 𝑋 in the following.

1 2 5 10 20 30 40 50 100 250 500 1000 10000

2
4
6
·107 6.

18
·1
07

3.
45
·1
07

2.
29
·1
07

1.
64
·1
07

1.
22
·1
07

1.
07
·1
07

9.
87
·1
06

9.
38
·1
06

8.
34
·1
06

7.
62
·1
06

7.
47
·1
06

7.
37
·1
06

7.
36
·1
06

Every Xth version is stored as a snapshot

Si
ze

in
By

te
s

Fig. 5: Memory consumption depending on the frequency of stored snapshots.

The full size of the DiffText object is 8.9 MiB, which is a reduction down to 15.2 % of the
original size. Figure 5 shows the total size of the DiffText object depending on the maximum
chain length. Once a value of 𝑋 = 20 has been exceeded, the memory consumption does
not improve significantly the longer the chains become.

130 Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

Umbra as a Time Machine 9

Header and Array1.27%

Snapshots

29.57%

Patches

69.16%

Fig. 6: Memory consumption with a
complete snapshot every 50th version.

The best improvement achieve a chain length of
𝑋 = 10000 with a reduction to 11.9 % of the original
size. Compared to a value of 𝑋 = 50, this means an
improvement of only 3.3 percentage points condon-
ing slower access to older versions. In [SKS+19] we
achieved a compression to 5 %, which could not be
reproduced in this work as the used Wikipedia dump
includes less versions per article.

Let us now consider the runtime of the operations. A
comparison with the normal TEXT data type is made by
inserting the same versions of a text into a table with
TEXT data as well as into a DiffText object. All revisions of one article are stored as one
single DiffText tuple, while each snapshot is stored individually as a tuple. The comparison
is therefore not representative as it compares different functions of the database system with
one another. Nevertheless, the same amount of information is stored in both cases and a
tenth of the memory is consumed in the case of the diff approach.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Diff

Snapshot

Time in seconds

Insert (Compile) Insert (Execution) Select (Compile) Select (Execution)

Fig. 7: Comparison: Storing each version as a single snapshot or in one DiffText object.

The following query inserts data into DiffText objects and retrieves text strings out of them:
INSERT INTO t (text) VALUES (BUILD(T1, ..., TN)); SELECT EXPAND(text, 1, N) from t;

List. 2: Benchmark queries using the DiffText data type.

The snapshots of all texts are inserted into the database as follows and then queried again:
INSERT INTO t (rev_id, text) VALUES (1, T1), ..., (N, TN); SELECT text from t;

List. 3: Benchmark queries using one tuple for each version.

Figure 7 compares the cumulative compilation and execution times of both approaches.
The diff approach performs better than the snapshot approach in all metrics. The snapshot
approach creates a tuple for each version and requires significantly more operations to insert
the content.

Umbra as a Time Machine: Adding a Versioning Type to SQL 131

10 L. Karnowski, M. Schüle, A. Kemper, T. Neumann

4 Conclusion

In this work an implementation of a diff-based data type was presented, which is required for
use cases like Wikipedia. New versions are created regularly, although older texts must still
be accessible. The data type presented is implemented for the Umbra database system and is
based on the normal text data type. The memory layout is designed for cache efficiency and
consists of a header, a version array and the data area with patches and complete versions.
The diff algorithm used is simple and can create diffs with just a single pass over the text.

The data type achieves a compression rate of up to 11.9 % of the original size for Wikipedia
articles and is faster than the direct comparison with normal texts in both compilation and
execution time. No other database system offers a similar data type so far, and research in
this area is rather limited. Possible future optimisations for the data type include a larger
storage capacity, storing older versions on background memory and a diff algorithm with
stronger compression.

References

[Ch15] Chavan, A. et al.: Towards a Unified Query Language for Provenance and
Versioning. In: TaPP. USENIX Association, 2015.

[Hu17] Huang, S. et al.: OrpheusDB: Bolt-on Versioning for Relational Databases.
Proc. VLDB Endow. 10/10, pp. 1130–1141, 2017.

[KM12] Kulkarni, K.G.; Michels, J.-E.: Temporal features in SQL: 2011. SIGMOD
Rec. 41/3, pp. 34–43, 2012.

[Li20] Lin, Q. et al.: ForkBase: Immutable, Tamper-evident Storage Substrate for
Branchable Applications. In: ICDE. IEEE, pp. 1718–1721, 2020.

[Ma16] Maddox, M. et al.: Decibel: The Relational Dataset Branching System. Proc.
VLDB Endow. 9/9, pp. 624–635, 2016.

[NF20] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-Memory
Performance. In: CIDR. www.cidrdb.org, 2020.

[Sc17] Schüle, M. E. et al.: Monopedia: Staying Single is Good Enough - The HyPer
Way for Web Scale Applications. Proc. VLDB Endow. 10/12, pp. 1921–1924,
2017.

[Sc19] Schüle, M. E. et al.: The Power of SQL Lambda Functions. In: EDBT. Open-
Proceedings.org, pp. 534–537, 2019.

[SKS+19] Schüle, M. E.; Karnowski, L.; Schmeißer, J., et al.: Versioning inMain-Memory
Database Systems: FromMusaeusDB to TardisDB. In: SSDBM. ACM, pp. 169–
180, 2019.

[Sn87] Snodgrass, R. T.: The Temporal Query Language TQuel. ACM Trans. Database
Syst. 12/2, pp. 247–298, 1987.

132 Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

ML & Data Science

cba

GI (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Aggregate-based Training Phase for ML-based Cardinality
Estimation

Lucas Woltmann1, Claudio Hartmann1, Dirk Habich1, Wolfgang Lehner1

Abstract: Cardinality estimation is a fundamental task in database query processing and optimization.
As shown in recent papers, machine learning (ML)-based approaches may deliver more accurate
cardinality estimations than traditional approaches. However, a lot of training queries have to be
executed during the model training phase to learn a data-dependent ML model making it very
time-consuming. Many of those training or example queries use the same base data, have the same
query structure, and only differ in their selective predicates. To speed up the model training phase,
our core idea is to determine a predicate-independent pre-aggregation of the base data and to
execute the example queries over this pre-aggregated data. Based on this idea, we present a specific
aggregate-based training phase for ML-based cardinality estimation approaches in this paper. As
we are going to show with different workloads in our evaluation, we are able to achieve an average
speedup of 63 with our aggregate-based training phase and thus outperform indexes.

Keywords: cardinality estimation; machine learning; database support; pre-aggregation

1 Introduction

Due to skew and correlation in data managed by database systems (DBMS), query optimiza-
tion is still an important challenge. The main task of query optimization is to determine an
efficient execution plan for every SQL query, whereby most of the optimization techniques
are cost-based [Le15]. For these techniques, cardinality estimation has a prominent position
with the task to approximate the number of returned tuples for every query operator within
a query execution plan [HN17, Le15, MNS09, YW79]. Based on these estimations, various
decisions are made by different optimization techniques such as choosing (i) the right
join order [FM11], (ii) the right physical operator variant [Ro15], (iii) the best-fitting
compression scheme [Da19], or (iv) the optimal operator placement within heterogeneous
hardware [KHL17]. However, to make good decisions in all cases, it is important to have
cardinality estimations with high accuracy.

As shown in recent papers [Ki19b, Li15], including our own work [Wo19b], machine
learning-based cardinality estimation approaches are able to meet higher accuracy re-
quirements, especially for highly correlated data. While traditional approaches such as
histogram-based and frequent values methods assume data independence for their esti-
mation [Le15], ML-based approaches assume that a sufficiently deep neural network can
1 Technische Universität Dresden, Database Systems Group, 01062 Dresden, Germany,

firstname.lastname@tu-dresden.de

cba doi:10.18420/btw2021-07

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 135

https://creativecommons.org/licenses/by-sa/4.0/
mailto:firstname.lastname@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-07

2 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

model the very complex data dependencies and correlations [Ki19b]. For this reason,
ML-based cardinality estimation approaches may thus give much more accurate estimations
as clearly demonstrated in [Ki19b, Li15, Wo19b]. However, the main drawback of these
ML-based techniques compared to traditional approaches is the high construction cost of
the data-dependent ML-models based on the underlying supervised learning approach.
During the so-called training phase, the task of supervised learning is to train a model,
or more specifically learn a function, that maps input to an output based on example
(input,output) pairs. Thus, in the case of cardinality estimation, many pairs consisting of
(query, output-cardinality) are required during the training phase. To determine the
correct output-cardinalities, the queries have to be executed [Ki19b, Wo19b], whereby
the execution of those example queries can be very time consuming, especially for databases
with many tables, many columns, and millions or billions of tuples resulting in a heavy load
on the database system.

Core Contribution. To overcome these shortcomings, we propose a novel training phase
based on pre-aggregated data for ML-based cardinality estimation approaches. Usually, as
described in [Ki19b, Wo19b], every example query is (i) rewritten with a count aggregate
to retrieve the correct output-cardinality and (ii) executed individually. However, many
of those example queries use the same base data, have the same query structure, and only
differ in their selective predicates. To optimize the query execution, our core idea is to
provide a predicate-independent pre-aggregation of the base data and to execute the example
queries over this pre-aggregated data. Consequently, the set of similar example queries has
to read and process less data because the pre-aggregation is a compact representation of
the base data. To realize this pre-aggregation, the most common solution in DBMS is to
create a data cube for storing and computing aggregate information [Gr96]. However, this
pre-aggregation is only beneficial if the execution of the example queries on the data cube
plus the time for creating the data cube is faster than the execution of the example queries
over the base data. As we are going to show with different workloads of example queries
in our evaluation, we are able to achieve an average speedup of 63. We also compare our
approach to standard query optimization with index structures on the base data and show
their limited benefit for this use case.

Contributions in Detail and Outline. Our aggregate-based training phase consists of two
phases: (i) creation of a set of meaningful pre-aggregated data sets using data cubes and (ii)
rewrite and execute the example queries on the corresponding data cubes or the base data.
In detail, the contributions in this paper are:

1. We start with a general overview of ML processes in DBMS in Section 2. In particular,
we detail cardinality estimation as a case study for ML in DBMS. We introduce
global and local models as two representatives for ML-based cardinality estimation
approaches. Primarily, we show their properties in terms of example workload
complexity and conclude the need for optimization of such workloads.

2. Based on this discussion, we introduce our general solution approach of an aggregated-
based training phase by pre-aggregating the base data using the data cube concept and

136 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 3

executing the example queries over this pre-aggregated data. Moreover, we introduce
a benefit criterion to decide whether the pre-aggregation is beneficial or not.

3. In Section 4, we present our aggregate-based training phase for ML-based cardinality
estimation approaches in detail. Our approach consists of two components: Analyzer
and Rewrite. While the main task of the Analyzer component is to find and build all
beneficial data cubes, the Rewrite component is responsible for rewriting the example
queries to the constructed data cubes if possible.

4. Then, we present experimental evaluation results for four different workloads for
the training phase of ML-based cardinality estimation in Section 5. The workloads
are derived from different ML-based cardinality estimation approaches [Ki19b,
Wo19b] on the IMDB data set [IM17]. Moreover, we compare our approach with the
optimization using index structures.

Finally, we conclude the paper with related work in Section 6 before concluding in Section 7.

2 Machine Learning Models for DBMS

In this section, we start with a brief description of the general process of machine learning
(ML) in the context of DBMS. Moreover, we discuss ML-based cardinality estimation for
DBMS as an important case study and revisit two ML-based approaches solving this specific
challenge. Finally, we analyze the specific query workloads for the training phases and
clearly state the need for optimized database support.

2.1 Machine Learning Support for DBMS

Most ML-supported techniques for DBMS are supervised learning problems. In this
category, there are amongst others: cardinality estimation [Ki19b, Li15, Wo19b], plan cost
modeling [MP19, SL19], and indexing [Kr18]. The proposed ML solutions for those highly
relevant DBMS problems have a general process in common as shown in Figure 1. This
process is usually split into two parts: forward pass and training phase.

ML Model

DBMS

Training phase:
- model requests example

data from DB
- takes hours
- done once

Forward pass:
- DB requests information

from model
- takes milliseconds
- done regularly during DB

run time

Fig. 1: The general process of supervised ML in DBMS.

Aggregate-based Training Phase for ML-based Cardinality Estimation 137

4 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Forward pass: This pass consists of the application of the model triggered by a request of the
DBMS to the ML model. Each request pulls some specific information from the model
such as an estimated cardinality or an index position [Ki19b, Kr18, Li15, Wo19b]. The
execution time of each forward pass request is normally in the range of milliseconds.
This is advantageous because forward passes occur often and regularly during the run
time of the DBMS [Ki19b, Kr18, Li15, Wo19b].

Training phase: To enable the forward pass, a training phase is necessary to construct the
required ML model, whereby the challenge for the model lies in the generalization
from example dat [Ki19b, Kr18, Li15, Wo19b]. Therefore, the model usually requests
a lot of diverse labeled example data—pairs of (input, output)—from the DBMS to
learn the rules of the underlying problem. Even though the training is performed once,
its run time may take hours. This is mainly caused by the generation and execution of
a large number of queries against the DBMS to determine the correct cardinalities.

As a consequence, the training phase of ML models to support DBMS usually generates a
spike high load on the DBMS. Compared to the forward pass, the training is significantly
more expensive from a database perspective. Therefore, the training phase is a good
candidate for optimization to reduce (i) the time for the training phase and (ii) the spike load
on the DBMS. Thus, database support or optimization of the training phase is a novel and
interesting research field leading to an increased applicability of ML support for DBMS.

2.2 Case Study: Cardinality Estimation

As already mentioned in the introduction, we restrict our focus to the ML-based cardinality
estimation use case [Ki19b, Li15, Wo19b]. In this setting, each forward pass requests an
estimated cardinality for a given query from the ML model. In the training phase, the ML
cardinality estimator model requires example queries as example data from the DB where
the queries are labeled with their true cardinality resulting in pairs of (query, cardinality).
These cardinalities are retrieved from the DB by executing the queries enhanced with a count
aggregate. Two major approaches for user-workload-independent cardinality estimation
with ML models have been proposed in recent years: global and local models.

Global Model Approach

A global model is trained on the complete database schema as the underlying model
context [Ki19b]. It is effective in covering correlations in attributes for high-quality
estimates [Ki19b]. In Figure 2, this is depicted by a single model stated and mapped to the
complete schema. Global models have downsides like (i) the complexity of the ML model
and (ii) the very expensive training phase. Both disadvantages arise for the following reason:
the single ML model handles all attributes and joins in the same way leading to a huge
problem space. This huge problem space is directly translated to the model complexity as

138 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 5

Brand Color Year

Ferrari Red 2018

VW Blue 2017

Toyota Blue 2018

... … …

Sampled Queries

SELECT count(*)
FROM table
WHERE Brand = ‘Ferrari‘ and

Color = ‘Red‘ and
Year = ‘2018‘;

SELECT count(*)
FROM table
WHERE Brand != ‘VW‘ and

Color = ‘Blue‘ and
Year = ‘2017‘;

SELECT count(*)
FROM table
WHERE Brand = ‘Ferrari‘ and

Color = ‘Red‘ and
Year < ‘2018‘;

True Cardinalities

201

1675

1280

…

…

…

…

…

…

Generating Example Data

R T

V

S

U
Given Schema

Model

Model

Model

Model

Local models

Global model

Fig. 2: Overview of ML-based cardinality estimation approaches.

well as to a high number of example queries to cover all predicates and joins over the whole
schema as shown [Ki19b].

Local Model Approach

To overcome the shortcomings of the global model approach, the concept of local models
has been introduced [Wo19b]. Local models are ML models which only cover a certain
sub-part of the complete database schema as their model context. This can be a base table or
any n-way join. Again, Figure 2 details several local models each covering a different part
of the schema. As each of them focuses on a part of the schema, there are many advantages
compared to global models. Firstly, local models produce estimates of the same quality as
global models [Wo19b]. Secondly, their model complexity is much smaller, because they
cover a smaller problem space in different combinations of predicates and joins. The lower
complexity stems from a more focused or localized problem solving. A local model has to
generalize a smaller problem than the global, i.e. the cardinality estimate of a sub-part of a
schema and not the whole schema at once. The lower complexity leads to faster example
query sampling and training because the easier problem requires fewer queries during
training. A major disadvantage of local models is the high number of models needed to
cover all objects touched by a query within the forward pass. Therefore, a separate local
ML model needs to be constructed for each part of the schema. Additional queries need
to be generated because every local model requests the same amount of example queries.
However, these queries are less complex because there are fewer combinations of predicates
and tables in a local context.

2.3 Training Phase Workload Analysis

Fundamentally, the global as well as the local ML-based cardinality estimation approach
use the same method to sample example queries for the training phase. This procedure is
shown on the right side of Figure 2, where a local model is trained on an example table

Aggregate-based Training Phase for ML-based Cardinality Estimation 139

6 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

global
 1 model

local
 1 model

local
 2 models

local
 3 models

5k
10k
15k

50k

100k

nu
m

be
r o

f q
ue

rie
s

(a) Number of queries.

global
 1 model

local
 1 model

local
 2 models

local
 3 models

1

2

3

4

5

nu
m

be
r o

f a
cc

es
se

d
ta

bl
es

(b) Number of accessed tables.

global
 1 model

global
 1 model

local
 1 model

local
 2 models

0

1

2

3

4

5

6

nu
m

be
r o

f p
re

di
ca

te
s p

er
 q

ue
ry

(c) Number of predicates.

Fig. 3: Analysis of ML-workload complexity for 1 global and 1 to 3 local models for the IMDB.

consisting of three attributes Brand, Color, and Year. To train the local data-dependent
ML-model, a collection of count queries with different predicate combinations over the
table is generated. In our example, the predicates are specified over the three attributes using
different operators ≠, <, ≤, =, >, ≥ and different predicate values. Thus, all queries have
the same structure but differ in their predicates to cover every aspect of the data properties
in the underlying table. An example query workload to train a global model would look
similar. However, the different contexts for global and local models have an impact on the
number and the complexity of the example queries. In general, the query complexity is
given by the combinations of joined tables and predicates in a query. The larger the model
context, the more complex the example queries. Thus, global models have workloads with a
higher number of variations for predicates and joins because they cover the whole schema.
Local models are trained with workloads with lesser variation [Wo19b].

To better understand the query workload complexity for the training phase, we analyzed the
workloads published by the authors of the global [Ki19a] and local approach [Wo19a]. In
both cases, the authors used the IMDB database [IM17] for their evaluation, because this
database contains many correlations and is thus very challenging for cardinality estimation.
Our analysis results are summarized in Figure 3 and 4.

For a global model and an increasing number of local models, Figure 3a shows the workload
complexity in terms of numbers of example queries used per workload. While the global
model requires up to 100,000 example queries for the IMDB database [Ki19b], the local
model only requires 5,000 example queries per local model [Wo19b] to determine a stable
data-dependent ML model. In general, the number of example queries is much higher for a
global model, but the number of example queries also increases with the number of local
models. Thus, we can afford more local models before their collective query count exceeds
the number of queries for the global model.

Figure 3b specifies the workload size in terms of data access through the number of
joined tables per workload. Similar to the previous figure, the global model has the highest
complexity because it requires example queries over more tables to cover the whole schema

140 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 7

< = > < = > < = > < = >
1k

3k

5k

70k
op

er
at

or
 o

cc
ur

re
nc

e

global
 1 model

local
 1 model

local
 2 models

local
 3 models

Fig. 4: Predicate operator occurrences for IMDB.

at once. Each local model covers only a limited part of the schema and therefore queries
fewer tables per model. Thereby, the complexity of accessed data for local models increases
with the number of models.

Another important aspect to describe the workload complexity is the number of predicates
per query as shown in Figure 3c. Here, the global model workload has a much larger spread
over the number of predicates. The local models detail a more focused distribution with
little variation. Again, the local model workload does not require the amount of alternation
in predicates of a global model workload because it covers a smaller fragment of the schema.
Additionally, Figure 4 gives an overview of the distribution of occurrences of all predicate
operators in the workloads as a box plot with mean values. The global model workload only
uses the operators <, =, >, whereas the local model workloads use the full set of operators
≠, <, ≤, =, >, ≥. As described by both authors, the predicate operators in each example query
are sampled from a uniform distribution [Ki19b, Wo19b]. The slight variation between the
operators per workload is due to the fact that both approaches filter 0-tuple queries which
do not occur uniformly.

3 Training on Pre-Aggregated Data

As discussed above, the global as well as the local ML-based approach for cardinality
estimation generates many example queries with a count aggregate function during the
training phase. Depending on the model context, there is a small variance in the number
of accessed tables, but there is a high variance for predicates in terms of (i) number of
predicates, (ii) used predicate operators, and (iii) predicate values in general. So, many
queries work on the same data but look at different aspects. Executing such workloads
in a naïve way, i.e. executing each example query individually on large base data, is very
expensive and generates a high spike load on the database system. The utilization of index

Aggregate-based Training Phase for ML-based Cardinality Estimation 141

8 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

structures for an optimized execution in database systems appears to be an ideal technique at
a first glance. However, their benefit is limited as we will show in our evaluation. The same
can be said about materialized views. We omitted their evaluation because the experiment
did not finish within 30 days.

To tackle this problem more systematically, our core idea is to pre-aggregate the base
data for different predicate combinations and to reuse this pre-aggregated data for several
example queries. In general, aggregates compress the data by summarizing information and
reducing redundancy. This lessens the amount of data to be scanned by each example query
because the aggregates can be smaller than the original data. The aggregate pre-calculates
information with the result that the workload queries need to scan less data during execution.
Therefore, it is important that the construction of the aggregate does not take longer than
the reduction of the workload execution time.

3.1 Grouping Sets as Pre-aggregates

It might sound expensive to aggregate all possible combinations of predicates. However,
DBMS already offer substantial supportive data structures for this kind of aggregation. The
basic idea of such grouping comes from Online Analytical Processing (OLAP) workloads.
These aggregate-heavy workloads spawned the idea of pre-aggregating information in
data cubes [Gr96] helping to reduce the execution time of OLAP queries by collecting
and compressing the large amount of data accessed into an aggregate. The concept of
data cubes is well-known from data warehouses for storing and computing aggregate
information and almost all database systems are offering efficient support for data cube
operations [Ag96, Gr96, HRU96, Sh96, ZDN97].

Each attribute of a table or join generates a dimension in the data cube and the distinct
attribute values are the dimension values. The cells of a data cube are called facts and
contain the aggregate for a particular combination of attribute values. To instantiate the
concept of a data cube in a DB, there are different cube operators. Usually, these are CUBE,
ROLLUP, and GROUPING SET. The CUBE operator instantiates aggregates for the power set
of combinations of attribute values. The ROLLUP operator builds the linear hierarchy of

20

40

25

20

30

10

120 100 80

Year
2017 2018 2019

C
ol
or

blue

black

red
VW

Ferrari
Toyota

Brand Color Year
Ferrari red 2019
VW black 2018
VW red 2017
Toyota black 2017
Toyota blue 2018
… … …

GROUPING

SET

count()

Fig. 5: Aggregating information with grouping sets.

142 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 9

Given Table or Join Generating Example Data (Grouping Set)

Brand Color Year

Ferrari Red 2018

VW Blue 2017

... … …

Sampled Queries

SELECT SUM(count)
FROM cube
WHERE Brand = ‘Ferrari‘ and

Color = ‘Red‘ and
Year = ‘2018‘;

SELECT SUM(count)
FROM cube
WHERE Brand != ‘VW‘ and

Color = ‘Blue‘ and
Year = ‘2017‘;

SELECT SUM(count)
FROM cube
WHERE Brand = ‘Ferrari‘ and

Color = ‘Red‘ and
Year < ‘2018‘;

True Cardinalities

201

1675

1280

…

…

…

…

…

…

Model

Brand Color Year count

Ferrari Red 2018 201

VW Blue 2017 512

... … …

Grouping set

20

40

25

20

30

10

120 100 80

Year
2017 2018 2019

C
ol
or

blue

black

red
VW

Ferrari
Toyota

Fig. 6: Illustration of database-supported training phase based on pre-aggregated data/grouping sets.

attribute combinations. The GROUPING SET operator only constructs combinations with all
attributes. This characteristic of a grouping set is the major advantage for our use case. With
the grouping set aggregation, we compress the original data and avoid the calculation of
unnecessary attribute combinations. Figure 5 details an example of a grouping set for a
count aggregate over discrete data. The example data has a multidimensional structure after
aggregating where each dimension is a property of a car. The cells of the grouping set are
filled with the aggregate value, i.e. the count of cars with a particular set of properties.

Given the grouping set data structure, we adapt the generation of example queries from
Figure 2. By introducing the data cube, we add an intermediate step before executing the
workload. This step constructs a data cube, i.e. grouping set, and rewrites the workload
to fit the grouping set. Figure 6 details the construction and the rewrite of queries for the
sample data. On the left side, the construction builds a table matching the multidimensional
character of the grouping set. Due to this new table layout, the rewrite must include a
different aggregate function as shown in Figure 6. For a count aggregate, the corresponding
function is a sum over the pre-aggregated count. Last, the rewritten workload is executed
and retrieves the output-cardinalities. After the sampling of example queries, the queries
and cardinalities are fed to the ML model in the same way as in the original process. This is
an advantage of our approach because it does not interfere with other parts of the training
process. Therefore, it is independent of the type of ML model and can be applied to a
multitude of supervised learning problems.

Even though our approach is independent of the ML model, it is not independent of the data.
In general, grouping sets are only beneficial if the aggregate is smaller than the original data.
A negative example would be an aggregate over several key columns. Here, the number

Aggregate-based Training Phase for ML-based Cardinality Estimation 143

10 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

5 10 100 1000 100k 1m
distincts

1

2

3

4

5

co
lu

m
ns

1.41 2.81 27.47 45.78 46.24 45.69

6.88 27.29 45.73 45.73 45.76 45.54

35.56 47.39 47.07 47.59 47.48 47.49

48.21 47.92 48.22 48.28 48.06 48.1

49.94 49.94 50.02 50.04 50.36 50.25

baseline

5 10 100 1000 100k 1m
distincts

0.22 0.25 0.31 0.46 11.97 45.27

0.28 0.36 1.78 35.45 51.87 51.33

0.41 0.54 35.07 51.74 51.62 51.62

0.56 1.89 52.98 53.1 52.96 53.38

0.9 12.32 53.75 53.59 54.12 53.86

grouping set (incl. construction)

5 10 100 1000 100k 1m
distincts

6.36 11.04 87.88 98.96 3.86 1.01

24.39 75.76 25.68 1.29 0.88 0.89

86.42 88.26 1.34 0.92 0.92 0.92

86.26 25.4 0.91 0.91 0.91 0.9

55.37 4.05 0.93 0.93 0.93 0.93

speed up

(a) The speed up for different combinations of columns and distinct values with tuples fixed to 1m.

5 10 100 1000 100k 1m
distincts

1k

10k

100k

1m

tu
pl

es

0.22 0.22 0.22 0.23 0.22 0.22

1.47 1.43 1.36 1.4 1.33 1.34

11.25 11.22 11.21 11.25 11.25 11.17

49.94 49.94 50.02 50.04 50.36 50.25

baseline

5 10 100 1000 100k 1m
distincts

0.24 0.26 0.29 0.26 0.27 0.26

0.5 1.43 1.59 1.55 1.44 1.55

0.56 7.83 12.04 12.05 12.22 12.11

0.9 12.32 53.75 53.59 54.12 53.86

grouping set (incl. construction)

5 10 100 1000 100k 1m
distincts

0.92 0.84 0.77 0.86 0.82 0.82

2.91 1.0 0.86 0.9 0.92 0.86

20.22 1.43 0.93 0.93 0.92 0.92

55.37 4.05 0.93 0.93 0.93 0.93

speed up

(b) The speed up for different combinations of tuples and distinct values with columns fixed to five.

1 2 3 4 5
columns

1k

10k

100k

1m

tu
pl

es

0.01 0.03 0.16 0.21 0.22

0.04 0.19 0.94 1.43 1.47

0.33 1.58 8.17 10.86 11.25

1.41 6.88 35.56 48.21 49.94

baseline

1 2 3 4 5
columns

0.03 0.03 0.12 0.2 0.24

0.02 0.04 0.13 0.24 0.5

0.04 0.07 0.16 0.28 0.56

0.22 0.28 0.41 0.56 0.9

grouping set (incl. construction)

1 2 3 4 5
columns

0.26 0.98 1.36 1.09 0.92

1.72 4.86 7.1 6.01 2.91

8.02 22.53 50.54 38.72 20.22

6.36 24.39 86.42 86.26 55.37

speed up

(c) The speed up for different combinations of tuples and columns with distinct values fixed to five.

Fig. 7: Execution times and speed ups on synthetic data.

of distinct values per column equals the number of tuples in the table. If such a grouping
set is instantiated, each of its dimensions has a length equal to the number of tuples. This
grouping set is larger than the original data because it includes the aggregate. With all that
in mind, we need to quantify the benefit of a grouping set for our use cases.

3.2 Benefit Criterion

To find a useful criterion when to instantiate grouping sets, we evaluate the usefulness of
these sets on synthetic data. Again, we need to find a way to express the compression of
information in a grouping set. From the synthetic data, we will derive a general rule for

144 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 11

the theoretical improvement of a grouping set on a given table or join. Our experiment
comprises six steps per iteration. The first step generates a synthetic table given three
properties. These properties are: the number of tuples in a single table or in the largest table
of a join # , the number of columns �, and the number of distinct values per column �. We
vary the properties in the ranges:

∈ {1 000, 10 000, 100 000, 1 000 000} (1)
� ∈ {1, 2, 3, 4, 5} (2)
� ∈ {5, 10, 100, 1 000, 100 000, 1 000 000} (3)

Changing one property per iteration, this leads to |# | · |� | · |� | = 4 · 5 · 6 = 120 different
tables or iterations. The values in a column are uniformly sampled from the range of distinct
values. With an increasing number of distinct values per column, we simulate floating point
columns which have a large number of different values. Columns with few distinct values
resemble categorical data. In the second step, we sample 1,000 count aggregate queries as
an example workload over all possible combinations of columns (predicates), operators,
and values in this iteration. In the third step, we execute these queries against the table
and measure their execution time. This is equivalent to the standard procedure to sample
example cardinality queries for an ML model. The fourth step constructs the grouping sets
over the whole synthetic table and measures its construction time. Next, in step five, we
rewrite the queries in a way that they can be executed against the grouping set. We measure
their execution time on this grouping set. In the final step, we divide the execution time of
the workload on the grouping set by the run time of the workload on the table. This speed
up factor ranges from close to zero for a negative speed up to infinity for a positive speed
up. All time measurements are done three times and averaged. We use PostgreSQL 10 for
the necessary data management.

Figure 7 shows the results of all 120 iterations. Blue values mean either better execution
times or higher speed up, whereas red means longer execution times or lower speed up.
White indicates a speed up factor of one. The first column shows the execution time of the
workload against the table. The next column shows the execution time of the workload
against the grouping set including the construction time of the grouping set. The last column
is the quotient of the second and first column. This is the achieved speed up by using a
grouping set. In each row, only two properties are changed while the third property is kept
fixed. The first row keeps the number of tuples, the second row the number of columns,
and the last row the number of distinct values fixed. From this figure, we can derive three
conclusions.

First, we notice that few distinct values in a few columns are beneficial for the aggregation.
Next, the more tuples # are in a table, the more distinct values per column can be there
for the speed up to be sustained. As the last conclusion, this also applies to the number of
columns. All in all, the larger the original table the more distinct values and columns still
lead to a speed up. Our experiments show that a grouping set is only beneficial if its size is
smaller than the original table. Only then the aggregate compresses information and causes

Aggregate-based Training Phase for ML-based Cardinality Estimation 145

12 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Input : workload F;, database
Output : grouping sets

1 grouping sets: tables→ attributes
2 for query q in wl do // Analyze
3 tables, attributes of q // step 1
4 grouping sets[tables] =
5 grouping sets[tables] ∪ attributes
6 end
7 for grouping set gs in grouping sets do
8 N = max (|tuples| of all tables of gs) // step 2
9 for attribute p in attributes of gs do

10 dv = dv ∪ |distinct values of p|
11 end
12 scaling factor =

∏
dv
// step 3

13 if scaling factor ≥ 1 then
14 grouping sets[tables] = attributes where

∏
dv
< 1

15 construct grouping set
16 end

Algorithm 1: Analyze component.

less data to be scanned by the queries. Given our evaluation, this happens if the product of
the distinct values of all columns is smaller than the table size. We can model this as an
equation to be used as a criterion for instantiating beneficial grouping sets.

scaling factor =
1
#

�∏
2=1
|distinct_values(column2) | (4)

If this scaling factor is smaller than one, we call a grouping set beneficial. The scaling factor
is also a measure of data compression. Therefore, it shows how much faster the scan over
the aggregated data can be.

4 Implementation

In this section, we describe the implementation of our aggregate-based training phase for
ML-based cardinality estimation in DBMS in detail. In our implementation, we assume
that a regular DBMS with an SQL interface provides the base data and the ML models are
trained outside the DBMS, e.g., in Python. Based on this setting, we added a new layer
implemented in Python2 between these systems to realize our aggregate-based training
phase in a very flexible way. Thus, the input of this layer is an ML workload that is necessary
for training the ML model. Then, the main tasks of this layer are:

2 We plan to make the code base publicly available in case of paper acceptance.

146 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 13

Input : workload F;, grouping sets
Output : rewritten workload F;’

1 for query q in wl do // Rewrite
2 tables, attributes of q
3 if attributes = grouping sets[tables] then
4 rewrite q to match grouping set
5 add q to F;’
6 end

Algorithm 2: Rewrite component.

1. discover as well as create as many beneficial grouping sets in the DBMS as possible
for the given ML workload

2. rewrite as well as execute the workload queries according to the grouping sets and
base data.

The output of this layer is an annotated ML workload with the retrieved cardinalities
on which the ML model is trained afterward. To achieve that, our layer consists of two
components. The first component is the Analyzer which is responsible for the construction
of beneficial grouping sets. The second component is the Rewrite rewriting and executing
the queries of the ML workload against the constructed grouping sets. In the following, we
introduce both components in more detail.

4.1 Analyzer Component

Algorithm 1 gives a more detailed overview over the Analyzer Component. Given an ML
workload and a database instance, our Analyzer consists of three steps to find and build all
beneficial grouping sets. In step one, the Analyzer scans all queries in the ML workload and
collects all joins or tables and their respective predicates in use. This generates all possible
grouping sets as a mapping from tables building the grouping set to the predicates on those
tables. In Algorithm 1, this is covered in lines 1 to 6. The second step then collects the
number of distinct values per predicate attribute (regardless of their type) and the maximum
number of tuples of all tables in the grouping set from the metadata (statistics) of the
database. This is shown in lines 8 to 11. In the third and final step, our defined benefit
criterion (Equation (4)) is used to calculate the scaling factor and therefore the benefit of
each grouping set. If the scaling factor is smaller than one, the Analyzer constructs the
grouping set with all collected predicates. If the scaling factor is larger than or equal to one,
the grouping set is constructed with the maximum number of predicates where the scaling
factor still is smaller than one. This may disregard certain queries that are subsequently not
executed against the grouping set if they have more predicates than the grouping set. On
the other hand, queries on the table or join with the predicates in the grouping set can still
benefit from it. Moreover, all queries to be executed against a grouping set are marked for
rewriting. This final step is detailed in lines 12 to 15.

Aggregate-based Training Phase for ML-based Cardinality Estimation 147

14 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

4.2 Rewrite Component

With all beneficial grouping sets instantiated by the Analyzer Component, it is necessary to
modify the ML workload queries to be able to use the pre-aggregates. For this, all queries
which can be run against any grouping set will be rewritten in the Rewrite component. The
Rewrite component receives information about each query from the Analyzer and rewrites
queries in a way that they can be executed against the grouping sets. All queries where the
Analyzer does not recognize a grouping set are kept as they are and will be executed over
the base data. The Rewrite component is described in Algorithm 2.

When all queries have been processed, the optimized workload is executed as a whole on
the database. If a query has been rewritten, it will be executed against the grouping set,
otherwise, it will be executed against the original data. Finally, the retrieved results (i.e.
cardinalities) are forwarded to the ML system to train the ML model.

5 Evaluation

To show the benefit of our novel aggregate-based training phase, we conducted an exhaustive
experimental study with both presented types of ML models for cardinality estimation (cf.
Section 2). Thus, we start this section by explaining the experimental settings followed
by a description of selective results for the local as well as global ML model approaches.
Afterward, we summarize the main experimental findings.

5.1 Experimental Setting

For our experiments, we used the original workloads for the local and global ML model
approaches [Ki19a, Wo19a] on the IMDB data set [IM17]. The IMDB contains a snowflake
database schema with several millions of tuples in both the fact and the 20 dimension tables.
As already presented in Section 2.3, the global model workload contains 100,000 queries.
For the local models, we used three workloads where each workload has 5,000 queries more

model Base Data Base Data Construction Execution Total Coverage
w/o Index w/ Index GS GS GS GS

local 1 2ℎ 30< 1ℎ 44< 6.17B 191.34B 197.51B 100%
local 2 7ℎ 53< 5ℎ 10< 23.70B 205.91B 229.61B 100%
local 3 10ℎ 12< 6ℎ 56< 29.10B 430.36B 459.46B 100%
global full – 43 14ℎ 2ℎ 22< 203 20ℎ 203 22ℎ 100%
global opt – 43 14ℎ 34< 29B 23 11ℎ 23 12ℎ 55%

Tab. 1: Execution times ML workloads (GS: grouping sets).

148 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 15

local
 1 model

local
 2 models

local
 3 models

200
400

5k

10k

15k

20k

25k

30k

35k

ex
ec

ut
io

n
tim

e
[s

]

Base Data w/o Indices
Base Data w/ Indices
GS

(a) Execution times.

local
1 model

local
2 models

local
3 models

1

20

40

60

80

100

120

sp
ee

d
up

Indices
GS

(b) Speed ups.

local
1 model

local
2 models

local
3 models

10
20

400

600

800

1000

1200

1400

sp
ee

d
up

 s/
M

B

Indices
GS

(c) Speed ups per MB.

Fig. 8: Local model evaluation based on our aggregate-based training phase (GS: Grouping Sets).

than the previous one. These workloads correspond to one, two, and three trained local
models. Overall, we have four workloads for our experiments: one for a global model and
three workloads for an increasing number of local models. Moreover, all experiments are
conducted on an AMD A10-7870K system with 32GB main-memory with PostgreSQL 10
as the underlying database system.

In our experiments, we measured the workload execution times, whereby we distinguish
three different execution modes:

Base Data w/o Indexes: ML workload is executed on the IMDB base data without any
indexes on the base data.

Base Data w/ Indexes: ML workload is executed on the IMDB base data with indexes on
all (join) predicates in use.

Grouping Set (GS): ML workload is executed on pre-aggregated data as determined by
our approach.

The first two execution modes represent our baselines because both are currently used in the
presented ML model approaches for cardinality estimation [Ki19b, Wo19b, Li15].

5.2 Experimental Results: Local Model Workloads

Figure 8 shows the results for the three local model workloads. The first workload contains
the necessary queries to build one local ML model to estimate the cardinalities for the join
title⊲⊳movie_keyword. The second workload adds 5,000 queries to the first workload to
construct a second ML model for the join title⊲⊳movie_info. The third workload adds
another ML model for an additional join title⊲⊳movie_companies. Therefore, we increment
the number of local ML models.

Aggregate-based Training Phase for ML-based Cardinality Estimation 149

16 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Base Data
 w/ Indices

GS opt GS full
10k200k

400k

1.8m

tim
e

[s
]

execution
construction

(a) Execution times.

GS opt GS full0

0.5

1.0

1.5

2.0

sp
ee

d
up

(b) Speed ups.

Fig. 9: Global model evaluation results.

Figure 8a details the execution times for all three local model workloads for all investigated
execution modes. In each of the three groups, the left bar shows the complete workload
execution time on the IMDB without indexes, the middle bar on the IMDB with indexes,
and the right bar the execution time with our grouping set approach. As we can see, indexes
on the base data are already helping to reduce the workload execution times compared
to execution on the base data w/o indexes, but the speedup is very marginal as shown in
Figure 8b because the DBMS might decide to abstain from using the indexes. In contrast to
that, our grouping set approach has the lowest execution times in all cases and the achieved
speed ups compared to execution on the base data w/o indexes are in the range between
45 and 125 as depicted in Figure 8b. Thus, we can conclude that our aggregation-based
training phase is much more efficient than state-of-the-art approaches.

For each considered join, our aggregation-based approach creates a specific grouping set
containing all columns from the corresponding workload queries. According to equation (4),
the scaling factors are: 0.02, 0.003, and 0.05 for the three joins. Thus, the instantiation of
grouping sets is beneficial. So, all grouping sets achieve a very good compression rate and
the rewritten workload queries on the grouping sets have to read much less data compared
to the execution on base data. Moreover, all workload queries can be rewritten, so that the
coverage is 100% and every query benefits from this optimization. Nevertheless, the three
scaling factors differ explaining the different speed ups.

The construction of the grouping sets can be considered a drawback. However, as illustrated
in Table 1, the construction times for the grouping sets are negligible because the reduction
in execution time is significantly higher. From a storage perspective, index structures and
grouping sets need some extra storage space, where the storage overhead for grouping sets
is larger than for indices. But, as illustrated in Figure 8c, the speed up per additional MB for
grouping sets is much larger than for indices. All in all, we gain a much larger speed up
making grouping sets the more efficient approach.

150 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 17

5.3 Experimental Results: Global Model Workload

Figure 9 shows the evaluation results in terms of execution and construction times for the
global model workload. As shown in the previous experiment, the utilization of indices is
always beneficial. Thus, we only compare the execution on base data with indices and the
execution on the aggregated data in this evaluation.

In general, there are 21 grouping sets possible for the global workload. However, some of
these grouping sets have a scaling factor larger than one. Therefore, our Analyzer component
disregards the attributes of some grouping sets until the scaling factor is smaller than one
(cf. Section 4). As a consequence, only 55% of the global workload queries can be rewritten
to this optimal set of grouping sets. This strategy called GS opt in Figure 9a reduces the
workload execution time of the global workload. The speed up compared to the execution
on the base data with indexes is almost 2 (Figure 9b).

To show the benefit of our grouping set selection strategy, we also constructed all grouping
sets with all attributes (GS full). There, we are able to rewrite all global workload queries to
be executed on these aggregated data. As shown in Figure 9a, the overall workload execution
time is longer than the execution on base data with indices. Therefore, grouping sets have to
be selected carefully. Moreover, this experiment shows that our definition of a beneficial
grouping set is applicable because (i) not all grouping sets are beneficial and (ii) not all
queries can or need to be optimized with a grouping set. The benefit criterion considers
both aspects to reduce workload execution times.

5.4 Main Findings

For both types of ML models for cardinality estimation, our aggregation-based training
phase offers a database-centric way to reduce execution time. Table 1 summarizes our
evaluation results. The overhead introduced by the construction of a grouping set is much
smaller than the savings in execution time. So, grouping sets reduce the workload execution
times and amortize their own construction time. The simpler structure of the local model
workloads is better supported by grouping sets because they contain fewer combinations
of columns and fewer distinct values. These are exactly two of the assets for grouping
sets identified in Section 3. This leads to a higher performance speed up for local model
workloads than for global model workloads with consistent high-quality estimates. Thus,
we can afford a larger amount of local models to reach the schema coverage of a global
model. Even if these models request more queries than the global model, their benefits from
the use of grouping sets outweigh the higher number of queries.

Aggregate-based Training Phase for ML-based Cardinality Estimation 151

18 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

6 Related Work

In this section, we detail the importance of database support for machine learning in other
works. We look at the motivation for pre-aggregates from both the database system and the
machine learning point of view.

When looking at the synergy of database and machine learning systems, there are three
possible interactions: (i) integrate machine learning into database systems, (ii) adapt database
techniques for machine learning models, and (iii) combine database and machine learning
into one life cycle system [KBY17]. Based on that, we classify our work in category (iii).
However, the focus in this area is more on feature and model selection and not on sampling
example data. We argue that the direct support of machine learning training phases with
databases should be treated with the same attention.

To the best of our knowledge, there is only little research on directly optimizing the sampling
of workloads for machine learning problems. The authors of [Ki19b] detail their method of
speeding up query sampling in [Ki19c]. They use massive parallelism by distributing the
workload over several DB instances. We see this as a promising step because our approach
can also profit from parallel execution. Especially the instantiation and the querying of
grouping sets can be done in parallel because grouping sets are orthogonal to each other.

Another thing to look at is the availability of supportive data structures in database
systems. The cube operators are established in databases and benefit from a wide-ranged
support [Ag96, Gr96, HRU96, Sh96, ZDN97]. The ability of a database to deliver necessary
meta information is also important. For example, fast querying for the distinct values of
each column has a large impact on performance. A simple solution for this is a dictionary
encoding of the data in the database. Some database systems already use dictionary coding
for all their data [Fä12]. This is beneficial for our approach because from a dictionary
encoded column it is easy to yield the number of distinct values with a dictionary scan.
Moreover, dictionary encoding directly supports the transformation of the data into the
grouping set dimension and the definition of ranges of these dimensions.

Aside from machine learning, database support for data mining has already been an important
research topic [AS96, CWC09, HLH03, Ne01, OC00]. For example, [HLH03] identifies
that aggregation in sub-spaces formed by combinations of attributes is a common task in
many data mining algorithms. Based on that observation, we see a large potential for tighter
coupling of databases and mining algorithms.

7 Conclusion

We made the case for cardinality estimation as a candidate for database support of machine
learning for DBMS. We detailed an approach for pre-aggregating count information for
cardinality estimation workloads. It uses grouping sets, a well-known database operator, to

152 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

Aggregate-based Training Phase for ML-based Cardinality Estimation 19

reduce the data to be scanned by example queries for cardinality estimation with machine
learning models. This reduces the execution time of a given workload even though we spend
extra time to construct the intermediate data structures.

This case has a strong potential to be applied to the other similar machine learning problems,
like plan cost modeling or indexing. We see parallels between the potential for machine
learning workloads and any of these machine learning problems where information about
the data in the DB is aggregated. These parallels make grouping sets and therefore DB
support beneficial for ML for DBMS in general.

Bibliography
[Ag96] Agarwal, Sameet; Agrawal, Rakesh; Deshpande, Prasad; Gupta, Ashish; Naughton, Jef-

frey F.; Ramakrishnan, Raghu; Sarawagi, Sunita: On the Computation of Multidimensional
Aggregates. In: VLDB. pp. 506–521, 1996.

[AS96] Agrawal, Rakesh; Shim, Kyuseok: Developing Tightly-Coupled Data Mining Applications
on a Relational Database System. In: KDD. pp. 287–290, 1996.

[CWC09] Cho, Chung-Wen; Wu, Yi-Hung; Chen, Arbee L. P.: Effective database transformation
and efficient support computation for mining sequential patterns. J. Intell. Inf. Syst.,
32(1):23–51, 2009.

[Da19] Damme, Patrick; Ungethüm, Annett; Hildebrandt, Juliana; Habich, Dirk; Lehner, Wolfgang:
From a Comprehensive Experimental Survey to a Cost-based Selection Strategy for
Lightweight Integer Compression Algorithms. ACM TODS, 44(3):9:1–9:46, 2019.

[Fä12] Färber, Franz; May, Norman; Lehner, Wolfgang; Große, Philipp; Müller, Ingo; Rauhe,
Hannes; Dees, Jonathan: The SAP HANA database - An architecture overview. IEEE Data
Eng. Bull., 35:28–33, 03 2012.

[FM11] Fender, Pit; Moerkotte, Guido: A new, highly efficient, and easy to implement top-down
join enumeration algorithm. In: ICDE. pp. 864–875, 2011.

[Gr96] Gray, J.; Bosworth, A.; Lyaman, A.; Pirahesh, H.: Data cube: a relational aggregation
operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS. In: ICDE. 1996.

[HLH03] Hinneburg, Alexander; Lehner, Wolfgang; Habich, Dirk: COMBI-Operator: Database
Support for Data Mining Applications. In: VLDB. pp. 429–439, 2003.

[HN17] Harmouch, Hazar; Naumann, Felix: Cardinality Estimation: An Experimental Survey.
PVLDB, 11(4):499–512, 2017.

[HRU96] Harinarayan, Venky; Rajaraman, Anand; Ullman, Jeffrey D.: Implementing Data Cubes
Efficiently. In: SIGMOD. pp. 205–216, 1996.

[IM17] IMDB: Internet Movie Database. ftp://ftp.fu-
berlin.de/pub/misc/movies/database/frozendata/, Accessed on 2020-06-01.

[KBY17] Kumar, Arun; Boehm, Matthias; Yang, Jun: Data management in machine learning:
Challenges, techniques, and systems. In: SIGMOD. pp. 1717–1722, 2017.

Aggregate-based Training Phase for ML-based Cardinality Estimation 153

20 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

[KHL17] Karnagel, Tomas; Habich, Dirk; Lehner, Wolfgang: Adaptive Work Placement for Query
Processing on Heterogeneous Computing Resources. PVLDB, 10(7):733–744, 2017.

[Ki19a] Kipf, Andreas: Learned Cardinalities in PyTorch.
https://github.com/andreaskipf/learnedcardinalities/, Accessed on 2020-08-20.

[Ki19b] Kipf, Andreas; Kipf, Thomas; Radke, Bernhard; Leis, Viktor; Boncz, Peter A.; Kemper,
Alfons: Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In: CIDR.
2019.

[Ki19c] Kipf, Andreas; Vorona, Dimitri; Müller, Jonas; Kipf, Thomas; Radke, Bernhard; Leis,
Viktor; Boncz, Peter; Neumann, Thomas; Kemper, Alfons: Estimating Cardinalities with
Deep Sketches. In: SIGMOD. p. 1937–1940, 2019.

[Kr18] Kraska, Tim; Beutel, Alex; Chi, Ed H; Dean, Jeffrey; Polyzotis, Neoklis: The case for
learned index structures. In: SIGMOD. pp. 489–504, 2018.

[Le15] Leis, Viktor; Gubichev, Andrey; Mirchev, Atanas; Boncz, Peter; Kemper, Alfons; Neumann,
Thomas: How good are query optimizers, really? PVLDB, 9(3):204–215, 2015.

[Li15] Liu, Henry; Xu, Mingbin; Yu, Ziting; Corvinelli, Vincent; Zuzarte, Calisto: Cardinality
Estimation Using Neural Networks. In: CASCON. pp. 53–59, 2015.

[MNS09] Moerkotte, Guido; Neumann, Thomas; Steidl, Gabriele: Preventing Bad Plans by Bounding
the Impact of Cardinality Estimation Errors. PVLDB, 2(1):982–993, 2009.

[MP19] Marcus, Ryan; Papaemmanouil, Olga: Plan-Structured Deep Neural Network Models for
Query Performance Prediction. PVLDB, 12(11):1733–1746, 2019.

[Ne01] Netz, Amir; Chaudhuri, Surajit; Fayyad, Usama M.; Bernhardt, Jeff: Integrating Data
Mining with SQL Databases: OLE DB for Data Mining. In: ICDE. pp. 379–387, 2001.

[OC00] Ordonez, Carlos; Cereghini, Paul: SQLEM: Fast Clustering in SQL using the EM Algorithm.
In: SIGMOD. pp. 559–570, 2000.

[Ro15] Rosenfeld, Viktor; Heimel, Max; Viebig, Christoph; Markl, Volker: The Operator Variant
Selection Problem on Heterogeneous Hardware. In: ADMS@VLDB. pp. 1–12, 2015.

[Sh96] Shukla, Amit; Deshpande, Prasad; Naughton, Jeffrey F; Ramasamy, Karthikeyan: Storage
estimation for multidimensional aggregates in the presence of hierarchies. In: VLDB. pp.
522–531, 1996.

[SL19] Sun, Ji; Li, Guoliang: An End-to-End Learning-Based Cost Estimator. PVLDB,
13(3):307–319, 2019.

[Wo19a] Woltmann, Lucas: Cardinality Estimation with Local Deep Learning Models.
https://github.com/lucaswo/cardest/, Accessed on 2020-08-20.

[Wo19b] Woltmann, Lucas; Hartmann, Claudio; Thiele, Maik; Habich, Dirk; Lehner, Wolfgang:
Cardinality Estimation with Local Deep Learning Models. In: aiDM. ACM, 2019.

[YW79] Youssefi, Karel; Wong, Eugene: Query Processing in a Relational Database Management
System. In: VLDB. pp. 409–417, 1979.

[ZDN97] Zhao, Yihong; Deshpande, Prasad; Naughton, Jeffrey F.: An Array-Based Algorithm for
Simultaneous Multidimensional Aggregates. In: SIGMOD. pp. 159–170, 1997.

154 Lucas Woltmann, Claudio Hartmann, Dirk Habich, Wolfgang Lehner

cba

Herausgeber et al. (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Using FALCES against bias in automated decisions by
integrating fairness in dynamic model ensembles

Nico Lässig1, Sarah Oppold 2, Melanie Herschel 3

Abstract: As regularly reported in the media, automated classifications and decisions based on
machine learning models can cause unfair treatment of certain groups of a general population.
Classically, the machine learning models are designed to make highly accurate decisions in general.
When one machine learning model is not sufficient to define the possibly complex boundary between
classes, multiple “specialized” models are used within a model ensemble to further boost accuracy. In
particular, dynamic model ensembles pick the most accurate model for each query object, by applying
the model that performed best on similar data. Given the labeled data on which models are trained,
it is not surprising that any bias possibly present in the data will reflect in the classifiers using the
models. To mitigate this, recent work has proposed fair model ensembles, that instead of focusing
(solely) on accuracy also optimize global fairness, which is quantified using bias metrics. However,
such global fairness that globally minimizes bias may exhibit imbalances in different regions of the
data, e.g., caused by some local bias maxima leading to local unfairness. In this paper, we propose
to bridge the gap between dynamic model ensembles and fair model ensembles and investigate the
problem of devising locally fair and accurate dynamic model ensembles, which ultimately optimize
for equal opportunity of similar subjects. Our evaluation shows that our approach outperforms the
state-of-the-art for different types and degrees of bias present in training data in terms of both local
and global fairness, while reaching comparable accuracy.

Keywords: Model fairness; bias in machine learning; model ensembles

1 Introduction

In decision support systems (DSS), machine learning models are frequently used to make
recommendations or even decisions. While these unquestionably simplify many processes
and tasks arising in modern life, critical situations arise in automatic classification scenarios
such as credit scoring, or predictive policing applications. There, critical DSS automatically
assign people to classes that have the possibility to deeply affect their lives in a positive or
negative way. Recent real-life examples where the use of such DSS had to be revoked due to
underlying biased classifiers include an algorithm that determined A-Level grades of British
students who were unable to take their exams due to COVID-19 regulations [Co20]. Based
on the teachers’ assessment of the student’s performance and the school’s performance in
subjects, each student was assigned A-Level grades. Using these features, about 40% of
1 Universität Stuttgart, nico.laessig@ipvs.uni-stuttgart.de
2 Universität Stuttgart, sarah.oppold@ipvs.uni-stuttgart.de
3 Universität Stuttgart and University of Singapore, melanie.herschel@ipvs.uni-stuttgart.de

cba doi:10.18420/btw2021-08

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 155

https://creativecommons.org/licenses/by-sa/4.0/
nico.laessig@ipvs.uni-stuttgart.de
sarah.oppold@ipvs.uni-stuttgart.de
melanie.herschel@ipvs.uni-stuttgart.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-08

2 Nico Lässig, Sarah Oppold, Melanie Herschel

(a) Decision boundary for a classifier using a single
model (solid line) and a model ensemble (dotted line).

male female
positive class 13 11
negative class 12 14

(b) Training data statistics.

Approach False positives False negatives
Single model 7 4

Model ensemble 0 9

(c) Model performance statistics. Accuracy of single
model reaches 0.78, model ensemble reaches 0.82.

Fig. 1: Example binary classification scenario deciding about employee raises.

British students received lower grades than recommended by their teachers, as the model
indirectly favored students from private schools and wealthy areas. After a public outcry,
the algorithmic decisions were revoked and replaced by the teachers’ assessments. Another
example is a recruitment tool developed by Amazon [Da18]. The tool was supposed to
automatically assign scores to job applicants based on their application to support making
hiring decisions. However, it exhibited discrimination against women, a problem that could
not be resolved, leading to the project being discarded after several years of investment.

Classification tasks performed by DSS are, by themselves, not trivial to solve. For instance,
consider Figure 1, which summarizes a simple classification problem when deciding on
employee salary raises. We visualize the training data in Figure 1a, where we place similar
employees close to each other and use different shapes to distinguish male (circle) and
female (triangle) employees. The goal of the trained classifier is to divide in two classes,
which we distinguish by color: employees in blue have a positive outcome and get a raise,
while employees labeled in red are associated to the negative class (no raise). Opting for a
simple classifier, let us assume we obtain the decision border shown as solid black line in
Figure 1a. It classifies all employees below the line into category “blue” and all persons
above the line into category “red”. Using this simple classifier, a number of people are
assigned to the wrong class (see Figure 1c). We see that the simple classifier yields an
accuracy of 0.78, computed as the fraction of correctly classified points vs all data points.
To obtain a classifier that more faithfully reflects the complex decision boundary in our
example and thus improves accuracy, we can resort to model ensembles. There, different
(simple) models are trained and then combined, e.g., to reach a classifier with the decision
border shown as a dashed line in Figure 1a. This allows us to improve the accuracy from
0.78 to 0.82 in our example.

While the above example illustrates one means to boost the accuracy of classifiers, it leaves
aside any consideration of fairness. The term fairness is often used in the literature to refer
to non-discrimination. In the introductory examples, we see that not all students or job
applicants were treated equally and some discrimination was unintentionally introduced
to the classifiers. Such unfair behavior is commonly linked to some bias. There are many

156 Nico Lässig, Sarah Oppold, Melanie Herschel

3

(a) Decision boundary for a fair model ensemble that combines
classifiers for male (left) and female employees (right) and
illustration of a locally unfair situation (circle).

Approach Accuracy Fairness
Single model 0.78 0.76
Model ensemble 0.82 0.66
Fair model ensemble 0.78 0.81

(b) Model performance statistics.

Fig. 2: Example binary classification scenario deciding about employee raises (Figure 1 continued).

different kinds of bias that can be introduced through the data or human decisions. For
instance, while it may seem reasonable to consider student’s past performance as a feature,
e.g., on mock-exams to assign a final grade, wealthy students who benefit from regular
tutoring may be at an advantage over students that learn for exams on their own. In case of
automatic resume analysis, having a training dataset with CVs predominantly from male
applicants possibly causes models that favor terms more commonly used by men than
women while penalizing terms associated to women. Returning to our fictional example,
based on the numbers reported in Figure 1b, we see that the training data is reasonably
balanced in terms of men and women being assigned a positive or negative label, which
is a good starting point. To assess the classifiers in terms of fairness, we can use one
of many available bias metrics. The American Title VII of the Civil Rights Act of 1964
prohibits employment discrimination and, for example, states that there is discrimination
when the probability of a woman getting a positive outcome divided by the probability of
a man getting a positive outcome is less than 0.8. In the case of the single classifier and
model ensemble, the value is 0.76 and 0.66 respectively (see Figure 2b) and thus below the
threshold. So using these classifiers would be against the law in the US.

With metrics quantifying bias being available, recent approaches have considered these
to prevent bias. In particular, Dwork et al. [Dw18] have introduced fair model ensembles.
Given a pre-defined set of sensitive groups (e.g., women), their approach learns classifiers
dedicated to these groups and then calculates the best combination of classifiers according
to a metric that combines both fairness and accuracy. By training classifiers specialized to
different groups, the approach can better capture different patterns exhibited by different
groups. Optimizing for both fairness and accuracy compromises between fair treatment
of the different groups and model performance. Figure 2 illustrates the effect of using the
method for fair model ensembles in our example. It combines two classifiers, for which
we show the decision borders: one trained for male employees (left hand side) and one
for women (right hand side). Instead of a fairness of 0.66, the positive classification of
negatively labeled women by the dedicated classifier raises fairness to 0.81 and therefore (at
least according to American law) no longer exhibits discrimination.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 157

4 Nico Lässig, Sarah Oppold, Melanie Herschel

While the approach illustrated above comes closer to the goal of treating members of
different predefined groups (e.g., male, female) equally, it does so from a global perspective.
Thus, localized inequalities remain. For instance, looking again at Figure 2a, while the goal
of non-discrimination between women and men is met, the subregion within the depicted
circle exhibits local unfairness. As a reminder, we have placed persons in the 2-dimensional
representation close to each other when they have similar features, e.g., all persons in
the circled region may have similar age and number of sick days. Clearly, despite similar
features, women in this region are significantly less likely to get a raise than men. This
corresponds to a local bias. The approach presented in this paper aims at solving this issue.

The fact that optimization goals are only fulfilled globally and not locally is not a peculiarity
of fairness. Dynamic model ensembles tackle this problem when optimizing accuracy.
Intuitively, a model or model ensemble is dynamically selected for each new decision based
on model performance in similar situations. This paper uses a similar rationale to optimize
the overall local fairness of a model ensemble by combining ideas of both fair model
ensembles and dynamic model ensembles. More precisely, our contributions are as follows:

• We present a framework for addressing the novel problem of mitigating locally unfair
decisions. In an offline phase, it trains a diverse set of models to get accurate and
fair models for different groups. In an online phase, it dynamically selects the model
ensemble best suited for the different groups when focusing on group members similar
to the subject to be classified. This combines ideas previously devised for (static) fair
model ensembles and dynamic model ensembles specialized on accuracy.

• We present FALCES, which implements our framework using several algorithms. It
comes in different variants, depending on whether the training data is further spilt
before training classifiers or if trained classifiers are further pruned based on an initial
assessment of their global combined performance in terms of fairness and accuracy.
It also relies on a novel metric for a combined quantification of fairness and accuracy.

• We implement our algorithm variants and evaluate them on both synthetic and real
data. Our results show that while we cannot fully eliminate bias, FALCES outperforms
the state-of-the-art in both global group fairness and local group fairness, the latter
quantified using a newly defined metric for local fairness. At the same time, our
solution does not jeopardizse accuracy.

The remainder of this paper is structured as follows. Section 2 reviews related work. We
present our framework in Section 3 and discuss algorithms implementing the framework in
Section 4. Our implementation and experimental evaluation are presented in Section 5. The
paper concludes with a summary and outlook on future research in Section 6.

158 Nico Lässig, Sarah Oppold, Melanie Herschel

5

2 Related work

Our proposed solution builds on previous work on model ensembles and fairness in machine
learning, in particular fair model ensembles and dynamic model ensembles.

2.1 Model ensembles

The idea of model ensembles is to train multiple models and select or combine the best
of these models [Po06]. Hereby, the optimization goal typically is the improvement of the
accuracy of predictions [SHX19, DSM19, Zh19]. Combining the outputs of several models
has proven to be preferable compared to single-model systems. By combining the results of
several models, model ensembles can, for example, reduce the risk of choosing a model that
performs poorly, which reduces the overall risk of a bad decision, or overcome complex
decision borders that may not be able to be implemented by a chosen model because they lie
outside the functional space of the model. The same rationale underlies fair model ensembles
(discussed further below), which set an additional optimization focus on increasing fairness.

2.2 Fairness in machine learning

As already described in the introduction, the term fairness in machine learning commonly
refers to the fact that models must not discriminate against people because of bias(es). Based
on various laws, social definitions and understood meanings, different measures to quantify
fairness have been defined [KC09, PRT08, Žl17]. They can be broadly classified into two
categories. A group of metrics for individual fairness (or equality or equality of treatment)
focuses on providing equal treatment to equal people [FSV16]. However, we will focus on
the second notion of fairness: group fairness. It is also known as equality of outcome or
equity. Here, groups with different preconditions are treated differently, so that in the end
everyone, despite their differences, has the same opportunities. This is intended to overcome
social inequalities and offer equal opportunity to different groups [FSV16].

Based on these fairness metrics, methods have been developed which allow the development
of individual fair models using fair data, new machine learning algorithms, or techniques
for modifying existing models [KC09, PRT08, Ga19].

2.3 Fair model ensembles

While there is now a visible body of research on measuring fairness and learning single
fair models, only few works leverage multiple models in order to achieve fairness, thereby
bringing the advantages of using model ensembles to the the realm of improving fairness.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 159

6 Nico Lässig, Sarah Oppold, Melanie Herschel

Calders and Verwer [CV10] create fair naive Bayes model ensembles. To this end, they split
the dataset according to the favored and discriminated groups and learn a naive Bayes model
on each subset with the intention to classify independently of a given sensitive attribute. An
overall naive Bayes model chooses the decision of either model depending on the group
of incoming data tuples to be classified. While this approach yields fairer models, it is
specialized to and does not extend beyond naive Bayes models.

Dwork et al. [Dw18] combine multiple machine learning classifiers to improve group
fairness. They provide different versions of their algorithm, where the models are either
learned on the different subgroups as in [CV10] or on larger data subsets in order to prevent
accuracy loss. Their approach uses a joint loss metric that optimizes for both accuracy and
fairness in order to assess which model should be used for which group of the dataset. While
this approach does consider both accuracy and fairness at group level using any type of
classifier, it may suffer from local unfairness.

2.4 Dynamic model ensembles

Dynamic classifier selection [CSC18] selects one classifier during runtime for each new
sample which has to be classified. This is based on the rationale of model ensembles that
not every classifier is an expert in all local regions of the feature space. Usually, for each
new sample the local region is first identified, for example using k-nearest-neighbors (kNN).
Then, the quality of available classifiers is determined and the best one(s) are selected.
Dynamic ensemble selection is similar, it merely selects ensembles instead of classifiers.
One example is the Dynamic Classifier Selection by Local Accuracy (DCS-LA) algorithm
by Woods et al. [WKB97]. First, it uses kNN to identify the local region. Then, local
accuracy of classifiers is evaluated as percentage of correctly classified samples in the local
region. Alternatively, it uses local class accuracy, which is the accuracy of classifiers in the
local regions with respect to the class the classifiers assign to the new sample. Only the
most accurate classifier is then used to classify the unknown sample.

3 Framework for fair and dynamic model ensembles

As motivated in the introduction, our goal is to combine the benefits of fair model ensembles
on the one hand and dynamic model ensembles on the other hand to devise a solution
that resolves not only global bias among different groups, but also local bias, while not
compromising overall accuracy. The rationale is that, while it is typically possible to define
groups that should be treated fairly (and that are often defined by law), it is quite challenging
to fully anticipate variations (sub-groups) within these groups that indirectly cause local
bias. Techniques to counter local bias can potentially help in reaching equal opportunity
among groups with similar features or similar trajectory. In this section, we first formalize
our problem statement to counter locally unfair decisions. We then present a framework
where we combine the ideas of fair and dynamic model ensembles to solve this problem.

160 Nico Lässig, Sarah Oppold, Melanie Herschel

7

3.1 Locally unfair decisions

As illustrated in Figure 2a, the problem with locally unjust decisions is that while existing
solutions (reviewed in Section 2) are optimized to make globally fair and accurate decisions,
there are still local regions where data points of different groups are treated unfairly. To
address this problem, the decision should be optimized so that the optimal (i.e. fair and
accurate) decision can be made at a local level. Our emphasis in this paper is on group
fairness, i.e., equal opportunities between groups.

Formally, we consider as given a labeled data set D, a similarity metric s, a positive integer k,
an optimization metric af combining fairness and accuracy, and a set of machine learning
models (classifiers) M for the same classification task. Furthermore, D can be partitioned
into groups G, for which equal opportunity is relevant. We further assume a new test
sample t that belongs to one of the groups G. Then, we define our goal of locally fair and
accurate classification as a classification task that classifies t using a model m ∈ M with the
best performance according to the af metric in the local region of D around t. This local
region includes the k items in D most similar to t according to s.

3.2 Framework

To address the problem defined above, we combine the rationales underlying both fair and
dynamic model ensembles described in Section 2 into a new framework for fair and dynamic
model ensembles. The main components of this framework are visualized in Figure 3. We
distinguish between an offline phase (bottom part), where suited model ensembles are
trained and selected, and an online phase (upper part), where a previously unseen test
sample t is classified by dynamically selecting the model ensemble most appropriate for t.

Offline phase. The first step of the offline phase, named model training, is a step common
to model ensemble approaches. Here, using training data taken from the labeled dataset D,
a diverse set of classifiers is trained. Given that we target both fair and accurate decisions,
model training can benefit from using different subsets of data based on the different
groups G present in D, which has for instance been proposed for fair model ensembles
(see Section 2). We denote the set of classifiers resulting from model training considering
different groups G as M = {(m1,g1), (m2,g2), . . . , (mn,gn)}, where each mi is a model and
gi identifies the group it is trained for. Among these classifiers, not all may be suited to
make both fair and accurate decisions. Also, too many classifiers to be considered during
the online phase (further discussed below) can be computationally prohibitive. Therefore,
during model pruning, the framework assesses all model combinations or ensembles
possible with the classifiers in M that use exactly one classifier per group gi . Assessment is
done with respect to the global performance metric af that considers both accuracy and
fairness. Only the best classifier combinations are retained after model pruning, resulting in
MC = {[((m11,g1) . . . , (m1n,gn)], . . . , [((me1,g1) . . . , (men,gn)]}, a set of model ensembles
(in square brackets) s.t. for each ensemble, gi , gj when i , j and n = |G |.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 161

8 Nico Lässig, Sarah Oppold, Melanie Herschel

Fig. 3: Framework for locally fair classifications by combining fair and dynamic model ensembles

Online phase. When a new test sample t is to be classified, the framework determines the
local region t belongs to as part of local region determination. To this end, it performs
a kNN search of t on each gi , where gi is a group in G = {gi, . . . ,gn}. The framework
specifically selects an equal number of members similar to t of each group, to have a locally
balanced data region with respect to the different groups. Then, for this particular region,
dynamic ensemble selection assesses which ensemble E ∈ MC achieves the best local
performance with respect to af . Intuitively, this dynamically selects the optimal model
ensemble comprising a dedicated model for each group for the region most relevant to
t. With this approach, our framework combines previous techniques separately devised
for fair and dynamic model ensembles. The identification of the locally best model is
performed according to dynamic model ensemble techniques using fair model ensemble
metrics. Therefore the classifiers are tested on the local region of the test sample using an
af metric. Finally, the best classifier mct such that (mct,gt) ∈ E and gt corresponds to the
group t belongs to is used in the final step of locally fair classification to classify t.

4 Algorithms implementing the framework

Section 3 discussed the general framework that we propose for locally fair and accurate
classifications. There are a variety of techniques from both fair and dynamic model ensemble
research, which can be applied or extended to implement its components. In the following,
we discuss the algorithms we consider to implement the framework that stand behind our
FALCES system (standing for Fair and Accurate Local Classifications using EnsembleS).

162 Nico Lässig, Sarah Oppold, Melanie Herschel

9

4.1 Model training

As mentioned before, the set of classifiers should be diverse in order to benefit from
combining them to model ensembles. To this end, we vary both the set of machine learning
techniques used to train classifiers as well as the data from D that is considered for training.

In principle, any machine learning technique suited for classification tasks can be considered
as candidate technique. In our evaluation, we will resort to simple techniques, e.g., decision
trees, logistic regression, or nonlinear support vector machines.

Concerning the data, following previous research on fair model ensembles [Dw18, CV10],
we consider splitting the input dataset D on pre-defined sub-datasets that correspond to the
different groups for which we aim to achieve group fairness (e.g., we divide by sex (male,
female) and race (white, others) in our experiments which creates four subgroups). This
effectively partitions D into G = {g1, . . . ,gn}, assuming n distinct groups. Then, models
are trained separately for the different partitions. Different training datasets not only have
the advantage of learning different models that exhibit their strengths in certain areas of the
feature space. Indeed, as shown in Calders et al [CV10], the label does not depend directly
on the sensitive group. In addition, complex decision borders between the two groups,
which originate from different behavioral patterns, can be better modeled, thus increasing
accuracy [Dw18].

As a result, similar to [Dw18, CV10], we obtain classifiers that are “specialized” on some
group. More precisely, in this variant, we obtain M = {(m1,g1), . . . , (mk,gn)} where each
(mi,gj) associates a classifier mi to a group gj . For any two (mi,gj), (mi

′ ,gj′), it holds that
mi , mi

′ , and gj,gj′ ∈ G, but it is possible that gj = gj′ .

Example 1. As a simple example, consider we spilt a sample dataset following the gender
of employees, which results in a group for each gender, e.g., gF for female employees and
gM for male employees. Assuming m1,m2,m3 are trained on gM and m4,m5,m6 on gF , we
obtain M = {(m1,gM), (m2,gM), (m3,gM), (m4,gF), (m5,gF), (m6,gF)}.
On the downside, splitting the data as described above can lead to a too small dataset to train
on, which often results in loss of accuracy for the classifiers. Hence, we further consider the
option of training models on the complete dataset D rather than on individual partitions of
G. In this setting, we have M = {(m1,gD), . . . (mn,gD)}, where gD = D.

To distinguish the two variants for implementing model training described above in FALCES,
we will append a suffix SBT (for Split Before Training) for the first option, while absence of
this suffix indicates training is performed on the full training data set.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 163

10 Nico Lässig, Sarah Oppold, Melanie Herschel

4.2 Model pruning

In the offline phase, the number of classifiers can already be reduced based on their global
performance in order to improve the efficiency of the online phase later. Indeed, the less
classifiers need to be considered in the online phase, the faster the classification of a new
test item is. As we shall see in the evaluation (Section 5.4), this has only little impact on
making locally fair and accurate decisions, while runtime may improve significantly.

To assess the performance of a model when considering both accuracy and fairness, we
rely on a metric that combines these two dimensions, denoted as af . To the best of our
knowledge, the state-of-the art metric that accounts for both accuracy and fairness is the
metric proposed by Dwork et al. [Dw18] for fair model ensembles, defined as follows.

L̂ =
λ

|D |
∑
ti ∈D
|yi − zi |

︸ ︷︷ ︸
Inaccuracy

+
1 − λ
|D |

∑
g j ∈G

��������
∑
ti ∈D:
gti=g j

zi − 1
|G |

∑
ti ∈D

zi

��������︸ ︷︷ ︸
Unfairness

(1)

Here, the number of tuples in a labeled dataset D is denoted as |D|, each tuple ti ∈ D has
an actual and predicted label denoted as yi and zi respectively, |G | represents the number
of different groups in G, gti ∈ G represents the group a tuple ti belongs to, and 0 ≤ λ ≤ 1
balances the relative weight of the accuracy and the fairness part of the equation. Intuitively,
in the first part of the metric, accuracy is measured by comparing the predicted and actual
label for each data tuple (also known as L1 loss). The second part of the metric determines
the fairness of the classifier combination that associates a classifier to each group. It sums
up the difference between the sum of predicted values of each group and the overall sum of
labels divided by number of groups. Note that for both sides, higher values actually mean a
poorer performance, we thus qualify them as inaccuracy and unfairness.

This metric combines both accuracy and fairness, however, the fairness-part is sensitive to
differences in the relative size of groups. Assume for instance there is a larger group gL and
a smaller group gS with equal sum of zi , i.e. equal number of positively classified tuples.
Indeed, the metric considers the situation to be fair among these two groups (unfairness-part
drops to 0), even though the probability that a member of gL is assigned a positive label
is smaller than the probability of a member of gS being assigned a positive label. While
this may well serve minorities that are considered protected groups and are thus indirectly
favored by being part of the smaller group, it does not accurately reflect equal opportunity.

We propose a variation of af that modifies the fairness-related part of Equation 1 to also
consider the number of tuples |gj | in a group gj ∈ G. This results in the following metric.

164 Nico Lässig, Sarah Oppold, Melanie Herschel

11

L̂new =
λ

|D |
∑
ti ∈D
|yi − zi | + 1 − λ

|G |
∑
g j ∈G

��������
∑
ti ∈D:
gti=g j

zi
|gj | −

1
|D|

∑
ti ∈D

zi

��������
(2)

While the accuracy part still determines L1 loss, the fairness part has slightly changed. For
each group, its mean value is set in relation to its group size and compared to the overall
mean value of positive predicted labels. These are then again summed up and divided by
the number of groups to allow for an arbitrary number of groups.

Using the metric proposed in Equation 2, model pruning aims at retaining only a “good”
selection of ensembles formed by models of M obtained during model training. Given that
we are using model ensembles, this evaluation of model quality is performed by considering
all possible combinations of classifiers in M when choosing one classifier per group, and
keeping only the best ones. In our implementation, we keep ensembles up to a predefined
rank. Another possibility would be to use a threshold for the maximally acceptable af score.

Example 2. Continuing our previous example, given that we have three classifiers dedicated
to gF and gM , respectively, we have a total of 9 combinations to test using af . Let us assume
that the top-2 ensembles according to af are (m1,m4), (m2,m5). Assuming FALCES is config-
ured to the top-2 combinations, we obtain MC = {[(m1,gM), (m4,gF)], [(m2,gM), (m5,gF)]}.

Similarly to model pruning, we consider running FALCES with or without model pruning
enabled. When active, we append PFA to the algorithm name.

4.3 Local region determination

Moving on to the online phase, the task is to classify a new tuple t in a locally accurate and
fair manner. Our framework defines locality relying on a similarity measure s and considers
retrieving the k most similar tuples to t in D.

One way to determine the k most similar tuples are kNN algorithms [Bh10]. FALCES uses
the kd-tree nearest neighbor approach [Be75] because it is simple and efficient. This method
creates a k-dimensional tree that can be precomputed during the offline phase in which
the tuples from D are arranged and stored according to the dimensions. During the online
phase, when the tuple t is to be classified, the tree can then be searched in O(log |D|) time.

While searching for the nearest neighbors, we need a similarity metric to identify tuples
similar to t. To compare two tuples t1 = (x1, ..., xn) and t2 = (y1, ...yn), FALCES uses
the Minkowski-Distance md(t1, t2) =

(∑n
i=1 |xi − yi |p

) 1
p . It is a generalization of both the

Manhattan distance (p=1) and the Euclidean distance (p=2) and has already proven useful
for similar problems such as K-Means algorithms [SYR13].

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 165

12 Nico Lässig, Sarah Oppold, Melanie Herschel

Using this distance measure, we identify the nearest neighbors of t. However, it must be
ensured at this step already that the af metric used in the next step of FALCES receives
the necessary information to calculate group fairness. For this, it needs to receive tuples
from all groups to be able to produce meaningful results. Therefore, in FALCES, the kNN
algorithm is applied to each group separately, which results in |G | trees and |G | ∗ k nearest
neighbors for |G | groups.

4.4 Dynamic ensemble selection

Based on the |G | ∗ k tuples defining the local region for a given test sample t, dynamic
ensemble selection identifies the ensemble E = [(mc1,g1), . . . , (mcp ,gp)] ∈ MC that
achieves the best local performance. To this end, FALCES follows previous research on
dynamic model ensembles [WKB97] and combines these techniques with the af metric.
More precisely, using as input MC, we evaluate all model combinations based on af when
they classify the |G | ∗ k nearest neighbors of t. The combination E with the lowest af -score
is retained.

Example 3. Assume we want to classify a male employee t that is thus considered to be
part of gM . Assuming k = 20, kNN retrieves the 20 male and 20 female samples in D most
similar to t. The two combinations possible with the classifiers retained after model pruning
(see Example 2), i.e., [(m1,gM), (m4,gF)] and [(m2,gM), (m5,gF)], are evaluated using the
af metric and focusing on the 40 samples of D that form the local region. In our example,
let this result in E = [(m1,gM), (m4,gF)] as this combination reaches the lowest score.

Note that through previous model pruning during the offline phase, the above example
needed only to consider 2 instead of 25 classifier combinations. In addition to reducing the
number of comparisons, we further reduce the complexity of an individual combination
assessment, because the computation of classification predictions for all sets of classifiers
and all local |G | ∗ k tuples can be quite time consuming. That is, FALCES precomputes all
classification predictions for all tuples in D using all models in M. This allows dynamic
ensemble selection to simply look up the necessary predictions instead of repeatedly
computing them by applying the classifier for each test sample during the online phase.

4.5 Locally fair classification

Finally, the classifier of the previously identified model ensemble E that achieved best local
performance with respect to the af metric and that is associated to the same group as t is
used to classify t.

Example 4. Continuing our running example with E = [(m1,gM), (m4,gF)], m1 is finally
used to classify t, because t belongs to gM . Considering a different t ′ of group gM may

166 Nico Lässig, Sarah Oppold, Melanie Herschel

13

result in a different local region, where for instance E = [(m2,gM), (m5,gF)] performs
better, resulting in the use of m2 instead.

5 Evaluation

We have implemented the algorithms discussed in Section 4 and present their evaluation in
this section. We first describe our experimental setup. We then present and discuss results
on combined accuracy and fairness, differences observed for the two af metrics, as well as
runtime results on the online phase.

5.1 Experimental setup

This section summarizes which different algorithm variants and baseline solutions we
compare in our evaluation. We further discuss datasets and metrics we use for benchmarking.

Compared algorithms. We have presented different variants of FALCES, depending on
whether or not the training data is split before training and whether or not model pruning
is applied. In addition, we compare to the state-of-the-art algorithms. More precisely, we
consider the algorithms summarized in Table 1. For the different FALCES variants as well
as DCS-LA, which also relies on kNN search, we set k = 15.

Datasets and ML models. We use both synthetic and real benchmark data in our evaluation.

We developed a synthetic data generator in order to control different types and degrees of
bias in order to study how the different algorithms are affected by these. It generates labeled
data for two groups and a binary classification task and allows to control (i) the group

Algorithm Description
FALCES Our baseline algorithm without splitting before training and without model pruning.
FALCES-SBT This variant of FALCES splits the dataset for training but does not apply model pruning.
FALCES-PFA In this variant, model pruning is applied on models trained over the complete training dataset.
FALCES-SBT-PFA The offline phase performs model pruning on models that have been trained on sub-sets of the

training dataset, which has been split according to considered groups.
DCS-LA [WKB97] A baseline algorithm for dynamic model ensembles that optimizes accuracy, which we extended

for FALCES.
Decouple [Dw18] State-of-the-art algorithm for fair model ensembles, when models are trained using the full

training dataset.
Decouple-SBT [Dw18] Variant of Decouple that trains models on a previously split training dataset.

Tab. 1: Overview of the algorithms compared in our evaluation
Bias type Parameter settings

Group balance 0.1, 0.2, 0.3, 0.4, 0.5
Social bias 0, 0.1, 0.2, 0.3, 0.4, 0.5

Implicit bias 0, 0.1, 0.2, 0.3, 0.4, 0.5

Tab. 2: Different configurations for synthetic data, default values in bold

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 167

14 Nico Lässig, Sarah Oppold, Melanie Herschel

balance, (ii) the degree of social bias, and (iii) implicit bias. Group balance describes the
percentage group g1 represents in the full dataset (g2 implicitly making up the remainder of
the dataset), which can be very unbalanced (e.g., only 10% of the training data belongs to
g1) or perfectly balanced at 50%. Social bias refers to bias directly related to the protected
attribute defining a group (e.g., gender in our example), reflected by different probabilities
for a positive label in the different groups (e.g., women have a lower probability for a
positive label than men). Such bias is sometimes also called historical bias, because it
reflects direct discrimination of a group in a dataset that commonly labels data based on
historical decisions. In our experiments, a social bias of 0 means probabilities are equal
for both groups (no discrimination), 0.1 if the probability for g1 differs by 0.1, and so on.
Implicit bias is present in a dataset when, even though groups are not directly discriminated,
their label depends on an unfavorable attribute value that occurs more frequently in the
protected group, i.e., that is correlated to the protected group. Note that both examples from
the press mentioned in the introduction are likely linked to such indirect bias. Similarly to
social bias, we vary indirect bias from 0 (none) in increments of 0.1. The generated data in
all cases consists of approximately 13,000 tuples. Table 2 summarizes the configurations
we used for testing. When not mentioned otherwise, the values are set to the default values
highlighted in bold.

We chose the Adult Data Set [DG19], a census income dataset with data from 1994, which
is a commonly used dataset in multiple machine learning experiments. This dataset consists
of approximately 49,000 tuples and contains various variables, including a binary salary
value of yearly income with the threshold of 50K$, which is our label in the experiments.
We chose the attribute “sex” with values “male” and “female” as a sensitive attribute, as
well as a combination of the attribute “sex” with the attribute “race” with values “white”
and “others”, where we grouped together all other races, because all other races make up
≈ 10% of the dataset.

Each dataset (synthetic and real) is split randomly such that 50% of the dataset serve as
training data for model training, 35% for validation to determine emsembles, and 15% for
testing the quality of predictions in the online phase.

To get a diverse set of classifiers, we train five different classifiers on our datasets: (i) Decision
Tree, (ii) Logistic Regression, (iii) Softmax Regression, (iv) Linear Support Vector Machine,
and (v) Nonlinear Support Vector Machine. Given that we have two groups, this results in
ten classifiers when we split before training, and five when training on the full dataset.

Metrics. Given that we aim for a good compromise of accuracy and fairness, we use
metrics to assess the different algorithms in these two dimensions. We use the well known
accuracy-metric commonly used to evaluate machine learning techniques. For fairness,
we distinguish between global and local fairness. To study global fairness, we use the
“unfairness part” of the metric given by Equation 2 (setting λ = 0), to which we refer to as
global bias (lower values are better). To measure local bias, we define a local region bias
metric, which we call local region discrimination (LRD):

168 Nico Lässig, Sarah Oppold, Melanie Herschel

15

LRD =
1

|G | · |D|
∑
ti ∈D

∑
g j ∈G

������
1
k

∑
zl ∈Rti ,gj

zl − 1
k |G |

∑
gm ∈G

∑
zl ∈Rti ,gm

zl

������ (3)

where Rti ,g j is the local data region of ti comprising the kNN of ti in group gj . In this metric
the probability of a positive predicted label of each group in the local region is measured
against the average probability of a positive predicted label amongst all points in the local
region. In this way, the metric reflects the average local fairness.

Using the experimental setup described in this section, we now discuss results we obtained.

5.2 Comparative evaluation in terms of accuracy and fairness

We first present results we obtained when using different algorithms on our synthetic dataset
in terms of accuracy, global bias, and local bias.

As a first baseline, we start with a “clean” dataset with no social or implicit bias, and see
if changes in group balance have an impact on our three metrics. Essentially, we expect
only a marginal effect on accuracy and a low global and local bias, because the input data is
a priori unbiased. This is confirmed by the results depicted in Figure 4. Note that instead
of plotting absolute accuracy for all methods, we plot the deviation algorithms have in
accuracy from the accuracy reached by DCS-LA, reported as percentage points. DCS-LA
is not considering bias and optimizes solely for accuracy, which is between 0.76 and 0.79
for DCS-LA over the whole range of considered group balance. The ordinate reporting
percentage points, a deviation of -1 means that an algorithm reaches for instance 0.77 instead
of 0.78 reached by DCS-LA.

In Figure 4, we observe that all algorithms perform similarly, i.e., for all algorithms, there
is some very small fluctuation in accuracy and global bias remains low. For local bias,
while being generally low as well, we observe that it steadily increases with increasing
imbalance, reaching a relative increase of up to 64% from the balanced case (0.5) to the
highest imbalance (at 0.1, where only 10% of the dataset concern one group).

Next, we perform the same analysis again, but this time with an additional social bias of
0.3 introduced to g1. The results are summarized in Figure 5. With the introduction of
social bias, we observe that deviations in accuracy become more pronounced, in particular
for the two variants of the Decouple algorithm. Least affected in terms of accuracy is
FALCES-SBT-PFA, actually having comparable or better accuracy than DCS-LA. For
both local and global bias, we see that all FALCES variants consistently outperform both
Decouple variants and DCS-LA. Also, compared to the previous experiment without social
bias, the field has overall shifted upwards. This shows that we cannot fully counter bias
originally present in the dataset, but FALCES is best in reducing it while maintaining high
accuracy.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 169

16 Nico Lässig, Sarah Oppold, Melanie Herschel
We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0

0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,3 0,5 0,7 0,9

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social
bias

0,1 0,3 0,5 0,7 0,9

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0

0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,3 0,5 0,7 0,9

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social
bias

0,1 0,3 0,5 0,7 0,9

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0

0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,3 0,5 0,7 0,9

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social
bias

0,1 0,3 0,5 0,7 0,9

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(c) Local bias

Fig. 4: Results on synthetic data with varying group balance, no social bias, and no implicit bias.

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(c) Local bias

Fig. 5: Results on synthetic data with varying group balance, 0.3 social bias, and no implicit bias.

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(c) Local bias

Fig. 6: Results on synthetic data with varying social bias, group balance of 0.5, and no implicit bias.

Our next analysis focuses on the impact different degrees of social bias have on the overall
performance, assuming balanced groups without additional implicit bias. Figure 6 reports
our results. For accuracy, we observe that all methods fluctuate, but the degradation in
accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more
robust to social bias than the state-of-the-art Decouple variants, the PFA variants generally
being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input
data, the more bias the ensemble generates. However, the gradient of our approaches is less
steep and consistently below the baseline methods. This means that the more social bias in
the data, the more effective our approaches are in countering the bias to optimize (local)
group fairness compared to the state-of-the-art. FALCES-SBT is best in terms of global

170 Nico Lässig, Sarah Oppold, Melanie Herschel

17

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

C
S-

LA
 (i

n
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the
increasing imbalance, reaching a relative increase of up to 64%.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with no other bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any
clear trend here.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the
others in coutering the bias to optimize (loca) group fairness. FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good
compromise in datasets with mainly social bias.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Social bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ab
l b

ia
s

0

10

20

30

40

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Social bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

Ac
cu

ra
cy

 d
ev

ia
tio

n
fro

m
 D

CS
-L

A
(in

pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s
(L

RD
)

0

10

20

30

Implicit bias
0 0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA
FALCES-SBT

As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups.

1

(c) Local bias

Fig. 7: Results on synthetic data with varying implicit bias, group balance of 0.5, and no social bias.

and local bias, but FALCES-SBT-PFA has similar performance and thus presents a good
compromise in datasets with mainly social bias.

We perform a similar analysis for implicit bias in the source data, again assuming a balance
of groups (balance = 0.5) and setting social bias to 0. Figure 7 visualizes the results of
this set of experiments. Our first observation is that implicit bias impacts all metrics more
than the previously considered social bias. As before, in terms of variations in accuracy,
these are strongest for the Decouple variants, whereas the PFA variants of our algorithm
outperform FALCES and FALCES-SBT. However, looking at both local and global bias, our
algorithms without model pruning typically perform better than their counterpart with PFA.
The reason for this is that model pruning during the offline phase can prune classifiers that
would, during the online phase, be better compared to those retained after model pruning.
Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

We validate our findings on artificial data on the real-world dataset as well. Given that it
includes two sensitive attributes (sex and race), we study accuracy, global bias, and local
bias when just one attribute is used to form groups (resulting in two groups) and when two
attributes are used (resulting in 4 groups). Figure 8 shows results for global and local bias.
Results on accuracy confirm that all algorithms perform similarly, it consistently ranges
between 0.790 (Decouple) and 0.799 (DCS-LA). As before, we observe that FALCES
variants typically are comparable or outperform the three baseline algorithms, both in terms
of global and local fairness. With the increasing number of sensitive attributes, we observe
that the bias increases for all methods.

In conclusion, we see that our methods improve on the state of the art by offering a better
accuracy-fairness compromise than the state of the art Decouple approach (considering
global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable.
Our methods are also the most robust to different types and degrees of bias (we studied
group balance, social bias, and implicit bias). An added benefit is that our methods
inherently consider local fairness as well, and our evaluation of local fairness shows that
the classifications performed using our algorithms get us closer to equal opportunity for
different predefined groups.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 171

18 Nico Lässig, Sarah Oppold, Melanie Herschel
G

lo
ba

l b
ia

s

6
8

10
12
14

Number of sensitive attributes
1 2

DCS-LA Decouple Decouple-SBT FALCES FALCES-SBT
FALCES-PFA FALCES-SBT-PFA

Lo
ca

l b
ia

s

6
8

10
12
14

Number of sensitive attributes
1 2

2

Fig. 8: Global bias (left) and local bias (right) on real-world dataset.

|G | FALCES FALCES-PFA
2 0.58 0.48
4 7.98 1.63

Fig. 9: Average classification time
(s) on real-world dataset

Accuracy for different algorithms when varying group balance (0.3 social bias)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 79,62844331 77,02857143 78,39349263 78,0839895 78,27260459 76,13438045 77,71516393 76,27118644 79,53518399

Decouple-SBT 79,11595131 78,11428571 78,8510422 76,64041995 78,3625731 76,83246073 76,48565574 76,15429573 79,72885733

FALCES 76,16912236 74,68571429 75,4956787 74,9343832 75,9334233 75,39267016 77,25409836 73,69959088 76,63008393

FALCES-SBT 75,46444587 75,37142857 76,71581088 75,41557305 76,47323437 75,87260035 76,99795082 73,99181765 76,30729503

FALCES-PFA 79,8206278 75,14285714 75,80071174 76,85914261 77,37291948 76,30890052 78,68852459 75,92051432 79,47062621

FALCES-SBT-PFA 79,43625881 76,34285714 79,20691408 76,50918635 77,86774629 77,26876091 77,45901639 75,39450614 79,72885733

DCS-LA 77,38629084 75,31428571 76,91916624 76,07174103 77,19298246 75,56719023 77,35655738 74,8100526 79,27695287

73

74,75

76,5

78,25

80

0,1 0,2 0,3 0,4 0,5

Decouple FALCES FALCES-SBT FALCES-PFA FALCES-SBT-PFA

Global bias for different algorithms when varying group balance (0.3 social bias) AND OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 13,85012453 9,002117172 14,39258708 12,35736593 13,55098919 12,16331754 16,71104928 15,92914061 19,22045792

Decouple-SBT 16,48739472 8,389915313 10,77480969 0,020225807 13,8243508 11,48718512 16,03338633 11,90316631 18,66142547

FALCES 9,958267582 3,749710543 5,686882204 3,082629644 7,263834024 5,078098319 6,769674086 1,012769515 8,163080583

FALCES-SBT 8,739091583 4,595545668 4,321134157 0,734630193 6,185524867 4,383633701 7,390699523 0,910307408 8,709828971

FALCES-PFA 13,81471377 5,47528863 10,41811319 7,389763334 9,075006476 7,41955618 10,18581081 10,03008141 13,23187131

FALCES-SBT-PFA 12,29704166 5,419671507 9,531895017 0,357202193 8,310573436 7,282712381 12,91434817 7,990966958 16,28047309

DCS-LA 17,60200202 12,60792616 14,70301592 12,75104681 15,08948808 12,23283859 12,8686407 11,07915979 16,08716079

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Local bias for different algorithms when varying group balance (0.3 social bias) WITH OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 11,70723895 8,228571429 14,6314184 11,39326334 10,49932524 10,71771379 14,93340164 16,19812975 15,9070368

Decouple-SBT 14,22805894 8,888571429 10,526182 5,111548556 11,08636977 10,10907504 15,59682377 13,42781999 13,14073596

FALCES 8,417680974 5,125714286 7,615658363 5,973315836 6,459739091 6,540139616 7,489754098 6,426066628 6,439638476

FALCES-SBT 8,65470852 6,468571429 7,013218099 5,706474191 6,122357175 5,944589878 7,897028689 6,531268264 6,901226598

FALCES-PFA 10,95131326 5,711428571 10,95068632 7,005686789 7,114260009 7,142233857 9,129098361 11,27118644 9,418979987

FALCES-SBT-PFA 10,88084561 6,102857143 9,649211998 5,483377078 6,354026091 6,603403141 12,18493852 9,742840444 11,30083925

DCS-LA 15,27866752 13,25142857 15,08388409 11,91819773 12,33018444 11,4877836 12,11834016 12,14494448 11,15235636

Lo
ca

l b
ia

s
0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Results for group balance of 0.4

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 73,05336833 78,0839895 11,16247824 12,35736593 11,59011374 11,39326334

FALCES-PFA 74,62817148 76,85914261 2,559562271 7,389763334 6,178915136 7,005686789

FALCES-SBT-PFA 76,42169729 76,50918635 2,04636579 0,357202193 5,704286964 5,483377078

Results for group balance of 0.1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 79,56438181 79,62844331 13,01880335 13,85012453 10,56694427 11,70723895

FALCES-PFA 76,55349135 79,8206278 8,191056524 13,81471377 6,341145833 10,95131326

FALCES-SBT-PFA 76,16912236 79,43625881 9,445643288 10,88084561 6,295572917 10,88084561

0

20

40

60

80

Decouple FALCES-PFA

7,0
11,4

6,2
11,6

7,4
12,4

2,6
11,2

76,978,1 74,673,1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

0

20

40

60

80

Decouple FALCES-PFA

11,011,7
6,3

10,6 13,813,9
8,2

13,0

79,879,6 76,679,6
Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Relative for group balance of 0.4-1

Accuracy-0.4 Accuracy-old Global-bias-0.4 Global-bias-old Local-bias-0.4 Local-bias-old

Decouple 0,064425770279066 78,0839895 0,096694368101471312,35736593 -0,017277788999126211,39326334

FALCES-PFA 0,029026750159319876,85914261 0,653634067112331 7,389763334 0,118014361461057 7,005686789

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.4 Global-bias-0.4 Local-bias-0.4

Results for group balance of 0.1-1

Accuracy-new Accuracy-old

Decouple 79,56438181 79,62844331

FALCES-PFA 76,55349135 79,8206278

FALCES-SBT-PFA 76,16912236 79,43625881

Relative for group balance of 0.4-1-1

Accuracy-0.1 Accuracy-old Global-bias-0.1 Global-bias-old Local-bias-0.1 Local-bias-old

Decouple 0,00080450524130684579,62844331 0,060022650207896713,85012453 0,097400820541038 11,70723895

FALCES-PFA 0,040930979122166279,8206278 0,407077362559065 13,81471377 0,420969368471887 10,95131326

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.1 Global-bias-0.1 Local-bias-0.1

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Global bias for different algorithms when varying group balance (0.3 social bias) AND OUR NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 13,01880335 9,654636276 12,70056683 11,16247824 10,91637256 6,229415529

Decouple-SBT 16,34575166 9,243400377 10,23853408 0,318676847 9,373057246 8,763224112

FALCES 7,201218701 3,613665685 5,0132554 2,226765003 6,642962375 4,075990312

FALCES-SBT 7,6076107 3,44205895 4,392460833 0,914375011 5,644306113 4,01188649

FALCES-PFA 8,191056524 4,007947666 6,195384596 3,348574923 8,678037171 5,200927994

FALCES-SBT-PFA 9,445643288 3,768318502 6,731660207 0,252461408 6,509721862 5,027459047

DCS-LA 16,47052113 12,3945549 14,20372919 12,45259577 15,58193563 11,37621053

Local bias for different algorithms when varying group balance (0.3 social bias) WITH NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 10,56694427 9,134285714 13,93492628 11,59011374 10,06747638 9,347731239

Decouple-SBT 14,14157591 9,411428571 13,63243518 5,640857393 9,743589744 10,72207679

FALCES 7,245355541 5,411428571 7,386883579 6,0279965 6,273054431 6,278359511

FALCES-SBT 8,193465727 5,3 6,898830707 5,984251969 6,014394962 6,036212914

FALCES-PFA 7,773862908 5,682857143 7,890188104 6,178915136 7,037786775 6,747382199

FALCES-SBT-PFA 9,071108264 5,462857143 8,327402135 5,704286964 6,360773729 6,110383944

DCS-LA 14,05829596 12,6 14,53228266 11,47856518 12,8340081 10,58900524

Lo
ca

l b
ia

s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

1

(a) SOA

Accuracy for different algorithms when varying group balance (0.3 social bias)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 79,62844331 77,02857143 78,39349263 78,0839895 78,27260459 76,13438045 77,71516393 76,27118644 79,53518399

Decouple-SBT 79,11595131 78,11428571 78,8510422 76,64041995 78,3625731 76,83246073 76,48565574 76,15429573 79,72885733

FALCES 76,16912236 74,68571429 75,4956787 74,9343832 75,9334233 75,39267016 77,25409836 73,69959088 76,63008393

FALCES-SBT 75,46444587 75,37142857 76,71581088 75,41557305 76,47323437 75,87260035 76,99795082 73,99181765 76,30729503

FALCES-PFA 79,8206278 75,14285714 75,80071174 76,85914261 77,37291948 76,30890052 78,68852459 75,92051432 79,47062621

FALCES-SBT-PFA 79,43625881 76,34285714 79,20691408 76,50918635 77,86774629 77,26876091 77,45901639 75,39450614 79,72885733

DCS-LA 77,38629084 75,31428571 76,91916624 76,07174103 77,19298246 75,56719023 77,35655738 74,8100526 79,27695287

73

74,75

76,5

78,25

80

0,1 0,2 0,3 0,4 0,5

Decouple FALCES FALCES-SBT FALCES-PFA FALCES-SBT-PFA

Global bias for different algorithms when varying group balance (0.3 social bias) AND OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 13,85012453 9,002117172 14,39258708 12,35736593 13,55098919 12,16331754 16,71104928 15,92914061 19,22045792

Decouple-SBT 16,48739472 8,389915313 10,77480969 0,020225807 13,8243508 11,48718512 16,03338633 11,90316631 18,66142547

FALCES 9,958267582 3,749710543 5,686882204 3,082629644 7,263834024 5,078098319 6,769674086 1,012769515 8,163080583

FALCES-SBT 8,739091583 4,595545668 4,321134157 0,734630193 6,185524867 4,383633701 7,390699523 0,910307408 8,709828971

FALCES-PFA 13,81471377 5,47528863 10,41811319 7,389763334 9,075006476 7,41955618 10,18581081 10,03008141 13,23187131

FALCES-SBT-PFA 12,29704166 5,419671507 9,531895017 0,357202193 8,310573436 7,282712381 12,91434817 7,990966958 16,28047309

DCS-LA 17,60200202 12,60792616 14,70301592 12,75104681 15,08948808 12,23283859 12,8686407 11,07915979 16,08716079

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Local bias for different algorithms when varying group balance (0.3 social bias) WITH OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 11,70723895 8,228571429 14,6314184 11,39326334 10,49932524 10,71771379 14,93340164 16,19812975 15,9070368

Decouple-SBT 14,22805894 8,888571429 10,526182 5,111548556 11,08636977 10,10907504 15,59682377 13,42781999 13,14073596

FALCES 8,417680974 5,125714286 7,615658363 5,973315836 6,459739091 6,540139616 7,489754098 6,426066628 6,439638476

FALCES-SBT 8,65470852 6,468571429 7,013218099 5,706474191 6,122357175 5,944589878 7,897028689 6,531268264 6,901226598

FALCES-PFA 10,95131326 5,711428571 10,95068632 7,005686789 7,114260009 7,142233857 9,129098361 11,27118644 9,418979987

FALCES-SBT-PFA 10,88084561 6,102857143 9,649211998 5,483377078 6,354026091 6,603403141 12,18493852 9,742840444 11,30083925

DCS-LA 15,27866752 13,25142857 15,08388409 11,91819773 12,33018444 11,4877836 12,11834016 12,14494448 11,15235636

Lo
ca

l b
ia

s
0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Results for group balance of 0.4

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 73,05336833 78,0839895 11,16247824 12,35736593 11,59011374 11,39326334

FALCES-PFA 74,62817148 76,85914261 2,559562271 7,389763334 6,178915136 7,005686789

FALCES-SBT-PFA 76,42169729 76,50918635 2,04636579 0,357202193 5,704286964 5,483377078

Results for group balance of 0.1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 79,56438181 79,62844331 13,01880335 13,85012453 10,56694427 11,70723895

FALCES-PFA 76,55349135 79,8206278 8,191056524 13,81471377 6,341145833 10,95131326

FALCES-SBT-PFA 76,16912236 79,43625881 9,445643288 10,88084561 6,295572917 10,88084561

0

20

40

60

80

Decouple FALCES-PFA

7,0
11,4

6,2
11,6

7,4
12,4

2,6
11,2

76,978,1 74,673,1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

0

20

40

60

80

Decouple FALCES-PFA

11,011,7
6,3

10,6 13,813,9
8,2

13,0

79,879,6 76,679,6
Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Relative for group balance of 0.4-1

Accuracy-0.4 Accuracy-old Global-bias-0.4 Global-bias-old Local-bias-0.4 Local-bias-old

Decouple 0,064425770279066 78,0839895 0,096694368101471312,35736593 -0,017277788999126211,39326334

FALCES-PFA 0,029026750159319876,85914261 0,653634067112331 7,389763334 0,118014361461057 7,005686789

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.4 Global-bias-0.4 Local-bias-0.4

Results for group balance of 0.1-1

Accuracy-new Accuracy-old

Decouple 79,56438181 79,62844331

FALCES-PFA 76,55349135 79,8206278

FALCES-SBT-PFA 76,16912236 79,43625881

Relative for group balance of 0.4-1-1

Accuracy-0.1 Accuracy-old Global-bias-0.1 Global-bias-old Local-bias-0.1 Local-bias-old

Decouple 0,00080450524130684579,62844331 0,060022650207896713,85012453 0,097400820541038 11,70723895

FALCES-PFA 0,040930979122166279,8206278 0,407077362559065 13,81471377 0,420969368471887 10,95131326

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.1 Global-bias-0.1 Local-bias-0.1

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Global bias for different algorithms when varying group balance (0.3 social bias) AND OUR NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 13,01880335 9,654636276 12,70056683 11,16247824 10,91637256 6,229415529

Decouple-SBT 16,34575166 9,243400377 10,23853408 0,318676847 9,373057246 8,763224112

FALCES 7,201218701 3,613665685 5,0132554 2,226765003 6,642962375 4,075990312

FALCES-SBT 7,6076107 3,44205895 4,392460833 0,914375011 5,644306113 4,01188649

FALCES-PFA 8,191056524 4,007947666 6,195384596 3,348574923 8,678037171 5,200927994

FALCES-SBT-PFA 9,445643288 3,768318502 6,731660207 0,252461408 6,509721862 5,027459047

DCS-LA 16,47052113 12,3945549 14,20372919 12,45259577 15,58193563 11,37621053

Local bias for different algorithms when varying group balance (0.3 social bias) WITH NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 10,56694427 9,134285714 13,93492628 11,59011374 10,06747638 9,347731239

Decouple-SBT 14,14157591 9,411428571 13,63243518 5,640857393 9,743589744 10,72207679

FALCES 7,245355541 5,411428571 7,386883579 6,0279965 6,273054431 6,278359511

FALCES-SBT 8,193465727 5,3 6,898830707 5,984251969 6,014394962 6,036212914

FALCES-PFA 7,773862908 5,682857143 7,890188104 6,178915136 7,037786775 6,747382199

FALCES-SBT-PFA 9,071108264 5,462857143 8,327402135 5,704286964 6,360773729 6,110383944

DCS-LA 14,05829596 12,6 14,53228266 11,47856518 12,8340081 10,58900524

Lo
ca

l b
ia

s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

1

(b) NEW

Fig. 10: Global bias for varying group balance, 0.3
social bias, and using alternative af -metrics

Accuracy for different algorithms when varying group balance (0.3 social bias)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 79,62844331 77,02857143 78,39349263 78,0839895 78,27260459 76,13438045 77,71516393 76,27118644 79,53518399

Decouple-SBT 79,11595131 78,11428571 78,8510422 76,64041995 78,3625731 76,83246073 76,48565574 76,15429573 79,72885733

FALCES 76,16912236 74,68571429 75,4956787 74,9343832 75,9334233 75,39267016 77,25409836 73,69959088 76,63008393

FALCES-SBT 75,46444587 75,37142857 76,71581088 75,41557305 76,47323437 75,87260035 76,99795082 73,99181765 76,30729503

FALCES-PFA 79,8206278 75,14285714 75,80071174 76,85914261 77,37291948 76,30890052 78,68852459 75,92051432 79,47062621

FALCES-SBT-PFA 79,43625881 76,34285714 79,20691408 76,50918635 77,86774629 77,26876091 77,45901639 75,39450614 79,72885733

DCS-LA 77,38629084 75,31428571 76,91916624 76,07174103 77,19298246 75,56719023 77,35655738 74,8100526 79,27695287

73

74,75

76,5

78,25

80

0,1 0,2 0,3 0,4 0,5

Decouple FALCES FALCES-SBT FALCES-PFA FALCES-SBT-PFA

Global bias for different algorithms when varying group balance (0.3 social bias) AND OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 13,85012453 9,002117172 14,39258708 12,35736593 13,55098919 12,16331754 16,71104928 15,92914061 19,22045792

Decouple-SBT 16,48739472 8,389915313 10,77480969 0,020225807 13,8243508 11,48718512 16,03338633 11,90316631 18,66142547

FALCES 9,958267582 3,749710543 5,686882204 3,082629644 7,263834024 5,078098319 6,769674086 1,012769515 8,163080583

FALCES-SBT 8,739091583 4,595545668 4,321134157 0,734630193 6,185524867 4,383633701 7,390699523 0,910307408 8,709828971

FALCES-PFA 13,81471377 5,47528863 10,41811319 7,389763334 9,075006476 7,41955618 10,18581081 10,03008141 13,23187131

FALCES-SBT-PFA 12,29704166 5,419671507 9,531895017 0,357202193 8,310573436 7,282712381 12,91434817 7,990966958 16,28047309

DCS-LA 17,60200202 12,60792616 14,70301592 12,75104681 15,08948808 12,23283859 12,8686407 11,07915979 16,08716079

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Local bias for different algorithms when varying group balance (0.3 social bias) WITH OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 11,70723895 8,228571429 14,6314184 11,39326334 10,49932524 10,71771379 14,93340164 16,19812975 15,9070368

Decouple-SBT 14,22805894 8,888571429 10,526182 5,111548556 11,08636977 10,10907504 15,59682377 13,42781999 13,14073596

FALCES 8,417680974 5,125714286 7,615658363 5,973315836 6,459739091 6,540139616 7,489754098 6,426066628 6,439638476

FALCES-SBT 8,65470852 6,468571429 7,013218099 5,706474191 6,122357175 5,944589878 7,897028689 6,531268264 6,901226598

FALCES-PFA 10,95131326 5,711428571 10,95068632 7,005686789 7,114260009 7,142233857 9,129098361 11,27118644 9,418979987

FALCES-SBT-PFA 10,88084561 6,102857143 9,649211998 5,483377078 6,354026091 6,603403141 12,18493852 9,742840444 11,30083925

DCS-LA 15,27866752 13,25142857 15,08388409 11,91819773 12,33018444 11,4877836 12,11834016 12,14494448 11,15235636

Lo
ca

l b
ia

s
0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Results for group balance of 0.4

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 73,05336833 78,0839895 11,16247824 12,35736593 11,59011374 11,39326334

FALCES-PFA 74,62817148 76,85914261 2,559562271 7,389763334 6,178915136 7,005686789

FALCES-SBT-PFA 76,42169729 76,50918635 2,04636579 0,357202193 5,704286964 5,483377078

Results for group balance of 0.1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 79,56438181 79,62844331 13,01880335 13,85012453 10,56694427 11,70723895

FALCES-PFA 76,55349135 79,8206278 8,191056524 13,81471377 6,341145833 10,95131326

FALCES-SBT-PFA 76,16912236 79,43625881 9,445643288 10,88084561 6,295572917 10,88084561

0

20

40

60

80

Decouple FALCES-PFA

7,0
11,4

6,2
11,6

7,4
12,4

2,6
11,2

76,978,1 74,673,1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

0

20

40

60

80

Decouple FALCES-PFA

11,011,7
6,3

10,6 13,813,9
8,2

13,0

79,879,6 76,679,6
Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Relative for group balance of 0.4-1

Accuracy-0.4 Accuracy-old Global-bias-0.4 Global-bias-old Local-bias-0.4 Local-bias-old

Decouple 0,064425770279066 78,0839895 0,096694368101471312,35736593 -0,017277788999126211,39326334

FALCES-PFA 0,029026750159319876,85914261 0,653634067112331 7,389763334 0,118014361461057 7,005686789

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.4 Global-bias-0.4 Local-bias-0.4

Results for group balance of 0.1-1

Accuracy-new Accuracy-old

Decouple 79,56438181 79,62844331

FALCES-PFA 76,55349135 79,8206278

FALCES-SBT-PFA 76,16912236 79,43625881

Relative for group balance of 0.4-1-1

Accuracy-0.1 Accuracy-old Global-bias-0.1 Global-bias-old Local-bias-0.1 Local-bias-old

Decouple 0,00080450524130684579,62844331 0,060022650207896713,85012453 0,097400820541038 11,70723895

FALCES-PFA 0,040930979122166279,8206278 0,407077362559065 13,81471377 0,420969368471887 10,95131326

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.1 Global-bias-0.1 Local-bias-0.1

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Global bias for different algorithms when varying group balance (0.3 social bias) AND OUR NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 13,01880335 9,654636276 12,70056683 11,16247824 10,91637256 6,229415529

Decouple-SBT 16,34575166 9,243400377 10,23853408 0,318676847 9,373057246 8,763224112

FALCES 7,201218701 3,613665685 5,0132554 2,226765003 6,642962375 4,075990312

FALCES-SBT 7,6076107 3,44205895 4,392460833 0,914375011 5,644306113 4,01188649

FALCES-PFA 8,191056524 4,007947666 6,195384596 3,348574923 8,678037171 5,200927994

FALCES-SBT-PFA 9,445643288 3,768318502 6,731660207 0,252461408 6,509721862 5,027459047

DCS-LA 16,47052113 12,3945549 14,20372919 12,45259577 15,58193563 11,37621053

Local bias for different algorithms when varying group balance (0.3 social bias) WITH NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 10,56694427 9,134285714 13,93492628 11,59011374 10,06747638 9,347731239

Decouple-SBT 14,14157591 9,411428571 13,63243518 5,640857393 9,743589744 10,72207679

FALCES 7,245355541 5,411428571 7,386883579 6,0279965 6,273054431 6,278359511

FALCES-SBT 8,193465727 5,3 6,898830707 5,984251969 6,014394962 6,036212914

FALCES-PFA 7,773862908 5,682857143 7,890188104 6,178915136 7,037786775 6,747382199

FALCES-SBT-PFA 9,071108264 5,462857143 8,327402135 5,704286964 6,360773729 6,110383944

DCS-LA 14,05829596 12,6 14,53228266 11,47856518 12,8340081 10,58900524
Lo

ca
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

1

(a) SOA

Accuracy for different algorithms when varying group balance (0.3 social bias)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 79,62844331 77,02857143 78,39349263 78,0839895 78,27260459 76,13438045 77,71516393 76,27118644 79,53518399

Decouple-SBT 79,11595131 78,11428571 78,8510422 76,64041995 78,3625731 76,83246073 76,48565574 76,15429573 79,72885733

FALCES 76,16912236 74,68571429 75,4956787 74,9343832 75,9334233 75,39267016 77,25409836 73,69959088 76,63008393

FALCES-SBT 75,46444587 75,37142857 76,71581088 75,41557305 76,47323437 75,87260035 76,99795082 73,99181765 76,30729503

FALCES-PFA 79,8206278 75,14285714 75,80071174 76,85914261 77,37291948 76,30890052 78,68852459 75,92051432 79,47062621

FALCES-SBT-PFA 79,43625881 76,34285714 79,20691408 76,50918635 77,86774629 77,26876091 77,45901639 75,39450614 79,72885733

DCS-LA 77,38629084 75,31428571 76,91916624 76,07174103 77,19298246 75,56719023 77,35655738 74,8100526 79,27695287

73

74,75

76,5

78,25

80

0,1 0,2 0,3 0,4 0,5

Decouple FALCES FALCES-SBT FALCES-PFA FALCES-SBT-PFA

Global bias for different algorithms when varying group balance (0.3 social bias) AND OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 13,85012453 9,002117172 14,39258708 12,35736593 13,55098919 12,16331754 16,71104928 15,92914061 19,22045792

Decouple-SBT 16,48739472 8,389915313 10,77480969 0,020225807 13,8243508 11,48718512 16,03338633 11,90316631 18,66142547

FALCES 9,958267582 3,749710543 5,686882204 3,082629644 7,263834024 5,078098319 6,769674086 1,012769515 8,163080583

FALCES-SBT 8,739091583 4,595545668 4,321134157 0,734630193 6,185524867 4,383633701 7,390699523 0,910307408 8,709828971

FALCES-PFA 13,81471377 5,47528863 10,41811319 7,389763334 9,075006476 7,41955618 10,18581081 10,03008141 13,23187131

FALCES-SBT-PFA 12,29704166 5,419671507 9,531895017 0,357202193 8,310573436 7,282712381 12,91434817 7,990966958 16,28047309

DCS-LA 17,60200202 12,60792616 14,70301592 12,75104681 15,08948808 12,23283859 12,8686407 11,07915979 16,08716079

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Local bias for different algorithms when varying group balance (0.3 social bias) WITH OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Decouple 11,70723895 8,228571429 14,6314184 11,39326334 10,49932524 10,71771379 14,93340164 16,19812975 15,9070368

Decouple-SBT 14,22805894 8,888571429 10,526182 5,111548556 11,08636977 10,10907504 15,59682377 13,42781999 13,14073596

FALCES 8,417680974 5,125714286 7,615658363 5,973315836 6,459739091 6,540139616 7,489754098 6,426066628 6,439638476

FALCES-SBT 8,65470852 6,468571429 7,013218099 5,706474191 6,122357175 5,944589878 7,897028689 6,531268264 6,901226598

FALCES-PFA 10,95131326 5,711428571 10,95068632 7,005686789 7,114260009 7,142233857 9,129098361 11,27118644 9,418979987

FALCES-SBT-PFA 10,88084561 6,102857143 9,649211998 5,483377078 6,354026091 6,603403141 12,18493852 9,742840444 11,30083925

DCS-LA 15,27866752 13,25142857 15,08388409 11,91819773 12,33018444 11,4877836 12,11834016 12,14494448 11,15235636

Lo
ca

l b
ia

s
0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Results for group balance of 0.4

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 73,05336833 78,0839895 11,16247824 12,35736593 11,59011374 11,39326334

FALCES-PFA 74,62817148 76,85914261 2,559562271 7,389763334 6,178915136 7,005686789

FALCES-SBT-PFA 76,42169729 76,50918635 2,04636579 0,357202193 5,704286964 5,483377078

Results for group balance of 0.1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Decouple 79,56438181 79,62844331 13,01880335 13,85012453 10,56694427 11,70723895

FALCES-PFA 76,55349135 79,8206278 8,191056524 13,81471377 6,341145833 10,95131326

FALCES-SBT-PFA 76,16912236 79,43625881 9,445643288 10,88084561 6,295572917 10,88084561

0

20

40

60

80

Decouple FALCES-PFA

7,0
11,4

6,2
11,6

7,4
12,4

2,6
11,2

76,978,1 74,673,1

Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

0

20

40

60

80

Decouple FALCES-PFA

11,011,7
6,3

10,6 13,813,9
8,2

13,0

79,879,6 76,679,6
Accuracy-new Accuracy-old Global-bias-new Global-bias-old Local-bias-new Local-bias-old

Relative for group balance of 0.4-1

Accuracy-0.4 Accuracy-old Global-bias-0.4 Global-bias-old Local-bias-0.4 Local-bias-old

Decouple 0,064425770279066 78,0839895 0,096694368101471312,35736593 -0,017277788999126211,39326334

FALCES-PFA 0,029026750159319876,85914261 0,653634067112331 7,389763334 0,118014361461057 7,005686789

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.4 Global-bias-0.4 Local-bias-0.4

Results for group balance of 0.1-1

Accuracy-new Accuracy-old

Decouple 79,56438181 79,62844331

FALCES-PFA 76,55349135 79,8206278

FALCES-SBT-PFA 76,16912236 79,43625881

Relative for group balance of 0.4-1-1

Accuracy-0.1 Accuracy-old Global-bias-0.1 Global-bias-old Local-bias-0.1 Local-bias-old

Decouple 0,00080450524130684579,62844331 0,060022650207896713,85012453 0,097400820541038 11,70723895

FALCES-PFA 0,040930979122166279,8206278 0,407077362559065 13,81471377 0,420969368471887 10,95131326

-10 %

10 %

30 %

50 %

70 %

Accuracy-0.1 Global-bias-0.1 Local-bias-0.1

G
lo

ba
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

Global bias for different algorithms when varying group balance (0.3 social bias) AND OUR NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 13,01880335 9,654636276 12,70056683 11,16247824 10,91637256 6,229415529

Decouple-SBT 16,34575166 9,243400377 10,23853408 0,318676847 9,373057246 8,763224112

FALCES 7,201218701 3,613665685 5,0132554 2,226765003 6,642962375 4,075990312

FALCES-SBT 7,6076107 3,44205895 4,392460833 0,914375011 5,644306113 4,01188649

FALCES-PFA 8,191056524 4,007947666 6,195384596 3,348574923 8,678037171 5,200927994

FALCES-SBT-PFA 9,445643288 3,768318502 6,731660207 0,252461408 6,509721862 5,027459047

DCS-LA 16,47052113 12,3945549 14,20372919 12,45259577 15,58193563 11,37621053

Local bias for different algorithms when varying group balance (0.3 social bias) WITH NEW METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6

Decouple 10,56694427 9,134285714 13,93492628 11,59011374 10,06747638 9,347731239

Decouple-SBT 14,14157591 9,411428571 13,63243518 5,640857393 9,743589744 10,72207679

FALCES 7,245355541 5,411428571 7,386883579 6,0279965 6,273054431 6,278359511

FALCES-SBT 8,193465727 5,3 6,898830707 5,984251969 6,014394962 6,036212914

FALCES-PFA 7,773862908 5,682857143 7,890188104 6,178915136 7,037786775 6,747382199

FALCES-SBT-PFA 9,071108264 5,462857143 8,327402135 5,704286964 6,360773729 6,110383944

DCS-LA 14,05829596 12,6 14,53228266 11,47856518 12,8340081 10,58900524
Lo

ca
l b

ia
s

0

5

10

15

Fraction of |g1| with respect to |D| with
0,3 social bias

0,1 0,2 0,3 0,4 0,5

FALCES FALCES-PFA
FALCES-SBT FALCES-SBT-PFA
Decouple

1

(b) NEW

Fig. 11: Local bias for varying group balance, 0.3
social bias, and alternative af -metrics

5.3 Impact of different accuracy-fairness metrics

Section 4.2 has discussed two alternative metrics for af , used both during model pruning in
the offline phase and dynamic classifier selection in the online phase. All experiments so far
have used our extended metric (Equation 2). The next series of experiments investigates
how the two options potentially impact the result. We refer to the state-of-the-art metric of
Equation 1 as SOA, while our extended metric is labeled NEW. As a reminder, our extension
aims at countering the effect on fairness in presence of unbalanced groups. Therefore, we
focus our study on evaluating both the global and local bias for different configurations of
group balance. As before, accuracy is comparable across all approaches, whether we use
SOA or NEW. Figure 10 reports our results on global bias, whereas Figure 11 focuses on
local bias. For better readability, we omit the results of Decouple-SBT and DCS-LA, their
relative performance to the other approaches being analogous to our previous discussion.

For both global bias and local bias, we see that FALCES variants without model pruning
(dotted lines) are comparable when using SOA or NEW. The effect of using a different
metric only becomes apparent when model pruning is active. Overall, we see that NEW
closes the “bias gap” between FALCES variants with model pruning (solid lines) and
those without. This allows our methods to consistently exhibit low bias, especially in
comparison to state-of-the-art algorithms like Decouple. This behavior can be explained by
the fact the af is used by model pruning where group imbalance can cause the pruning of
otherwise good classifier combinations. Note that the use of af during the online-phase is
not sensitive to the choice of the two metrics, because it ensures class balance in the local

172 Nico Lässig, Sarah Oppold, Melanie Herschel

19

region by selecting k members of each group to form a region. Consequently, FALCES and
FALCES-SBT are not significantly affected by the choice of metric.

5.4 Runtime evaluation

We also evaluate the efficiency of our approach in its online phase. In particular, we study
the effect of model pruning in the offline phase on the online performance. To this end,
we run the four variants of FALCES and measure the average runtime to perform online
classification for all tuples for which we want a prediction. We report results in Figure 9 on
our real-world dataset, on which we can vary the number of groups (either 2 or 4), given
two sensitive attributes. In any configuration, we see that model pruning during the offline
phase improves the average runtime to classify a test tuple during the online phase. While
this improvement is moderate when limiting to two groups, the difference increases as the
number of groups increases. This can be explained based on the fact that for two groups and
five models trained per group, we have 25 combinations to consider during the online phase
when none are previously pruned. This exponentially increases with the number of groups,
e.g., for 4 groups, 54 combinations need to be tested. Combined with the performance
in terms of accuracy and fairness (see Section 5.2), FALCES-SBT-PFA is the method of
choice when the number of groups increases.

6 Conclusion

This paper studied the novel problem of making locally fair and accurate classifications
to foster equal opportunity decisions. We have presented a general framework to address
the problem, as well as FALCES, an implementation of the framework that combines
and extends techniques of dynamic model ensembles and fair model ensembles. Our
experimental evaluation demonstrated that FALCES generally outperforms the state of the
art when it comes to balancing accuracy and fairness for several types and degrees of bias
present in the training dataset. Possible avenues for future research include methods that
diversify the set of trained models in a controlled way or dynamic and adaptive setting of
the parameter k of the kNN search, depending on the density of the data region.
Acknowledgements. Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2120/1 - 390831618.

Bibliography
[Be75] Bentley, Jon Louis: Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

[Bh10] Bhatia, Nitin: Survey of nearest neighbor techniques. International Journal of Computer
Science and Information Security (IJCSIS), 8(2):4, 2010.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 173

20 Nico Lässig, Sarah Oppold, Melanie Herschel

[Co20] Coughlan, Sean: Why did the A-level algorithm say no? BBC.com, 2020.

[CSC18] Cruz, Rafael M.O.; Sabourin, Robert; Cavalcanti, George D.C.: Dynamic classifier
selection: Recent advances and perspectives. Information Fusion, 41:195–216, 2018.

[CV10] Calders, Toon; Verwer, Sicco: Three naive Bayes approaches for discrimination-free
classification. Data Mining and Knowledge Discovery, 21(2):277–292, 2010.

[Da18] Dastin, Jeffrey: Amazon scraps secret AI recruiting tool that showed bias against women.
Reuters.com, 2018.

[DG19] Dua, Dheeru; Graff, Casey: UCI Machine Learning Repository. 2019.

[DSM19] Dvornik, Nikita; Schmid, Cordelia; Mairal, Julien: Diversity With Cooperation: Ensemble
Methods for Few-Shot Classification. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 3723 – 3731, 2019.

[Dw18] Dwork, Cynthia; Immorlica, Nicole; Kalai, Adam Tauman; Leiserson, Max: Decoupled
Classifiers for Group-Fair and Efficient Machine Learning. In: Conference on Fairness,
Accountability and Transparency. volume 81 of Proceedings of Machine Learning
Research, pp. 119–133, 2018.

[FSV16] Friedler, Sorelle A.; Scheidegger, Carlos; Venkatasubramanian, Suresh: On the
(im)possibility of fairness. arXiv preprint arXiv:1609.07236, p. 16, 2016.

[Ga19] Garg, Sahaj; Perot, Vincent; Limtiaco, Nicole; Taly, Ankur; Chi, Ed H.; Beutel, Alex:
Counterfactual Fairness in Text Classification through Robustness. In: Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and Society. AIES ’19. ACM, p. 219–226,
2019.

[KC09] Kamiran, Faisal; Calders, Toon: Classifying without discriminating. In: 2009 2nd
International Conference on Computer, Control and Communication. IEEE, pp. 1–6, 2009.

[Po06] Polikar, Robi: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems
Magazine, 6(3):21–45, 2006.

[PRT08] Pedreschi, Dino; Ruggieri, Salvatore; Turini, Franco: Discrimination-aware Data Mining.
In: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining. KDD ’08. ACM Press, pp. 560–568, 2008.

[SHX19] Shen, Zhiqiang; He, Zhankui; Xue, Xiangyang: MEAL: Multi-Model Ensemble via
Adversarial Learning. Proceedings of the AAAI Conference on Artificial Intelligence,
33:4886–4893, 2019.

[SYR13] Singh, Archana; Yadav, Avantika; Rana, Ajay: K-means with Three different Distance
Metrics. International Journal of Computer Applications, 67(10):13–17, 2013.

[WKB97] Woods, Kevin; Kegelmeyer, W. Philip; Bowyer, Kevin: Combination of multiple classifiers
using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(4):405–410, 1997.

[Zh19] Zheng, Hao; Zhang, Yizhe; Yang, Lin; Liang, Peixian; Zhao, Zhuo; Wang, Chaoli; Chen,
Danny Z.: A New Ensemble Learning Framework for 3D Biomedical Image Segmentation.
Proceedings of the AAAI Conference on Artificial Intelligence, 33:5909–5916, 2019.

[Žl17] Žliobaitė, Indrė: Measuring discrimination in algorithmic decision making. Data Mining
and Knowledge Discovery, 31(4):1060–1089, 2017.

174 Nico Lässig, Sarah Oppold, Melanie Herschel

cba

Herausgeber et al. (Hrsg.): BTW 2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Cluster Flow — an Advanced Concept for
Ensemble-Enabling, Interactive Clustering

Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Abstract: Even though most clustering algorithms serve knowledge discovery in fields other than
computer science, most of them still require users to be familiar with programming or data mining
to some extent. As that often prevents efficient research, we developed an easy to use, highly
explainable clustering method accompanied by an interactive tool for clustering. It is based on
intuitively understandable kNN graphs and the subsequent application of adaptable filters, which can
be combined ensemble-like and iteratively and prune unnecessary or misleading edges. For a first
overview of the data, fully automatic predefined filter cascades deliver robust results. A selection of
simple filters and combination methods that can be chosen interactively yield very good results on
benchmark datasets compared to various algorithms.

Keywords: Clustering; Interactive; kNN; Ensemble; Explainability

1 Introduction

Researchers in virtually all areas can benefit from clustering their data at some point. From
natural sciences over social studies to economics — data is gathered everywhere. Clustering
provides many advantages: while the main goal is to find groups of similar objects, it can
also help gather valuable hidden information from the data or identify essential attributes.
While researchers are experts in their field, they often do not have sufficient background
knowledge about clustering methods and, for the sake of simplicity, use old traditional
algorithms that may not even fit their data.

As datasets from different research areas contain different types of clusters, ensemble
methods proved themselves as suitable for users without profound knowledge in data science.
Nevertheless, ensemble methods can be even less understandable “black boxes” than only
one algorithm, as they combine different clustering algorithms. Interactive and visual
approaches offer great possibilities to make these black boxes more accessible and embody
a good solution for the desired balance: To make the powerful tool of clustering accessible
to researchers from all fields so that they can create the most meaningful and transparent
clusterings with as little effort and background knowledge as possible.

1 LMU Munich, Institut für Informatik, Oettingenstr. 67, 80538 München, Germany, [obermeier,beer,seidl]@dbs.
ifi.lmu.de

cba doi:10.18420/btw2021-09

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 175

https://creativecommons.org/licenses/by-sa/4.0/
mailto:[obermeier, beer, seidl]@dbs.ifi.lmu.de
mailto:[obermeier, beer, seidl]@dbs.ifi.lmu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-09

2 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

A high explainability is thus equally important as public availability. Due to the lack of those
in current methods, surprisingly, many researchers still group their data manually, which is
disastrous regarding the reproducibility of results and the whole research’s objectivity.

Especially complex clustering methods such as ensemble methods are hard to visualize, and
accordingly, it is tough to create interaction possibilities on intermediate levels that allow
the user to intervene, guide and better understand the process.

To solve these problems, we developed a concept with a prototypical implementation
called Cluster Flow. It combines kNN-based approaches for clustering on graphs with
a modular and easy to understand architecture. It is simple but simultaneously provides
enough flexibility to accomplish difficult clustering tasks. We publish our code at https://
github.com/sobermeier/cluster-flow. Cluster Flow combines the advantages of ensemble
clustering with interactive clustering: users of all areas can easily apply and compose various
intuitively understandable cluster improvement steps iteratively to explore and cluster their
data. Our method, which we describe in detail in Section 3, is based on kNN graphs as
they represent one of the best foundations for clustering and offer several advantages: they
are highly explainable, suitable for anytime changes, and interactive approaches, and they
can enable finding non-convex shaped clusters as well as clusters of different densities. We
developed multiple intuitively understandable filter methods partially based on existing
methods to prune edges connecting clusters. They can be combined sequentially or in parallel
(ensemble-like). Users can fine-tune parameters, change filters, and explore the dataset at
any time, guided by a well-structured prototypical user interface as explained in Section
4. Extensive experiments in Section 5 show that our concept, applying pruning-strategies
on kNN graphs, achieves better clusterings than several other algorithms with their best
parameter settings. Simultaneously, the method is robust and suitable for exploring data:
with fixed parameters for all tested datasets, our fully automatic predefined filter cascades
yield better results than comparative methods. Our main contributions can be summarized
as follows.

• We propose Cluster Flow, an advanced clustering concept based on kNN graphs by
deleting edges through filters.

• Due to its well-thought-out modular design, interactions can be easily integrated on
intermediate stages while also providing step-by-step visualizations of the intermediate
clustering results.

• Even beyond this, we provide predefined filter cascades that achieve competitive
results fully automatically.

• A prototypical implementation serves as a proof-of-concept and demonstrates the
power of our proposed approach.

176 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

https://github.com/sobermeier/cluster-flow
https://github.com/sobermeier/cluster-flow

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 3

2 Related Work

We address here the three main components that comprise our Cluster Flow concept. As
most filter methods are based on diverse graphs describing the data, and we need to evaluate
our clustering results objectively, we introduce some graph-based methods in Subsection 2.1,
which we also use as a baseline for our experiments in Section 5. Combining the filters can
be seen as an ensemble approach; thus, we introduce the most relevant ensemble-based
clustering methods in Subsection 2.2. Subsection 2.3 concludes this section by setting our
concept into context regarding existing interactive approaches.

2.1 Graph-Based Clustering

Clustering algorithms can rely on different graphs extracted from the original data, e.g.,
Y-range graphs or diverse variants of kNN graphs, where we focus on the latter. Some
approaches rely on a mutual kNN graph (MkNN, see Section 3.1). Existing works include
taking the plain MkNN graph, where a connected component with two or more points form
a cluster and otherwise are considered outliers [Br97], or slightly advanced ones where
a weighted MkNN graph is used to capture clique-like structures [SB14]. Choosing the
optimal value for : is especially difficult for MkNN, which are inherently sparser than, e.g.,
symmetric kNN graphs (see Section 3.1).

The hierarchical clustering algorithm CHAMELEON [KHK99] is based on symmetric kNN
graphs and consists of two phases. First, the kNN graph is partitioned into small sub-clusters
by repeatedly splitting the currently largest sub-cluster, such that the edge cut is minimized
until the largest sub-cluster contains fewer nodes than a user-given parameter MinSize.
Secondly, these sub-clusters are recombined using an agglomerative hierarchical clustering
algorithm concerning their relative inter-connectivity and closeness. The merging algorithm
terminates when only one cluster remains, or no pair of clusters satisfies the condition of
having high enough relative inter-connectivity and relative closeness.

Girvan-Newman Algorithm [GN02] is an approach for detecting community structures in
graphs. The authors introduce a measure called edge betweenness which corresponds to
the number of shortest paths that run along this edge. All shortest paths between nodes of
different communities go along at least one edge that connects the communities. Thus, the
edge betweenness score of such an inter-community edge is higher. The algorithm iteratively
removes the edge with the highest edge betweenness and recalculates it for the remaining
edges until there are no more edges in the graph. The result of the algorithm is a dendrogram
that reveals the community structure of the underlying graph. However, this method has a
relatively high runtime with $ (<2 · =) for graphs with < edges and = nodes.
Spectral Clustering [SM00] is based on a similarity graph and its weighted adjacency
matrix, the first : eigenvectors are calculated. A kNN graph can be used as a similarity
graph with distances between points as weights. Clustering is then performed with k-means

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 177

4 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

on the matrix’s rows, which contains the previously calculated eigenvectors as columns.
The resulting clustering assignment of k-means corresponds to the clustering alignment of
the original points. Spectral clustering also inherits the disadvantages from the additional
partitioning step, such as k-means to a certain degree.

2.2 Ensemble based Clustering

Our approach is closely related to ensemble clustering methods since our filter strategy
allows combinations to find a consensus. Cluster ensembles, sometimes also referred to
as clustering aggregations or consensus clustering, combine several cluster algorithms
to obtain a single result of better quality than each cluster individually. Usually, they are
based on two steps, namely the generation, where different partitions are obtained, and the
consensus, where these partitions are integrated into one final partition. Ensemble methods
should at least meet the following four criteria [VPRS11]:

• Robustness: The average performance must be better than the single clustering
algorithms.

• Consistency: The combined result should be very similar to all combined single
clustering algorithm results.

• Novelty: The ensemble must allow finding solutions unattainable by single clustering
algorithms.

• Stability: The results must be less sensitive to noise and outliers.

However, according to the same authors, identifying the best result is hard, but the general
idea behind ensemble methods is that several algorithms’ combined decisions should be
more reliable than any individual one. Several existing works focus on the clustering
techniques [Li15, FJ05, Wu13] while others focus on finding the right consensus [SG02],
and allow for using different clustering methods.

However, in these approaches, determining the consensus functions is only applicable
for experts and integrating different techniques is even more complex and challenging to
understand to scientists from other domains. In contrast to that, our edge-deletion concept
allows for a smooth integration of establishing consensus across filters while at the same
time the intermediate results are always visible and understandable. Our approach differs
from existing approaches since it is possible to apply the ensemble clustering paradigm as
an intermediate step. The user can access the result at a fine-granular level and directly see
how different filters agree upon activities to identify crucial spots or steer the end product
into a more conservative or progressive direction. These advantages come because our
approach combines the power of ensemble clustering and interactive clustering. We discuss
the latter in the next section.

178 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 5

2.3 Interactive Clustering

The overall goal of interactive clustering is to engage the user as far as possible in the
clustering process, not only to allow the user to make the result fit their preferences but
also to make it understandable. In our context, we utterly differentiate from methods that
solely enable visual exploration of the result and are only considering methods that allow
interaction within the algorithmic loop. [Ba20] provide a thorough survey of interactive
clustering. Over 100 papers related to interactive clustering are analyzed regarding the stage
and type of interaction, user feedback, evaluation criteria, data, and clustering methods.
The authors distinguish three groups of stages in which interaction occurs. (1) Interaction
on clustering results, (2) interaction on model/algorithm level, and (3) machine-initiated
interaction. Our concept belongs to the second group since the user’s interactions directly
happen at the algorithm level by tweaking parameters rather than at the clustering results.
We evaluate the clustering result on an objective basis rather than conducting a user study for
subjective evaluation. A user study might help develop an appealing and intuitive graphical
user interface but is not within this work scope. Also, visualization methods for supporting
interactive ensemble clustering like AUGUR [HHL10] could be incorporated for future
work.

To conclude this section and put our work into the context of related works, our concept
combines three main components that fit together enormously well. First, kNN-graphs
are inherently well understandable for humans. Second, based on the kNN-graph, filter
strategies are applied. The filters focus on different hidden structures in the data, but all
result in the same action, namely deleting edges. Therefore, finding a consensus among
them in an ensemble-like manner does not require complex mathematical functions but
rather comparison on edge level and can thus be well visualized and understood. Third,
the modular design allows interaction on each stage and the continuous visualization of
intermediate results.

3 Cluster Flow

Cluster Flow works on a kNN graph of the input, for which we present multiple options in
Section 3.1. Elaborated filters, which we introduce in Section 3.2, delete edges between
clusters, and thus the graph decomposes into several smaller graphs representing one cluster
each.

3.1 Build kNN Graphs

Cluster Flow allows to choose between different variants of the kNN graph, as they can
have a severe impact on the clustering result [MLH09]: basic kNN graphs, symmetric kNN
graphs, and mutual kNN graphs.

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 179

6 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Within this paper, we use the following notation: Let * be an arbitrary set and �� ⊆
, | | < ∞ be a dataset. A kNN graph consists of nodes corresponding to the points of
a dataset and directed edges from every node to its : nearest neighbors (kNN). The kNN
graph is a directed graph where an edge (?8 , ? 9) from point ?8 to point ? 9 exists if and only
if ? 9 belongs to the k-neighborhood of ?8 [HKF04]:

4364B = {(?8 , ? 9) | ∀?8 , ? 9 ∈ DB: 8 ≠ 9 ∧ ? 9 ∈ kNN(?8)} (1)

A symmetric kNN graph has a higher connectivity than the kNN graph: it is an undirected
graph where an edge (?8 , ? 9) from point ?8 to point ? 9 exists if ? 9 is part of k-neighborhood
of ?8 or vice versa [HKF04, MHVL07]:

4364B = {(?8 , ? 9) | ∀?8 , ? 9 ∈ DB: 8 ≠ 9 ∧ (? 9 ∈ kNN(?8) ∨ ?8 ∈ kNN(? 9)}. (2)

A Mutual k-Nearest Neighbor (MkNN) graph is an undirected graph, where edges
exist between two points ?8 and ? 9 if both points belong to each other’s k-neighborhood
[Br97, HKF04]:

4364B = {(?8 , ? 9) | ∀?8 , ? 9 ∈ DB: 8 ≠ 9 ∧ ?8 ∈ kNN(? 9) ∧ ? 9 ∈ kNN(?8)}. (3)

The RkNN graph connects points to their reverse nearest neighbors, i.e., its adjacency
matrix is the transpose of the adjacency matrix of the corresponding kNN graph. A point ?
is a reverse nearest neighbor of a point @, iff @ is a nearest neighbor of ?.

As we later only delete edges and never add edges, points of a cluster must have a connection
in the graph. Thus, a symmetric kNN graph with its inherent rather high connectivity is
usually suitable for our approach. If users are interested in the most significant clusters or
the core points of a cluster, an MkNN graph can be a good choice [MHVL07]. Note that
: for MkNN graphs should be higher than for symmetric kNN graphs to ensure a certain
degree of connectivity. Even though we use unweighted graphs for all filters, we save and
reuse the distances calculated in this step if needed.

3.2 Filters

In the following, we introduce filters that can be applied to the kNN graph. Filters are easily
accessible for users of diverse domains and delete different edges depending on the graph’s
properties, as we illustrate with selected example graphs shown in Figure 1.

3.2.1 Edge-Distance Filter (EDF)

Since points that are close to each other and connected by a short edge in the kNN
graph are likely to be in the same cluster, EDF deletes edges longer than a threshold C,

180 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 7

(a) EDF (b) EBF (c) IDCF (d) DoIEF

Fig. 1: Application of the Filters. Top: Symmetric kNN graph with :=10 of the original datasets.
Bottom: After filter application. Each connected component, i.e. cluster, is indicated by a different
color.

granting certain reachability for the clusters. The filter considers each connected component
individually, which has two advantages: (1) We can run the filter in parallel on several
connected components to save computation time, and (2) C is not global but can be chosen for
each connected component individually, depending on its edges. This enables maintaining
connected components with different densities, which will later result in clusters. The
threshold C depends on the mean ` and standard deviation f of the edge distances in a
connected component, on which the filter is applied, where f is weighted by a parameter
? ∈ R: C = ` + ? ·f. An empirically good value for ? is between 1 and 3. Figure 1(a) shows
an example application of this filter on the Compound dataset. The top image displays the
symmetric kNN graph with :=10 on the original dataset, which is the input for this filter.
The bottom figure displays the result after applying EDF with ?=2 where several unwanted
edges have been removed correctly. The filter runs with a complexity of $ (<) where < is
the number of edges. Note that the distances between all points can be reused from the kNN
graph generation.

3.2.2 Edge-Betweenness Filter (EBF)

This filter is based on the Girvan-Newman algorithm and uses the edge betweenness measure
to identify and reduce inter-community connections. It works on the assumption that loosely
connected components belong to different clusters. This filter iteratively removes the edges
with the highest edge betweenness, where 8 is the number of iterations and ? is the number
of edges to delete. As smaller clusters have fewer paths connecting all nodes than larger
clusters, misclassification, i.e., deleting wrong edges, has a higher impact on them. To
overcome this, we make our filter more restrictive, i.e., we scale the number of removed

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 181

8 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

edges per iteration by the total number of edges |4364B | within a connected component. We
also constrain that in each iteration, a minimum of one edge is deleted. Parameter A is then
defined by: A = <0G(|4364B | · ?, 1).
Figure 1(b) shows an example application of the edge betweenness filter on the Aggregation
dataset. The input graph on top is generated with : = 10. We set the filter parameters as
follows: 8 = 5; i.e., five iterations were performed, and ? = 0.0075; i.e., 0.75% of the edges
were removed from each connected component in each round. The bottom figure shows the
result after all iterations. The inter-community connections have been detected correctly,
and the initial five connected components have been divided into seven, which fit the ground
truth clusters and are highlighted by different colors.

The original Girvan-Newman algorithm has a worst-case complexity of $ (<2 · =), where
= is the number of nodes and < is the number of edges. In our modified setting, we can
decrease this complexity. First, instead of performing a full hierarchical clustering down to
every node, we only run the algorithm for 8 iterations to identify the top inter-community
connections, where 8 << <. Secondly, originally only one edge is removed in each iteration.
In our case, we increase the number of edges that are deleted in each round to the value of a
parameter A. This way, the user can decide how precise the final result should be. Since
the complexity for one round of the original algorithm is $ (< · =), the filter’s application
with 8 rounds has the complexity of $ (< · = · 8). It is advisable not to apply the filter in the
beginning but rather when the complete dataset is already segmented in several connected
components to reduce the complexity (For example, by first applying a filter with lower
complexity, e.g., the EDF).

3.2.3 Inter-Density Connection Filter (IDCF)

This filter assumes that two points located in regions of different densities also belong to two
different clusters. The sparseness of the neighborhood of a point is defined by the average
distance to its k-nearest-neighbors, which equals to the sparseness estimation presented in
[SRS00] and is used for outlier detection. We call an edge between two nodes with very
different dense neighborhoods inter-density connection. The inter-density connection filter
aims at detecting these edges to classify them as unwanted. The density difference of an
edge is defined as the absolute difference of the sparseness of the two nodes it connects.
If this density difference is higher than a threshold C, the edge is classified as unwanted.
Given ` as the average of the density difference of all edges, f as its standard derivation
and ? as a user-defined parameter to regulate the sensitivity of the filter, the threshold C is
defined as: C = ` + ? ·f. Again, the filter is applied to each connected component separately.
The sparseness estimation is made on the basis of the directed kNN graph, but only the
edges which also exist in the current state of the undirected graph will be considered so
that each point has 0 to : considered nearest neighbors. We need the directed graph for
this filter, since edges to outliers, which more likely exist in an undirected graph where

182 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 9

the outlier only needs to belong either to the kNN or the reverse kNN set, may lead to
misclassification. A connected outlier forces an increase in the sparseness estimation for the
whole connected component and may lead to the deletion of edges between actual cluster
nodes. Nevertheless, we do not have to recompute all kNN relationships since we have
created and saved a directed kNN graph at the graph generation step that contains all kNN
relationships and distances. Figure 1(c) shows an example application of the inter-density
connection filter on a sample from the Compound dataset. On the top, the original input
graph is depicted (symmetric kNN graph with : = 10). On the bottom, the resulting graph
after applying the filter two times with ? = 1.5 is shown. The filter can separate the inner,
more dense cluster from the outer data points.

3.2.4 Distance of Incoming Edges Filter (DoIEF)

Similar to the EDF, this filter considers the length of edges. However, unlike the aforemen-
tioned, this filter focuses on each node separately and uses the directed kNN graph. The
filter considers all incoming edges of a node and therefore requires a calculation of the
reverse kNN relationships based on the directed kNN graph in advance. We classify the
incoming edges of a node, i.e., edges connecting nodes of the reverse kNN set of the node,
as unwanted if their length exceeds a threshold C. The threshold C is defined as: C = ` + ? · f,
where ` is the average edge length, and f is the standard derivation of the edge lengths. This
filter is used for separating outliers or boundary nodes from other connected components.
The intuition behind this filter is that nodes with long edges to their k-nearest neighbor are
likely to be outliers or at least probably not part of the cluster to which that neighbor is
currently connected. We use the incoming edges for this filter because this is more restrictive
than using the outgoing edges. The RkNN and the kNN relationship are not symmetric,
i.e., every node has the same number of outgoing edges, but not every node has incoming
edges. If we took the outgoing edges, every node in the whole graph would be considered,
including those that do not belong to the kNN set of any other node. However, by taking
the incoming edges, we limit the considered nodes to those that are part of the kNN set of
at least one other node and thus decrease the computational costs and the probability of
deleting wanted edges. Figure 1(d) shows a symmetric kNN graph as input on the top, which
was generated with : = 10 on the Compound dataset. The result after the first application
of the DoIEF with ? = 2 is shown on the bottom. The illustration shows that the DoIEF
deletes edges that connect boundary points of different clusters.

3.3 Combination of Filter Results

We present two different filter strategies: using filters sequentially and using filters in
parallel. The former applies filters consecutively, using results from the previous filter as
input for the next filter. Filters can be applied multiple times, and different types of filters
can be concatenated. As filters are applied on each connected component separately, an

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 183

10 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

iterative application of the same filter often leads to better results than a one-time application
with relatively high respectively low threshold values. In the beginning, there might be
only one component connecting all points. Iterative filters can consider different cluster
structures, and the individual clusters can develop selectively. The second strategy embodies
the classical cluster ensemble approach’s central idea, where different clustering algorithms
are performed on the same input, and afterward, a consensus between the different results is
determined. We adopt this idea for our concept by applying different filters in parallel on
the same input graph. Each filter determines independently which edges should be deleted.
Afterward, a common consensus is determined, which can be chosen conservatively, e.g.,
all filters must agree to the deletion of an edge to ensure a safe deletion within the final
result, or progressively, e.g., only 50% of filters need to propose the deletion of an edge to
result in a deletion within the final result. Cluster Flow is designed so that the two strategies
can be easily combined.

3.4 Concept Overview and Discussion

Figure 2 abstracts a possible manifestation of the Cluster Flow architecture. A gray box
represents an atomic building block (either the initial graph generation step, one of the
proposed filters, or a consensus component). Important is the graph construction at the
beginning, which is the basis for the further procedure. After this mandatory first step, the
user can apply any filter presented in the previous paragraphs. Interaction possibilities to
tweak parameters and visualizations of intermediate results are integrated at each building
block and enable maintaining the overview at all times. The red, solid framed box indicates
a sequential filter chain, while the blue dotted framed box shows a parallel filter strategy. A
filter always works on the result of the previous building block. Each filter in the parallel
component works on the input from the previous filter independently. Finding a consensus is
also an independent building block that determines how many parallel filters need to agree
upon deleting an edge to delete an edge ultimately. The output of the consensus-building
block results in a subsequent filter’s input, if one is applied, or in this case, as the final result.
We also want to emphasize that the modular design allows storing intermediate results that
do not require recalculation whenever a subsequent filter is updated. With this, it is possible
to try out different parameters without starting from the bottom. The user experience greatly
benefits from this architecture. The experiments were not runtime optimized, but a single
filter’s execution is in the millisecond to second range for the tested datasets. A significant
advantage of our concept is its great flexibility, but in some sense, it might also be challenging
to find a good way to start. We recommend relying on a filter-refinement-like strategy to
start with a fast, non-exact deletion of edges and go over to more costly fine-tuning. The
EDF is the most simple filter in our repertoire and is also runtime-efficient. Though it does
not delete edges between, e.g., clusters of different densities like IDCF, it is a perfect start to
delete many unnecessary edges without complex computations, allowing additional filters
to work on a fraction of the original edges. The EBF is the most complicated filter, which
is well suited to be applied at the end as a refinement step. The combination of filters is

184 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 11

a good strategy for either the start or the end, depending on the goal of the clustering. If
a conservative approach is generally preferred, the combination of filters can be applied
initially, which, depending on the consensus function, deletes only obviously unwanted
edges to prevent premature deletion of edges. However, the combination is also suitable to
serve as a refinement step.

Fig. 2: Design concept of Cluster Flow.

4 Interactive Clustering with Cluster Flow

Due to the modular character and the step-by-step application of the filters, Cluster Flow is
well suited for interactive clustering. As a proof of concept, we implemented a lightweight
tool that provides a simple interface for loading datasets in CSV format, creating and saving
individual projects. Within each project, it is possible to add filters, either at each step for
the sequential case or several filters included in one step for the parallel case. One step is
represented by a tile containing one or more inner cards, which offer a visualization of
the current result on the left and configuration options on the right. For simplicity, each
card offers the option to visualize the current result graph within a 2D view, a 3D view,
or to apply PCA decomposition [Pe01] for dimensionality reduction. The first step within
a project is always the kNN graph generation. Here users can choose the graph type, i.e.,
symmetric or mutual, and the value for : . Users can attach filters to form a chain in which
each filter is executed one after another. Each filter step can be executed and adjusted

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 185

12 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Tab. 1: Evaluation datasets with number of clusters 2 and number of dimensions 3.

Set 1 (Gaussian) Set 2 (Non-Convex) Set 3 (Mixture)

Name 2 3 Size Name 2 3 Size Name 2 3 Size

Cassini3 3 2 1000 Two Moons3 2 2 300 Aggregation[GMT07]4 7 2 788
Cuboids3 4 3 1002 Donutcurves3 4 2 1000 Compound[Za71]4 6 2 399
Hypercube3 8 3 800 Long23 2 2 1000 Pathbased[CY08]4 3 2 300
Cure-t0-2000n-2D3 3 2 2000 Dartboard13 4 2 1000 Lsun3 3 2 400
Pmf3 5 3 649 Donut33 3 2 999 Spiralsquare3 6 2 1500
Twenty3 20 2 1000 Smile23 4 2 1000 Longsquare3 6 2 900
Twodiamonds3 2 2 800 Zelnik13 3 2 299 Dpc3 6 2 1000
Spherical_4_33 4 3 400 Zelnik53 4 2 512 Target3 6 2 770
Zelnik43 5 2 622 Jain[JL05]4 2 2 373 R1_complete5 4 2 600
R15[VRB02]4 15 2 600 Spiral[CY08]4 3 2 312 Mouse6 4 2 500

separately, allowing a high degree of transparency and intervention. However, if a previous
filter parameter has been changed so that the resulting kNN graph changes, all subsequent
filters are recalculated because their input has changed. A traffic-light system indicates
the status of computations. The tool is a local web application written in Python, so it is
platform-independent. We used Flask1 as web framework and SQLite2 for the database.
Figure 3 shows an example screenshot of the interactive tool. Our prototype can reuse
already computed values when chaining filters as far as possible to prevent the calculation
costs from increasing proportionally per added filter and ensure a pleasant, smooth usage. It
fulfills all criteria of [VPRS11] explained in Section 2: (1) robustness, (2) consistency, (3)
novelty, and (4) stability. (1) Cluster Flow is robust, i.e., the ensemble is on average better
than its single components. Especially when looking at complex datasets with diverse types
of clusters, the superiority of combining several filters becomes obvious. (2) Since Cluster
Flow’s consensus strategies are simple operations on sets or majority votes, results are
comprehensibly similar to their components’ results. (3) The combination of filters produces
novel results, which cannot be achieved by a single filter since there are datasets for which
one filter cannot delete all necessary edges for correct clustering, even though another one
could. E.g., datasets containing clusters of different densities and clusters connected by a
chain. Combining both can lead to a perfect result. (4) Using an adequate consensus strategy
reduces the sensitivity regarding noise and outliers.

1 https://palletsprojects.com/p/flask/
2 https://www.sqlite.org/index.html
3 https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/

artificial

4 http://cs.joensuu.fi/sipu/datasets/
5 https://github.com/wahlflo/Datasets
6 https://elki-project.github.io/datasets/

186 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial
https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 13

Fig. 3: Screenshot of the prototypical interactive clustering tool. The top row contains parallel filters
where the green frame indicates that the calculation has been finished. The bottom row shows a single
sequential filter, which is still working.

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 187

14 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Tab. 2: Parameter settings used for Cluster Flow.

Parameter Description Range PFC1 PFC2

6A0?ℎ_CH?4 Type of the generated graph. [symmetric, mutual] symmetric symmetric
: Number of nearest neighbors. [10, 12, 14] 14 14
EDF? Parameter ? of the EDF. [1.5, 2, 2.5, 3] 3 2.5
DoIEF? Parameter ? of the DoIEF. [1.5, 2, 2.5, 3] - 1.5
IDCF? Parameter ? of the IDCF. [2, 3, 4, 5] - 5
EBF? Parameter ? of the EBF. [0.0025, 0.005, 0.0075] 0.0075 0.0075
EBF8 Number of iterations of the EBF. [0, 1, 2, 3, 5, 7, 9] 7 7
Consensus= Number of filters to agree upon deletion. [2, 3] - 2

5 Experiments

5.1 Datasets

We evaluate Cluster Flow on 30 publicly available clustering benchmark datasets as
described in Table 1. We grouped them into three groups based on the type of clusters they
contain: In the first set, data sets contain Gaussian-like clusters, in the second set, they
contain non-convex clusters, and in the third set, they contain a mixture of different types.
Additionally, we evaluate on several high dimensional datasets taken from [FS18] and first
introduced by [FVH06]. These all have 16 clusters and 1024 points, their dimensionality is
3 ∈ [32, 64, 128, 256, 512], and they are called dim032, dim064, dim128, etc.

5.2 Baseline

We want to evaluate our approach on an objective basis. For this, we compare our concept
with relevant graph-based methods and other established clustering methods. More precisely,
we evaluated using the following methods and performed a grid search on the corresponding
parameter settings:

• k-means [Ll82]: ::−<40=B: {2 − 2, . . . , 2 + 2}7
• CHAMELEON: :: [5, 10, 15], "8=(8I4: [2%, 3%], U: [1.5, 2.0, 2.5]

• MkNN clustering: :: {3, 4, . . . , 20}

• Rock [BKS19]: C<0G: [10, 15, 20]

• DBSCAN [Es96]: "8=%>8=CB: {2, 3, . . . , 15}, n : {0.01, 0.02, . . . , 0.4}

• Spectral clustering [VL07]: ::==: {10, 15}, ::−<40=B: {2 − 2, . . . , 2 + 2}7

7 2 stands for the number of ground truth clusters

188 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 15

5.3 (Predefined) Filter Cascades

An essential characteristic of Cluster Flow is its high level of flexibility. To ensure better
reproducibility and comparability, we here describe filter cascades, which consist of a
defined filter composition. The first filter cascade (FC1) solely relies on the sequential
strategy and incorporates the EDF and the EBF. The EDF is applied repeatedly until no
edges are newly classified as unwanted. After that, the EBF is applied multiple times.

The second filter cascade (FC2) relies on a combination of the sequential and the parallel
strategy. The EDF, DoIEF and the IDCF are applied in parallel on the same input dataset.
An edge is classified as unwanted if, at minimum, two of the three filters classified it as
such. Afterward, the EBF filter is applied multiple times. To make our concept as simple
as possible and to obviate time-consuming parameter searches, we also tested both filter
cascades with constant, predefined parameters over differently structured data sets, i.e., in a
fully automatic setting without user interaction. Table 2 summarizes the tested parameters
and their ranges in general as well as the fixed hyper-parameters for the predefined filter
cascades (PFC1, PFC2) that were used in the subsequent analysis. Figure 4 shows the
construction of PFC1 and PFC2 for a better understanding. These two filter cascades follow
different goals. PFC1 is a more progressive approach that tries to remove many edges
directly from the beginning. The EDF is a good choice for this, as the focus is solely on
the distance between two edges without considering the neighborhood. It is also one of
the simplest and fastest filters we propose and thus serves as a good first filter to delete
the most obvious edges. The EBF is more complex but also more powerful since it can
detect bridges between communities. This filter takes more runtime than the other filters,
and we recommend applying it towards the end where a refinement is needed. FC1 could
also be seen as a filter-refinement procedure, where the EDF deletes the most obvious
edges fast, and the EBF fine-tunes the result. PFC2, in contrast, is more conservatively
constructed; that is, in case of doubt, an edge is rather not deleted so as not to cause clusters
to decay prematurely. The parallel building block in the beginning only deletes an edge if
the majority of the three filters agrees upon it to give a more reliable result. The powerful
EBF is then used again for fine-tuning the result. In terms of objective evaluation, PFC1
often performs better, but for sensitive applications where the dataset must not be split up in
too many clusters too fast, PFC2 is a good option.

5.4 Performance with varying parameters

The left part of Table 3 shows the average F1-scores of all evaluated clustering algorithms
for each of the combined sets and for all 30 data sets, whereby we allowed different
hyperparameter values for each experiment, to achieve the best possible results at the dataset
level. The algorithms are sorted in descending order by their total average performance. To
show the importance of the filters, we have evaluated the performance of the kNN graph with
different values for : without any filters (CF in the table). FC1, DBSCAN, FC2, and MkNN

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 189

16 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

(a) PFC1 (b) PFC2

Fig. 4: Structure of predefined filter cascades 1 (PFC1) and 2 (PFC2).

Tab. 3: AVG F1-Score of Cluster Flow compared to the baseline. Left: Performance of all methods
with varying parameters. Right: Performance of the best baseline algorithms, PFC1 and PFC2 with
constant parameters.

Changing Parameters Constant Parameters

Algorithm Set1 Set2 Set3 AVG total Algorithm AVG total

FC1 0.9972 0.9985 0.9754 0.9902 PFC1 0.995
DBSCAN 0.9967 0.9999 0.9716 0.9894 DBSCAN 0.828
FC2 0.9967 0.9938 0.9599 0.9834 PFC2 0.931
MkNN 0.9494 0.9990 0.9029 0.9504 MkNN 0.904
CF (no filters) 0.9224 0.9993 0.7979 0.9065
CHAMELEON 0.8793 0.8377 0.8401 0.8519
Spectral 0.9605 0.6857 0.8153 0.8205
k-means 0.9360 0.6505 0.7407 0.7757
Rock 0.6935 0.6124 0.7326 0.6795

based clustering achieved the best results. On set2, MkNN performed a little bit better
than the kNN clustering approaches. On the other two sets, FC1 and FC2 outperformed
the MkNN clustering significantly. In total, FC1 achieved the best results with an average
F1-score of 0.990, while DBSCAN came second with 0.989. However, FC1, FC2, and
DBSCAN achieved very similar results on all sets apart from small fluctuations. DBSCAN
is known to perform well on many of the selected sets. The goal here was to reveal that
Cluster Flow consistently delivers better or equally strong results, even on data sets with
distributions predestined for DBSCAN or other competitors. However, we also want to
explicitly point out situations where our approach significantly outperforms DBSCAN, i.e.,
identifying clusters with varying densities. Therefore regard Figure 5: (a) shows the best

190 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 17

(a) DBSCAN (b) PFC1

Fig. 5: Qualitative example where PFC1 outperforms DBSCAN as it is able to detect clusters of
varying densities.

clustering result of DBSCAN after testing different parameter settings and (b) shows the
clustering result of the fully automatically PFC1 on a self created dataset8 with varying
densities.

5.5 Performance while maintaining constant parameters

In the previous analysis, we explicitly determined the optimal parameters for each algorithm
and data set individually to achieve the best possible result. However, choosing the right
parameters is a laborious and time-consuming task, especially for laymen, since the optimal
hyperparameters can vary significantly from dataset to dataset. Thus, we evaluated the
performance when using the same parameter settings for all 30 low dimensional data sets.
As baseline we used DBSCAN (n = 0.08, "8=%>8=CB = 3) and MkNN (: = 10), as these
gave the best results in the upper analysis. The right side of Table 3 summarizes the achieved
results of each algorithm constraint to not changing parameters across all 30 benchmark
datasets. Here, PFC1 and PFC2 outperformed the other algorithms. These results show the
potential of predefined filter cascades in general and that PFC1 and PFC2 are well-suited to
obtain a useful clustering without adjusting the parameters, especially without knowing
the type or the distribution of the data in advance. Most algorithms only work for specific
shapes and distributions of clusters but then fail for other cluster forms. In the real world,
however, data distribution is not known in advance, so it is of great importance to offer
clustering algorithms that can achieve consistently good results regardless of the distribution
and shape of the clusters without having to tweak the hyperparameters. While PFC1 is
more progressive in that it deletes all edges considered unwanted, PFC2 offers a more

8 Dataset different_density on https://github.com/wahlflo/Datasets

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 191

https://github.com/wahlflo/Datasets

18 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

conservative approach, where a certain percentage of filters must share a consensus to force
the deletion of edges.

We also performed experiments on the previously described high-dimensional datasets
dim032, dim064, etc., which consist of well-separated, randomly sampled Gaussian clusters.
In total, the F1-scores of PFC1 (0.96, 0.93, 0.95, 0.97, 0.97) were slightly better or equal to
the scores of PF2 (0.95, 0.93, 0.94, 0.94, 0.93). In general, both showed consistently good
results.

6 Conclusion

We developed Cluster Flow, a new advanced concept to cluster data based on kNN
graphs. Our approach’s key components are modularity, which is also the key for offering
intermediate interaction stages, explainability, and simultaneously identifying various cluster
shapes. Experiments on more than 30 benchmark datasets show that the proposed technique
consistently achieves superior results when used interactively, i.e., varying parameters for
different datasets. On top of that, even not seen in an interactive context, the predefined filter
cascades PFC1 and PFC2 can be used as entirely autonomous clustering algorithms that work
fully automatically and achieved remarkable results over various experiments. Non-convex
clusters are found as well as clusters of varying density. The easy to understand concept
allows researchers from all areas with no previous knowledge in clustering to explore, cluster,
and understand the data in depth. Hence, we have shown an efficient clustering concept that
can successfully find diverse clusters and is highly understandable. As the focus of this
paper is developing a concept of how to compose easy steps so that laymen can understand
what their clustering and results mean, we leave a user study for an even more beautiful
visualization and potentially better usability for future work. Additionally, in future work,
one could integrate other data types than numerical data and investigate further filter and
combination methods. Another goal is to generate branches within the interactive clustering
workflow, i.e., to work with several independent intermediate states in parallel or use a
change history. To further support the user in the decision process metadata of the nodes or
other interesting properties could be displayed. Of course, current acceleration methods
like accelerating the kNN graph computation [CLR20] could be integrated, too. For high
dimensional data, kNN could be computed according to the subspace importance [Ba04].

Acknowledgments

This work has been funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities
for its content.

192 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 19

Bibliography
[Ba04] Baumgartner, Christian; Plant, Claudia; Railing, K; Kriegel, H-P; Kroger, Peer: Subspace

selection for clustering high-dimensional data. In: Fourth IEEE International Conference
on Data Mining (ICDM’04). IEEE, pp. 11–18, 2004.

[Ba20] Bae, Juhee; Helldin, Tove; Riveiro, Maria; Nowaczyk, Sławomir; Bouguelia, Mohamed-
Rafik; Falkman, Göran: Interactive Clustering: A Comprehensive Review. ACM Com-
puting Surveys (CSUR), 53(1):1–39, 2020.

[BKS19] Beer, Anna; Kazempour, Daniyal; Seidl, Thomas: Rock - Let the points roam to
their clusters themselves. In: Advances in Database Technology - 22nd International
Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March
26-29, 2019. pp. 630–633, 2019.

[Br97] Brito, MR; Chavez, EL; Quiroz, AJ; Yukich, JE: Connectivity of the mutual k-nearest-
neighbor graph in clustering and outlier detection. Statistics & Probability Letters,
35(1):33–42, 1997.

[CLR20] Chávez, Edgar; Ludueña, Verónica; Reyes, Nora: Heuristics for Computing k-Nearest
Neighbors Graphs. In: Computer Science–CACIC 2019: 25th Argentine Congress of
Computer Science, CACIC 2019, Río Cuarto, Argentina, October 14–18, 2019, Revised
Selected Papers 25. Springer, pp. 234–249, 2020.

[CY08] Chang, Hong; Yeung, Dit-Yan: Robust path-based spectral clustering. Pattern Recognition,
41(1):191–203, 2008.

[Es96] Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei et al.: A density-based
algorithm for discovering clusters in large spatial databases with noise. In: Kdd.
volume 96, pp. 226–231, 1996.

[FJ05] Fred, Ana LN; Jain, Anil K: Combiningmultiple clusterings using evidence accumulation.
IEEE transactions on pattern analysis and machine intelligence, 27(6):835–850, 2005.

[FS18] Fränti, Pasi; Sieranoja, Sami: K-means properties on six clustering benchmark datasets.
Applied Intelligence, 48(12):4743–4759, 2018.

[FVH06] Fränti, Pasi; Virmajoki, Olli; Hautamaki, Ville: Fast agglomerative clustering using a
k-nearest neighbor graph. IEEE transactions on pattern analysis and machine intelligence,
28(11):1875–1881, 2006.

[GMT07] Gionis, Aristides; Mannila, Heikki; Tsaparas, Panayiotis: Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1(1):4–es, 2007.

[GN02] Girvan, Michelle; Newman, Mark EJ: Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[HHL10] Hahmann, Martin; Habich, Dirk; Lehner, Wolfgang: Visual decision support for en-
semble clustering. In: International Conference on Scientific and Statistical Database
Management. Springer, pp. 279–287, 2010.

[HKF04] Hautamaki, Ville; Karkkainen, Ismo; Fränti, Pasi: Outlier detection using k-nearest
neighbour graph. In: Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004. volume 3. IEEE, pp. 430–433, 2004.

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 193

20 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

[JL05] Jain, Anil K; Law, Martin HC: Data clustering: A user’s dilemma. In: International
conference on pattern recognition and machine intelligence. Springer, pp. 1–10, 2005.

[KHK99] Karypis, George; Han, Eui-Hong; Kumar, Vipin: Chameleon: Hierarchical clustering
using dynamic modeling. Computer, 32(8):68–75, 1999.

[Li15] Liu, Hongfu; Liu, Tongliang; Wu, Junjie; Tao, Dacheng; Fu, Yun: Spectral ensemble
clustering. In: Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining. pp. 715–724, 2015.

[Ll82] Lloyd, Stuart: Least squares quantization in PCM. IEEE transactions on information
theory, 28(2):129–137, 1982.

[MHVL07] Maier, Markus; Hein, Matthias; Von Luxburg, Ulrike: Cluster identification in nearest-
neighbor graphs. In: International Conference on Algorithmic Learning Theory. Springer,
pp. 196–210, 2007.

[MLH09] Maier, Markus; Luxburg, Ulrike V; Hein, Matthias: Influence of graph construction on
graph-based clustering measures. In: Advances in neural information processing systems.
pp. 1025–1032, 2009.

[Pe01] Pearson, Karl: LIII. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[SB14] Sardana, Divya; Bhatnagar, Raj: Graph clustering using mutual K-nearest neighbors. In:
International Conference on Active Media Technology. Springer, pp. 35–48, 2014.

[SG02] Strehl, Alexander; Ghosh, Joydeep: Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. Journal of machine learning research, 3(Dec):583–617,
2002.

[SM00] Shi, Jianbo; Malik, Jitendra: Normalized cuts and image segmentation. Departmental
Papers (CIS), p. 107, 2000.

[SRS00] Sridhar, Ramaswamy; Rastogi, Rajeev; Shim, Kyuseok: Efficient algorithms for mining
outliers from large data sets. In: International Conference on Management of Data:
Proceedings of the 2000 ACM SIGMOD international conference on Management of
data: Dallas, Texas, United States. volume 15, pp. 427–438, 2000.

[VL07] Von Luxburg, Ulrike: A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[VPRS11] Vega-Pons, Sandro; Ruiz-Shulcloper, José: A survey of clustering ensemble algorithms.
International Journal of Pattern Recognition and Artificial Intelligence, 25(03):337–372,
2011.

[VRB02] Veenman, Cor J.; Reinders, Marcel J. T.; Backer, Eric: A maximum variance cluster
algorithm. IEEE Transactions on pattern analysis and machine intelligence, 24(9):1273–
1280, 2002.

[Wu13] Wu, Junjie; Liu, Hongfu; Xiong, Hui; Cao, Jie: A theoretic framework of k-means-based
consensus clustering. In: Twenty-Third International Joint Conference on Artificial
Intelligence. 2013.

[Za71] Zahn, Charles T: Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on computers, 100(1):68–86, 1971.

194 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

cba

Herausgeber et al. (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 11

When Bears get Machine Support: Applying Machine
Learning Models to Scalable DataFrames with Grizzly

Steffen Kläbe1, Stefan Hagedorn2

Abstract: The popular Python Pandas framework provides an easy-to-use DataFrame API that
enables a broad range of users to analyze their data. However, Pandas faces severe scalability issues in
terms of runtime and memory consumption, limiting the usability of the framework. In this paper
we present Grizzly, a replacement for Python Pandas. Instead of bringing data to the operators
like Pandas, Grizzly ships program complexity to database systems by transpiling the DataFrame
API to SQL code. Additionally, Grizzly offers user-friendly support for combining different data
sources, user-defined functions, and applying Machine Learning models directly inside the database
system. Our evaluation shows that Grizzly significantly outperforms Pandas as well as state-of-the-art
frameworks for distributed Python processing in several use cases.

1 Introduction

Python has become one of the most widely used programming language for Data Science
and Machine Learning. According to the TIOBE index the languages popularity has steadily
grown and was awarded language of the year in 2007, 2010, and 20183. The popularity
obviously comes from its easy-to-learn syntax which allows rapid prototyping and fast
time-to-insight in data analytics.

Python’s success is also founded in the vast amount of libraries that help developers in
their tasks. Nowadays, the most popular framework for loading, processing, and analyzing
data is the Pandas library. Pandas had a huge success as it has connectors to read data in
different file formats and represents it in a unified DataFrame abstraction. The DataFrame
implementation keeps data in memory and comes with a variety of operators to filter,
transform, join the DataFrames or executing different kinds of analytical operations on the
data. However, the in-memory processing of Pandas comes with serious limitations and
drawbacks:

• Data sizes are limited to the main memory capacity of the client machine, as there is
no way of automatic disk-spilling and buffer management as found in almost every
database systems.

1 Technische Universität Ilmenau, Germany, steffen.klaebe@tu-ilmenau.de
2 Technische Universität Ilmenau, Germany, stefan.hagedorn@tu-ilmenau.de
3 https://www.tiobe.com/tiobe-index/python/, October 2020

cba doi:10.18420/btw2021-10

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 195

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-10

12 Steffen Kläbe, Stefan Hagedorn

• Even if the data to process resides in a database system on a powerful server, Pandas
will load all data onto the data scientist’s computer for processing. This is not only
time consuming, but one can also assume that a companies sales table will quickly
become larger than the memory of the data scientist’s work station.
• Operations on a Pandas DataFrame often create copies of the DataFrame instead of
performing the operation in place, occupying additional precious and limited memory.

In order to solve the memory problems, many users try to implement their own buffer
manager and data partitioning strategies to only load parts of the original input file. However,
we believe that scientists trying to find answers in the data should not be bothered with data
management and optimization tasks, but this should rather be addressed by the storage and
processing system.

Besides data analytics, Machine Learning models have become more and more popular
during recent years. There are numerous frameworks for Python to create, train, and
apply artificial neural network models on some input data. Often, these Machine Learning
frameworks directly support Pandas DataFrames as input data. However, the programming
effort to apply these models to data situated in arbitrary sources is high and not all
users trained the models themselves, but want to use existing pre-trained models in their
applications. This use case is therefore also of high importance in the field of data analytics,
but not yet integrated into Pandas in an easy-to-use way.

Contribution In this paper we present our Grizzly4 framework, which provides a
DataFrame API similar to Python Pandas, but instead of shipping the data to the program,
the program is shipped to where the data resides.

In [Hag20] we sketched our initial idea of the Grizzly framework, a transpiler to generate
SQL queries from a Pandas-like API. We argue that for many scenarios data is already
stored in a (relational) database and used for different applications. Therefore, analysts
using this data should neither be bothered with learning SQL to access this data nor with
implementing buffer management strategies to be able to process this data with Pandas in
Python. In this paper we present an extension to the initial overview in [HK21] by providing
API extensions and make the following contributions:

• We present a framework that provides a DataFrame API similar to Pandas and
transpiles the operations into SQL queries, moving program complexity to the
optimized environment of a DBMS.
• The framework is capable of processing external files directly in the database by
automatically generating code to use DBMS specific external data source providers.
This especially enables the user to join files with the existing data in the database
directly in the DBMS.

4 Available on GitHub: https://github.com/dbis-ilm/grizzly

196 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 13

• User-defined functions (UDFs) are also shipped to the DBMS by exploiting the
support of the Python language for stored procedures of different database systems.
By automatically generating the UDF code to apply the models to the data, Grizzly
enables users to apply already trainedMachine Learningmodels, e.g., for classification
or text analysis to the data inside the database in a scalable way.

The remainder of the paper is organized as follows: We discuss related work and compare
existing systems with a Pandas-like DataFrameAPI in Section 2. In Section 3 we present the
architecture of our Grizzly framework as well as the transpilation of DataFrame operations
to SQL code. Afterwards the important features of Grizzly are explained in detail, namely
the external data source support in Section 4, the UDF support in Section 5 and the model
join feature in Section 6. We evaluate the performance impact and scalability of Grizzly in
Section 7 before concluding in Section 8.

2 Related work
There have been several systems proposed to translate user programs into SQL. The RIOT
project [ZHY09] proposed the RIOT-DB to execute R programs I/O efficiently using a
relational database. RIOT can be loaded into an R program as a package and provides new
data types to be used, such as vectors, matrices, and arrays. Internally objects of these types
are represented as views in the underlying relational database system. This way, operations
on such objects are operations on views which the database system eventually optimizes
and executes. Another project to perform Python operations as in-database analytics is
AIDA [DDK18], but focuses mainly on linear algebra with NumPy as an extension besides
relational algebra. The AIDA client API connects to the AIDA server process running in the
embedded Python interpreter inside the DBMS (MonetDB) to send the program and retrieve
the results. AIDA uses its TabularData abstraction for data representation which also serves
to encapsulate the Remote Method Invocation of the client-server communication.

Several projects have been proposed to overcome the scalability and performance issues
in the Pandas framework. These projects can be categorized by their basic approaches of
optimizing the Python execution or transpiling the Pandas programs into other languages.
Modin [Pet+20] is the state-of-the-art system for the Python optimization approach. By
offering the same API as Pandas, it can be used as a drop-in-replacement. In order to
accelerate the Python execution, it transparently partitions the DataFrames and compiles
queries to be executed on Ray [Mor+18] or Dask5, two execution engines for parallel and
distributed execution of Python programs. Additionally, Modin supports memory-spillover,
so (intermediate) DataFrames may exceed main memory limits and are spilled to persistent
memory. This solves the memory limitation problem of Pandas. However, Modin also uses
eager execution like Pandas and still requires the client machine to consist of powerful
hardware, since data from within a database system is fetched onto the client, too.

5 https://www.dask.org/

Applying Machine Learning Models to Scalable DataFrames with Grizzly 197

14 Steffen Kläbe, Stefan Hagedorn

In the field of systems that use the transpiling approach, Koalas6 brings the Pandas API
to the distributed spark environment using PySpark. It uses lazy evaluation and relies on
Pandas UDFs for transpiling. The creators of the Pandas framework also tackle the problem
of the eager client side execution in IBIS7. IBIS collects operations and converts them into
a (sequence of) SQL queries. Additionally, IBIS can connect to several (remote) sources
and is able to run UDFs for Impala or Google BigQuery as a backend. Though, tables from
two different sources, such as different databases, cannot be joined within an IBIS program.
With a slightly modified API, AFrame [SC19] transpiles Pandas code into SQL++ queries
to be executed in AsterixDB. In contrast, in Grizzly we produce standard SQL which can be
executed by any SQL engine and use templates provided in a configuration file to account
for vendor-specific dialects.

An approach to integrate Machine Learning into columnar database systems was proposed
in [Raa+18]. The approach uses handcrafted Python UDFs to train the model inside the
database, store the model as a DBMS-specific internal serialized object and apply the
model by deserializing it again. In comparison, Grizzly supports pre-trained, portable model
formats, automatically generates code to apply the models and also introduces a caching
approach to cache the model, which reduces the loading (or deserialization) overhead and is
therefore of major importance for deep and complex neural networks.

The main features of the presented systems are compared to Grizzly in Tab. 1. Grizzly
also uses the approach of transpiling Python code to SQL, making it independent from the
actual backend system and therefore being more generic than Koalas or AFrame. Similar
to the proposed systems, Grizzly provides an API similar to the Pandas DataFrame API
with the goal to abstract from the underlying execution engine. However, Grizzly extends
this API with two main features that clearly separates it from the other systems. First, it
provides in-DBMS support for external files. This enables server-side joins of different
data sources, e.g. database tables and flat files. As a consequence, performance increases
significantly for these use cases compared to the client-side join of the sources that would be
necessary in the other systems. Additionally, the result of the server-side join remains in the
database, enabling subsequent operations to be also executed in the DBMS instead of the
client machine. Second, Grizzly offers an easy-to-use API for applying Machine Learning
models directly in the DBMS. Compared to the other systems where this feature could be
simulated by handcrafting UDF code to apply the model on the client side, Grizzly exploits
the UDF feature of DBMS and automatically generates code to cache the loaded model in
memory and apply the pre-trained models directly on the server side. Furthermore, applying
the model requires several (Python) functions, which can only be realized non-optimally
using handcrafted UDFs. Again, as results remain in the DBMS, subsequent operations can
be executed efficiently by the DBMS before returning the result to the client. Besides the
performance aspect, this feature makes it significantly easier to apply Machine Learning
models to the data compared to handcrafted UDFs.

6 https://www.github.com/databricks/koalas
7 http://ibis-project.org/

198 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 15

Modin Koalas IBIS AFrame Grizzly
Approach Python

optimization
Transpiling Transpiling Transpiling Transpiling

Backends Ray, Dask Spark Arbitrary
DBMS with
SQL-API

AsterixDB Arbitrary
DBMS with
SQL-API

Query
Evaluation

Eager Lazy Lazy Lazy Lazy

UDF
Support

On local
Pandas
DataFrames

Over
Pandas UDFs

In-DBMS
execution for
Impala and
BigQuery

In-DBMS
execution for
AsterixDB

In-DBMS
execution for
Postgres and
Vector

Ext. File
Support

Read to
DataFrame

Read to
DataFrame

Read to
DataFrame

Read to
DataFrame

In-DBMS
support using
ext. tables/
foreign data
wrappers

ML Model
Support

Handcrafted
UDFs

Handcrafted
UDFs

Handcrafted
UDFs

API for
Scikit models

API for
ONNX,
Tensorflow,
PyTorch

Tab. 1: Comparison of available systems with Pandas-like API.

3 Architecture
There are twomajor paradigms of data processing: data shipping and query shipping [Kos00].
While in the data shipping paradigm, as found in Pandas, the possibly large amount of
data is transferred from the storage node to the processing node, in query shipping the
query/program is transferred to where the data resides. The latter is found in DBMSs, but
also in Big Data frameworks such as Apache Spark and Hadoop.

In this section we discuss the architecture of our Grizzly framework which is designed to
maintain the ease-of-use of the data shipping paradigm in combination with the scalability
of the query shipping approach. Grizzly is available as Open Source and in its core it consists
of a DataFrame implementation and a Python-to-SQL transpiler. It is intended to solve the
scalability issues of Pandas by transforming a sequence of operations on DataFrames into
a SQL query that is executed by a DBMS. However, we would like to emphasize that the
code generation and execution is realized using a plug-in design so that code generator for
other languages than SQL or execution engines other than relational DBMSs (e.g., Spark or
NoSQL systems) can be implemented and used. In the following, we show how SQL code
generation is realized using a mapping between DataFrames and relational algebra.

Figure 1 shows the general (internal) workflow of Grizzly. As in Pandas, the core data
structure is a DataFrame that encapsulates operations to compute result data. However,
in Grizzly a DataFrame is only a hull and it does not contain the actual data. Rather,
the operations on a DataFrame only create specific instances of DataFrames, such as

Applying Machine Learning Models to Scalable DataFrames with Grizzly 199

16 Steffen Kläbe, Stefan Hagedorn

Code
Generator

DBMS

R
S ⨝

𝜎

co
n
stru

cte
d

o
p

e
ra

to
r tre

e

DB connection

r = g.load("R")
s = g.load("S")

import grizzly
 as g

j = r.join(s)
j = j[j['a'] == 1]

if 2 > 1:

else:
 ...

DataFrame API

SQL
Plugin

Executor Service
Query

Fig. 1: Overview of Grizzly’s architecture.

ProjectionDataFrame or FilterDataFrame, to track the operations. A DataFrame
instance stores all necessary information required for its operation as well as the reference
to the DataFrame instance(s) from which it was created. This lineage graph basically
represents the operator tree as found in relational algebra. The leaves of this operator tree are
the DataFrames that represent a table (or view) or some external file. Inner nodes represent
transformation operations, such as projections, filters, groupings, or joins, and hence, their
results are DataFrames again. The actual computation of the query result is triggered via
actions, whose results are directly needed in the client program, e.g., aggregation functions
which are not called in the context of group by clause. To view the result of queries that
do not use aggregation, special actions such as print or show are available to manually
trigger the computation.

Building the lineage graph of DataFrame modifications, i.e., the operator tree, follows
the design goal of lazy evaluation behavior as it is also found in the RDDs in Apache
Spark [Zah+12]. When an action is encountered in a program, the operator tree is traversed,
starting from the DataFrame on which the action was called. While traversing the tree, for
every encountered operation its corresponding SQL expression is constructed as a string
and filled in a SQL template. For this, we apply a mapping of Pandas operations to SQL
statements. This mapping is shown in Table 2. Based on the operator tree, the SQL query
can be constructed in two ways:

1. generate nested sub-queries for every operation on a DataFrame, or
2. incrementally extend a single query for every operation found in the Python program.

In Grizzly we implement variant (1), because variant (2) has the drawback to decide whether
the SQL expression of an operation can be merged into the current query or a sub-query has
to be created. Though, the SQL parser and optimizer in the DBMSs have been implemented
and optimized to recognize such cases. As an example, Figure 2 shows how a Python script

200 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 17

Python Pandas SQL

Projection df[’A’]
df[[’A’,’B’]]

SELECT a FROM ...
SELECT a,b FROM ...

Selection df[df[’A’] == x] SELECT * FROM ...WHERE a = x
Join pandas.merge(df1, df2,

left_on=’x’, right_on=’y’,
how=’inner|outer|right|left’)

SELECT * FROM df1
inner|outer|right|left join df
ON df1.x = df2.y

Grouping df.groupby([’A’,’B’]) SELECT * FROM ...GROUP BY a,b
Sorting df.sort_values(by=[’A’,’B’]) SELECT * FROM ...ORDER BY a,b
Union df1.append(df2) SELECT * FROM df1

UNION ALL SELECT * FROM df2
Intersection pandas.merge(df1, df2,

how=’inner’)
SELECT * FROM df1
INTERSECTION SELECT * FROM df2

Aggregation df[’A’].min()
max()|mean()|count()|sum()

SELECT min(a) FROM ...
max(a)|avg(a)|count(a)|sum(a)

df[’A’].value_counts() SELECT a, count(a) FROM ...
GROUP BY a

Add column df[’new’] = df[’a’] + df[’b’] SELECT a + b AS new FROM ...

Tab. 2: Basic Pandas DataFrame operations and their corresponding SQL statements.
load table (t0)
df = grizzly.read_table("tab")
projection to a,b,c (t1)
df = df[['a','b','c']]
selection (t2)
df = df[df.a == 3]
group by b,c (t3)
df = df.groupby(['b','c'])

(a) Source Python code.

tab
t0

π
a,b,c

𝜎
a = 3

𝛾
b,c

t1

t2

t3

(b) Operator tree.

SELECT t3.b, t3.c FROM (
SELECT * FROM (

SELECT t1.a, t1.b, t1.c FROM (
SELECT * FROM tab t0

) t1
) t2 WHERE t2.a = 3

) t3 GROUP BY t3.b, t3.c

(c) Produced SQL query.

Fig. 2: Steps for transpiling Python code to a SQL query: The operations on DataFrames (a) are
collected in an intermediate operator tree (b) which is traversed to produce a nested SQL query (c).

is transformed into a SQL query. Although the nested query imposes some overhead to the
optimizer for unnesting in the DBMS and bears the risk that it fails to produce an optimal
query, we believe they are very powerful and mostly well tested, so that it is not worth it
to re-implement such behavior in Grizzly. The generated query is sent to a DBMS using
a user-defined connection object, as it is typically used in Python and specified by PEP
2498. Grizzly produces standard SQL with vendor-specific statements to create functions
or access external data as we will discuss below. The vendor-specific statements are taken
from templates defined in a configuration file. By providing templates for the respective
functions one can easily add support for arbitrary DBMSs. We currently support Actian
Vector and PostgreSQL.

Besides the plain SQL queries, Grizzly needs to produce additional statements in order to

8 https://www.python.org/dev/peps/pep-0249/

Applying Machine Learning Models to Scalable DataFrames with Grizzly 201

18 Steffen Kläbe, Stefan Hagedorn

set up user-defined functions and connectors to external data sources. If the Python code
uses, e.g., UDFs, this function must be created in the database system before it can be used
in the query. Thus, Grizzly produces a list of so-called pre-queries. A pre-query to create
a UDF is the CREATE FUNCTION statement including the corresponding function name,
input and output parameters as well as the function body of course. For an external data
source, the pre-query creates the necessary DBMS-specific connection to the data source,
as described in the next section.

One design goal of the Grizzly framework is to serve as a drop-in replacement for Pandas
in the future. Being under active development, we did not yet reach a state of full API
compatibility. For operations that are not supported yet or can not be expressed in SQL, one
might fallback to either Pandas operations by triggering the execution inside the DBMS
and proceed with the intermediate result in Pandas, or exploit the Python UDF feature of
modern DBMS to execute operations as described in Section 5.

4 Support for External Data Sources
In typical data analytics tasks data may be read from various formats. On the one hand,
(relational) database systems are used to store and archive large data sets like company
inventory data or sensor data in IoT applications. On the other hand, data may be created by
hand, exported from operational systems or shared as text files like CSV or JSON. For these
files it is not always necessary, intended or beneficial to import them into a database system
first, as they might be only for temporary usage or need to be analyzed before loading them
into the database. As a consequence, there is a gap between tables stored in a database
system and plain files in the filesystem, and both sources need to be combined. In Pandas,
one would need to read the data from the database as well as the text files and combine them
in main memory. Since it is our goal to shift the complete processing into the DBMS, the
files need to be transferred and imported into the DBMS transparently. In our framework,
we achieve this by using the ability of many modern DBMS to define a table over an external
file as defined in the SQL/MED standard from 2003 [Mel+02].

As an example, PostgreSQL offers foreign data wrappers (FDW) to access external sources
such as files, but also other database systems. A PostgreSQL distribution includes FDWs for,
e.g., CSV files, files in HDFS as well as other relational and non-relational DBMSs. Own
FDWs for other sources can easily be installed as extensions. Internally, the planner uses the
access costs to decide for the best access path, if such information is provided by the FDW.

Besides PostgreSQL, Actian Vector offers the external table feature, which is realized using
the Spark-Vector-Connector9. Here Vector handles external tables as meta data in the catalog
with a reference to a file path in the local filesystem or HDFS. Whenever a query accesses
an external table, Vector exploits the capabilities of Apache Spark to read data efficiently in
parallel, leading to fast scans of external tables.

9 https://github.com/ActianCorp/spark-vector

202 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 19

In Grizzly, we offer easy-to-use operations to access external data sources. These operations
return a DataFrame object and are the leaves of the operator lineage graph described in
Section 3, similar to ordinary database tables. Here a user has to specify the data types of
the data in the text files as well as the file path. During SQL code generation, a pre-query
is automatically generated that creates the external table/foreign data wrapper for each of
these leaves. As the syntax of these queries might be vendor-specific, we maintain templates
to create an external data source in the configuration file. The pre-queries are then appended
to the pre-query list described in Section 3, so they are ensured to be executed before the
actual analytical query is run. In the actual query, these tables are then referenced using
their temporary names.

An important point to highlight here is that the database server must be able to access the
referenced file. We argue that with network file systems mounts, NAS devices or cloud file
systems this is often the case. Even actively copying the file to the server is not a problem
since such data files are rather small, compared to the amount of data stored in the database.

5 Support for Python UDFs
Another important part of data analytics is data manipulation using user-defined functions.
In pandas, users can create custom functions and apply them to DataFrames using the map
function. Such functions typically perform more or less complex computations to transform
values or combine values of different columns. These UDFs are a major challenge when
transpiling Pandas code to SQL, as their definitionsmust be read and transferred to theDBMS.
This requires that the Python program containing the Pandas operations can somehow access
the function’s source code definition. In Python, this can be done via reflection tools10. Most
DBMS support stored procedures and some of them, e.g., PostgreSQL and Actian Vector,
also allow to define them using Python (language PL/Python). This way, functions defined
in Python are processed by Grizzly, transferred to the DBMS and dynamically created as a
(temporary) function. Note that most systems only offer scalar UDFs at the moment, which
produce a single output tuple from a single input tuple. Consequently, Grizzly only supports
this class of functions and does not offer any support for table UDFs, which produce an
output tuple for an arbitrary number of inputs.

The actual realization of the UDF support is hereby different for different DBMS and shows
some limitations that needs to be considered. First, Python UDFs are only available as a
beta version in PostgreSQL and Actian Vector. The main reason for this is that there are
severe security concerns about using the feature, as especially sandboxing a Python process
is difficult. As a consequence, users must have superuser access rights for the database or
demand access to the feature from the administrator in order to use the Python UDF feature.
While this might be a problem in production systems, we argue that this should not be an
issue in the scientific use cases where Python Pandas is usually used for data analytics.

10 Using the inspect module: https://docs.python.org/3/library/inspect.html

Applying Machine Learning Models to Scalable DataFrames with Grizzly 203

20 Steffen Kläbe, Stefan Hagedorn

Second, the actual architecture of running Python code in the database differs in the systems.
While some systems start Python processes per-query, other systems keep processes alive
over the system uptime. The per-query approach has the advantage that it offers isolation in
the Python code between queries, which is important for ACID-compliance. As a drawback,
the isolation makes it impossible to cache user-specific data structures in order to use it
in several queries, which is of major importance when designing the model join feature
in Section 6. On the contrary, keeping the Python processes alive allows to cache such a
user context and use it in several queries. However, this approach violates isolation, so UDF
code has to be written carefully to avoid side effects that might impact other queries.

Although the DBMS supports Python as a language for user defined code, SQL is a strictly
typed language whereas Python is not. In order to get type information from the user’s
Python function, we make use of type hints, introduced in Python 3.5. A Python function
using type hints looks like this:

def repeat(n: int, s: str) -> str:
r = n*s # repeat s n times
return r

Such UDFs can be used, e.g., to transform, or in this example case combine, columns using
the map method of a DataFrame:

apply repeat on every tuple using columns name, num as input
df['repeated'] = df[['num','name']].map(repeat)

Using the type hints and a mapping between Python and SQL types, Grizzly’s code generator
can produce a pre-query to create the function on the server. For PostgreSQL, the generated
code is the following:

CREATE OR REPLACE FUNCTION repeat(n int, s varchar(1024))
RETURNS varchar(1024)
LANGUAGE plpython3u
AS 'r = n*s # repeat s n times
return r'

Currently, we statically map variable-sized Python types to reasonable big SQL types, which
is a real limitation and should be improved in the future. The command to create the function
in the system is vendor-specific and therefore taken from the config file for the selected
DBMS. We then extract the name, input parameters, source code and return type using
Python’s inspect module and use the values to fill the template. The function body is also
copied into the template. Similar to external data sources in Section 4, the generated code is
appended to the pre-query list and executed before the actual query. The map operation is
translated into a SQL projection creating a computed column in the actual query:

SELECT t0.*, repeat(t0.num, t0.name) as repeated
FROM ... t0

As explained above, the previous operation from which df was derived will appear in the
FROM clause of this query.

204 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 21

6 Machine Learning Model Join
In Grizzly, we expand the API of Python Pandas with the functionality to apply different
types of Machine Learning models to the data. In the following, we name this operation of
applying a model to the data a “model join”. Instead of realizing this over a map-function
in Pandas, which leads to a client-side execution of the model join and therefore faces the
same scalability issues as Pandas, we exploit the recent upcome of user-defined functions
in popular database management systems and realize the model join functionality using
Python UDFs. As a consequence, we achieve a server-side execution of the model join
directly in the database system, allowing automatic parallel and distributed computation.

Note that we talk about the usage of pre-trained models in this section, as database systems
are not optimized for model training. However, applying the model directly in the database
has the advantage that users can make use of the database functionality to efficiently perform
further operations on the model outputs, e.g., grouping or filters. Additionally, users may
use publicly available, pre-trained models for various use cases. For our discussions, we
assume that necessary Python modules are installed and the model files are accessible from
the server running the database system. In the following, we describe the main ideas behind
the model join concept as well as details for the supported model types, their characteristics
and their respective runtime environments, namely PyTorch, Tensorflow, and ONNX.

6.1 Model join concept
Performing a model join on an DataFrame triggers the generation of a pre-query as
described in Section 3, which performs the creation of the respective database UDF. As the
syntax for this operation is vendor-specific, the template is also taken from the configuration
file. The generated code hereby has four major tasks:

1. Load the provided model.
2. Convert incoming tuples to the model input format.
3. Run the model.
4. Convert the model output back to an expected output format.

While steps 2-4 have to be performed for every incoming tuple, the key for an efficient model
join realization is caching the loaded model in order to perform the expensive loading only if
necessary. (Re-)Loading the model is necessary if it is not cached yet or if the model changed.
These cases can be detected by maintaining the name and the timestamp of the model file.
However, such a caching mechanism must be designed carefully under consideration of the
different, vendor-specific Python UDF realizations discussed in Section 5.

We realize the caching mechanism by attaching the loaded model, the model file name and
the model time stamp to a globally available object, e.g., an imported module in the UDF.
The model is loaded only if the global object has no model attribute for the provided model

Applying Machine Learning Models to Scalable DataFrames with Grizzly 205

22 Steffen Kläbe, Stefan Hagedorn

file yet or the model has changed, which is detected by comparing the cached timestamp
with the filesystem timestamp. In order to avoid that accessing the filesystem to get the file
modification timestamp is performed for each call of the UDF (and therefore for every tuple),
we introduce a magic number into the UDF. The magic number is randomly generated for
each query by Grizzly and cached in the same way as the model metadata. In the UDF code,
the cached magic number is compared to the magic number passed and only if they differ,
the modification timestamps are compared and the cached magic number is overwritten by
the passed one. As a result, the timestamps are only compared once during a query, reducing
the number of file system accesses to one instead of once-per-tuple. With this mechanism,
we automatically support both Python UDF realizations discussed in Section 5, although
the magic number and timestamp comparisons are not necessary in the per-query approach,
as it is impossible here that the model is cached for the first tuple. We exploit the isolation
violation of the second approach that keeps the Python process alive and carefully design
the model join code to only produce the caching of the model and respective metadata as
intended side effects.

6.2 Model types
Grizzly offers support for PyTorch11, Tensorflow12 and ONNX13 models. All three model
formats have in common, that the user additionally needs to specifymodel-specific conversion
functions for their usage in order to specify how the expected model input is produced and
the model output should be interpreted. These functions are typically provided together with
the model by creators. With �, �, �, � being lists of data types, the conversion functions
have signatures 8=_2>=E : �→ � and >DC_2>=E : � → �, if the model converts inputs
of type � into outputs of type �. With � and � being set as type hints, the overall UDF
signature can be infered as �→ � as described in Section 5. With this, applying a model
to data stored in a database can be done easily and might look like the example in Listing 1.

As the conversion functions are typically provided along with the model, users only need
to write a few lines if code. It is thereby mandatory to specify the input parameter types
of the input_to_model function as well as the output type of the model_to_output
function. In this example, the resulting UDF would have signature str -> str. Running
this example, Grizzly automatically generates the UDF code and triggers its creation in the
DBMS before executing the actual query. The produced query along with the pre-query to
setup the UDFs in PostgreSQL is shown in Listing 2.
The actual code for model application is generated from templates and varies for the different
model types described in the following.

PyTorch The PyTorch library is based on the Torch library, originally written in Lua.
PyTorch was presented by Facebook in 2016 and has gained popularity as it enabled

11 https://www.pytorch.org/
12 https://www.tensorflow.org/
13 https://www.github.com/onnx/

206 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 23

def input_to_model(a: str):
...

def model_to_output(a) -> str:
...

df = grizzly.read_table('tab') # load table
apply model to every value in column 'col'
using provided input and output conversion functions
store model output in computed column 'classification'
df['classification'] = df['col'].apply_model("/path/to/model", input_to_model,

model_to_output)↩→
group by e.g. predicted classes
df = df.groupby(['classification']).count()
df.show()

Listing 1: Python code of model join example

CREATE OR REPLACE FUNCTION apply_model_123(col varchar(1024))
RETURNS varchar(1024)
LANGUAGE plpython3u AS 'def input_to_model(a: str):

...

def model_to_output(a) -> str:
...

#apply model here
' parallel safe;

SELECT t2.classification, count(*) FROM (
SELECT *, apply_model_123(t1.col) as classification FROM (

SELECT * FROM tab t0
) t1

) t2 GROUP BY t2.classification

Listing 2: Generated SQL code of model join example

programs to utilize GPUs and integrate other famous Python libraries. In its core, PyTorch
consists of various libraries for Machine Learning that have different functionality.

A trained model can be saved for later reuse. For saving, two options exist. The first option
is to serialize the complete model to disk. This has the disadvantage that the model class
definition must be available for the runtime when the model is loaded. In Grizzly, this would
mean that users who want to use a pretrained model in their program also need the source
code of the model class. The second option for storing a trained model is to store only the
learned parameters. Although this option is more efficient during deserialization, the user
code must explicitly create an instance of the model class. Thus, the source code of the
model class must be available for the end user. Additionally, in order to instantiate the model

Applying Machine Learning Models to Scalable DataFrames with Grizzly 207

24 Steffen Kläbe, Stefan Hagedorn

class, users need to provide initial parameters values to the model’s constructor which may
be unknown and hard to set for inexperienced users.

Besides the challenges for using PyTorch with foreign models, Grizzly allows to load
PyTorch models where only the learned parameters have been stored (option 2 from above).

Tensorflow Tensorflow is a another famous framework for building, training and running
Machine Learning models. Tensorflow models are directed, acyclic graphs (DAGs) that are
statically defined. With placeholder variables attached to nodes of the model graph, inputs
and outputs can be mapped to the graph nodes. A tensorflow.Session object is used as
the main entrance point and allows to run the model after configuring.

During the training phase, arbitrary states of the model graph can be exported as a
checkpoint, which is a serialized format of the graph and its properties. Grizzly supports
these checkpoints as an model type and generates code to restore the model graph as
well as the tensorflow.Session object. However, users have to know the names of
placeholders defined in the model in order to map inputs and outputs to the respective model
nodes. Additionally, users can specify a vocabulary file to translate inputs to an expected
model input format if necessary. As these restrictions require in-depth knowledge about
the model, Grizzly offers additional possibilities to automatically generate the conversion
functions. Nevertheless, this harms the ease-of-use slightly.

Starting with version 2, Tensorflow offers different possibilities to exchange trained models
with the introduction of the Tensorflow Hub14 library or support for the Keras15 framework.
In the future, we aim at integrating support for these formats in Grizzly.

ONNX ONNX is a portable and self-contained format for model exchange, that is able to
be executed with different runtime backends like Tensorflow, PyTorch or the onnxruntime16.
The self-containment and the portability of models makes the ONNX format easy to use,
which meets the design goals of Grizzly. In the generated model code, we rely on the
onnxruntime as execution backend in order to be independent from Tensorflow or PyTorch.
A broad collection of pre-trained models along with their conversion functions is available
in the Model Zoo17.

7 Evaluation
In this Section, we compare our proposed Grizzly framework against Pandas version and
Modin, the current state-of-the-art framework for distributed processing of Pandas scripts,
as the other related systems presented in Section 2 do not offer all evaluated features. We
present different experiments for data access as well as applying a machine learning model

14 https://www.tensorflow.org/hub
15 https://www.keras.io/
16 https://www.github.com/microsoft/onnxruntime
17 https://www.github.com/onnx/models

208 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 25

(a) Execution time (b) Main memory consumption

Fig. 3: CPU and RAM consumption for Pandas, Modin and our proposed Grizzly framework.

in a model join. Our experiments were run on a server consisting of a Intel(R) Xeon(R) CPU
E5-2630 with 24 threads at 2.30 GHz and 128 GB RAM. This server runs Actian Vector
6.0 in a docker container, Python 3.6 and Pandas 1.1.1. Additionally we used Modin version
0.8 and experimentally configured it to the best of our knowledge, resulting in using Ray as
the backend, 12 cores and out-of-core execution. For fairness, we ran the Pandas/Modin
experiments on the same machine. As this reduces the transfer costs when reading tables
from the database server, this assumption is always in favor of Pandas and Modin.

During our experiments, we discovered a bug in the parallel read_sql implementation of
Modin, which produces wrong results for partitioned databases. The developers confirmed
the issue and planned a fix for the next release. However, we used the parallel read_sql in
order to not penalize Modin in the experiments, not considering the wrong results. This
assumption is therefore also in favor of the Modin results.

7.1 Data access scalability
In this first experiment, we want to prove our initial consideration of Pandas’ bad scalability
with a minimal example use case. We used Actian Vector as the underlying database system
and ran a query that scans data with varying size from a table or a csv file and performs a
min operation on a column to reduce the result size. This way, we can compare the basic
read_sql and read_csv operations of Pandas and Modin against Grizzly.

Figure 3 shows the execution time as well as the memory consumption of the evaluated
query. For sql table access, Pandas shows an enormous runtime, linearly growing to
800 s for a data set size of 5 GB. Modin is significantly faster than Pandas and scales better.
However, Grizzly is able to answer this query in a constant, sub-second runtime, as only the
result has to be transfered to the client instead of the full dataset. Additionally, this query
can be answered by querying small materialized aggregates [Moe98], which are used by
default as an additional index structure in Vector. In comparison to Pandas/Modin, this

Applying Machine Learning Models to Scalable DataFrames with Grizzly 209

26 Steffen Kläbe, Stefan Hagedorn

shows that with Grizzly queries can also benefit from index structures and other techniques
to accelerate query processing used in database systems. For csv access, we can observe a
similar behavior of Modin being faster and scaling better than Pandas due to its parallel
read_csv implementation. Grizzly again shows a nearly constant runtime slightly higher
than the sql table access but faster than Modin and Pandas. The main reason for this
is that Grizzly uses the external table feature of Actian Vector, which is based on Apache
Spark. As a consequence, the runtime is composed of the fixed Spark delays like startup or
cleanup [WK15] and a variable runtime for reading the file in parallel. As data sized are
small here, the fixed Spark delays dominate the runtime.

Regarding memory consumption, Pandas again scales very poorly and memory consumption
increases very fast, with the read_sql_table consuming more memory than the read_csv
operation for the same data size. As a result, the memory consumption might exceed the
available RAM of a client machine even for a small dataset size. In comparison, Modin
consumes even more memory than Pandas for read_sql and read_csv respectively,
potentially caused by the multiple worker threads. The memory consumption of Grizzly
is mainly impacted by the result size, which is very small due to the choice of the query.
However, this is only half of the truth, as Grizzly shifts the actual work to the DBMS which
also consumes memory. Nevertheless, modern DBMS are designed for high scalability and
are able to handle out-of-memory cases with buffer eviction strategies in the bufferpool or
disk-spilling operators for database operators with a high memory consumption. Therefore,
this is the ideal environment to run complex queries, as it is not limited to the available
memory of the machine. Note that Modin also supports out-of-memory situations by
disk-spilling. Another advantage of Grizzly is that the DBMS can run on a remote machine
while the actual Grizzly script is executed from a client machine, which is then allowed to
have an arbitrary hardware configuration while still being able to run complex analytics.

7.2 Combining data sources
An important task of data analysis is combining data from different data sources. We
investigated a typical use case, namely joining flat files with existing database tables. We
base our example on the popular TPC-H benchmark dataset [BNE14] on scale factor SF100,
which is a typical sales database and is able to generate inventory data as well as update
sets. We draw the following use case: The daily orders (generated TPC-H update set)
are extracted from the productive system and provided as a flat file. Before loading them
into the database system, a user might want to analyze the data directly by combining
it with the inventory data inside the database. As an example query, we join the daily
orders as a flat file with the customer table (1.5M tuples) from the database and determine
the number of orders per customer market segment using an aggregation. The evaluated
Python scripts are similar except the data access methods. While Pandas and Modin use
(parallel) read_sql and read_csv for table and flat file access, Grizzly uses a read_table
and a read_external_table call. This way, an external table is generated in Actian
Vector, encapsulating the flat file access. Afterwards, the join as well as the aggregation are
processed in the DBMS, and only the result is returned to the client.

210 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 27

Fig. 4: Query runtime with database tables and
external sources

Fig. 5: Runtime for model join query.

For the experiment, we varied the number of tuples in the flat files. The runtime results in
Figure 4 show that Grizzly achieves a significantly better runtime than Pandas and Modin.
Additionally, it shows that Pandas and Modin suffer from a bad read_sql performance, as
the runtime is already quite slow for small number of external tuples. Regarding scalability
we can observe that runtime in Pandas grows faster with increasing number of external
tuples than in Grizzly, caused by the fast processing of external tables in Actian Vector.
Overall we can conclude that Grizzly significantly outperforms Python Pandas and Modin
in this experiment and offers the possibility to process significantly larger datasets.

7.3 Model Join
There are various applications and use cases where machine learning models can be
applied. As an example use case, we applied a sentiment analysis to a string column. We
therefore used the IMDB dataset [Maa+11], which contains movie reviews, and applied
the state-of-the-art RoBERTa model [Liu+19] with ONNX. The investigated query applies
the model to the review column and groups on the output sentiment afterwards, counting
positive and negative review sentiments. In Grizzly, we therefore use model join feature
described in Section 6, while we handcrafted the function to apply the model for Modin and
Pandas and invoked the function over the map function on the DataFrames after reading
from the database.

Figure 5 shows the resulting runtimes for different number of review tuples. First, we can
observe that Grizzly significantly outperforms Modin and Pandas in terms of runtime and
scalability. For increasing data size Modin is also significantly faster and scales better
than Pandas, while showing some overhead over Pandas for the very small data sets, as
parallelism here introduces more overhead than benefit. While Modin achieves a speedup
by splitting the DataFrames into partitions and applying the machine learning model in
parallel, Grizzly achieves the performance improvement by applying the model directly
in the database system. In Actian Vector, we used a parallel UDF feature and configured
it for 12 parallel UDF workers, showing the best results for our setup in this experiment.

Applying Machine Learning Models to Scalable DataFrames with Grizzly 211

28 Steffen Kläbe, Stefan Hagedorn

Additionally, with the Python implementation of Actian Vector, which keeps the Python
interpreters alive between queries, it is possible to reuse a cached model from a former
query, leading to an additional performance gain of around 5 seconds.

7.4 Resume
In our evaluation, we proved the superiority of our proposed Grizzly framework over Pandas
and Modin, the existing state-of-the-art distributed DataFrame framework. In different
experiments for data access, the combination of different data sources and the application of
pre-trained machine learning models to a dataset we showed that Grizzly has significantly
better query performance as well as scalability, as most operations are executed directly
in the database system. This is reinforced by the fact that query performance benefits
from index structures of the DBMS, while these indexes do not have any impact when
only reading data in a Pandas script and performing operations on the client. Furthermore,
Grizzly enables complex data analysis tasks even on client machines without powerful
hardware by pushing operations towards database servers. Consequently, queries are not
limited to client memory, but are executed inside database systems that are designed to
handle out-of-memory situations.

8 Conclusion
In this paper we presented Grizzly, a scalable and high-performant data analytics framework
that offers a similar DataFrame API like the popular Pandas framework. As Pandas faces
some severe scalability problems in terms of memory consumption and performance, Grizzly
transpiles the easy-to-write Pandas code into SQL in order to push complexity to arbitrary
database systems. This way, query execution is done in a scalable and highly optimized
environment that is able to handle large datasets and complex queries. Additionally, by
pushing queries towards remote database systems, complex analytics can be performed on
client machines without extensive hardware requirements.

We extended the Pandas DataFrame API with several features in order to perform typical
data analytics challenges in an efficient and easy-to-use way. First, Grizzly provides support
for external data sources by exploiting the respective feature of several database systems and
automatically generating code to create necessary tables or wrappers. This way, different
sources like database tables or flat files can be combined and processed directly inside
the DBMS instead of loading them into the client, improving performance and scalability.
Second, Grizzly makes use of the recent upcome of Python user-defined functions in database
systems in order to transparently push the execution of such functions on DataFrames into
the DBMS. Third, applying pre-trained Machine Learning models to data is supported
by Grizzly by automatically generating UDF code for Tensorflow, PyTorch or ONNX
models. Pushing these operations to the database system not only increases performance
and scalability, but also enables efficient processing of further operations on the model
outputs, as they still remain in the database system. This allows a seamless integration of
Machine Learning functionalities towards the vision of ML systems [Rat+19].

212 Steffen Kläbe, Stefan Hagedorn

Applying Machine Learning Models to Scalable DataFrames with Grizzly 29

In our evaluation, we compared our proposed Grizzly framework to Pandas and Modin, the
current state-of-the-art framework for distributed execution of Pandas-like DataFrames. In
our experiments on data access scalability, combining different data sources, and applying
Machine Learning models we proved that Grizzly significantly outperforms both systems
while offering higher scalability and an easy-to-use API.

For the execution of UDFs and the application of Machine Learning models we rely on the
Python UDF realization of database vendors. Most of them released Python UDFs only
as a beta version until now as they faced security issues as well as performance issues. In
the future, we monitor the development of this feature and aim at actively removing UDF
execution performance as a choke point of query performance.

Additionally, we plan to investigate a different way of handling heterogeneous data sources
in the future. Users may use hybrid warehouse approaches consisting of cloud database
instances as well as on-premise instances to ensure data privacy and data security. This
challenges a frontend framework like Grizzly to query multiple database instances and
combine the results on the client side. In a conceptual view, we plan to extend Grizzly
with an embedded query engine, e.g. DuckDB [RM19] or MonetDBLite [RM18], and a
query optimizer and compare it against existing solutions like the Avalanche hybrid data
warehouse18 or Polystores [Gad+16]. In the query graphs that Grizzly is based on, join
operations between different database instances can then be seen as “pipeline breakers”,
where data needs to be fetched from both join sides and combined locally. Using the query
optimizer, computation effort needs to be pushed into the database instances as much as
possible to reduce intermediate result sizes, transfer costs and the client-side processing
costs.

Grizzly can be used in Jupyter Notebooks, where operations are typically performed
incrementally. This incremental way of computation offers possibilities to further optimize
the Grizzly workflow by, e.g., exploiting materialized views for intermediate results.

References

[Moe98] Guido Moerkotte. “Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing”. In: PVLDB. Ed. by Ashish Gupta, Oded
Shmueli, and Jennifer Widom. Morgan Kaufmann, 1998, pp. 476–487.

[Kos00] Donald Kossmann. “The State of the Art in Distributed Query Processing”. In:
ACM Comput. Surv. 32.4 (Dec. 2000), pp. 422–469. issn: 0360-0300.

[Mel+02] Jim Melton et al. “SQL/MED - A Status Report”. In: SIGMOD Rec. 31.3
(2002), pp. 81–89.

[ZHY09] Yi Zhang, Herodotos Herodotou, and Jun Yang. “RIOT: I/O efficient numerical
computing without SQL”. In: CIDR. 2009.

18 https://www.actian.com/analytic-database/avalanche/

Applying Machine Learning Models to Scalable DataFrames with Grizzly 213

30 Steffen Kläbe, Stefan Hagedorn

[Maa+11] Andrew L. Maas et al. “Learning Word Vectors for Sentiment Analysis”. In:
Proc. of the 49th Annual Meeting of the Assoc. for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA, 2011, pp. 142–150.

[Zah+12] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing”. In: USENIX. 2012.

[BNE14] Peter A. Boncz, Thomas Neumann, and Orri Erling. “TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark”. en. In:
Performance Characterization and Benchmarking. Springer, 2014, pp. 61–76.

[WK15] K. Wang and M. M. H. Khan. “Performance Prediction for Apache Spark
Platform”. In: HPCC/CSS/ICESS. 2015, pp. 166–173.

[Gad+16] Vĳay Gadepally et al. “The BigDAWG Polystore System and Architecture”. In:
HPEC (Sept. 2016), pp. 1–6.

[DDK18] Joseph Vinish D’Silva, Florestan D. De Moor, and Bettina Kemme. “AIDA
- Abstraction for advanced in database analytics”. In: VLDB 11.11 (2018),
pp. 1400–1413. issn: 21508097.

[Mor+18] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging AI Applica-
tions”. en. In: arXiv:1712.05889 [cs, stat] (Sept. 2018). arXiv: 1712.05889.

[RM18] MarkRaasveldt andHannesMühleisen.MonetDBLite: An Embedded Analytical
Database. 2018. arXiv: 1805.08520 [cs.DB].

[Raa+18] Mark Raasveldt et al. “Deep Integration of Machine Learning Into Column
Stores”. In: EDBT. OpenProceedings.org, 2018, pp. 473–476.

[Liu+19] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
2019. arXiv: 1907.11692 [cs.CL].

[RM19] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analytical
Database”. en. In: SIGMOD. Amsterdam, Netherlands: ACM Press, 2019,
pp. 1981–1984. isbn: 978-1-4503-5643-5.

[Rat+19] A. Ratner et al. “SysML: The New Frontier of Machine Learning Systems”. In:
CoRR abs/1904.03257 (2019). _eprint: 1904.03257.

[SC19] Phanwadee Sinthong and Michael J. Carey. “AFrame: Extending DataFrames
for Large-Scale Modern Data Analysis”. In: Big Data. Dec. 2019, pp. 359–371.

[Hag20] Stefan Hagedorn. “When sweet and cute isn’t enough anymore: Solving
scalability issues in Python Pandas with Grizzly”. In: CIDR. 2020.

[Pet+20] Devin Petersohn et al. “Towards Scalable Dataframe Systems”. en. In:
arXiv:2001.00888 [cs] (June 2020). arXiv: 2001.00888.

[HK21] Stefan Hagedorn and Steffen Kläbe. “Putting Pandas in a Box”. In: CIDR. 2021.

214 Steffen Kläbe, Stefan Hagedorn

Data Integration, Semantic Data Management,
Streaming

cba

Stefan Lerm, Alieh Saeedi, Erhard Rahm (Hrsg.): BTW21 Dresden,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Extended Affinity Propagation Clustering for Multi-source
Entity Resolution

Stefan Lerm1, Alieh Saeedi2, Erhard Rahm3

Abstract: Entity resolution is the data integration task of identifying matching entities (e.g. products,
customers) in one or several data sources. Previous approaches for matching and clustering entities
between multiple (>2) sources either treated the different sources as a single source or assumed that
the individual sources are duplicate-free, so that only matches between sources have to be found.
In this work we propose and evaluate a general Multi-Source Clean Dirty (MSCD) scheme with
an arbitrary combination of clean (duplicate-free) and dirty sources. For this purpose, we extend a
constraint-based clustering algorithm called Affinity Propagation (AP) for entity clustering with clean
and dirty sources (MSCD-AP). We also consider a hierarchical version of it for improved scalability.
Our evaluation considers a full range of datasets containing 0% to 100% of clean sources. We compare
our proposed algorithms with other clustering schemes in terms of both match quality and runtime.
The proposed algorithms outperform previous methods and achieve an excellent precision in MSCD
scenarios.

Keywords: Entity Resolution; Clustering; Affinity Propagation; MSCD-AP

1 Introduction

Entity Resolution (ER), also referred to as record linkage or deduplication, is a main
data integration task. It is used to identify entities, such as specific costumer or product
descriptions, in one or several data sources that refer to the same real-world entity. Most
previous ER approaches focus on finding such matches in either a single source or between
two sources. Multi-source ER aims at finding matching entities in an arbitrary number of
sources which is more challenging than dealing with 1-2 sources since not only the degree
of heterogeneity but also the variance in data quality generally increases with the number of
sources.

There are two main phases for multi-source ER [Ra16, Sa18, Ch19]. First, similar pairs of
entities are determined over all sources as match candidates. These can be recorded in a
similarity graph where each vertex represents an entity and each edge a match relationship
between two entities. Edges may have a similarity score reflecting the match probability. In
the second phase, the matches are determined by a clustering algorithm on the similarity
graph. All matching entities from any source referring to the same real-world entity are
1 University of Leipzig & ScaDS.AI Dresden/Leipzig, s.lerm@studserv.uni-leipzig.de
2 University of Leipzig & ScaDS.AI Dresden/Leipzig, saeedi@informatik.uni-leipzig.de
3 University of Leipzig & ScaDS.AI Dresden/Leipzig, rahm@informatik.uni-leipzig.de

cba doi:10.18420/btw2021-11

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 217

mailto:s.lerm@studserv.uni-leipzig.de
mailto:saeedi@informatik.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-11

2 Stefan Lerm, Alieh Saeedi, Erhard Rahm

grouped in one cluster. There are many possible approaches for this entity clustering,
especially the ones that have been proposed for clustering matches in a single source
[Ha09, SPR17]. In the special case of duplicate-free (clean) sources each cluster contains
at most one entity per source so that the cluster size is limited by the number of sources.
Cluster algorithms that utilize this restriction have been shown to achieve better match
quality than the more general approaches [NGR16, SPR18].

In this paper, we investigate a Multi-Source Clean Dirty (MSCD) entity clustering approach
that can utilize clean sources but can also deal with dirty sources so that only a fraction
(possibly 0%) of the sources have to be clean. The goal is to achieve better match quality
than with a general clustering scheme when there are clean sources while avoiding the
limitation of requiring that all sources have to be clean. While one could first deduplicate
dirty sources and then apply a clustering for clean sources, the effort to determine these
source-specific deduplication approaches is immense and perhaps not completely successful.
We experimented with such an approach for a data integration challenge [OSR19] but it
performed worse than matching dirty sources. Consequently, it is more flexible to support a
mix of both dirty and clean sources. For this purpose, we propose extensions to the Affinity
Propagation (AP) clustering approach [FD07] that converts the problem of clustering into a
constraint optimization problem. Our extension MSCD-AP adds a new constraint to AP to
deal with clean sources. We also consider a hierarchical variation of MSCD-AP for improved
scalability, provide parallel implementations based on Apache Flink and comparatively
evaluate the new approaches.

We make the following contributions:

• We are the first to consider a mix of clean and dirty sources for multi-source
entity resolution and propose an extended version of affinity propagation clustering,
MSCD-AP, for this purpose.
• For improved scalability, we propose a hierarchical variation, MSCD-HAP, and

provide parallel implementations for the clustering schemes based on Apache Flink.
• We perform a comprehensive evaluation of the match quality, runtimes and scalability

of the new approaches for different datasets and compare them with previous clustering
schemes.

After a discussion of related work, we give a brief summary of the standard AP algorithm in
Section 3. Section 4 presents the new clustering method MSCD-AP in detail while Section 5
describes the scalable approach MSCD-HAP. In Section 6 we present our evaluation.

2 Related Work

Entity resolution has been the subject of a large amount of research as can be seen from
many surveys and books such as [Ch12, Ch19, KR10, GM12, Pa19]. For larger datasets it is
imperative to apply blocking techniques to reduce the number of comparisons of entity pairs.

218 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 3

There are also many ways to determine match candidates, e.g. match rules requiring that a
combined similarity of selected attributes exceed some threshold or supervised approaches
using training data with both matching and non-matching pairs of entities to determine a
match classifier.

This paper focuses on the final step of the ER pipeline, entity clustering on a similarity
graph, to group together all matches of a real-world object. Clustering can improve match
quality over the binary links in the similarity graph as it is possible to transitively infer
additional links or to eliminate links that are unlikely to be correct. There are numerous
approaches for clustering and also for entity clustering. Most previous entity clustering
approaches focus on finding matches in a single (dirty) source. Example approaches include
Connected Components, Center and Merge-Center clustering [HM09], Affinity Propagation
[FD07], Ricochet clustering [WB09], Markov clustering [VD00] and Correlation clustering
[BBC04]. [Ha09] comparatively evaluated many of these algorithms for a single source.

In [SPR17] we have shown that these approaches can be adapted for multi-source entity
clustering and we comparatively evaluated several approaches for such a setting. We further
developed new multi-source entity clustering approaches such as CLIP [SPR18], that work
for clean (duplicate-free) data sources and can outperform the more general approaches
for dirty sources. In our evaluation we will compare the new MSCD entity clustering
approaches based on affinity propagation with these previous methods for dirty and clean
sources. The previous clustering approaches including CLIP have been integrated into
the FAMER4 framework [Sa18] for multi-source entity resolution, that is used for our
comparative evaluation. All match and clustering approaches in FAMER are implemented
on top of Apache Flink to achieve a parallel entity resolution on a cluster of machines in
order to reduce runtimes and improve scalability to larger datasets.

3 Affinity Propagation Clustering

The Affinity Propagation clustering algorithm [FD07] groups entities by identifying
exemplars. An exemplar is the entity that best represents all the entities of a cluster. The
non-exemplar entities are assigned to the most appropriate exemplar. The goal of AP is to
find exemplars and cluster assignments in a way that the sum of similarities inside clusters
are maximized.

In [GF09], AP is solved by the iterative max-sum algorithm on a factor graph. The factor
graph is a bipartite graph between the exemplar assignments (variable nodes) and factor
nodes representing two constraints, called the g- and h-constraints. Figure 1a illustrates
such a factor graph for AP. Variable nodes and factor nodes are represented as circles and
rectangles respectively. For clustering = entities, the factor graph is represented by a =2

binary matrix B. The variable 18 9 has the value 1 if the datapoint (entity) 9 is the exemplar

4 https://dbs.uni-leipzig.de/research/projects/object_matching/famer

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 219

https://dbs.uni-leipzig.de/research/projects/object_matching/famer

4 Stefan Lerm, Alieh Saeedi, Erhard Rahm

(a)

(b)

(c)

(d)

Fig. 1: a) Factor graph of AP [AKK19] b) AP clustering example c) Binary matrix d) Oscillation

of 8. The factor nodes 68 and ℎ 9 assure a valid clustering by applying the constraints. The
g-constraint enforces that a datapoint has to have exactly one exemplar. It means in each
row of the binary matrix there must be exactly one variable with value 1. The h-constraint
assures that a datapoint selects itself as its exemplar, if it is already chosen as exemplar
by at least one other datapoint. It means, if there exists at least one 1 in a column of the
binary matrix, then the diagonal element 1 9 9 of that column must be set to 1 too. The cluster
assignments are based on the similarities between entities so that similarity values are also
represented as factor nodes (factor node B8 9 provides the similarity information between the
entities 8 and 9).

Figure 1b illustrates an example clustering of AP where five entities 0-4 from three
(differently colored) sources - , . and / are grouped in three clusters. The corresponding
output binary matrix in Figure 1c shows that entities 0, 2 and 3 are the exemplars of the
three clusters. As described above, the rows of the binary matrix illustrate the exemplar
(cluster) assignment while the columns depict the clusters. The group of 1 values in column
9 represents the entities of the cluster with exemplar 9 .

AP aims at finding a cluster assignment maximizing the sum of similarities within clusters.
This optimization problem can be formulated with the energy function [AKK19] shown
in Equation (1). Maximizing the function requires to find an optimal configuration of the
variables in B so that the sum of the similarities between entities and their exemplars is
maximized and the two constraints are met. An exact maximization of the energy function
is computationally intractable because a special case of this maximization problem is the
NP-hard k-median problem [FD07].

� (B) =
∑
8 9

B8 918 9 +
∑
8

68 (B(8, :)) +
∑
9

ℎ 9 (B(:, 9)) (1)

220 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 5

with

68 (B(8, :)) =

0 if
∑
9

18 9 = 1

−∞ otherwise
ℎ 9 (B(:, 9)) =

{
0 if 1 9 9 = max

8
18 9

−∞ otherwise

The proposed iterative max-sum algorithm uses several parameters that affect the clustering
result and that deal with the problem of non-convergence. The most important parameter is
called preference. It defines the self-similarity B88 of an entity 8. The higher the preference
value is chosen the more likely the entity becomes an exemplar. Parameters to deal with
non-convergence are the noise level and the damping factor _. AP suffers from oscillation
between solutions that are similarly well suited for optimizing the energy function. For
the similarity matrix in the top portion of Figure 1d, the symmetrical similarity values
between entities 0 and 1 make both equally well suited as an exemplar. In such a situation,
AP does not converge and oscillates between the two solutions with either entity 0 or 1 as
the exemplar as shown in the bottom part of Figure 1d. Oscillation is avoided by adding a
tiny amount of noise to the similarity values. The damping factor has a similar goal and is
related to the used message passing implementation for the iterative computation. It leads to
an adaptation of values exchanged between iterations. If oscillations nevertheless occur, the
preference or the damping factor must be adapted (see next section).

4 MSCD Affinity Propagation
To cluster mixed datasets of clean and dirty sources, we propose an extension to AP called
MSCD-AP. Since clean sources have no duplicates, every cluster should have at most one
entity of a clean source. This is now controlled by an additional clean-source consistency
constraint. It means that in each column of the binary assignment matrix B, value 1 is
allowed for at most one (row) entity of a clean source.

Figure 2a shows a possible clustering of MSCD-AP for the running example when sources
- and . are clean. There are four source-consistent clusters with at most one entity per
clean source. In the corresponding binary matrix, each column has at most one entity with
value 1 per clean source. For example, the column (cluster) for exemplar entity 1 has two
associated entities (1 and 2) from different sources.

Our proposed clean-source consistency constraint is expressed in Equation (2). It uses
function C to add a large penalty to the extended energy function in Equation (3) when the
constraint is violated. The constraint requires that for a column 9 the value 1 is allowed for
at most one datapoint from a clean source &.

C& 9 (B(8 ∈ &, 9) =

0 if
∑
8 ∈ &

18 9 ≤ 1

−∞ otherwise
(2)

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 221

6 Stefan Lerm, Alieh Saeedi, Erhard Rahm

(a)

(b) (c)

Fig. 2: a) MSCD-AP clustering example b) Messages of the MSCD-AP factor graph
c) The factor graph for MSCD-AP for the running example. The sources - and . are clean.

� (B) =
∑
8 9

B8 918 9 +
∑
8

68 (B(8, :)) +
∑
9

ℎ 9 (B(:, 9)) +
∑
&

∑
8∈&, 9

C& 9 (B(8, 9)) (3)

Figure 2c illustrates the extension of the AP factor graph to cluster our running example
data. For clean sources - and . , additional factor nodes CG and CH (marked in red and blue)
are added to each column of the binary matrix. The factor node CG 9 assures the clean-source
consistency constraint for source - and column 9 . It is connected to the variable node 18 9
only if entity 8 is from data source - . The clean-source constraint may get in conflict with
the ℎ-constraint of AP. The ℎ-constraint enforces a datapoint to choose itself as its own
exemplar, if it is selected by at least one other datapoint. So the diagonal element 1 9 9 of
column 9 is enforced to be 1, if there is any other 1 in that column. On the other hand,
the clean-source constraint enforces 1 9 9 to be 0, if another datapoint of the same clean
source selected it as its exemplar. So the two constraints enforce different values for 1 9 9

and thus the algorithm may struggle to converge. This situation is simply avoided in our
implementation by not having links between entities of the same clean source which is a
default feature of the linking component of FAMER.

For the traditional AP clustering, the max-sum optimization has been implemented by
a message passing algorithm [GF09]. The messages are exchanged between factor and
variable nodes of the factor graph to reflect the mutual dependencies within an iterative

222 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 7

process. The messages are computed differently depending on whether the recipient node
is a variable node or a factor node. Figure 2b shows the messages exchanged between the
nodes of the new factor graph of MSCD-AP. The grey-colored factor nodes enforce the g
and h constraints while the new factor node C (marked in orange) applies the clean-source
consistency constraint via the \ and W messages.

We build on the formulae from [Gi12] to update messages for the original constraints and
specify the new message formulas for our MSCD extension. In the max-sum algorithm,
outgoing messages of a variable node summarize all incoming messages to that node, except
of the node to which the new message will be sent. Due to the new constraint, all outgoing
messages from variable nodes to factor nodes are now modified because the new factor
nodes C& 9 are additional neighbours of 18 9 . As sum of the incoming messages from the
neighbouring nodes, except of the recipient, the modified messages V and d as well as the
new message W are easily deduced as listed in Equation (4) - (6).

The message formulas from factor nodes to variable nodes do not change in AP when a new
factor node is added. Therefore the incoming messages of U (eq. (7)) and [(eq. (8)) remain
unchanged compared to AP. The new incoming message \ from the new factor node C& 9 is
expressed in Equation (9). The more complex derivation of message \ from the max-sum
algorithm is given in the appendix. The variable assignments that maximize the energy
function are calculated by Equation (10).

V8 9 = B8 9 + U8 9 + \8 9 (4) d8 9 = B8 9 + [8 9 + \8 9 (5) W8 9 = B8 9 + U8 9 + [8 9 (6)

U8 9 =

{∑
:≠ 9 max(0, d: 9) 8 = 9

min[0, d 9 9 +
∑

:≠{8, 9 } max(0, d: 9)] 8 ≠ 9
(7)

[8 9 = −max
:≠ 9

V8: (8) \8 9 = <8=(0,−max
:≠8
[W: 9]) (9)

18 9 =

{
1 U8 9 + d8 9 > 0
0 U8 9 + d8 9 ≤ 0

(10)

Algorithm 1 lists the pseudo code of MSCD-AP with focus on the parameter adaptation.
There are several inputs for the algorithm. The clustering problem is defined by the similarity
matrix (and the specification of the clean sources (BA2�= 5 >). _ denotes the damping
factor. The preference can be set separately for dirty (?38AC H) and clean (?2;40=) sources.
Random gaussian noise is added to the similarity values at a decimal position specified by
the =>8B4!4E4;. Parameter adaption for the preference values and the damping factor is
done stepwise by BC4??A4 5 and BC4?3<? . The adaptation steps are real values in (0,1] that
are used to increase the original values towards the maximum 1 or decrease them towards 0.
As algorithm output the binary matrix B describes the exemplar assignment of every entity.

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 223

8 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Algorithm 1: MSCD-AP
Input: (, BA2�= 5 >, _, ?38AC H , ?2;40=, =>8B4!4E4;, BC4??A4 5 , BC4?3<?
Result: B with exemplar assignments

1 repeat
2 initializeMessages();
3 initializeB();
4 modifyS(?38AC H , ?2;40=, =>8B4!4E4;, BA2�= 5 >);
5 for 8C4A0C8>= = 0 : <0G do
6 updateMessages(_);
7 updateB();
8 if isConverged() then break;
9 B>;DC8>=�>D=3 ← isSolutionFound(B);

10 if ¬B>;DC8>=�>D=3 then adaptParameters(BC4??A4 5 , BC4?3<?);
11 until B>;DC8>=�>D=3;

After the initialization of the messages and output matrix (line 2 and 3) the diagonal elements
B 9 9 of the similarity matrix are set to the defined preference values and noise is added
to all similarity values in line 4. The iterative message passing starts in line 5. In each
iteration, the messages are updated in line 6 according to Equation (4) - (8). Additionally, U
and d messages are damped in order to prevent oscillations. Finally in line 7, the binary
matrix values are updated according to Equation (10). If no changes are observed in the
binary matrix after a specific number of iterations, the algorithm converges and is ended
(line 8). Otherwise it ends after a maximal number of iterations. If the algorithm stops
but the solution is not found yet (line 9 and 10), then it has to be restarted with adapted
parameters. For this purpose, function adaptParameters initially decreases the preference
values by preference adaption step (BC4??A4 5) until the minimum value 0. If convergence is
still not reached, the preference values are then increased step by step until the maximum 1
is reached. In case of no success, the preference values are reset to their original values and
the damping factor _ is now increased by damping adaption step (BC4?3<?). This process
continues until the algorithm finds a valid solution.

5 Scalable MSCD Affinity Propagation

Clustering large datasets is a challenge for AP since its time and memory complexity
grows quadratically with the number of entities and thus the data volume5. Liu et al. [Li13]
proposed Hierarchical Affinity Propagation (HAP) to make AP suitable for clustering
large-scale datasets. Following a divide and conquer strategy, HAP clusters the dataset by
executing AP several times on different hierarchy levels.

5 In the case of a sparse similarity matrix, the time complexity reduces to # :;>6 (#) with k being the average
connectivity of the similarity matrix [Zh10].

224 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 9

Fig. 3: HAP for three hierarchy levels �. Circles illustrate local (;) and global (6) exemplars, rectangles
represent partitions.

Figure 3 illustrates the hierarchical clustering for three levels. In the first (lowest) hierarchy
level, the dataset is randomly divided into equal-sized partitions of maximal size " . Then
AP is executed on each partition, resulting into a set of so called local exemplars for each
partition. In the next hierarchy level, the exemplars of the previous level are merged and
again partitioned. This process is repeated until the input size of a hierarchy level is lower or
equal to " . The execution of AP on the top hierarchy level determines the global exemplars
for the dataset. All non-exemplar entities are assigned to the global exemplar with the
highest similarity. Thus AP is executed once for each partition of each hierarchy level with
a complexity of $ ("2).
Unfortunately, applying the hierarchical algorithm for MSCD-AP does not guarantee the
clean-source consistency. This is because, the clustering of local exemplars by MSCD-AP
on intermediate hierarchy levels violates the clean-source consistency when two local
exemplars from a previous level are clustered together although they have associated entities
from the same clean source. A naive solution is to extend each local exemplar with the
source information of the entities assigned to it in the previous hierarchy level. This could
be used in subsequent cluster decisions to avoid that more than one entity of a clean source
is assigned to an exemplar. This approach, however, can lead to poor clustering results. A
bad decision in a lower level of the hierarchy, where an entity of a clean source with a low
similarity is assigned to a local exemplar, can prevent that a much more similar entity from
the respective source is merged at a higher level resulting in poor cluster decisions.

A more promising solution is to assign entities to global exemplars separately for clean
and dirty sources. Initially, HAP is executed using MSCD-AP to determine local and
global exemplars on the partitions. As in HAP, dirty source entities are then assigned to
the exemplars with the highest similarity. By contrast, clean source entities are assigned
using the Hungarian algorithm [Ku55, Mu57]. Given the similarities between these entities
and exemplars, the Hungarian algorithm finds a 1:1 assignment between entities of a clean
source and exemplars (i.e., each exemplar is assigned to at most one entity of a clean source)
so that the overall similarity of all assignments is maximized. If the number of entities
from a clean source exceeds the number of exemplars, the excess points form singleton

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 225

10 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Tab. 1: Overview of evaluation datasets

General information Perfect result
domain entity properties #entity #src type #clusters #links

DS-G geography label, longitude, latitude 3,054 4 MSC 820 4,391
DS-M music artist, title, album, year, length 19,375 5 MSC 10,000 16,250
DS-P1 persons name, surname, suburb, postcode 5,000,000 5 MSC 3,500,840 3,331,384
DS-P2 10,000,000 10 MSC 6,625,848 14,995,973
DS-C camera heterogenous key-value pairs 21,023 23 MSCD 3,910 368,546

clusters. When a global exemplar is from a clean source, the clean-source consistency is
also enforced since there is no similarity link between entities of the same clean source.

The Hungarian algorithm has a computational complexity of O(<:2) for a<× : cost matrix
[Cu16] with : global exemplars and < entities from one clean source. The complexity is
higher compared to AP, but the bipartite matching is executed on small subsets of the =-sized
dataset (<, : � =). Thus the combination of HAP with MSCD-AP and the Hungarian
algorithm is still more suitable for large datasets than MSCD-AP. We call this combination
MSCD-HAP and comparatively evaluate it in the next section.

6 Evaluation

We now evaluate the cluster effectiveness and efficiency of the proposed MSCD extensions
of AP in comparison to standard AP and previous clustering schemes. We first describe the
used datasets from four domains. We then analyze comparatively the effectiveness of the
proposed algorithm. Finally, we evaluate runtime performance and scalability.

6.1 Datasets and Configuration Setup

We evaluate the new approaches with four multi-source datasets of clean sources (MSC)
that have also been used in previous studies [SPR17, SPR18, Sa18]. Table 1 gives an
overview of the datasets from three domains (geography, music, persons) including available
properties and number of entities. For the evaluation of mixed datasets of clean and dirty
sources, we use the dataset of the ACM SIGMOD 2020 Programming Contest6. It contains
approximately 30k product specifications from 24 dirty sources. For our purposes, we
determine a subset called DS-C focussing on camera products (Table 1). We excluded the
source www.alibaba.com because it contains just a few cameras but many non-cameras.
Table 2 lists the 23 remaining sources and their number of entities with and without
duplicates. The matching result of the SIGMOD contest winner [Bl20] is considered as the
ground truth. It achieved f-measure of 99% by extensive domain-specific preprocessing and

6 http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

226 Stefan Lerm, Alieh Saeedi, Erhard Rahm

http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 11

Tab. 2: Overview of camera dataset (DS-C)

Source name ID #entity #entity
dedup.

buy.net 1 358 244
cammarkt.com 2 198 94
www.buzzillions.com 3 832 630
www.cambuy.com.au 4 118 56
www.camerafarm.com.au 5 120 59
www.canon-europe.com 6 164 163
www.ebay.com 7 14,009 3,255
www.eglobalcentral.co.uk 8 190 75
www.flipkart.com 9 118 47
www.garricks.com.au 10 130 69
www.gosale.com 11 895 578
www.henrys.com 12 181 137
www.ilgs.net 13 102 64
www.mypriceindia.com 14 347 279
www.pcconnection.com 15 211 126
www.price-hunt.com 16 327 282
www.pricedekho.com 17 366 325
www.priceme.co.nz 18 740 475
www.shopbot.com.au 19 516 334
www.shopmania.in 20 630 556
www.ukdigitalcameras.co.uk 21 129 73
www.walmart.com 22 195 115
www.wexphotographic.com 23 147 87

sum 21,023 8,123

Tab. 3: MSCD datasets

Name %cln1 cln2 #cln3 #dirt4
DS-C0 0 0 21,023

DS-C26 26 1-6,
8-23 4,868 14,009

DS-C32 32 7 3,255 7,014

DS-C50 50
7, 18,
19,20,
22, 23

4,822 4,786

DS-C62A 62

1, 4, 6
7, 9, 11,
13, 15,

17, 19, 20

5,748 3,536

DS-C62B 62

2, 3, 5,
7, 8, 10,
12, 14,
16, 18,
21-23

5,630 3,478

DS-C80 80 1-12
14-18 6,894 1,719

DS-C100 100 1-23 8,123 0
1 Percentage of entities from clean sources
2 Clean source IDs
3 Number of entities from clean sources
4 Number of entities from dirty sources

matching camera entities against a prepared list of nearly all available cameras in the market.
Our matching and clustering approaches are generic and applicable to different datasets.
Our goal is not to achieve the best possible result but to enable a fair comparison of the
clustering schemes based on reasonably good input similarity graphs for different datasets.

Using DS-C, we create eight datasets with different combinations of clean and dirty sources
and thus different degrees of dirtiness. As shown in Table 3, we name the datasets according
to the percentage of entities from clean sources, where DS-C0 and DS-C100 means that all
entities are from dirty and clean sources, respectively. For the mixed cases, an important
distinction is whether a clean or dirty version of source 7 (www.ebay.com) is considered
because it is the largest source and contains many duplicates. In DS-C62A and DS-C62B,
the clean form of source 7 is included, while all other sources that are clean in 62A are dirty
in 62B and vice versa.

Tab. 4: Linking configurations of clean multi-source datasets

Blocking Key Similarity Function
DS-G prefixLength1 (label) Jaro-Winkler (label) & geographical distance
DS-M prefixLength1 (album) Trigram (title)

DS-P1/P2 prefixLength3 (surname) + prefixLength3 (name) avg (Trigram (name) + Trigram (surname)
+ Trigram (postcode) + Trigram (suburb))

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 227

12 Stefan Lerm, Alieh Saeedi, Erhard Rahm

The blocking and matching configurations for the clean datasets are listed in Table 4 and
correspond to the ones in previous studies [SPR18, Sa18]. For the camera dataset, we
extracted the manufacturer name, a list of model names, manufacturer part number (mpn),
european article number (ean), digital and optical zoom, camera dimensions, weight, product
code, sensor type, price and resolution from the heterogeneous product specifications. In
order to reduce the number of comparisons, standard blocking with a combined key of
manufacturer name and model number is applied. Within these blocks, all pairs with exactly
the same model name, mpn or ean are classified as matches. We assign a similarity value
to the matched pairs determined from a weighted average of the character-3Gram Dice
similarity of string values and a numerical similarity of numerical values (within a maximal
distance of 30%).

6.2 ER Quality of Clustering Algorithms

To evaluate the quality of the clustering results, we use the standard metrics precision, recall
and their harmonic mean, f-measure w.r.t. the links of the perfect cluster results (last column
of table 1). We compare the quality of AP and the proposed MSCD-AP approaches with
seven previous clustering schemes comprised in FAMER [Sa18]. The CLIP approach is
tailored to clean sources. The other six algorithms are general approaches for dirty sources
(connected components, correlation clustering CCPivot, two variants of star clustering
and two variants of center clustering). We also provide the quality of the input similarity
graph (without clustering) in our figures. For AP and MSCD-AP we manually determined
suitable parameter configurations. We use the interval [0.01, 0.7] for preference values and
set a higher preference value for clean sources than for dirty sources to choose exemplars
preferably from clean sources. The damping factor is set to 0.5 and noise is added to the
similarity values from the third decimal place. For the smaller datasets DS-G, DS-M and
DS-C, we used a partition size of 1000 while for the person datasets we apply MSCD-HAP
with partition size 100 to reduce runtimes. When the size of a connected component is
smaller than the partition size, MSCD-AP is executed. Higher similarity thresholds result in
fewer links and smaller components that are mostly executed without partitioning. Because
DS-G and DS-C consist of small components, partitioning is not used. Thus AP and
MSCD-AP are executed. In DS-P the hierarchical algorithms are used. For reasons of space
the results of DS-P1 are omitted, as they are very similar to those of DS-P2.

We first analyze cluster quality for the datasets with only clean sources. Figure 4 shows
the results for the three MSC datasets for different similarity thresholds to generate the
input similarity graph. As expected, the f-measure results are best for the CLIP approach
tailored to ER for clean sources. However, the proposed MSCD-AP approach achieves
about the same quality for two datasets (DS-G, DS-P2) and performs better than the six
general clustering schemes for DS-M. It also outperforms AP in all cases. These surprisingly
good results are mainly due to an excellent precision of MSCD-AP which can outweigh its
comparatively low recall. The recall is limited since AP and MSCD-AP strongly depend

228 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 13

precision recall f-measure

D
S-

G
D

S-
M

D
S-

P2

similarity threshold similarity threshold similarity threshold

Fig. 4: Clustering quality for the multi-source clean ER datasets

on the relative similarity values and can even consider a high similarity value such as 0.8
as low if it is below the average of the considered value range, e. g. [0.8, 1.0]. This leads
to more small clusters and thus a lower recall compared to other algorithms. Due to the
clean-source constraint, MSCD-AP creates more exemplars than AP and therefore obtains a
lower recall compared to AP but a much better precision.

Figure 5 shows the quality of the clustering results for the camera datasets with different
degrees of dirtiness. Due to space constraints we show results for 5 of the 8 cases but the
results for the remaining datasets confirm the overall outcome. We observe that MSCD-AP
achieves the best f-measure for all cases with a mix of dirty and clean sources. For the case
of only clean sources (DS-C100) it is only outperformed by CLIP. For dirty sources only
(DS-C0) MSCD-AP is identical to AP which is among the best approaches. As a result,
MSCD-AP is the best or among the best approaches over all configurations while other

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 229

14 Stefan Lerm, Alieh Saeedi, Erhard Rahm

precision recall f-measure

D
S-

C0
D

S-
C3

2
D

S-
C5

0
D

S-
C8

0
D

S-
C1

00

similarity threshold similarity threshold similarity threshold

Fig. 5: Clustering quality for the multi-source clean/dirty ER datasets

230 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 15

schemes like CLIP are good in only one configuration. Another strong point of MSCD-AP
is that its f-measure is nearly stable over all threshold values used to determine the input
similarity graph while the general clustering schemes depend on finding a suitable threshold.
As for the MSC datasets, the good results of MSCD-AP are mainly due to its excellent
precision values in all cases that outweigh its lower recall results.

6.3 Runtimes and Speedups

We evaluate runtimes and speedup behavior for the larger datasets from the person domain.
The speedup of MSCD-HAP is determined for the parallel execution with different numbers
of workers. We also analyze the effect of different MSCD-HAP partition sizes on runtime
as well as on clustering quality. The experiments are performed on a shared nothing cluster
with 16 worker nodes. Each worker consists of an E5-2430 6(12) 2.5 Ghz CPU, 48 GB
RAM, two 4 TB SATA disks and runs openSUSE 13.2. The nodes are connected via 1
Gigabit Ethernet. Our evaluation is based on Hadoop 2.6.0 and Flink 1.9.0. We run Apache
Flink standalone with 6 threads and 40 GB memory per worker.

Figure 6 shows the runtime of each clustering approach for a parallel execution on 16
workers. As expected, the larger dataset DS-P2 leads to higher runtimes than for DS-P1
while higher similarity thresholds reduce runtimes due to the lower number of edges in
the similarity graph. MSCD-HAP is slower than HAP because the calculations for the
clean-source constraint and the exemplar assignment by the Hungarian algorithm need
additional runtime. The clean-source constraint of MSCD-AP also leads to more exemplars
and potentially more entities of the same source that are equally well suited to be an exemplar.
Thus, oscillations occur more frequently for MSCD-AP compared to AP leading to more
parameter adaptions to find a converging solution.

MSCD-HAP along with CCPivot and MergeCenter are among the slowest algorithms for
the lowest threshold. Yet with higher similarity thresholds the runtime of MSCD-HAP

DS-P1 DS-P2

Fig. 6: Runtimes for clustering schemes (with partition size 100 for HAP and MSCD-HAP)

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 231

16 Stefan Lerm, Alieh Saeedi, Erhard Rahm

DS-P1 DS-P2

Fig. 7: Speedup of MSCD-HAP for different similarity thresholds

improves significantly making it one of the fastest algorithms. This is because a high
minimum threshold avoids that a large number of entities are connected in the similarity
graphs resulting in mostly small clusters and reduced work for the Hungarian algorithm.
Moreover, oscillations occur less in such cases.

Figure 7 depicts the speedup of MSCD-HAP with partition size 100 for different similarity
thresholds and for 1 to 16 worker machines. We observe that close to perfect speedup is
achieved for the larger dataset DS-P2 and for a lower similarity threshold (bigger similarity
graph) for the smaller DS-P1 dataset. For the higher thresholds the needed computations for
DS-P1 cannot utilize 16 machines so that a good speedup is only achieved until 8 workers.

Figure 8 investigates the effect of partition size on both runtime and clustering quality.

runtime in s precision recall f-measure

D
S-

P1
D

S-
P2

similarity threshold similarity threshold similarity threshold similarity threshold

Fig. 8: Clustering quality and runtime for different partitions sizes of MSCD-HAP

232 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 17

We observe that larger partition sizes lead to much higher runtimes but also to improved
clustering quality. These effects are most pronounced for smaller similarity threshold such as
0.6 that lead to bigger similarity graphs and thus to more computations. With larger partition
sizes there are more entities and more similarity values in each partition. Therefore, the
probability of finding good local and global exemplars rises and consequently the precision
is improved. Yet recall drops slightly, because on bigger partitions more exemplars can be
found and AP generally tends to form many small clusters. While the runtime is up to seven
times higher for partition size 400 compared to 100 (for DS-P2) for threshold 0.6, these
differences largely go away for higher thresholds and much smaller similarity graphs. This
is also the case for clustering quality, where similarity value 0.7 or higher leads to about the
same f-measure for all partition sizes.

7 Conclusions

We studied how to support multi-source entity clustering for a mix of clean (duplicate-
free) and dirty data sources. The proposed extension of Affinity Propagation clustering,
MSCD-AP, showed to be highly effective and perform better than previous methods
for mixed configuration where a subset of the sources is duplicate-free. To improve
runtimes we proposed the use of a hierarchical version MSCD-HAP and provide parallel
implementations of the algorithms. The parallel implementations achieve good speedup
values thereby supporting scalability to larger datasets. In future work, we will investigate
how to extend additional clustering schemes for multi-source ER for mixed configurations
with both clean and dirty sources.

8 Acknowledgements

This work is partially funded by the German Federal Ministry of Education and Research
under grant BMBF 01IS18026B in project ScaDS.AI Dresden/Leipzig.

Bibliography
[AKK19] Amjad, R.; Khan, R.; Kleinsteuber, M.: Extended Affinity Propagation: Global Discovery

and Local Insights. IEEE Transactions on Knowledge & Data Engineering, 2019.

[BBC04] Bansal, N.; Blum, A.; Chawla, S.: Correlation clustering. Machine learning, 56(1-3):89–113,
2004.

[Bl20] Blacher, M.; Klaus, J.; Mitterreiter, M.; Giesen, J.; Laue, S.: Fast Entity Resolution With
Mock Labels and Sorted Integer Sets. CEUR Workshop Proceedings, 2726, 2020.

[Ch12] Christen, P.: Data matching: concepts and techniques for record linkage, entity resolution,
and duplicate detection. Springer Science & Business Media, 2012.

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 233

18 Stefan Lerm, Alieh Saeedi, Erhard Rahm

[Ch19] Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis, G.; Stefanidis, K.: End-to-End
Entity Resolution for Big Data: A Survey. arXiv preprint arXiv:1905.06397, 2019.

[Cu16] Cui, H.; Zhang, J.; Cui, C.; Chen, Q.: Solving large-scale assignment problems by Kuhn-
Munkres algorithm. 2nd International Conference on Advances in Mechanical Engineering
and Industrial Informatics (AMEII), 2016.

[FD07] Frey, B. J.; Dueck, D.: Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

[GF09] Givoni, I. E.; Frey, B. J.: A binary variable model for affinity propagation. Neural
computation, 21(6):1589–1600, 2009.

[Gi12] Givoni, I. E.: Beyond affinity propagation: Message passing algorithms for clustering.
Citeseer, 2012.

[GM12] Getoor, L.; Machanavajjhala, A.: Entity resolution: theory, practice & open challenges.
Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.

[Ha09] Hassanzadeh, O.; Chiang, F.; Lee, H. C.; Miller, R. J.: Framework for evaluating clustering
algorithms in duplicate detection. PVLDB, 2(1):1282–1293, 2009.

[HM09] Hassanzadeh, O.; Miller, R. J.: Creating probabilistic databases from duplicated data. The
VLDB Journal, 18(5):1141, 2009.

[KFL01] Kschischang, F. R.; Frey, B. J.; Loeliger, H-A: Factor graphs and the sum-product algorithm.
IEEE Transactions on information theory, 47(2):498–519, 2001.

[KR10] Köpcke, H.; Rahm, E.: Frameworks for entity matching: A comparison. Data & Knowledge
Engineering, 69(2):197–210, 2010.

[Ku55] Kuhn, H. W.: The Hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[Li13] Liu, X.; Yin, M.; Luo, J.; Chen, W.: An improved affinity propagation clustering algorithm
for large-scale data sets. In: 2013 Ninth International Conference on Natural Computation
(ICNC). IEEE, pp. 894–899, 2013.

[Mu57] Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the
society for industrial and applied mathematics, 5(1):32–38, 1957.

[NGR16] Nentwig, M.; Groß, A.; Rahm, E.: Holistic entity clustering for linked data. In: 2016 IEEE
16th Int. Conf. on Data Mining Workshops (ICDMW). IEEE, pp. 194–201, 2016.

[OSR19] Obraczka, D.; Saeedi, A.; Rahm, E.: Knowledge Graph Completion with FAMER. In:
Proc. KDD workshop Data Integration for Knowledge Graphs (DI2KG). 2019.

[Pa19] Papadakis, G.; Skoutas, D.; Thanos, E.; Palpanas, T.: A survey of blocking and filtering
techniques for entity resolution. CoRR, abs/1905.06167, 2019.

[Ra16] Rahm, E.: The case for holistic data integration. In: East European Conference on Advances
in Databases and Information Systems. Springer, pp. 11–27, 2016.

[Sa18] Saeedi, A.; Nentwig, M.; Peukert, E.; Rahm, E.: Scalable matching and clustering of
entities with FAMER. Complex Systems Informatics and Modeling Quarterly, pp. 61–83,
2018.

234 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 19

[SPR17] Saeedi, A.; Peukert, E.; Rahm, E.: Comparative evaluation of distributed clustering schemes
for multi-source entity resolution. In: European Conference on Advances in Databases and
Information Systems. Springer, pp. 278–293, 2017.

[SPR18] Saeedi, A.; Peukert, E.; Rahm, E.: Using link features for entity clustering in knowledge
graphs. In: European Semantic Web Conference. Springer, pp. 576–592, 2018.

[VD00] Van Dongen, S. M.: Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

[WB09] Wijaya, D. T.; Bressan, S.: Ricochet: A family of unconstrained algorithms for graph
clustering. In: International Conference on Database Systems for Advanced Applications.
Springer, pp. 153–167, 2009.

[Zh10] Zhang, X.: Contributions to Large Scale Data Clustering and Streaming with Affinity
Propagation. Application to Autonomic Grids. PARIS: University PARIS-SUD, 2010.

Appendix: Derivation of Equation (9)

In MSCD-AP, \ is a message from a factor node to a variable node and therefore is derived
from Equation (11) of the max-sum algorithm, following [KFL01] and [Gi12].

` 5 →G (G) = max
=(5)\{G }

©«
;= 5 (G, H1, ..., H<) +

∑
H8 ∈=(5)\{G }

`H8→ 5 (H8)ª®¬
(11)

The binary variable 18 9 either obtains value 1 or 0. Firstly, we investigate both cases by
considering all possible configurations of all neighboring variable nodes 1: 9 (: ≠ 8) of C& 9

and then according to Equation (12) [Gi12], we combine them in order to to get a scalar
value for the \ message.

`8 9 = `8 9 (1) − `8 9 (0) (12)

For bi j = 1: Equation (13) shows \ for the case that 8 chooses 9 as its exemplar. All
neighbors of C& 9 are from the same clean source &. Let @ be the number of entities in &.
All incoming messages `1: 9→C&9 (1: 9) of C& 9 are defined as W: 9 (1: 9). For not hurting the
clean source constraint, no other datapoint in & is allowed to choose 9 as its exemplar.
Therefore all other neighboring variable nodes 1: 9 (: ≠ 8) of C& 9 are set to 0. This is the only
configuration that satisfies the clean source constraint and thus the optimal one. Acording to
Equation (2), the C& 9 function evaluates its maximum value of 0.

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 235

20 Stefan Lerm, Alieh Saeedi, Erhard Rahm

\8 9 (1) = max
1: 9 ,:≠8

[;= C& 9 (11 9 = 0, ..., 18 9 = 1, ..., 1@ 9 = 0) +
∑

1: 9 ,:≠8

W: 9 (1: 9 = 0)]

=
∑
:≠8

W: 9 (0)
(13)

For bi j = 0: There is more flexibility for finding the optimal solution if datapoint 8 does not
choose 9 as its exemplar. In order to guarantee the clean source consistency, utmost one of
the 1: 9 variables is allowed to be set to 1. There are @ possible solutions that satisfy the
clean source constraint: @ − 1 for each 1: 9 being set to 1 and one for all 1: 9 variables being
set to 0. Let the case when all 1: 9 are set to 0 be G (eq. (14)) and the case when exactly
one of the 1: 9 is set to 1 be H (eq. (15)). The message for 18 9 = 0 in Equation (16) is the
maximum of the two cases G and H.

G = 0 +
∑
:≠8

W: 9 (0) (14) H = max
:≠8
[0 + W: 9 (1) +

∑
?∉{:,8 }

W? 9 (0)] (15)

\8 9 (0) = max
1: 9 ,:≠8

[;= C& 9 (11 9 , ..., 18 9 = 0, ..., 1@ 9) +
∑

1: 9 ,:≠8

W: 9 (1: 9)]

= max(G, H)
(16)

)i j (1) and)i j (0) combined: In Equation (17) - 23, we bring both formulas for the cases
18 9 = 0 and 18 9 = 1 together. According to Equation (12), the scalar message is the difference
of the message values for the two settings of the binary variable.

Equation (20) is transformed to Equation (21) by the transformation 0−<0G(10, 11, ..., 1=) =
−<0G(10 − 0, 11 − 0, ..., 1= − 0). Subtracting the two sums in Equation (20), only −W: 9 (0)
is left (eq. (22)) and then Equation (22) is transformed to Equation (23), according to
Equation (12).

\8 9 = \8 9 (1) − \8 9 (0) (17)
= G − <0G(G, H) (18)
= <8=(0, G − H) (19)

= <8=(0,
∑
:≠8

W: 9 (0) − <0G:≠8 [W: 9 (1) +
∑

?∉{:,8 }
W? 9 (0)]) (20)

= <8=(0,−<0G:≠8 [W: 9 (1) +
∑

?∉{:,8 }
W? 9 (0) −

∑
:≠8

W: 9 (0)]) (21)

= <8=(0,−<0G:≠8 [W: 9 (1) − W: 9 (0)]) (22)
= <8=(0,−<0G:≠8 [W: 9]) (23)

236 Stefan Lerm, Alieh Saeedi, Erhard Rahm

cba

Herausgeber et al. (Hrsg.): BTW2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

Flexible data partitioning schemes for parallel merge joins in
semantic web queries

Benjamin Warnke 1 , Muhammad Waqas Rehan 2 , Stefan Fischer 2, Sven Groppe 1

Abstract:

Semantic Web technologies are enabling large amounts of data to be preprocessed and stored on
the web to be queried efficiently later. The key technology in this topic is the triple store storing all
information in the form of triples (subject, predicate and object). Depending on the triple patterns used
within the queries, varying graph structures can be observed in the datasets. Currently, such properties
are only exploited implicitly during join optimization in the form of histograms or similar technologies.
Towards a new paradigm for explicitly exploiting graph structures in the datasets, this paper proposes
a new flexible partitioning scheme at runtime. To do so, we experimented with partitioning schemes,
that can be selected depending on the actual data access within a given query in order to improve query
performance. The experimental results show that the proposed flexible data partitioning schemes are
faster, up to a factor of 12.65 in comparison to no partitioning.

Keywords: Triple store; Partitioning; Parallel Join

1 Motivation

The Semantic Web makes huge datasets [HHK19, TWS20] available that may be queried for
information processing and gathering afterwards. These datasets are continuously growing
in size, either by users adding more information, or by automated data sources continuously
providing new data. According to a survey paper about Semantic Web query languages
[Ba05], SPARQL [SH13] is the most important RDF query language.

Some of these datasets contain more than a billion triples [HHK19]. Such big datasets are
often created, maintained and used by many users. Nevertheless the users of such a Semantic
Web database system desire a fast response time. Both aspects alone are challenging for a
database system. Together the pressure to create fast and resource friendly query execution
plans is increasing even more.
1 Universität zu Lübeck, Institute of Information Systems, {warnke,groppe}@ifis.uni-luebeck.de
2 Universität zu Lübeck, Institute of Telematics, {rehan,fischer}@itm.uni-luebeck.de

cba doi:10.18420/btw2021-12

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 237

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{warnke, groppe}@ifis.uni-luebeck.de
mailto:{rehan, fischer}@itm.uni-luebeck.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-12

2 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

10−3

10−2

10−1

100

101

102

103

104

105

1950 1960 1970 1980 1990 2000 2010 2020 2030

year
Frequency (MHz)
Number of Logical Cores
Storage capacity (MB)

Fig. 1: CPU performance and storage size over the last 70 years. CPU-data modified from github
[Ru20]. Storage-data taken from Wikipedia [Ha18]. This figure is not exhaustive and contains only
data, which is available to the public.

To answer many queries on big datasets, the database system may take most out of the
available hardware. The chart in Fig. 1 makes it obvious that the speed of a single processor
core stagnates over the last 10 years. For further performance boosts, information technology
companies have been developing CPUs with an increasing number of cores. The multi-core
systems require massive parallelization for efficiently utilizing the hardware capacity and to
satisfy the increasing demand for higher data processing capabilities. At the same time, the
available persistent storage is increasing, too. The additional storage can be used to support
massive parallelization by providing multiple variations of the original data. It opens up
new challenges and opportunities for research in the context of parallel query processing.

Previous research [Ar11] has shown that various features of SPARQL such as ”projection”,
”basic triple pattern”, ”join”, ”optional join” and ”filter” are used frequently. All of these
operators can be evaluated in parallel. This is advantageous because they can be evaluated
even without communication between the threads, if the data is partitioned according
to suitable columns. Since evaluating ”projection” and ”filter” in parallel is trivial, the
remainder of this paper will focus on the join operator.

For the most part, join operators are executed using merge and hash join implementations.

238 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 3

Because merge joins may achieve a much higher performance than other implementations,
whenever data is already sorted according to the join columns based on some previous
operations or by accessing appropriate indices like B+-trees. Therefore we will focus on
merge joins.

To improve data parallelism, we have analyzed the fundamental structure of data in the
triple stores and the methodology of accessing it. In SPARQL, access to the stored triples is
formulated in terms of triple patterns. In each triple pattern, all three components of a triple
need to be specified either as a constant specifying constraints on matched triples or as a
named variable for storing queried triple components.

We assume that an entirely different number of result rows can be expected based on the
triple pattern being processed. On the one hand, when only the predicate is a constant, then
we assume that the number of result rows are very high. In other words, a small number of
predicates is required to retrieve the whole data. On the other hand, when only the predicate
is a variable, then we assume that there are almost always only a few results. Similar
assumptions are reasonable for other combinations of variable and constant occurrences in
the triple patterns. Therefore we analyzed a synthetic dataset from the SP2B benchmark
[Sc09] as well as some real world datasets , i.e. BTC2019 [HHK19], Barton[Ab07], YAGO1
[SKW07], YAGO2 [Ho13] and YAGO2s [BKS13], as shown in Fig. 2.

This is interesting, because data parallelism works best if there is a lot of data. That means,
if only the predicate is a constant, then data partitioning may gain huge improvements. But,
when only the predicate is a variable, then the improvement - if any - is small. If we consider
all possible triple patterns, we come to the conclusion, that a constant in the subject position
leads to few results, so that the partitioning may hardly bring any advantages. Every other
triple pattern yields more results such that a benefit due to data parallelism may be likely.

Flexible data partitioning schemes for parallel merge joins in semantic web queries 239

4 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

pe
rc
en
ta
ge
of
da
ta
se
t

occurences

S
P
O
SP
SO
PO

(a) SP2B
(
C = 225

)
, 33 million triples

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

pe
rc
en
ta
ge
of
da
ta
se
t

occurences

S
P
O
SP
SO
PO

(b) Barton, 78 million triples

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

pe
rc
en
ta
ge
of
da
ta
se
t

occurences

S
P
O
SP
SO
PO

(c) YAGO1, 19 million triples

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

pe
rc
en
ta
ge
of
da
ta
se
t

occurences

S
P
O
SP
SO
PO

(d) YAGO2, 112 million triples

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

pe
rc
en
ta
ge
of
da
ta
se
t

occurences

S
P
O
SP
SO
PO

(e) YAGO2s, 171 million triples

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

pe
rc
en
ta
ge
of
da
ta
se
t

occurences

S
P
O
SP
SO
PO

(f) BTC2019, 256 million triples

Fig. 2: The figure shows the cumulative distribution function 5 (- < G). The X axis shows the number
of triples which share the same value at the columns specified by legend entry. The Y axis represents
the percentage of the triples in the whole triple store which share their value with at most X triples.
The names of the graphs consist of the constant values of the triple pattern. For example the graph P
shows the relation for triple patterns of type ?s <p> ?o, where the predicate is a constant.

240 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 5

The main contributions of this article are:

• Introducing a flexible partitioning scheme of the data, which allows to select the
number of partitions at runtime. Therefore we store multiple different partitioning
schemes at runtime.

• Analyzing the number of partitions yielding the best performance for parallel merge
joins depending on the number of triple patterns and the amount of stored data.

• We propose a function to predict the optimal number of partitions depending on the
data in the store and the query.

• Comparing exhaustively different parallelization strategies.
• Procuring a performance improvement up to a factor of 12.65 in comparison to no
partitioning.

2 Related work

There are several ways for improving the performance of joins in the context of triple store
access. The most important among them are discussed below.

2.1 Additional indices

The indices RDF3X [NW08, NW10] and Hexastore [WKB08] are often used in triple store
implementations. Both index variants use a dictionary for mapping the actual values to
internal numeric ids.

RDF3X [NW08, NW10] uses 6 indices, which consist of all possible collation orders of S, P
and O, which are SPO, SOP, PSO, POS, OSP and OPS. The SPO index is the short form for
the collation order, where the triples are first ordered by their subject, then by the predicate
and finally by the object. The other collation orders only differ in which triple component is
ordered first, second and last. Due to performance considerations, the ordering is applied
based on the integer ids instead of the values. Additionally the ordering allows to use very
efficient compression. The indices themselves are stored as B+-trees. Because the data is
ordered, each triple pattern in the query can be translated to a range scan in the B+-tree.

Hexastore [WKB08] uses 6 indices with all the collation orders. Instead of a B+-tree,
Hexastore [WKB08] uses a multi layer linking structure. Taking the SPO-index as an
example, each subject points to a list of predicates, which in turn points to a list of objects.
Such a list of objects can be shared with the PSO index, because they are exactly the same.
Each of these lists is ordered. After the first triple is found, both indices (RDF3X and

Flexible data partitioning schemes for parallel merge joins in semantic web queries 241

6 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Hexastore) allow a simple iteration over an ordered list. Both triple stores support aggressive
usage of the merge join on already sorted data retrieved from its indices [NW10, WKB08].

In contrast to the above indices, which are both indexing triples, another contribution
[NC20] proposes to index sub-graphs. The Triag-index [NC20] searches for triangular
patterns in the graph, and stores them in a separate index. It allows a query optimizer to
replace multiple consecutive joins by a range scan in their index structure. Especially in the
context of ontologies it may yield high performance.

2.2 Parallel SPARQL processing

In this category, one approach [BK20] partitions the triples vertically, so that all predicates
are stored in separate virtual tables. Within these tables the subjects and objects are stored in
the form of independent arrays. The connection between these tables and arrays is established
by vectors of pointers. The authors signify a higher storage efficiency of their approach
- especially in a distributed context where it is important to find the node containing the
required data.

Merge joins have a huge performance advantage over hash joins. Therefore, another approach
[AKN12] partitions and orders the data on demand, so that massively parallel merge joins
can be used everywhere. Even if this paper [AKN12] is about database systems in general,
its results apply to Semantic Web database systems as well. Due to the sort operations at
runtime, this approach requires a lot of available memory. Additionally this sorting step
requires more computation time, compared to our approach, which can directly read ordered
and partitioned data from the triple store.

In another paper [GG11], partitioning threads are used to horizontally partition the input
data of the join operator. In this way, any intermediate result can be partitioned into any
number of partitions at runtime, but at expense of the runtime overhead for partitioning.
If the input for merge joins comes directly from the triple store, then partitions can be
directly accessed based on the ranges in B+-trees. As a range is determined according to
the histogram of the corresponding triple pattern, the partition sizes of the triple pattern
to be joined may be unbalanced. This article additionally evaluates the performance gain
using the pipeline parallelism. The main disadvantages of operator-based parallelism are
the queues between the operators, which on the one hand require storage space and on the
other hand entail thread safety by locking.

Our approach is novel in this context because it avoids the usage of partitioning threads
and queues completely by employing multiple materialized balanced partitions which are
flexibly chosen at query optimization time.

242 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 7

2.3 Distributed SPARQL processing

Our contribution focuses on local database systems. Nevertheless there exist several strategies
in the distributed context, which provide different approaches to partition triple data. To the
best of our knowledge, there is no distributed implementation with the same functionality
as proposed in our contribution.

On top of the parallel SPARQL processing, which parallelizes on a single node, data
can be distributed to multiple nodes for achieving a higher degree of parallelization. A
prerequisite is obviously the presence of several nodes, as well as a fast connection between
them for maintaining high performance. Similar to node local partitioning, the triples need
to be assigned to a node. Typically such algorithms assign a node to each triple using a
deterministic algorithm. The key task of all these algorithms is to yield a uniform distribution
among all nodes.

In another paper [Ha16], the triples are distributed by a hash function on the subject. It may
allow to process many joins locally on the corresponding nodes, which may reduce the
network communication cost. The independent joins are similar to partitioning in a node
local context. If a join can not be evaluated locally on a node, then hash joins may be heavily
used for exploiting the advantage of the hash based distribution.

There are also approaches [Ha07], which allow to query from multiple data sources
simultaneously. Therefore, they attach a context - the original data source - to each triple such
that their database system effectively stores quads. Similar to other hash based approaches
[Ha16], the hash function only uses one component of the triple for its partitioning. Hash
based distribution can also be used for map-reduce based database systems [Pa13]. All of
the above distribution strategies use only one component of a triple for assigning a node.

However, the following strategies use all components of a triple to calculate the assigned
node. In the approach [JSL20], the connectivity between triples is calculated, and close
connected triples - called ”molecules” - are assigned to the same node. Apart from the
huge overhead during initialization, it may allow to calculate many joins independently and
locally at a node. Another approach [Ze13] uses a completely different encoding. Similar
to a previous strategy [JSL20], data is distributed such that related data is stored close to
each other. In this case, the data is stored in the form of of adjacency-lists. The advantage is,
that each node knows, which other nodes have related data. Therefore, distributed joins can
explicitly access the relevant nodes, which reduces the communication overhead.

The key idea of all data distribution algorithms is to reduce or even remove the communication
overhead as much as possible. As long as the data can fit in the memory of a single node,
evaluating local queries is often much faster. In the remainder of this document, only
node-local improvements in query evaluation are considered.

Flexible data partitioning schemes for parallel merge joins in semantic web queries 243

8 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

3 Our approach - flexible data partitioning
To use data parallelism, the data must be distributed over an arbitrary number of partitions.
The key problem is to optimize the number of partitions. If we use too many partitions, then
the overhead is larger than the benefit. If we use too few partitions, then both a fair data
distribution and resource utilization (in terms of CPU core usage) is not possible.

If only merge joins are used, then the actual computation is so fast that the overhead caused
by live partitioning can not be effectively compensated [GG11]. Hence, we propose to
materialize different partitions already in the indices as parallel inputs to our merge join
threads without introducing any computational overhead.

Fig. 2 shows that each triple pattern yields drastically different numbers of triples. Therefore,
it is not possible to pick just a single number and use it for establishing the number of
partitions. As a solution, we propose to use several different partitioning schemes - for each
index - at the same time. This allows very flexible data storage depending on the expected
data properties. Additionally, we are able to choose the used number of partitions during
query optimization time. It enables a much more fine grained control over the effective
parallelism. Fig. 3 shows a structural example of our proposed triple store implementation.
It is important that each partitioning scheme can choose both: a different hash function
and another number of partitions. We want to explicitly store partitions according to these
different partitioning schemes to avoid the partitioning overhead at query runtime.

RDF3X

SPO

partitioning scheme 1
partition by P
=1 partitions

partition 1

ID-triple

· · · partition =1

ID-triple

· · ·
partitioning scheme <1

partition by O
=<1 partitions

partition 1

ID-triple

· · · partition =<1

ID-triple

· · ·

Fig. 3: Structure of database system implementation

Each partitioning scheme occupies persistent storage space. The more schemes are defined,
the more memory is required. Therefore, we propose to store only a few of the most effective
schemes. Unfortunately, it may introduce another type of problem requiring different
numbers of partitions to join with each other.

To enable efficient implementations, we restrict ourselves to the numbers of partitions with
a power of two. The efficiency comes from the properties of the modulo operator. If the
number of partitions is halved, then exactly two partitions need to merge to a single one -

244 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 9

without touching any other partition. It allows to use much less locking, because less threads
share common locks, and therefore increases the speed. In Sect. 4 we evaluate where to use
which partitioning scheme.

4 Evaluation

To gain insight into how the number or presence of an additional partitioning layer affects
the database system performance, there are many performance aspects to consider. In this
paper, we focus on parallel main-memory query evaluation of merge joins.

4.1 Experimental setup

We use two different Benchmark Systems to verify the validity of our findings independently
of the hardware architecture. That enables us to compare an server CPU with a recently
introduced desktop CPU of the current generation.

The first machine (M1) is a dual socket machine using Intel Xeon E5-2620 v3 CPUs with a
clock rate of 2.4GHz. In our experiments, hyper threading is enabled such that there are 24
hardware supported threads. Each socket is assigned with 16GB memory, such that a total
of 32GB memory is available. The database systems either use gcc 5.4 or Java 1.8.265 in
the server-edition.

The other machine (M2) is a single socket machine using an Intel i9-10900K CPU with a
clock rate of 4.9 GHz. On this machine, hyper threading is enabled as well, such that there
are 20 hardware supported threads. This machine has 64GB of RAM installed. It uses Java
14.0.2 in the server-edition.

4.2 Implementation details

Our database system LUPOSDATE30003 is a rewrite of LUPOSDATE [Gr11]. The old
LUPOSDATE [Gr11] is implemented in Java. The new LUPOSDATE3000 database system
is implemented in Kotlin programming language in order to support different targets like
the JVM, JavaScript and native binaries for desktop, server, web and mobile environments.
Currently, Kotlin-JVM-target is the fastest, therefore all benchmarks are evaluated using
Java runtime. LUPOSDATE3000 uses a dictionary to map all values to integer IDs. These
IDs are then stored in an index similar to RDF3X using all 6 collation orders. During query
evaluation, LUPOSDATE3000 uses both column and row iterators, preferring the column
iterators where applicable. In our experiments, the hash function used for partitioning only

3 https://github.com/luposdate3000/luposdate3000.git

Flexible data partitioning schemes for parallel merge joins in semantic web queries 245

10 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

performs the modulo operator to the integer IDs in the store. We yield uniform partition
sizes with these hash functions.

We choose Apache Jena4, blaze-graph5 and virtuoso6 as competitive database systems,
because they are the most used open source RDF database systems according to an RDF
database ranking [DB20].

Jena is an RDF store written in Java. Since we use Kotlin-JVM-target, it allows to compare
two different database systems using the same Java runtime environment. The triples are
stored in B+-trees.

Blaze-graph is written in Java. The indexes are stored in B+-trees which are influenced by
Google’s BigTable system.

Virtuoso is written in c++. In our tests, we only use the RDF interface of virtuoso. It allows
the comparison to a compiled database system, and verifies our expectation that garbage
collected languages are not inherently slow.

4.3 Datasets and queries

In order to facilitate clear indications about how exactly partitioning influences the execution
times, we use simple queries as shown in Fig. 4. The query Q1 is used as a template for
the benchmarks which use up to 16 consecutive merge joins. Q2 is the only query, which
enforces a hash join, all other queries can be evaluated using only merge joins.

PREFIX b: <http://benchmark.com/>
SELECT *
WHERE {
?s b:p0 ?o0 .
?s b:p1 ?o1 .
?s b:p2 ?o2 .

}

(a) Query Q1

PREFIX b: <http://benchmark.com/>
SELECT *
WHERE {
?s b:p0 ?o0 .
?s b:p1 ?o1 .
?o1 b:p2 ?o2 .

}

(b) Query Q2

Fig. 4: SPARQL queries used for the benchmarks.

We create synthetic data such that it matches our requirements of selectivity and output
size. Because our proposed changes are not related to join order optimization, we do not
want any side effects of the applied optimizer. Therefore our generated triple structure is the
same for every triple pattern in our query.

4 Version 3.14.0
5 Version 2.1.6
6 git://github.com/openlink/virtuoso-opensource.git, Revision 840b468fc400a254eab0eb20f1afde6ca3c2220d

246 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 11

We label all our graphs with result rows instead of the usually used number of triples. In
this way, we can enforce a uniform workload across all the used threads. Furthermore, a low
selectivity combined with a low number of input triples would yield too few result rows
without notice. A few results would not be uniformly distributed to the threads, which in
turn decreases the benefit achieved from multiple threads.

4.4 Query optimizer

Due to the new partitioning scheme, there are lots of possibilities how to execute a simple
query. The query Q1 shown in Fig. 4a can be evaluated using two merge joins. We want
to compare the performance of 1, 2, 4, 8 and 16 partitions for each of the join operators
as well as for each of the triple store iterators. We remove the options, where a merge join
requires to change the partitioning of both of its inputs during the runtime, therefore we get
22 · 43 = 256 different operator graphs.
Using the same number of partitions everywhere in the operator graphs yields the best
results. We have verified it using the computer configurations of M1 and M2. Additionally
in our experiments, we have considered different synthetic datasets, too, with either uniform
or non uniform data distributions. For the non uniform synthetic datasets, we increased the
differences such that one triple pattern yields up to 128 times more input than the others.
This has changed the total query evaluation time, but not the optimal partitioning ranking in
the operator graph.

Depending on where exactly the number of partitions changes in the operator graph, the
evaluation speed is not that much lower compared to operator graphs using only one partition
count. It means that our approach does not need to assign the same number of partitions to
every collation order.

The query Q2 shown in Fig. 4b joins on two different variables, which means, that we can
not use two merge joins. It yields to some more options for the optimizer especially which
number of partitions on which variable are used for the second join. One option is, to merge
the partitions after the first join, and then change the partitioning of that result just in time
for the second join. The other option is to pass through the partitioning as it is, which means,
that the second join is not partitioned by its join variable. In this case the second join must
read in the whole not partitioned or united input from the other side, to still produce valid
results. Our measurements show, that in this case it is the fastest to use the second option,
which is passing through data which is not partitioned by a join variable.

Flexible data partitioning schemes for parallel merge joins in semantic web queries 247

12 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

4.5 Benchmarks

This section is divided into two parts. The first part deals with the evaluation of a micro-
benchmark with an explicit focus on the performance of the merge join operator. Therefore,
several database system functions are disabled or bypassed. The changes made are:

• The operator graphs, including the partitions to use, are hard coded, in order to
investigate their effects on query performance.

• The benchmark code is included in the LUPOSDATE3000 binary to avoid HTTP-
interface overhead.

• The result is only calculated as a row of integer IDs. The required dictionary lookups
for converting those IDs to Strings are not included in the benchmarks.

This benchmark is intended to show the effect on query evaluation, in case both data
structure and data size are changed. Since, it is not easy to apply the above changes to other
existing database systems, this part is only evaluated within LUPOSDATE3000.

In the second part, the same queries are evaluated on multiple database system implementa-
tions. Here in this part, all database system features are enabled, and the HTTP-SPARQL
endpoints are used.

4.5.1 Micro benchmark

To focus on the performance effects of partitioning during query processing of join operator
chains, a synthetic micro-benchmark is used so that the input data has the desired input
patterns. During the tests, the following properties have an impact on the query runtime:

• Number of input rows and number of result rows: Larger numbers of rows yield higher
speedup because the sequential query initialization phase needs less time compared
to the total computation time.

• Selectivity of the joins: When more rows are filtered away, the next join operator has
less work to do, resulting in faster query processing.

• Number of CPU-cores: Due to the in-memory benchmark-setup, all experiments are
both memory and CPU bounded. As long as the data is evenly distributed, it does not
make any sense to employ more partitions than CPU cores.

• Number or partitions: Currently LUPOSDATE3000 parallelizes its query evaluation
based on partitions only. As a result, maximum speedup corresponds to the number
of partitions. Depending on the other parameters the maximum speedup may not be
reached.

248 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 13

• Number of consecutive joins: More consecutive joins on the same join columns
increase the throughput because there is no need to serialize or cache intermediate
results.

Since we are interested in comparing the effects of different selectivities within the join
operators, we have generated multiple synthetic datasets. For generation of the datasets we
have used the following strategies:

For selectivities lower than 1, we choose a fixed = which specifies how many triples to skip
after we find a triple participating in a join. Then, we repeat this procedure during data
generation for every basic triple pattern. It yields a selectivity of 1

1+= in each join operator.
In the following we restrict = to be a power of two.

Additionally, we have generated datasets where data volume is increasing within the join
operators. To create such datasets, we emit blocks of < triples, which are then joined with
each other. In the following we choose < to be a power of two. In the experiments we call
this ”selectivity”, too, because it still specifies the factor by which the number of rows
changes within the joins.

To generate our queries, we use the SPARQL template as shown in Fig. 4a. Afterwards, we
change the number of triple patterns according to the desired number of joins.

In Fig. 5 we can see, that all of the three properties (output-rows, selectivity and number of
joins) affect the optimal number of partitions for evaluating a query.

In the bottom right of each figure, there are missing experiments, because we can not create
the target number of output rows. This is due to a massive increase of rows within the join
operator chain, which is higher than the targeted output row count. Low optimal partition
numbers in the bottom left part of each figure are caused by the same reason. Due to the
very small number of triples in the store, it does not make sense to apply partitioning.

The optimal number of partitions is proportional to the theoretical workload, which we had
expected. The more triples are stripped away due to a low selectivity, the more triples must
be available in the store in the first place. The same holds for the number of merge joins.
The more distinct triple patterns we want to join, the more input triples need to be defined.
The last property, increasing the number of output rows obviously requires an increased
number of input rows too. Vice versa, if we would have fixed the number of input rows,
we would yield a similar result. In that case, the optimal number of partitions would be
proportional to the number of output rows.

We used the results of this benchmark to predict the fastest partitioning within the query
optimizer. As a base function we choose the polynomial 0 ·G+1 ·H+2 ·I+3 ·G2+4 ·H2+ 5 ·I2+6
with ”x” as the number of result rows, ”y” as the number of joins and ”z” as the expected
selectivity. We choose this function, because it promises good results for predicting the
fastest partitioning and the function can be evaluated very fast during the query optimization

Flexible data partitioning schemes for parallel merge joins in semantic web queries 249

14 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

26
25
24
23
22
21
20

1
1+21

1
1+23

1
1+25

1
1+27

1
1+29

1 2 4 8 16

se
le
ct
iv
ity

mergejoins

1; 1; 61042.29/s
1; 1; 65689.65/s 1; 1; 41763.92/s
1; 1; 49831.27/s 1; 1; 43571.06/s
1; 1; 34098.56/s 1; 1; 23708.39/s 1; 1; 17322.72/s 1; 1; 6657.7/s
1; 1; 22336.92/s 1; 1; 10757.79/s 4; 1.18; 4455.82/s 8; 1.84; 1492.77/s 4; 1; 1890.19/s
1; 1; 15395.54/s 1; 1; 7138.9/s 4; 1.08; 3396.71/s 8; 1.51; 1338.87/s 1; 1; 1688.07/s
1; 1; 11951.01/s 1; 1; 6988.97/s 4; 1.22; 3318.39/s 8; 1.74; 1305.63/s 1; 1; 2852.44/s
1; 1; 8325.75/s 4; 1.11; 4664.09/s 8; 1.37; 2356.1/s 8; 1.81; 1081.97/s 1; 1; 2034.8/s
1; 1; 6469.1/s 4; 1.12; 3891.9/s 8; 1.43; 1980.11/s 8; 2.34; 810.58/s 4; 1; 1713.74/s
4; 1.13; 4129.57/s 8; 1.23; 2632.79/s 8; 1.83; 1408.38/s 8; 2.78; 622.41/s 4; 1; 1687.63/s
4; 1.68; 2370.61/s 8; 2.08; 1351.41/s 8; 2.68; 838.76/s 8; 3.39; 407.48/s 4; 1.33; 1084.47/s
8; 2.28; 1341.13/s 8; 3; 845.07/s 8; 3.43; 495.57/s 16; 4.09; 240.04/s 8; 1.48; 703.8/s
8; 3.03; 747.59/s 8; 4.23; 459.21/s 16; 3.95; 304.57/s 16; 4.96; 159.02/s 8; 1.91; 439.71/s
8; 3.91; 462.1/s 16; 4.14; 327.81/s 16; 5.26; 183.26/s 16; 5.25; 117.81/s 8; 2.62; 231.89/s
16; 3.84; 346.03/s 8; 5.36; 294.95/s 16; 4.56; 261/s 16; 3.93; 217.49/s 16; 2.88; 152.24/s
16; 6.64; 172.17/s 16; 6.35; 170.55/s 16; 5.93; 148.19/s 16; 4.26; 132.05/s 16; 2.88; 104.36/s

1

2

4

8

16

op
tim
al
pa
rti
tio
ns

(a) 512 result rows

26
25
24
23
22
21
20

1
1+21

1
1+23

1
1+25

1
1+27

1
1+29

1 2 4 8 16

se
le
ct
iv
ity

mergejoins

1; 1; 21645.8/s
1; 1; 19503.9/s
1; 1; 21480.55/s 1; 1; 13418.52/s
1; 1; 15423.53/s 1; 1; 14017.37/s 2; 1; 6729.39/s
1; 1; 9785.73/s 4; 1; 6990.73/s 4; 1; 5683.9/s 4; 1.7; 1921.11/s
4; 1.01; 6031.27/s 4; 1.41; 3360.12/s 8; 2.04; 1496.61/s 8; 3.21; 509.74/s 4; 1; 1615.29/s
4; 1.07; 4896.31/s 8; 1.03; 2513.95/s 8; 1.6; 1185.2/s 16; 2.24; 422.9/s 1; 1; 1209.3/s
4; 1.23; 3870/s 8; 1.56; 2088.44/s 8; 2.41; 991.51/s 8; 3.63; 372.9/s 2; 1; 2209.97/s
8; 1.3; 2662.15/s 8; 1.79; 1604.25/s 8; 2.56; 802.7/s 16; 3.38; 321.92/s 4; 1; 1634.9/s
8; 1.79; 1745.01/s 8; 2.29; 1095.74/s 8; 3.1; 584.15/s 8; 4.59; 232.83/s 4; 1.16; 1242.46/s
8; 2.48; 1091.12/s 8; 3.01; 689.32/s 8; 4.48; 328.51/s 16; 4.84; 161.14/s 8; 1.21; 918.67/s
8; 3.87; 570.88/s 8; 4.5; 384.78/s 16; 4.96; 220.02/s 16; 6.47; 96.52/s 8; 1.82; 550.25/s
8; 5.2; 306.7/s 16; 5.63; 208.11/s 16; 6.43; 122.83/s 16; 7.7; 63/s 8; 2.56; 307.74/s
16; 6.07; 175.47/s 16; 7.26; 114.2/s 16; 8.54; 59.1/s 16; 9.32; 31.28/s 16; 1.71; 279.5/s
16; 9.15; 82.33/s 16; 9.02; 60.15/s 16; 11.3; 31.65/s 16; 10.08; 17.81/s 16; 1.28; 240.16/s
16; 9.62; 50.77/s 16; 10.16; 34.38/s 16; 10.04; 21.91/s 16; 8.86; 12.25/s 16; 1.23; 142.68/s
16; 11.2; 29.97/s 16; 10.6; 22.18/s 16; 10.39; 14.93/s 16; 9.63; 8.84/s 8; 2.32; 55.72/s

1

2

4

8

16

op
tim
al
pa
rti
tio
ns

(b) 2048 result rows

26
25
24
23
22
21
20

1
1+21

1
1+23

1
1+25

1
1+27

1
1+29

1 2 4 8 16

se
le
ct
iv
ity

mergejoins

2; 1; 6634.59/s
4; 1.01; 5989.62/s
4; 1.08; 5419.77/s 2; 1.1; 4449.3/s
4; 1.04; 5790.42/s 4; 1.34; 3776.94/s
4; 1.32; 4110.41/s 4; 1.33; 3918.51/s 4; 1.88; 1949.13/s
4; 1.61; 2739.18/s 4; 1.86; 2045.32/s 8; 2.07; 1554.94/s 8; 3.15; 519.42/s
8; 1.83; 1814.22/s 8; 2.69; 963.02/s 8; 3.78; 428.38/s 8; 5.2; 140.3/s 4; 1.72; 715.68/s
8; 2.36; 1218.23/s 16; 2.13; 638.38/s 16; 2.99; 311.18/s 16; 3.4; 112.21/s 8; 1.92; 353.79/s
8; 2.86; 962.44/s 8; 3.95; 535.4/s 8; 4.86; 265.89/s 16; 5.44; 98.28/s 4; 1.18; 1222.96/s
8; 3.45; 684.37/s 8; 3.91; 394.61/s 16; 4.31; 213.66/s 16; 6.04; 83.77/s 8; 1.34; 837.95/s
8; 3.69; 477.23/s 8; 4.49; 285.49/s 16; 5.22; 147.33/s 16; 6.41; 61.64/s 8; 1.83; 557.51/s
16; 4.62; 245.99/s 16; 5.46; 159.69/s 16; 6.08; 97.73/s 16; 7.03; 44.9/s 8; 2.43; 320.79/s
16; 6.22; 139.12/s 16; 6.41; 101.97/s 16; 8.01; 52.81/s 16; 8.17; 28.84/s 8; 1.77; 308.17/s
16; 7.65; 81.93/s 16; 8.72; 48.42/s 16; 9.78; 27.15/s 16; 9.41; 15.03/s 16; 1.11; 288.45/s
16; 9.76; 37.34/s 16; 10.3; 24.84/s 16; 10.06; 16.59/s 16; 9.49; 9.2/s 1; 1; 258.54/s
16; 12.65; 18.89/s 16; 12.55; 12.92/s 16; 10.41; 8.95/s 16; 9.96; 4.75/s 4; 1.02; 213.3/s
16; 11.47; 11.71/s 16; 11.69; 7.78/s 16; 11.16; 4.6/s 16; 10.34; 2.54/s 8; 1.07; 136.72/s
16; 11.72; 6.08/s 16; 11.18; 4.41/s 16; 11.44; 2.64/s 16; 11.29; 1.48/s 16; 2.1; 57.09/s

1

2

4

8

16

op
tim
al
pa
rti
tio
ns

(c) 8192 result rows

Fig. 5: Optimal number of partitions depending on the number and the selectivity of merge joins. The
labels follow the form ”a;b;c”, where ”a” is the optimal number of partitions, ”b” the speedup compared
to no partitions and ”c” the queries per second when no partitions are used. These experiments are run
on computer configuration M2, because the additional RAM allows more experiments to be evaluated.
Evaluating the queries on M1 achieve similar results.

250 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 15

phase. For our machine M2 we calculated the constants ”a” to ”g” such that we yield the
complete function as seen in Fig. 6. We use the helper function ℎ(I) to convert the selectivity
values to a similar range of numbers as all of the other variables. In a final step, we round
the value to a discrete number of partitions. The prediction function ?(G, H, I) calculates
most numbers of partitions optimally. Nevertheless we calculated the mean squared error
between Fig. 6 and Fig. 5 to be 4.3030, which is quite small in comparison the huge number
of known value pairs to fit.

ℎ(I) = −;>62 (I)
5 (G, H, I) = 0.0025 · G + 1.4827 · H + 1.1277 · ℎ (I) + 0.0906 · H2 + 0.0279 · ℎ (I)2 − 3.3696
?(G, H, I) = 2 blog2 (5 (G,H,I)) c

Fig. 6: Prediction function for the number of partitions to use

Even if the above benchmark is evaluated on various synthetic datasets with different queries,
we see the same effects in real world data, too. Every time a query uses a different constant
(for example as a predicate), a completely different subgraph is accessed. Each subgraph
in a real world dataset may contain a different number of triples as we have analyzed in
Fig. 2. When we pick two different subgraphs, and join them with each other, we get very
different selectivities within the join operators as well as different numbers of output rows,
by only changing the query. This approves our assumption, that by just changing the query,
the optimal partitioning scheme changes.

4.5.2 Macro benchmarks

This section presents a macro benchmark for comparing the overall speed of our LU-
POSDATE3000 database system in a macro benchmark to other database systems in this
section.

The database system LUPOSDATE was configured to use either its in-memory storage or a
disk based RDF3X storage layout. Consequently, the results from both in-memory storage
and disk based RDF3X storage layout are presented because the internal implementation
of the triple stores is completely independent. All other database systems are using their
default parameters as suggested by their documentation.

The performance measurements of the blaze-graph database system are suffering from very
large measurement inaccuracies. All other database systems have a very low variation in the
required time for the same query. To counter these inaccuracies, we repeated all experiments
10 times - and use the average measurements in our graphs.

For the experimental comparison, we have executed 10 merge joins on several different

Flexible data partitioning schemes for parallel merge joins in semantic web queries 251

16 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

datasets. These datasets are generated in a manner to yield the target selectivity within each
join operator. Fig. 7 shows the results of this comparison.

We have chosen to fix two different result sizes, and plot the graphs over a changing join
selectivity. Both figures highlight different effects. The experiments of the Jena database
system as well as the in-memory LUPOSDATE in the 128 result rows setting are dominated
by the effect, that a fixed output size with a decreasing selectivity requires an increasing
amount of input data.

0.01

0.1

1

10

100

1000

10000

1
1+20

1
1+22

1
1+24

1
1+26

1
1+28

1
1+210

1
1+212

0.0001

0.001

0.01

0.1

1

10

100

1
1+20

1
1+21

1
1+22

1
1+23

1
1+24

1
1+25

1
1+26

1
1+27

1
1+28

1
1+29

m
sp
er
re
su
lt
ro
w

selectivity

128 result rows

blazegraph
jena
virtuoso
luposdate-MEMORY
luposdate-RDF3X
luposdate3000(1)
luposdate3000(6)
luposdate3000(12)
luposdate3000(24)

m
sp
er
re
su
lt
ro
w

selectivity

32768 result rows

Fig. 7: Performance of Q1 with 10 merge joins on different database systems. These benchmarks are
evaluated on M1 only, because we have multiple instances available, to perform more experiments.
The numbers in the brackets, for example LUPOSDATE3000(6), show the number of used partitions.

252 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 17

Starting with a selectivity of 1
1+29 the sequential performance of LUPOSDATE3000

decreases, while the time requirement of the partitioned evaluation remains the same.
Although for the macro benchmarks the execution times for LUPOSDATE3000 include
overhead for the endpoint communication and materialization of the string representations
of the values, we still achieve speedups up to a factor of 1.81 compared to no partitioning,
which shows that the correct number of partitions is significant for query evaluation.

All other configurations i.e. virtuoso, LUPOSDATE using RDF3x and partitioned LUPOS-
DATE3000 require the same evaluation time completely independent of the selectivity of
the join operators, because very small data causes the database system to spend most of its
time in static initialization.

When 32768 result rows are used, Fig. 7 shows a completely different performance
characteristic, even if the only difference in the benchmark setup is the higher number of
result rows. virtuoso as well as LUPOSDATE with RDF3X are still unaffected by changing
the selectivity. This indicates that both of these database systems are limited by their
capability to output their finished results. Contrary to before the required time per row
decreases with decreasing selectivity for all LUPOSDATE3000 configurations as well as
blaze-graph. This effect is based on the fact, that the static initialization time is getting
smaller compared to the total evaluation time. Therefore, the overall speed per result row
increases. The in memory LUPOSDATE variant suffers from bad memory management
because e.g. no dictionary is used to map string representations to integer identifiers.
Dictionaries are decreasing the memory footprint in all other database systems such that
out-of-memory-errors are avoided during the triple load phase.

Even if the micro benchmark shows, that for huge numbers of result rows more partitions
are better, the macro benchmark in the 32768 result rows setting is faster, if less partitions
are used. At the same time both benchmarks show, that the sequential execution is slower.
We believe, that this is caused by the different benchmark setup. Especially the sequential
text output requires synchronization between the threads, which is not needed in the micro
benchmark.

5 Summary and future work

In this paper we have investigated the factors which impact the performance of parallel
SPARQL query processing. We have focused on the performance of data parallelism.
According to our experiments, the performance depends on the amount of data in the store,
the available hardware, and the structure of the query to process. In order to avoid overhead
introduced by additional partitioning phases, we propose that the triple store materializes
multiple independent partitioning schemes and choose the best among them on the fly. We
present an experimental analysis and a concept of how a database system may optimize its
query processing in this multi partitioning scheme context.

Flexible data partitioning schemes for parallel merge joins in semantic web queries 253

18 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

In the future we will implement and evaluate this partitioning strategy in a distributed
database context. Due to our choice of Kotlin as our implementation-language, we will be
able to run our database implementation directly on various operating systems. We plan to
use these possibilities to evaluate our approach in a multi-operating-system environment
like the Internet of Things with extremely heterogeneous hardware components. We expect
that our approach will have huge advantages in those environments.

Acknowledgements

This work is funded by the Deutsche
Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – Project-
ID 422053062

German Research Foundation

Funded by

Bibliography
[Ab07] Abadi, Daniel J.; Marcus, Adam;Madden, Samuel R.; Hollenbach, Kate: Using The Barton

Libraries Dataset As An RDF Benchmark. Technical Report MIT-CSAIL-TR-2007-036,
MIT, 2007.

[AKN12] Albutiu, Martina-Cezara; Kemper, Alfons; Neumann, Thomas: Massively Parallel Sort-
Merge Joins in Main Memory Multi-Core Database Systems. Proc. VLDB Endow.,
5(10):1064–1075, June 2012.

[Ar11] Arias, Mario; Fernández, Javier D; Martínez-Prieto, Miguel A; de la Fuente, Pablo: An
empirical study of real-world SPARQL queries. arXiv preprint arXiv:1103.5043, 2011.

[Ba05] Bailey, James; Bry, François; Furche, Tim; Schaffert, Sebastian: Web and Semantic Web
Query Languages: A Survey. In: Reasoning Web, pp. 35–133. Springer Berlin Heidelberg,
2005.

[BK20] Bilidas, Dimitris; Koubarakis, Manolis: In-memory parallelization of join queries over
large ontological hierarchies. Distributed and Parallel Databases, June 2020.

[BKS13] Biega, Joanna; Kuzey, Erdal; Suchanek, Fabian M: Inside YAGO2s: a transparent infor-
mation extraction architecture. In: Proceedings of the 22nd International Conference on
World Wide Web. pp. 325–328, 2013.

[DB20] DB-Engines Ranking of RDF Stores. https://db-engines.com/en/ranking/rdf+store, 2020.
Accessed: 2020-09-16.

[GG11] Groppe, Jinghua; Groppe, Sven: Parallelizing join computations of SPARQL queries for
large semantic web databases. In: Proceedings of the 2011 ACM Symposium on Applied
Computing. pp. 1681–1686, 2011.

[Gr11] Groppe, Sven: Data Management and Query Processing in Semantic Web Databases.
Springer, 2011.

254 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

Flexible data partitioning schemes for parallel merge joins in semantic web queries 19

[Ha07] Harth, Andreas; Umbrich, Jürgen; Hogan, Aidan; Decker, Stefan: YARS2: A federated
repository for querying graph structured data from the web. In: The Semantic Web, pp.
211–224. Springer, 2007.

[Ha16] Harbi, Razen; Abdelaziz, Ibrahim; Kalnis, Panos; Mamoulis, Nikos; Ebrahim, Yasser;
Sahli, Majed: Accelerating SPARQL queries by exploiting hash-based locality and adaptive
partitioning. The VLDB Journal, 25(3):355–380, 2016.

[Ha18] Hankwang: , Hard drive capacity over time.
https://de.wikipedia.org/wiki/Datei:Hard_drive_capacity_over_time.svg, 12 2018.
Accessed: 2020-09-16.

[HHK19] Herrera, José-Miguel; Hogan, Aidan; Käfer, Tobias: BTC-2019: The 2019 Billion Triple
Challenge Dataset. In: International Semantic Web Conference, Auckland, New Zealand.
Springer, pp. 163–180, 2019.

[Ho13] Hoffart, Johannes; Suchanek, Fabian M; Berberich, Klaus; Weikum, Gerhard: YAGO2: A
spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence,
194:28–61, 2013.

[JSL20] Janke, Daniel; Staab, Steffen; Leinberger, Martin: Data placement strategies that speed-up
distributed graph query processing. In: Proceedings of The International Workshop on
Semantic Big Data. pp. 1–6, 2020.

[NC20] Naacke, Hubert; Curé, Olivier: On Distributed SPARQLQuery Processing Using Triangles
of RDF Triples. Open Journal of Semantic Web (OJSW), 7(1):17–32, 2020.

[NW08] Neumann, Thomas;Weikum,Gerhard: RDF-3X: a RISC-style engine for RDF. Proceedings
of the VLDB Endowment, 1(1):647–659, 2008.

[NW10] Neumann, Thomas; Weikum, Gerhard: The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19(1):91–113, 2010.

[Pa13] Papailiou, Nikolaos; Konstantinou, Ioannis; Tsoumakos, Dimitrios; Karras, Panagiotis;
Koziris, Nectarios: H 2 RDF+: High-performance distributed joins over large-scale RDF
graphs. In: 2013 IEEE International Conference on Big Data. IEEE, pp. 255–263, 2013.

[Ru20] Rupp, Karl: , microprocessor-trend-data. https://github.com/karlrupp/microprocessor-
trend-data, 7 2020.

[Sc09] Schmidt, Michael; Hornung, Thomas; Lausen, Georg; Pinkel, Christoph: SPˆ 2Bench: a
SPARQL performance benchmark. In: 2009 IEEE 25th International Conference on Data
Engineering. IEEE, pp. 222–233, 2009.

[SH13] Seaborne, Andy; Harris, Steven: SPARQL 1.1 Query Language. W3C recommendation,
W3C, March 2013. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[SKW07] Suchanek, Fabian M; Kasneci, Gjergji; Weikum, Gerhard: Yago: a core of semantic
knowledge. In: Proceedings of the 16th international conference on World Wide Web. pp.
697–706, 2007.

[TWS20] Tanon, Thomas Pellissier; Weikum, Gerhard; Suchanek, Fabian: YAGO 4: A Reason-able
Knowledge Base. In: European Semantic Web Conference. Springer, pp. 583–596, 2020.

Flexible data partitioning schemes for parallel merge joins in semantic web queries 255

20 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

[WKB08] Weiss, Cathrin; Karras, Panagiotis; Bernstein, Abraham: Hexastore: sextuple indexing for
semantic web data management. Proceedings of the VLDB Endowment, 1(1):1008–1019,
2008.

[Ze13] Zeng, Kai; Yang, Jiacheng; Wang, Haixun; Shao, Bin; Wang, Zhongyuan: A distributed
graph engine for web scale RDF data. Proceedings of the VLDBEndowment, 6(4):265–276,
2013.

256 Benjamin Warnke, Sven Groppe, Muhammad Waqas Rehan, Stefan Fischer

cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
0 Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017

Multi-Party Privacy Preserving Record Linkage in Dynamic
Metric Space

Ziad Sehili1, Florens Rohde2, Martin Franke3, Erhard Rahm4

Abstract:

We propose and evaluate several approaches for privacy-preserving record linkage for
multiple data sources. To reduce the number of comparisons for scalability we propose a
new pivot-based metric space approach that dynamically adapts the selection of pivots for
additional sources and growing data volume. Furthermore, we investigate so-called early
and late clustering schemes that either cluster matching records per additional source or
holistically for all sources. A comprehensive evaluation for different datasets confirms the
high effectiveness and efficiency of the proposed methods.

Keywords: Privacy Preserving Record Linkage, Bloom filter, metric space, triangle inequality,
Clustering

1 Introduction

Record linkage or entity resolution is the task of finding records in different data sources
that describe the same real-world entity, e.g. product or customer. Privacy-preserving record
linkage (PPRL) is a special form of record linkage for sensitive data and aims at achieving
record linkage while preserving privacy. This kind of record linkage is especially important
for person-related record linkage, e.g., for finding matching patient or customer records.

PPRL has received a substantial amount of research interest in the last decade [SBR09,
VCV13, Va17]. Most of the proposed approaches aim at improving privacy by matching
on encoded record attribute values instead of the original values for identifying attributes,
such as person name, address and birth of date. These attributes are called quasi-identifiers
(QIDs) as the equality or high similarity in these attributes allows one to find matching
persons. Many proposed PPRL schemes also rely on a so-called trusted linkage unit to
perform the matching of encoded person records thereby avoiding the need to exchange
records between different data owners [VCV13]. Like normal record linkage, PPRL has to
achieve a high match quality and scalability to large datasets.
1 Leipzig University, Database Group, Germany sehili@informatik.uni-leipzig.de
2 Leipzig University, Database Group, Germany rohde@informatik.uni-leipzig.de
3 Leipzig University, Database Group, Germany franke@informatik.uni-leipzig.de
4 Leipzig University, Database Group, Germany rahm@informatik.uni-leipzig.de

cba doi:10.18420/btw2021-13

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 257

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sehili@informatik.uni-leipzig.de
mailto:rohde@informatik.uni-leipzig.de
mailto:franke@informatik.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-13

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 1

Most proposed PPRL methods focus on the special case of linking two sources only
[VCV13]. However, various use cases and data analysis tasks require a PPRL for multiple
(≥ 2) sources, e.g., databases from hospitals, clinical studies and census data. Multi-Party
PPRL (MP-PPRL) introduces further challenges to be addressed. In particular, the number
of record comparisons grows quadratically with the size and the number of sources making
scalability a problem. Furthermore, a record may have matches in an arbitrary subset of the
data sources not only in one data source. This asks for clustering matching records over
multiple sources so that a cluster contains all matches for a specific person. This clustering
should utilize that individual sources are often curated and duplicate-free so that every
cluster should have at most one record for any data source.

To address these challenges we investigate several novel approaches for MP-PPRL and
clustering of encoded records. Specifically, we make the following contributions:

• To reduce the number of comparisons between records we utilize a pivot-based
metric space approach [SR16]. We propose an extension of the static approach with a
dynamic adaptation of the pivot selection in order to deal with additional data sources
and growing data volume.

• We investigate different clustering schemes for multiple parties that either cluster
new data sources one after the other (early clustering) or that first determine similar
record pairs over all sources before a final clustering is performed (late clustering).

• The presented approaches, PPRL in dynamic metric space and the clustering tech-
niques, are exhaustively evaluated using synthetic and real datasets. We also compare
them with baseline approaches.

After a brief discussion or related work we describe basics of PPRL (including the use
of Bloom filters to encode quasi-identifiers) and metric space. Section 4 describes the
dynamic pivoting approach for multi-party PPRL. The early and late clustering approaches
are outlined in Section 5. In Section 6 we evaluate the proposed approaches before we
conclude.

2 Related Work

PPRL has been applied in several real health-related use cases, e.g., to compare surgical
treatment received by Aboriginal and non-Aboriginal people with non-small cell lung
cancer in Australia [Gi16], or to analyze long-term consequences of childhood cancer
in Switzerland by linking national data from several cantonal registries [Ku11]. Several
surveys [VCV13, Va17, BRF15] categorize the variety of proposed PPRL methods with
respect to their challenges of privacy, quality and scalability. The privacy of the represented
entities can be provided by using either secure multiparty computation (SMC) to run PPRL
between the data owners without involving a linkage unit or by encoding records, e.g. within

258 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

2 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Bloom filters [SBR09], and then sending the encoded records to a dedicated linkage unit
(see Section 3). Although SMC methods for PPRL aim at higher privacy guarantees they are
not applicable in many practical use cases due to their high computational complexity. The
linkage quality depends on many factors like the input data, the linkage and classification
methods [Ch12], and the encoding technique. While the first factors are not specific to PPRL
but also apply to record linkage in general, the effect of encoding records to Bloom filters
before comparing them have been studied in [SBR11, Du12]. The authors have shown that
the linkage quality of Bloom filters does not drop significantly compared to the original
(string) records. We will thus use Bloom filters for encoding records in this paper.

In previous PPRL papers, the scalability problem has been addressed by applying blocking
or filtering techniques for Bloom filters to reduce the number of comparisons [Se15, SR16].
Furthermore, the PPRL computations at a linkage unit can be run in parallel [Gl18, FSR18].
All previous blocking and filtering schemes for PPRL are static so that their effectiveness
tends to decrease with increasing data volume (e.g. the number of comparisons per block
mostly grows quadratically with the block size). In our previous work [SR16] we introduced
the use of a pivot-based metric space approach [Ze06] for PPRLwith two sources. In contrast
to blocking, this approach can reduce the number of comparisons without introducing from
recall reductions. The main drawback of this method is its upfront selection of a static set
of reference records (pivots) making it inapplicable for dynamically growing number and
size of sources. To overcome this problem we advise a new dynamic pivoting scheme. In a
non-PPRL setting a related dynamic approach, Sparse Spacial Selection (SSS), has been
proposed in [PB07], that dynamically selects reference records from one source depending
on the spacial distribution of records in the metric space. We use this method as baseline in
our evaluation.

Multi-party record linkage with a clustering of matching records without the privacy
prerequisite was studied in [Sa18]. The approach uses a static blocking scheme, determines
similar pairs of records from all sources (and keeps them in a similarity graph) before a
final clustering is performed (late clustering). [Fr18] shows that PPRL match results for
two duplicate-free sources can be improved by a post-processing to determine a 1:1 match
mapping. This can be achieved by a Hungarian or Max-Both approach and we will use
these methods in our early clustering schemes for multiple parties. [VCR20] investigates
clustering techniques for MP-PPRL, but for static blocking instead of our dynamic metric
space filtering.

3 Preliminaries

This section starts by introducing the multi-party PPRL process, then presents the Bloom
filter encoding scheme that preserves privacy and similarity of records. Furthermore, we
explain the use of metric space to improve scalability of the linkage process.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 259

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 3

Fig. 1: Multi-Party PPRL: The data owners encode their records and send them to a trusted linkage
unit (LU). The LU links the records and determines clusters of matching records

3.1 Multi-Party PPRL

A Multi-Party PPRL process that involves 8 data holders and a trusted linkage unit (LU) to
run the linkage process is depicted in Fig. 1. We assume duplicate-free datasets �(1, �(2,
. . . , �(8 . Quasi-identifying attributes of the records are first encoded to Bloom filters (see
below) by their respective data holders to preserve the privacy of the represented persons.
The encoded records are sent to the LU where a linkage process using the metric space
approach is applied for improved scalability (explained in Sec. 4) and where clusters of
similar records are generated. Furthermore, and due to the assumption that the sources are
duplicate-free, a post-processing or cleaning step is run to ensure that each cluster contains
at most one record from any source. Hence, the size of any clean cluster 2 is 1 ≤ |2 | ≤ 8.
Clustering strategies are discussed in Sec. 5.

3.2 Bloom Filter

The use of Bloom filter [Bl70] to encode records involved in PPRL was introduced in
[SBR09]. The encoding scheme of one record takes as input a set of q-grams (bi- or
tri-grams) of the relevant attributes (e.g. first and last name, date of birth and address),
a bit array of length ; with all positions initially set to zero and a set of : independent
cryptographic hash functions that return values in [0, ; − 1]. Then each q-gram is mapped
to the bit array :-times using the : hash functions by setting the corresponding positions
to 1. Figure 2 shows a simple example of two similar names and their encoding to Bloom
filters of length ; = 20 using : = 2 hash functions.

260 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

4 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0

_t to om ma

0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

as s_

_t to om mm ma as

1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s_

Fig. 2: Bloom filter (bit vector) encoding of two names tomas and tommas, each tokenized to bi-grams,
using : = 2 hash functions and bit vectors of length ; = 20

3.3 PPRL in Metric Space

A metric spaceM(U, 3) consists of a set of data objects U and a metric 3 to compute
the distance between these objects. The main property satisfied by the distance metric 3
is the triangle inequality of the distances: ∀G, H, I ∈ U : 3 (G, I) ≤ 3 (G, H) + 3 (H, I). This
inequality can be used to considerably reduce the search space without discarding any pair
of similar records, i.e., without reducing recall [Ze06].

For a data object @ ∈ * the match candidates cannot be outside a radius A03 (@) in order to
satisfy a maximal distance threshold. The triangle inequality allows one to avoid computing
the distance between points G and @ based on precomputed distances to a reference point ?,
also known as pivot. Hence, only objects that satisfy:

|3 (?, @) − 3 (?, G) | ≤ A03 (@) (1)

need to be considered as potential matches so that the distance 3 (@, G) has to be computed
to determine whether @ and G match.

PPRL processes generally use a similarity function like Jaccard to compare records and a
threshold t to classify pairs as similar or non-similar. Since metric spaces rely on metrics
(distance function), we can use the Hamming distance, that was shown to be equivalent to
the Jaccard similarity [Xi08], to search matching records. The radius A03 (@) that includes
similar records to @ can be inferred from C as [SR16]:

A03 (@) = |@ | × 1 − C
C
.

where |@ | is the number of positions set to 1 in the Bloom filter. Records having a Hamming
distance ≤ A03 (@) are those that have a Jaccard similarity ≥ C.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 261

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 5

For two sources �(1 and �(2, the pivot-based metric space approach for PPRL operates in
two steps: index building and similarity search. Indexing source �(1 first requires selecting
a set % of < data objects that serve as pivots. One proven approach is to select these pivots
from �(1 in an iterative manner by choosing the objects having the maximum distance
to each other [SR16]. Next, each object G ∈ �(1 is assigned to its closest pivot ?8 ∈ %,
4;4<(?8) = {G ∈ �(1 : 38BC (G, ?8) < 38BC (G, ? 9),∀ 9 ≠ 8}. For every object G ∈ �(1 the
precomputed distance 3 (G, ?8) to its pivot ?8 is stored as well as the radius of a pivot
A03 (?8), i.e., the maximal distance for any object assigned to pivot ?8 .
For each (query) object @ ∈ �(2, the matching with �(1 objects involves a similarity
search with radius A03 (@). This search for match candidates can utilize two filter steps.
First, only those pivots ?8 need to be considered for which the pivot radius A03 (?8) overlaps
with A03 (@) since otherwise all of the pivot’s objects are outside radius A03 (@) and cannot
match. Secondly, for the remaining pivots ?8 the number of its objects G can be reduced
according to the above triangle inequality.

4 MP-PPRL in Dynamic Metric Space

We first explain our approach to dynamically increase the number of pivots for growing
data volume and then explain the use of this approach for multi-party PPRL.

4.1 Dynamic Pivoting

The static pivot method with its upfront determination of pivots has two problems: 1) the
number of pivots is difficult to determine and dependents on the number and distribution
of records. 2) The number of pivots should be adequately increased with growing number
and size of sources to be indexed since more records per pivot leads to more comparisons
and thus poor scalability. Furthermore, more records per pivot lead to increased pivot radii
and higher overlap between the pivots (see below) which in turn can cause that more pivots
need to be considered to find the matches of a query record. Hence, the potential to reduce
the number of comparisons can be severely reduced when we keep a static set of pivots in
the presence of strongly growing data volume, e.g. due to additional data sources.

To overcome these problems for multi-source PPRL, we devise an algorithm to adapt the
pivot selection dynamically during the indexation of an additional data source. For this
purpose we control the so-called pivot overlap using a parameter U. Note that an indexed
record G may be in the radius of several pivots ?8 (38BC (G, ?8) < A03 (?8)) although it is
assigned to only one (the closest) pivot. Similar to the idea introduced in [Tr00], the overlap
between pivots can thus be determined by the average number of intersections per record.

262 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

6 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Algorithm 1: Dynamic Pivot-based indexing
Input : dataset �(;

maximal intersection U;
Output: set % of pivots with their assigned elements

1 if �(is the first source then
2 �2 = 0; // intersections records pivots
3 # = 0; // number of read records
4 % = (; // small set (of initial pivots with A03 (?8) = 0, for ?8 ∈ %
5 foreach G ∈ �(do
6 # = # + 1;
7 <8=�8BC = ∞;
8 14BC%8E>C = =D;;;
9 foreach ?8 ∈ % do

10 if 38BC (G, ?8) ≤ A03 (?8) then
11 �2 = �2 + 1;
12 if 38BC (G, ?8) < <8=�8BC then
13 <8=�8BC = 38BC (G, ?8);
14 14BC%8E>C = ?8 ;

15 4;4<(14BC%8E>C) = 4;4<(14BC%8E>C) + {G};
16 if A03 (14BC%8E>C) < <8=�8BC then
17 A03 (14BC%8E>C) = <8=�8BC;

18 >E4A;0?(%) = �2
#×|% | ;

19 if >E4A;0?(?) > U then
20 run Algorithm 2 // Generate new pivot

Let �2 be the sum of the number of pivot intersections for any record G, # the number of
indexed objects, and |% | the number of pivots.We define the overlap factor of the pivots as:

>E4A;0?(%) = �2
× |% | (2)

The overlap factor thus determines the average number of pivot intersections per record
normalized by the total number of pivots. A low overlap value means that the data objects
are largely partitioned according to their pivots, e.g., when the radii are relatively narrow.
Additional data objects are assigned to the closest pivots so that the radii and thus the overlap
between pivots tends to increase. This will also reduce the filter effects and thus increase
the number of necessary match comparisons.

We use an adaptation parameter U to control the maximal overlap ratio between pivots, i.e.,
we increase the number of pivots as soon as this value is exceeded in order to increase the
number of pivots for a growing number of data objects. Algorithm 1 specifies the dynamic
indexing using parameter U. The algorithm starts with a small set of pivots % (line 4), that

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 263

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 7

Algorithm 2: Generate new pivot
Input :set of pivots % with their elements;

1 choose ? ∈ %; // pivot with max cardinality
2 choose ?=4F = G ∈ 4;4<(?): furthest element from ?;
3 foreach ?8 ∈ % do
4 foreach 4 ∈ 4;4<(?8) do
5 if 38BC (4, ?=4F) ≤ 38BC (4, ?8) then
6 4;4<(?=4F) = 4;4<(?=4F) + {4};
7 store 38BC (4, ?=4F);
8 update A03 (?=4F); // if necessary
9 4;4<(?8) = 4;4<(?8) − {4};

10 update A03 (?8); // if necessary

11 % = % + {?=4F };

can be chosen for example randomly. In the next step, new records of the dataset are read
sequentially and compared with the existing pivots. �2 is incremented each time the distance
between G and any pivot ?8 is smaller than the radius A03 (?8) (line 10 and 11). Finally, G is
added to the elements of the closest pivot and the radius of this pivot is possibly updated
(lines 15-17). Furthermore, the overlap factor is calculated and compared with U (lines
18-20). If the overlap exceeds the value of U a new pivot ?=4F is generated (Algorithm 2)
and all the objects already indexed are re-partitioned over the pivots.

Note that there are different strategies to select a new pivot (line 1 and 2 of Algorithm
2):, e.g., choose the new pivot as the furthest record from the elements of the pivot with
the highest cardinality (approach MaxCard) or from the pivot having the largest radius
(MaxRadius). Another approach is to select the next pivot as the most furthest object to
the already chosen pivots (FurthestNode). Preparatory experiments showed the highest
effectiveness forMaxCard so that we will use this approach in our evaluation.

4.2 MP-PPRL using Dynamic Pivots

Running MP-PPRL using dynamic pivot based metric space is now straightforward and
its steps are shown in Algorithm 3. For a set of data sources �(8 we start by indexing the
first source �(1 using algorithms 1 and 2. For each additional dataset �(9 9 ≥ 2 we run
two methods successively: link(�(9) which finds matches " 9 between records of �(9 and
records already assigned to ?8 ∈ % from former sources. The second method index(�(9)
partitions records of �(9 on the existing pivots ?8 ∈ % following the algorithms 1 and 2
which might lead to the generation of additional pivots.

This algorithm outputs pairs of similar records that form a similarity graph. By computing
the connected components from this graph we generate initial clusters of matches. These

264 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

8 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Algorithm 3:MP-PPRL in dynamic metric space
Input : � = {�(9 , 9 ∈ 1..8} datasets;

% set of pivots;
1 Output : � set of clusters;

2 % = ∅;
3 8=34G(�(1) // using algorithms 1 and 2
4 for 9 ≥ 2 do
5 ;8=: (�(9);
6 8=34G(�(9);

clusters may still have several records per source and we will apply a post-processing steps
to solve this problem.

In what follows we use the term linkage-iteration to denote the execution of index(�(8) on
data source �(8 and link(�(8+1) on the forthcoming data source �(8+1.

5 Clustering

The goal of clustering is to group all matching records (Bloom filters) based on the previously
determined pairs of matching records. Due to the assumption of duplicate-free sources, we
have to ensure that every cluster should be clean, i.e., include at most one record per source.
In this section we outline several approaches for early and late clustering that generate clean
clusters during and after the linkage process, respectively.

5.1 Early Clustering

Early clustering algorithms build clean clusters progressively after each linkage-iteration by
considering the linkage output of each iteration as a weighted bipartite graph. Based on
some predefined criteria, edges are deleted from the graph so that each resulting cluster
contains at most one record from any involved source. We describe two representative
algorithms, Hungarian and Max-Both, of such a strategy.

Hungarian Algorithm: The Hungarian algorithm [Ku55] is a combinatorial optimization
method to solve the assignment problem in polynomial time. The input of the algorithm
is a weighted bipartite graph � ((,), �F) with (and) consisting of two disjoint sets of
vertices representing records from two different sources �(8 and �(9 and a set of weighted
edges �F = {(B, C) : B ∈ (∧ C ∈)} where the weights represent the similarity values for
pairs of elements of (and) . The goal of the Hungarian algorithm is to find an assignment
with the highest global similarity between the elements of (and) so that each element
from each set is linked with at most one element from the other set (1:1 mapping).

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 265

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 9

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

link sources 1 and 2 link sources 1, 2 and 3 link sources 1, 2, 3 and 4 link sources 1, 2, 3, 4 and 5

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

clustering clustering clustering clustering
a)

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

clustering clustering clustering clustering
b)

Fig. 3: Clustering the linkage result of 5 sources using the a) Hungarian Algorithm and b) Max-Both

For MP-PPRL the Hungarian algorithm is run after each linkage-iteration of a new dataset.
Hence, after the linkage of the first two sources, �(1 and �(2 the algorithm is run in
a straightforward manner on graph � (�(1, �(2, �4) and a set of clusters 28 ∈ � with
1 ≤ |28 | ≤ 2 is generated. For each further source �(8 , 8 ≥ 3, the linkage step computes
the similarities between the elements C ∈ �(8 and the clusters 28 ∈ � and generates a new
weighted bipartite graph� (�, �(8 , �F), that serves as an input for the Hungarian algorithm.
The top of Fig. 3 shows the linkage of 5 sources and the application of the Hungarian
algorithm to cluster the results. A perfect clustering would output the following clusters:
21 = {2_�, 3_�, 5_�}, 22 = {4_�, 5_�}, and the singletons 23 = {1_�}, 24 = {2_�},
25 = {2_�} (colored with blue, red and black respectively).
Max-Both: Max-Both was introduced in [MGR02, DR02] to solve the multimapping
problem of two sources. Max-Both works in a similar manner as the Hungarian algorithm; in
each linkage-iteration it finds the ’best’ assignment in a weighted bipartite graph. The only
difference is that Max-Both keeps a link (B, C) only if this link is the best for both elements
B and C. Therefore, for a bipartite graph � ((,), �4) Max-Both starts by selecting for each
element B ∈ (the element 14BC"0Cℎ(B) = C ∈) so that B8<(B, C) > B8<(B, C ′) : ∀C ′ ∈)
and C ′ ≠ C. On the other side, for each C ∈) the element 14BC"0Cℎ(C) = B ∈ (is selected
so that B8<(B, C) > B8<(B′, C) : ∀B′ ∈ (and B′ ≠ B. Then a mapping (B, C) is returned only if
14BC"0C2ℎ(B) = C ∧ 14BC"0C2ℎ(C) = B.

266 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

10 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Database Group

STEPS OF LATE CLEANING

pairs of similar
records (all sources)

build CCs from
similar pairs split each CC find clean clusters

Fig. 4: Steps involved in late clustering

Database Group

INPUT OF LATE CLEANING METHODS
(EXAMPLE)

2_B

2_C

1_A 3_B

4_E

5_E

2_D
5_B

id1 id2 sim

1_A 2_D 0.77
1_A 2_B 0.81
1_A 3_E 0.81
1_A 4_E 0.94
1_A 5_E 0.94
1_A 5_B 0.81
2_C 3_B 0.71
2_C 5_B 0.71
2_B 3_B 1.00
2_B 4_E 0.76
2_B 5_E 0.76
2_B 5_B 1.00
2_D 3_B 0.78
2_D 4_E 0.74
2_D 5_E 0.74
2_D 5_B 0.78
3_B 4_E 0.76
3_B 5_E 0.76
3_B 5_B 1.00
4_E 5_E 1.00
4_E 5_B 0.76
4_F 5_E 0.71

0.81 1.00

0.81

0.94

0.71

0.78

0.74

0.78

0.76

1.00

1.00

similar pairs A snippet of the similarity graph (WCC)

Fig. 5: Transformation of similar pairs to a similarity graph (weighted connected component). For
clarity only the edges for the bold entries on the left side are shown.

The Bottom of Fig. 3 displays the output of Max-Both. Due to the simplicity of the input data
Max-Both and the Hungarian algorithm return the same results in the first three iterations.
In the last iteration, however, Max-Both keeps the best edge (higher similarity) between
the large cluster and the singleton 5_� and prune all other edges. This leads to a more
homogeneous cluster compared to the Hungarian algorithm, which try to maximize the
weights by preserving a larger number of edges.

5.2 Late Clustering

In this approach the linkage process is run between records of all sources to generate a
similarity graph. Clustering is performed late and uses a weighted connected component
(WCC) as input instead of a weighted bipartite graph. The rationale behind this approach is
to preserve a global view of the linkage result and avoid pruning edges in early iterations
that might be good in later ones. Fig. 4 shows the steps of late clustering. First, the pairs of
similar records from all sources are used to build WCCs, an example of such transformation
is shown in Fig. 5. Then an optional step to split WCCs is run to reduce the size of large
CCs, and thus reduce the complexity for clustering. To split connected components we can
use either the method introduced in [Sa18] by deleting so-called weak links (the records
connected with such links have at least one higher-similarity link to another record of the
respective other source) inside each CC, or use the k-medoid algorithm to group a set of

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 267

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 11

Database Group

LATE CLEANING: SORT KEEP BEST (EXAMPLE)

order cluster avg. sim

1 [2_B, 3_B, 5_B] 1.0
2 [2_B, 5_B] 1.0
3 [2_B, 3_B] 1.0
4 [3_B, 5_B] 1.0
5 [4_E, 5_E] 1.0
6 [1_A, 4_E, 5_E] 0.96

67 [2_C, 3_B, 4_E] 0.74
68 [2_D, 5_E] 0.74
69 [2_D, 4_E] 0.74
70 [2_C, 5_B] 0.71
71 [2_C, 3_B] 0.71
72 [4_F, 5_E] 0.71

order cluster # edges

1 [1_A, 2_B, 3_B, 4_E, 5_B] 10
2 [1_A, 2_B, 3_B, 4_E, 5_E] 10
3 [1_A, 2_D, 3_B, 4_E, 5_E] 10
4 [1_A, 2_D, 3_B, 4_E, 5_B] 10
5 [1_A, 2_B, 3_B, 5_B] 6
6 [2_B, 3_B, 4_E, 5_B] 6

67 [4_E, 5_B] 1
68 [2_D, 5_E] 1
69 [2_D, 4_E] 1
70 [2_C, 5_B] 1
71 [2_C, 3_B] 1
72 [4_F, 5_E] 1

a) sorting according to the avg. similarity b) sorting according to the number of edges

Fig. 6: The outputs of the algorithm Sort and Keep Best on the similarity graph of Fig. 5 using (a) avg.
similarity and (b) number of edges. Returned clusters for each sorting criteria are green framed.

records into clusters of similar objects. In the following, we present two late clustering
methods, graph multicut and SKB (sort and keep best).

Graph Multicut:Multicut is a graph partitioning problem that takes as input a connected
graph � (+, �), a weight function F : � → ' that assigns weights to the edges � , and a set
of : pairs (B1, C1), (B2, C2), . . . (B: , C:). The algorithm tries to find the set of edges � ⊂ �
whose removal disconnect each pair (B8 , C8) for 8 = 1 . . . : . A minimum graph multicut
returns the set � with the lowest cost. This problem can be defined as a linear program:

minimize
∑
4∈�

F4 × 34

subject to
∑
4∈?

34 ≥ 1 ∀? ∈ %B8 ,C8 ,8 = 1 . . . :

34 ≥ 0 ∀4 ∈ �

(3)

This linear program assigns the smallest positive value 34 to each edge 4 ∈ � which is
on any path ?8 that joins the pairs B8 , C8 (pairs to be disconnected) so that the sum of the
assigned values 38 for each path is greater than 1. The edges to be removed (cut edges) are
contained in the set � = {4 ∈ � : 34 ≥ 0.5}[GVY93].
This algorithm can be easily adapted to cluster the result ofMP-PPRL. EachWCC constitutes
a graph �8 (+8 , �8) of records +8 and weighted edges �8 (similarity values). We consider
each pair of records G, H ∈ +8 from the same source as terminals to be disconnected, and
generate clusters by solving linear program 3. For the example graph in Fig. 5 the pair
(5_�, 5_�) from the fifth source constitutes two terminals to be disconnected. Multicut
algorithm assigns to each edge of the paths connecting 5_� and 5_� the smallest possible
value 38 then prunes all edges having a value ≥ 0.5. Applying Multicut on the graph of
Fig. 5 returns the following clusters: {1_�, 2_�, 3_�, 4_�, 5_�}, {2_�, 4_�, 5_�} and

268 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

12 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Algorithm 4: Sort and Keep Best (SKB)
Input : ,�� weighted connected component;

 sorting criteria;
1 Output : � set of clean clusters;;
2 � = ∅;
3 C<? = ∅;// to store records of clean clusters
4 generate all possible clean clusters 28 ;
5 sort 28 according to ;
6 foreach 2;A ∈ 28 do
7 if 2;A ∩ C<? = ∅ then
8 � = � + {2;A};
9 C<? = C<? ∪ 2;A;// add records of 2;A to C<?

10 else
11 prune 2;A;

the singleton {2_�}. As we can see, Multicut is a kind of generalisation of the Hungarian
algorithm for multiple sources which tries to keep as many edges as possible.

Sort and Keep Best (SKB): Algorithm 4 implements this method. It takes as input a WCC
and starts to generate all possible clean clusters contained in it. Based on some criteria, the
algorithm sorts the generated clusters. Finally, the clusters are read sequentially and it is
checked whether the actual cluster includes records that are contained in better (already
processed) clusters or not (line 7). If this is not the case the cluster is added to the set of
final clusters and its elements are stored to check forthcoming clusters (line 8-9).

We evaluated two criteria to sort the clusters: 1) Average similarity inside the cluster
�E6_B8< =

∑
4∈�2

F4/|�2 |, if �E6_B8< of two clusters are equal then sort according to
|�2 |. 2) The number of edges |�2 | between the elements of a cluster, if |�2 | of two clusters
are equal then sort according to �E6_B8<. Fig. 6 illustrates the output of both sorting criteria
on the similarity graph of Fig. 5. Sorting the clusters by �E6_B8< leads generally to small
but more homogeneous clusters than sorting them by edges. The latter method tends to
create large clusters that might include miss-matches.

6 Evaluation

After the description of the experimental setup, we evaluate the performance of the proposed
dynamic selection of pivots in metric space for MP-PPRL. In particular, we analyse the
influence of the overlap parameter U and present a comparison with Sparse Spacial Selection
(SSS), an alternate dynamic pivoting scheme. Furthermore, we conduct a comparative
analysis of the match quality and runtimes of the presented early and late clustering strategies.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 269

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 13

sources dataset 1 2 3 4 5 6 7 8 9 10

3
S-NCVR 58% 17% 25%

R-NCVR 20% 50% 30%

5
S-NCVR 60% 3% 5% 7% 25%

R-NCVR 19% 24% 24% 19% 14%

7
S-NCVR 60% 1% 2% 3% 4% 5% 25%

R-NCVR 16% 21% 21% 16% 11% 8% 7%

10
S-NCVR 61% 1% 1% 1% 1% 2% 2% 3% 3% 25%

R-NCVR 15% 20% 20% 15% 10% 6% 5% 4% 3% 2%

Tab. 1: Distributions of duplicate records over the sources to be matched for both dataset collections
S-NCVR and R-NCVR.

6.1 Experimental Setup

For our experiments we use two collections of datasets with different sizes and number
of sources (parties) to simulate a MP-PPRL process. The first collection, S-NCVR, was
generated from the publicly available North Carolina Voter Register (NCVR) dataset. Using a
snapshot of about 7 million persons several sources have been generated. Duplicate records
over the different sources have been created by introducing some modifications (typos)
to the original attribute values. The second collection R-NCVR, also obtained from NCVR,
represents real data without any modification. Duplicate records over sources arise from real
changes or modification in the attributes values of some persons. Table 1 shows the number
of sources and the distribution of duplicate records over the sources for both sizes 100, 000
and 500, 000. The two collections have different duplicates distributions, e.g., to link three
parties each containing 100, 000 records, the three sources from S-NCVR contains about
60% of singletons, 17% of records are duplicate in two sources and 25% of records are
present in all three sources. The distribution of sources from R-NCVR decreases the number
of duplicates over sources when the number of sources increase. Note that the duplicates
are a mixture of similar and equal records distributed over the sources.

Records of both collections of data have been encoded to Bloom filters of length 1, 000
using between 10 and 30 hash functions. All experiments are conducted single-threaded on
a machine with a 4-core 4.00��I CPU and 32 GB of main memory.

6.2 Evaluation of Dynamic Pivoting

6.2.1 Influence of max overlap value U

We use the first collection of datasets R-NCVR to determine the influence of parameter U and
to determine effective settings for it. We run MP-PPRL without any clustering method to

270 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

14 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

200

400

600

800

1,000

1,200

1,400

1,600
index comaprison runtime

alpha

ti
m

e
in

 s
ec

.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

500

1,000

1,500

2,000

2,500

3,000

3,500

alpha
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1,000

2,000

3,000

4,000

5,000

6,000

alpha

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

alpha

alpha
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

10

20

30

40

50

60

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

12

14

16

18

20
PxQ RxQ all comparisons

o

f
co

m
p

ar
is

o
n

s
*

10
^

9

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

20

40

60

80

100

120

140

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

50

100

150

200

250

300

alpha alpha alpha

3 sources 5 sources 7 sources 10 sources

Fig. 7: Runtimes (index and comparison) and number of comparisons w.r.t. the value of U to link
3,5,7 and 10 sources each containing 100, 000 records.

link sets of sources with different configuration w.r.t the number of sources and the size
of each source. We varied the value of U between 0.001 and 0.01 and set the similarity
threshold to 0.75. For each configuration we evaluate the time needed to index records, i.e.,
to assign them to their pivots, and to find the matches. Furthermore, we analyze the number
of distance computations.

The top of Fig. 7 shows the index, comparison and total runtime to link sets of sources
(3, 5, 7 and 10 sources) each containing 100, 000 records. We observe that small U values
< 0.002 lead to both high index and comparison times. For U = 0.001 the index time,
i.e., the time to dynamically generate new pivots and to distribute records on these pivots,
represents about 43% of the total runtime when MP-PPRL is run for three sources. The
reason of this high index time is that low U values are frequently exceeded leading to the
determination of additional pivots and a corresponding reassignment of record to these
pivots. Furthermore, the generated pivots need to be compared with all the query records
from the second source to check the triangle inequality, which increases comparison time.
For U = 0.001 the number of dynamically generated pivots from the first source is about
10, 000 pivots that must be compared with the 100, 000 records from the second source
before the real linkage begins.

On the other side, higher U values decrease indexing time because fewer pivots are generated.
However, the comparison time increases dramatically when U > 0.005 and the number
of sources to link is greater than five. For such U values a large number of records are
distributed on a small number of pivots in the index phase which causes an enlargement of
the pivots radii and therefore their ability to exclude pairs from farther comparison using the
triangle inequality. This can be shown in the bottom of Fig. 7, where the number of distance
computation to link ten sources grows from 97 × 109 to 254 × 109 when U is changed from
0.001 to 0.01.

Another behaviour we can observe is that the comparison time is not always related to
the number of comparisons computed. By assigning U small values we reduce in fact the

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 271

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 15

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0.001 0.002 0.003 0.004 0.005 0.006 0.007

ti
m

e
 in

 s
e

c.

alpha

times link of 3 sources (500k each)

index comparison runtime

0

50

100

150

200

250

300

350

400

0.001 0.002 0.003 0.004 0.005 0.006 0.007

o

f
co

m
p

ar
is

o
n

s
x

1
0

9

alpha

of comparisons to link 3 sources (500k each)

PxQ RxQ all comparisons

Fig. 8: Runtimes (index and comparison) and number of comparisons w.r.t. the value of U to link 3
sources each containing 500, 000 records.

number of comparisons (queries with pivots + queries records), however, the computation
time does not follow this trend. This is due to the overhead of parsing all queries for each
pivot and the distance function (XOR) that is known to be very cheap to execute.

To investigate the best U value for large dataset we run MP-PPRL to link a set of three
sources each containing 500, 000 records and varying U between 0.001 and 0.007. The
right part of Fig. 8 shows the index, comparison and total runtime. For this experiment
we observe the same behaviour as for smaller datasets, i.e., very small U values ≤ 0.002
increase both the index and comparison time, and large U values ≥ 0.003 decrease the index
time but increase the comparison time for the same reason as mentioned above. As we can
see the best runtime (index + comparison) is obtained for U values between 0.002 and 0.004.
We use U = 0.003 in the following experiments.

A very high value of parameter U, e.g., 1, means that the generation of new pivots will never
be triggered which corresponds to a static pivoting approach where the initially selected
pivots are not changed any more. The shown curves in Fig. 7 and 8 show that the runtimes
and number of comparisons for the highest U values are much worse than for the best
settings of U which underlines the high value of the proposed dynamic pivoting approach.

6.2.2 Comparison with Sparse Spatial Selection (SSS) Method

We now compare the performance of our method of dynamically selecting pivots with the
the Sparse Spatial Selection method (SSS) that was proposed outside the context of PPRL.
SSS starts with a random record G as pivot. The next pivots are records having a distance
≥ " × V to any already selected pivot, being " the maximal distance between any two
records in the dataset and V a constant parameter taking values in [0.35, 0.40]. We run
some initial experiments and found V = 0.54 the optimal value for our datasets. To compare
our method with SSS, we run MP-PPRL to link datasets of 3 and 7 sources each containing
500, 000 records from the second collection, S-NCVR. Table 2 shows the achieved results
for our method (named overlap) and SSS for different similarity threshold (0.75 − 0.95).

272 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

16 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

0.75 0.8 0.85 0.9 0.95
SSS overlap SSS overlap SSS overlap SSS overlap SSS overlap

3 src.

Pivot_1 17,064 6,247 17,064 6,247 17,064 6,247 17,064 6,247 17,064 6,247
Pivot_2 21,436 7,276 21,436 7,276 21,436 7,276 21,436 7,276 21,436 7,298
P x Q (×109) 19.25 6.76 19.25 6.76 19.25 6.76 19,25 6.76 19.25 6.77
R x Q (×109) 175.90 228.83 37.04 62.71 7.69 14.82 1.91 3.91 0,48 1.06
index time 35 16 32 16 26 15 26 15 29 15
runtime 179 153 102 72 85 57 57 46 51 54

7 src.

Pivot_1 16,825 6,279 16,825 6,279 16,825 6,279 16,825 6,279 16,825 6,279
Pivot_2 30,742 9,724 30,742 9,725 30,742 9,726 30,742 9,741 30,742 9,835
P x Q (×109) 74.33 24.64 74.33 24.64 74.33 24.64 74.33 24.65 74.33 24.82
R x Q (×109) 1,235.27 1,412.03 265.37 366.05 55.57 85.53 13.92 22.77 3.50 6.13
index time 48 37 47 39 33 31 33 47 34 38
runtime 1,237 1,185 545 412 309 176 259 162 292 152

Tab. 2: Comparison of our method (overlap) with SSS to link 3 and 7 sources from the S-NCVR each
containing 500,000 records. We investigate the number of pivots generated in the first (# pivot_1) and
last (# pivot_2) linkage iteration, the number of comparisons between pivots and queries (P x Q) and
between indexed records and queries (R x Q), the index time and the complete runtime in minutes.
(best values in bold)

We report the number of generated pivots, the number of comparisons between pivots
and queries (P x Q) and between indexed records and queries (R x Q), Furthermore, we
consider the index time needed to find adequate pivots and partition records over them and
the complete runtime.

We observe that SSS generates many more (three times more) pivots as our overlap-based
method. To index the first source (for both 3 and 7 sources) SSS needs about 17, 000
pivots while our method generates only about 6, 000 pivots for the same source. During the
MP-PPRL process SSS continues to generate numerous pivots whose number reach 30, 000
to compare 7 sources. While the high number of pivots generally can reduce the number of
comparisons between indexed records and queries (as explained before) it leads, however,
to a large index time and runtime, and a high number of comparisons between queries and
pivots. For both number of sources (3 and 7) SSS requires three times more comparisons
between pivots and queries as our method (6.76× 109 vs. 19.25× 109 for 3 sources). Hence,
our methods outperforms SSS w.r.t. the quality and number of pivots generated and the
runtime of MP-PPRL.

6.3 Comparison of Clustering Methods

6.3.1 Number of sources

We first evaluate the quality of the proposed early and late clustering approaches, Hungarian
algorithm (HUNG), Max-Both (MAX-B), graph multicut (M-CUT) and sort and keep best
using average similarity (SKB-S) and number of edges (SKB-E) as sorting criterion, as
well as of the baseline approach connected components (CC) in terms of precision, recall
and f-measure for different number of sources. In the first experiment, we use sources of

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 273

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 17

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
3 sources

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
5 sources

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
7 sources

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
10 sources

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

HUNG MAX-B SKB_S SKB_E CC M-CUT

p
re

ci
si

o
n

re
ca

ll
f-

m
ea

su
re

Fig. 9: Quality of the different clustering methods run on 3,5,7 and 10 sources of size 100, 000 from
the S-NCVR collection and varying the similarity threshold between 0.7 and 0.9

size 100, 000 and vary the numbers of sources to be linked between 3 and 10. For each
clustering algorithm the similarity threshold is varied between 0.7 and 0.9. Fig. 9 shows the
results of the experiment using datasets from the S-NCVR collection. As we can see, clusters
generated by building connected components from the similarity pairs are generally not
usable, especially for low threshold. The precision of such clusters by threshold ≤ 0.75 is
about 0, while the recall is not considerably higher than the other clustering methods.

CC is clearly outperformed by the proposed early and late clustering schemes. The best
f-measure values are generally achieved for similarity values between 0.75 and 0.8. The
Hungarian algorithm generally achieves the lowest f-measure due to its low precision
compared to the other approaches. Max-Both by contrast achieves a much better precision
and is among the best performing approaches, especially for lower similarity thresholds. The
f-measure results for the late clustering approaches are relatively close together. However,
graph multicut cannot be applied for low thresholds (≤ 0.7) or high number sources (10
sources) due to its high runtime and memory consumption. The late clustering approach
SKB-S, that elects clusters with the highest similarity, achieves the best precision especially
for lower similarity. Interestingly, the f-measure does not decrease when the number of
sources is increased. This is surprising since it is generally more difficult to correctly find
bigger clusters than smaller clusters. This has been possible despite the existence of many
large clusters for this synthetic dataset where 25% of all duplicate records belong to the
largest clusters with records from all sources (Table 1).

To study the impact of a different duplicate distributions with only few large clusters we run
a similar experiment on the second collection of datasets, R-NCVR, for 3 and 10 sources of
size 100,000. As we can see in Fig 10 the CC method has again the poorest cluster quality
due to a very low precision for lower similarity thresholds ≤ 0.75. Now the late clustering

274 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

18 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

HUNG MAX-B SKB_S SKB_E CC M-CUT

precision recall f-measure

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3
so

u
rc

es
10

 s
o

u
rc

es

Fig. 10: Quality of the different clustering methods run on 3 sources and 10 sources of size 100, 000
from R-NCVR

method SKB-S performs best since it achieves not only the best precision but can achieve a
similarly good recall than the other late clustering methods. Max-Both finds a good balance
between precision and recall and performs almost as good as SKB-S. Again, the f-measure
for the larger number of sources (10 sources) is similar to the one for only 3 sources.

6.3.2 Size of sources

Figure 11 shows the precision, recall and f-measure results and the total runtime (linkage
and clustering) for 5 sources and 7 sources applying a similarity threshold of 0.75. The
size of each source is set to 100, 000 and 500, 000 for both number of sources. As we can
see, scaling the size of the sources leads to a drop of the quality for all clustering methods.
Precision of the Hungarian algorithm drops the most by about 10% from 0.95 to 0.85
followed by Max-Both by about 5%. Only SKB-S shows a small decrease by 1% in precision
when scaling up the size of sources from 100, 000 to 500, 000 records. Furthermore, SKB-S
is the only method that still manifests a precision above 0.9 for the larger datasets. This
is due to its selecting clusters with the highest intra-cluster similarity as clean clusters.
However, this also reduces recall since such a high similarity is typically reached by smaller
clusters that are thus preferred over larger clusters with lower internal similarity. Hence,
SKB-S achieves the lowest recall (0.79) for 5 sources of size 500, 000 records. Note that
SKB-E, which promotes large clusters over smaller ones, achieves a similar recall as SKB-S.
This is because R-NCVR contains more small clusters of size 2 and 3 than larger ones. Among
all algorithms Max-Both returns the best recall for all sizes and number of source. The
f-measure of SKB-S and Max-Both are similar with a light advantage for SKB-S.

The right of Fig. 11 shows the runtime to run both linkage and post-processing steps. All
four methods achieve similar runtime of about 25 and 50 minutes to process 5 sources and

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 275

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 19

Hungarian Max Both SKB Sim SKB Edge
0.75

0.8

0.85

0.9

0.95

1

100k 5 src. 100k 7 src. 500k 5 src. 500k 7 src.

Hungarian Max Both SKB Sim SKB Edge
0.75

0.8

0.85

0.9

0.95

1

Hungarian Max Both SKB Sim SKB Edge
0.75

0.8

0.85

0.9

0.95

1

Hungarian Max Both SKB Sim SKB Edge
0

400

800

1.200

1.600

2.000

precision recall f-measure runtime (min.)

Fig. 11: Quality of the clustering methods and total runtime of linkage process for similarity threshold
0.75 compared with relation to the size and number of sources from R-NCVR

7 sources with 100, 000 records each. However, scaling the size of the sources increases
the total runtime by a factor of 10 for all methods. This is due the use of metric space for
the linkage. As explained in section 3.3 metric space finds all pairs of records that have
a similarity above a predefined threshold. We observe, however, that both SKB methods
achieve generally the lowest runtime.

7 Conclusions

We studied the use of metric space for multi-party privacy preserving records linkage
(MP-PPRL) to efficiently link and cluster records encoded as Bloom filters. We proposed
a dynamic pivot-based metric space approach to reduce the number of comparisons that
can adapt the number and choice of pivots for a growing number of data sources and thus
increasing data volume. The approach is driven by a parameter to control and limit the
overlap between the pivots in the metric space. The evaluation showed that this method
is very efficient to link multiple sources. Furthermore we presented five early and late
clustering methods that create clusters containing at most one element from each source.
Early clustering approaches build clusters during the linkage process and late clustering
postpone the determination of clusters after all sources have been linked. Our evaluation
shows the high scalability and good quality of Max-Both as an early clustering method and
SKB-S as a late clustering method.

Despite the effectiveness of the dynamic pivot-based metric space the runtime of the new
approaches still increase more than linear with data size. We will thus analyze further
runtime improvements such as the adoption of parallel processing on frameworks such as
Apache Spark and the combined use of metric space and blocking.

Bibliography
[Bl70] Bloom, BurtonH.: Space/Time Trade-offs inHashCodingwithAllowable Errors. Commun.

ACM, 13(7):422–426, July 1970.

[BRF15] Boyd, James H.; Randall, Sean M.; Ferrante, Anna M.: Application of Privacy-Preserving
Techniques in Operational Record Linkage Centres. In: Medical Data Privacy Handbook.
Springer, pp. 267–287, 2015.

276 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

20 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

[Ch12] Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, 2012.

[DR02] Do, H.; Rahm, E.: COMA: A System for Flexible Combination of Schema Matching
Approaches. In: Proc. VLDB conf. pp. 610–621, 2002.

[Du12] Durham, E.A.: A framework for accurate, efficient private record linkage. PhD thesis,
Faculty of the Graduate School of Vanderbilt University, Nashville, TN, 2012.

[Fr18] Franke, M.; Sehili, Z.; Gladbach, M.; Rahm, E.: Post-processing Methods for High Quality
Privacy-Preserving Record Linkage. In: Data Privacy Management, Cryptocurrencies and
Blockchain Technology. 2018.

[FSR18] Franke., M.; Sehili., Z.; Rahm., E.: Parallel Privacy-preserving Record Linkage using
LSH-based Blocking. In: Proc. 3rd Int. Conf. on Internet of Things, Big Data and Security
(IoTBDS). INSTICC, SciTePress, pp. 195–203, 2018.

[Gi16] Gibberd, A.; Supramaniam, R.; Dillon, A.; Armstrong, B.; O’Connell, D.: Lung cancer
treatment and mortality for Aboriginal people in New South Wales, Australia: Results
from a population-based record linkage study and medical record audit. BMC Cancer, 16,
12 2016.

[Gl18] Gladbach,M.; Sehili, Z.; Kudrass, T.; Christen, P.; Rahm,E.:Distributed Privacy-Preserving
Record Linkage Using Pivot-Based Filter Techniques. In: Proc. ICDEworkshops (ICDEW).
pp. 33–38, April 2018.

[GVY93] Garg, N.; Vazirani, V. V.; Yannakakis, M.: Approximate Max-Flow Min-(multi)cut
Theorems and Their Applications. SIAM Journal on Computing, 25:698–707, 1993.

[Ku55] Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Res. Logist.
Quart., 2:83–98, 01 1955.

[Ku11] Kuehni, Claudia E; Rueegg, Corina S; Michel, Gisela; Rebholz, Cornelia E; Strippoli,
Marie-Pierre F; Niggli, Felix K; Egger, Matthias; von der Weid, Nicolas X; for the Swiss
Paediatric Oncology Group (SPOG): Cohort Profile: The Swiss Childhood Cancer Survivor
Study. Int. Journal of Epidemiology, 41(6):1553–1564, 10 2011.

[MGR02] Melnik, S.; Garcia-Molina, H.; Rahm, E.: Similarity flooding: a versatile graph matching
algorithm and its application to schema matching. In: Proc.18th Int. Conf. on Data
Engineering. pp. 117–128, Feb 2002.

[PB07] Pedreira, Oscar; Brisaboa, Nieves R.: Spatial Selection of Sparse Pivots for Similarity
Search in Metric Spaces. In: SOFSEM 2007: Theory and Practice of Computer Science.
Springer Berlin Heidelberg, pp. 434–445, 2007.

[Sa18] Saeedi, A.; Nentwig, M.; Peukert, E.; Rahm, E.: Scalable Matching and Clustering of
Entities with FAMER. CSIM Quarterly, 16:61–83, 2018.

[SBR09] Schnell, R.; Bachteler, T.; Reiher, J.: Privacy-preserving record linkage using Bloom filters.
BMC Medical Informatics and Decision Making, 9(1):41, Aug 2009.

[SBR11] Schnell, R.; Bachteler, T.; Reiher, J.: A Novel Error-Tolerant Anonymous Linking Code.
Technical Report WP-GRLC-2011-02, German Record Linkage Center, Duisburg, 2011.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 277

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 21

[Se15] Sehili, Z.; Kolb, L.; Borgs, C.; Schnell, R.; Rahm, E.: Privacy Preserving Record Linkage
with PPJoin. In: Proc. BTW. pp. 85–104, 2015.

[SR16] Sehili, Z.; Rahm, E.: Speeding up Privacy Preserving Record Linkage for Metric Space
Similarity Measures. Datenbank-Spektrum, 16(3):227–236, Nov 2016.

[Tr00] Traina, C.; Traina, A.; Seeger, B.; Faloutsos, C.: Slim-Trees: High Performance Metric
Trees Minimizing Overlap between Nodes. In: Advances in Database Technology —
EDBT 2000. Springer, pp. 51–65, 2000.

[Va17] Vatsalan, D.; Sehili, Z.; Christen, P.; Rahm, E.: Privacy-preserving record linkage for big
data: Current approaches and research challenges. In: Handbook of Big Data Technologies,
pp. 851–895. Springer, 2017.

[VCR20] Vatsalan, D.; Christen, P.; Rahm, E.: Incremental clustering techniques for multi-party
Privacy-Preserving Record Linkage. Data & Knowledge Engineering, 2020.

[VCV13] Vatsalan, D.; Christen, P.; Verykios, V. S.: A taxonomy of privacy-preserving record
linkage techniques. Information Systems, 38(6):946–969, 2013.

[Xi08] Xiao, C.; Wang, W.; Lin, X.; Yu, J. X.: Efficient Similarity Joins for Near Duplicate
Detection. In: Proc. 17th Int. Conf. on World Wide Web. pp. 131–140, 2008.

[Ze06] Zezula, P.; Amato, G.; Dohnal, V.; Batko, M.: Similarity search: the metric space approach.
Springer, 2006.

278 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

cba

Wolfgang Lehner et al. (Hrsg.): BTW21,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Towards Resilient Data Management for the Internet of
Moving Things

Elena Beatriz Ouro Paz1, Eleni Tzirita Zacharatou2, Volker Markl3

Abstract: Mobile devices have become ubiquitous; smartphones, tablets and wearables are essential
commodities for many people. The ubiquity of mobile devices combined with their ever increasing
capabilities, open new possibilities for Internet-of-Things (IoT) applications where mobile devices
act as both data generators as well as processing nodes. However, deploying a stream processing
system (SPS) over mobile devices is particularly challenging as mobile devices change their position
within the network very frequently and are notoriously prone to transient disconnections. To deal
with faults arising from disconnections and mobility, existing fault tolerance strategies in SPS are
either checkpointing-based or replication-based. Checkpointing-based strategies are too heavyweight
for mobile devices, as they save and broadcast state periodically, even when there are no failures.
On the other hand, replication-based strategies cannot provide fault tolerance at the level of the data
source, as the data source itself cannot be always replicated. Finally, existing systems exclude mobile
devices from data processing upon a disconnection even when the duration of the disconnection is
very short, thus failing to exploit the computing capabilities of the offline devices. This paper proposes
a buffering-based reactive fault tolerance strategy to handle transient disconnections of mobile devices
that both generate and process data, even in cases where the devices move through the network during
the disconnection. The main components of our strategy are: (a) a circular buffer that stores the
data which are generated and processed locally during a device disconnection, (b) a query-aware
buffer replacement policy, and (c) a query restart process that ensures the correct forwarding of the
buffered data upon re-connection, taking into account the new network topology. We integrate our
fault tolerance strategy with NebulaStream, a novel stream processing system specifically designed for
the IoT. We evaluate our strategy using a custom benchmark based on real data, exhibiting reduction
in data loss and query runtime compared to the baseline NebulaStream.

Keywords: Mobile Stream Processing, Internet-of-Things, Fault Tolerance, Buffering

1 Introduction

Existing research and development for the Internet-of-Things (IoT) has primarily focused
on stationary objects that are associated with a fixed location. However, some of the most
important pieces in the IoT landscape are devices that can move (i.e. dynamically change
their geo-spatial position), such as mobile phones and tablets. Mobile devices have become
ubiquitous; smartphones, tablets and wearables have all become daily commodities for many
people. A report published by GSMA in 2020 estimates that by 2025 there will be 5.8 billion
1 Teradata (this work was done while the author was at TU Berlin, Germany), elenabeatriz.ouropaz@teradata.com
2 TU Berlin, Germany, eleni.tziritazacharatou@tu-berlin.de
3 TU Berlin, DFKI GmbH, Germany, volker.markl@tu-berlin.de

cba doi:10.18420/btw2021-14

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 279

https://creativecommons.org/licenses/by-sa/4.0/
mailto:elenabeatriz.ouropaz@teradata.com
mailto:eleni.tziritazacharatou@tu-berlin.de
mailto:volker.markl@tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-14

2 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

mobile subscribers and that nearly 80% of connections will be made from smartphones [GS].
The ubiquity of mobile devices combined with their ever increasing computing capabilities
give rise to new systems that leverage mobile devices in the processing of streaming data.
Furthermore, they enable new IoT applications where mobile devices are used to both
generate and process data. While mobile devices open numerous possibilities for the IoT,
using them to process data is challenging. Mobile devices are notoriously prone to transient
disconnections due to network instabilities while their near-constant mobility within the
network renders much of the existing research in the field of stream processing inapplicable.

State-of-the-art stream processing systems that use mobile devices base their fault tolerance
strategies on replication [OSP18, CS20] or checkpointing [WP14,MRH14]. Neither of these
techniques is optimal for using mobile devices as data sources that also perform processing.
Checkpointing-based techniques require the devices to store and broadcast snapshots of their
state periodically. This is a pessimistic approach that introduces a considerable overhead
irrespective of whether failures occur or not, and can drain the scarce resources of mobile
devices. Replication-based techniques, on the other hand, replicate query operators across
multiple nodes in the network. However, replicating the source can be impractical or costly,
as it requires to have redundant sensors capturing the same input. When redundant sensors
are not available, replication-based techniques cannot provide fault tolerance for data
sources. Finally, existing approaches assume that disconnections are permanent and exclude
the disconnected device from data processing. As a result, any data generated during the
disconnection are lost. Furthermore, when the device re-connects, it is treated as a new
node and all the queries that use it as a source have to be redeployed. This imposes an undue
performance overhead when the disconnection is only transient.

In this paper, we propose a fault tolerance strategy for overcoming transient disconnections
of mobile devices that both generate and process data in a streaming system. We particularly
focus on transient disconnections caused by mobility, where the device might move through
the network during the disconnection period, and then re-connect at a different point in
the network. In addition, we assume that we do not have control over the data source, and
therefore we cannot pause and restart the source or change the data generation rate. The
goal of our proposed strategy is twofold: (a) avoid losing data during the disconnection,
and (b) resume query execution quickly and consistently when the device re-connects. To
achieve this goal, we employ the following mechanisms. First, we propose a data logging
mechanism that enables mobile devices to keep processing the data they generate while
they are disconnected by temporarily storing the processed data in a circular buffer. That
way, we leverage the idle disconnection period for computation, and reduce, or completely
avoid, data loss. Furthermore, we propose a query restart process that achieves efficient
and consistent resumption of query execution, even when mobile devices move during
the period of disconnection and reappear at a new point in the network. Our query restart
process examines whether the device can still reach its previously assigned downstream
node after the re-connection, and only redeploys queries when the downstream node cannot
be reached. When a query is redeployed, the device may be assigned different tasks than

280 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 3

those it was originally performing. Our restart process handles this situation by generating
new paths through which the buffered data can be forwarded directly to the pertaining node,
when needed. This is achieved by taking advantage of the natural way in which stream
processing systems model queries as directed acyclic graphs (DAGs). Our contributions can
be summarized as follows:

• We mitigate the impact of transient disconnections of mobile devices with an end-to-
end reactive fault tolerance strategy that leverages the offline processing capabilities
of the devices. In our strategy, mobile devices continue processing the data they
generate locally during a disconnection, and store the processed data in a circular
buffer until connection is regained.

• We propose a query-aware replacement policy to make space in the buffer when
needed.

• We develop a query restart process that addresses the mobility of devices during
transient disconnections.

• We integrate our solution with the NebulaStream (NES) platform [Ze20a], a novel
streaming system for the IoT. We call our solution NebulaStream-MSS, whereMSS
stands for Mobile Source Support.

• We evaluate our solution on real data collected from a sensor attached on a football
player during a match. Our results show that buffering reduces data loss by 63% over a
disconnection period of 30 seconds compared to the vanilla NES. Additionally, when
several disconnections occur during query execution, our restart process reduces the
query runtime by more than 2× by avoiding query redeployment whenever possible.

We envision our approach as a building block that can be combined with other fault tolerance
strategies to handle other failure scenarios, such as devices that permanently exit the network,
or failures occurring in nodes that are not data sources.

In the remainder of this paper, we first motivate our work in Section 1.1 and then present the
background concepts that lay the foundation for NebulaStream-MSS in Section 2. Section 3
describes our approach, which we then experimentally evaluate in Section 4. Finally, we
present an overview of related work in Section 5 before concluding and discussing future
work in Section 6.

1.1 Motivational IoT Application Scenario
To illustrate the importance of a fault tolerance strategy tailored for mobile data sources,
let us look at an IoT disaster management application that monitors the vital signals of
firefighters responding to a fire incident and the temperature around them. The goal of
the monitoring is twofold: (a) pull a firefighter out of the scene when a life-threatening
condition is detected, and (b) make better decisions through fast and accurate assessment

Towards Resilient Data Management for the Internet of Moving Things 281

4 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

of the situation. Each firefighter is monitored by a single wearable sensor, and therefore
previously proposed fault tolerance strategies that rely on the availability of a back-up
device capturing the same input are not applicable. The wearables are interconnected using
a wireless network.

In this application, the most time sensitive operation is the detection of abnormalities in
the firefighter’s vital signals. To reduce the latency and increase the survival chances of
the firefighter, we need to perform this operation as close as possible to the source, i. e. the
wearable sensor. Even if the wearable suffers from a transient disconnection, it is critical
to keep processing the captured data offline, as otherwise we might miss a sign that the
firefighter needs help. That way, when the wearable regains connectivity to another network
node, it can transmit an alert without delay.

To assess the overall situation, the fire area is divided in zones and every wearable generates
a periodic report of the maximum temperature that was recorded in each zone. These reports
are then aggregated, to obtain the global maximum temperature for each zone. This task
uses the combined processing capabilities of multiple nodes in the network. To get an
accurate assessment of the situation, we need to minimize the amount of data loss when
wearables suffer from a transient disconnection. Furthermore, as the wearable sensors that
generate data are worn by firefighters, they will move through the network with them. We
therefore need to ensure that query execution resumes once connection is regained, even
when a sensor moves to a different point in the network topology during the disconnection.

2 Background: NebulaStream

In the following, we give an overview of data stream processing, focusing on NebulaStream,
the IoT data streaming platform into which we integrate our fault tolerance strategy.

IoT infrastructures are highly distributed, with sensors spanning entire cities or even
countries. In addition, many IoT applications require prompt responses. One natural solution
to support such applications are Stream Processing Systems (SPS), i. e. systems capable
of performing computational tasks over a potentially infinite sequence of data items,
called tuples. NebulaStream (NES) is a novel end-to-end SPS specifically designed for IoT
applications [Ze20a, Ze20b], born from the need for a SPS that can better deal with the main
challenges in IoT settings. NES aims to provide similar functionalities as widely used SPS
such as Flink [CEH15] or Spark [Za16] while better supporting IoT applications. To that end,
NES introduces mechanisms to handle, among others, the hardware heterogeneity in IoT
environments, the high distribution of data and compute, and the unreliable communication
in fog and sensor networks.

Prior systems employ either the cloud or the fog paradigm. Cloud-centric systems (e. g. Flink,
Spark or Kafka [NSP17]) collect all data in a data center before processing them. Given that
upcoming IoT applications will require processing data from millions of distributed sensors,

282 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 5

Fig. 1: NebulaStream’s Architecture. Figure from [Ze20a].

this centralized approach results in a bottleneck and lacks scalability. Existing systems
based on fog computing are also not optimal for the IoT. Systems like Frontier [OSP18]
or CSA [Sh16] bring computations closer to the sources, thus reducing the bottleneck
of cloud systems. However, they advocate a completely decentralized approach and only
exploit the computing capabilities of nodes at the edge of the network. In the field of
Wireless Sensor Networks (WSN) we can find Database Management Systems (DBMS)
such as TinyDB [Ma05] that exploit the combined capabilities of sensors and actuators.
These systems provide strategies to optimize query execution for devices with limited
battery life but offer neither strong fault tolerance nor correctness guarantees. NES takes the
state-of-the-art one step further and unifies the cloud, fog and sensor layers, leveraging the
individual advantages of each layer and enabling optimizations across them. Specifically,
data are typically generated within the sensor layer and routed through intermediate nodes
up to the cloud. Any of the nodes in the path between the sensors and the cloud can access
any data being routed through them and perform data processing tasks [Ga20]. The cloud
performs any remaining processing as a fall-back.

NES Topology. There are three types of nodes in NES: Workers, Sensors, and a Co-
ordinator. Workers process data by employing operators that consume tuples, apply a
computational task (e.g. filter, map, sum, count), and emit new tuples. Sensors generate
data and can also perform computational tasks. Mobile devices in NES fall in that category.
Finally, the NES Coordinator is in charge of administering the network: it is aware of the
current topology, it registers/deregisters nodes and streams, and deploys/undeploys queries.
A single physical device can potentially host multiple NES nodes.

The network topology maintained in the coordinator is modeled as a graph consisting of
sensor, worker and coordinator nodes and network links among them. Initially, the network
is formed solely by the coordinator and one worker contained in it. Further workers and
sensors can join the network by sending a request to the coordinator. They are then added to
the topology graph. In the case of sensors, the streams that the sensors generate are also

Towards Resilient Data Management for the Internet of Moving Things 283

6 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

registered in the topology graph. Once registration is complete, the new node is ready to
start participating in query processing. When a node needs to exit the network, it does so
by sending a deregistration request to the coordinator. The coordinator then removes the
node and any streams it might generate from the topology graph, and undeploys the affected
queries that were using the removed streams.

NES Query Deployment. Figure 1 displays an overview of NebulaStream’s architecture.
A query submitted through the NES API 1 contains information regarding the streams
from which data should be obtained and the computational tasks that should be applied to
them. Currently, NES uses a centralized deployment process. The coordinator is comprised
of several components that handle different aspects of the deployment. First, the NES Query
Manager transforms the user query into a directed acyclic graph (DAG) that contains source,
processing, and sink nodes and directed links among them. A source is a node that generates
data streams, i. e. provides the input, and a sink is a node that consumes data streams without
generating new ones, i. e. provides the output. The links represent the communication
channels for the data exchange among operators. The DAG is essentially a logical query
plan that describes conceptually the operations that need to be performed over a data stream.
To execute queries in a SPS, we need to generate a physical query execution plan (QEP)
which maps the logical query plan to physical nodes. The NES Optimizer takes the query
DAG from the Query Manager 2 and the topology graph from the NES Topology Manager
3 and creates a physical query execution plan (QEP) which dictates the assignment of
the different operators in the logical query plan to physical nodes in the topology 4 . The
process of assigning operators to physical nodes is known as operator placement. The next
paragraph discusses operator placement in further detail. The NES Deployment Manager
takes the execution plan and deploys the operators to their assigned nodes in the topology 5 .
Finally, the NES Monitor collects information about the changes occurring in the network
topology 6 and sends the updates to the Topology Manager 7 .

NES Operator Placement. The choice of the placement strategy depends on the op-
timization goal, e. g. low latency, high throughput, or minimal use of resources. NES
supports several operator placement strategies. In addition to them, we also implemented a
shortest-path based placement strategy. In contrast to the already existing strategies that
always place the sink operator on the coordinator, the shortest-path based placement strategy
allows to place the sink operator on any arbitrary node in the network. That way, we enable
greater proximity to end-users and can avoid streaming data to the cloud-based coordinator.
Clearly, the source operator is assigned to the sensor node that generates the data for the
queried stream. The shortest-path based strategy places the remaining operators as follows.
It first finds the shortest path between the source and the sink. Then, it applies a “push-down
as far as possible” strategy: It starts placing operators on the shortest path from the source
all the way up to the sink according to the available resources on each node, i. e. while
there are remaining resources on a node, it keeps assigning operators to it. This strategy is
particularly suited for queries that consist of filter operators as it reduces downstream data
traffic. Once the assignment is complete, the coordinator sends to each of the nodes the
part of the query execution plan that they need to execute (i. e. a pipeline of operators), and

284 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 7

indicates from which node they will receive their input, and to which node they should send
their output. Some nodes in the path might be assigned a forward operator, which means
that their only mission is to transmit data to the next node in the execution plan without
processing them. Our fault tolerance solution is independent of the choice of the placement
strategy and can thus be used in conjunction with any strategy. The NES Optimizer uses
a placement strategy to generate a QEP given a query DAG and a network topology. As
we will describe in more details in Section 3, our approach does not modify the QEP. It
simply determines when a new QEP needs to be generated upon a device re-connection,
and analyzes the newly generated QEP to determine how to forward the data that have been
buffered during a data source disconnection.

3 Fault Tolerance for Mobile Data Sources

Our approach, NebulaStream-MSS, is an extension of NebulaStream that provides fault
tolerance capabilities for mobile data sources such as mobile phones and wearables. Our
approach is holistic: it handles the disconnection process, the data buffering during the
disconnection, as well as the process of resuming query execution after the re-connection.
Specifically, our approach employs a circular buffer that temporarily stores the data that are
processed locally during a transient disconnection. We couple the buffer with a query-aware
replacement policy that evicts data when the buffer becomes full before connectivity is
regained without penalizing any query unequally. To handle the mobility of devices during
a disconnection, we combine buffering with a restart process that determines which of the
queries that involve the device require redeployment. When a query is redeployed, the device
might be assigned different tasks than before the disconnection. Our restart process handles
this situation by generating new paths through which the buffered data can be forwarded
directly to the appropriate node, ensuring that the buffered data are processed correctly. We
describe NebulaStream-MSS in more details in the following sections.

3.1 Disconnection Process
Our solution aims to handle transient disconnections of mobile devices. This raises the
question of how we can distinguish a transient disconnection from a more permanent failure.
From the point of view of the coordinator both look the same: a node has unexpectedly
disappeared from the network. The short answer is that we cannot know with certainty
when a disconnection is transient. We, however, follow an optimistic approach where at first
we assume that all the disconnections that happen to mobile devices are transient, i.e. once a
mobile device disappears from the network, the coordinator assumes that it will return. This
is in contrast to the current approach in NES, where the coordinator completely removes the
node and any associated streams or queries from the system upon a disconnection. If the
device does not return after a timeout period, the coordinator assumes that the disconnection
is permanent and acts accordingly. Choosing the timeout duration is challenging and
depends on both the network characteristics and the application requirements, as different
applications can tolerate different delays. The problem of finding the timeout duration is
orthogonal to the problem addressed in this work and we leave it open for future research.

Towards Resilient Data Management for the Internet of Moving Things 285

8 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

3.2 Data Buffering
Mobile devices acting as data sources can still both generate data and perform computations
while transiently disconnected. Furthermore, in many real-world scenarios (e. g. the one
described in Section 1.1), we have no control over the data source, and thus pausing data
generation or modifying the data generation rate is infeasible. Therefore, to avoid data loss
during a disconnection, we need to temporarily store the generated data on the device. To
reduce the amount of data that needs to be stored and to exploit the offline processing
capabilities of the device, we also propose to keep processing the data locally during the idle
disconnection period. To that end, we base our solution on a buffering component that stores
the data that are generated and processed on a data source node during a disconnection
period. In the following, we discuss our buffering component in more details.

Buffer Structure. To ensure efficient space utilization andminimize access latency, we use
a circular buffer. Circular buffers are particularly suited when the data are accessed in a First
In First Out (FIFO) order. Our buffer stores batches of tuples after they are processed. As our

Fig. 2: Conceptual view of the circular
buffer in NebulaStream-MSS.

device may have several streams or queries attached
to it, every batchmay have a different size and contain
tuples of different formats. To retrieve batches from
the buffer, we need to be able to infer their size. For
this reason, we always precede batches with a control
block, i.e. a small memory region in the buffer that
contains metadata about the batch of tuples that
follows it. Specifically, a control block stores a query
identifier that indicates the query to which the batch
belongs, the tuple size, and the number of tuples
in the batch. Figure 2 presents the conceptual view
of our circular buffer. As with any circular buffer,
we always maintain two pointers: one pointing to
the address of the first control block stored in the
buffer (Read Pointer) and one pointing to the first
free address in the buffer where new batches can be
added (Write Pointer).

Data Insertion. Once the data source has executed all operators assigned to it over the
generated data, it sends the processed batch to the buffer. Inserting the batch into the buffer
is fairly trivial as long as there is enough available space to store the incoming batch and the
corresponding control block. The control block is simply written into the first free address
in the buffer indicated by the Write Pointer, followed by the batch of tuples.

Query-aware Replacement Policy. As stated before, our buffer might store results
corresponding to different queries. To achieve fairness among different queries running on
the device, we propose a query-aware FIFO replacement policy that aims to always keep
some results of each query in the buffer. Specifically, whenever we need to make space for
a new batch of tuples, our policy replaces the oldest batch of the same query if possible.

286 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 9

If there are no other batches of the same query, or if removing the batch is insufficient,
it removes the oldest batch of the query with the highest number of batches in the buffer.
The process is repeated until there is enough space in the buffer for the new batch. One
drawback of this policy is that it might cause segmentation in the buffer, i.e. fragments of
empty space. To address this, whenever we remove a batch from the buffer, we shift all
subsequent batches up, filling up the generated gap. Algorithm 1 presents the data insertion
process using our query-aware FIFO replacement policy.

Algorithm 1: Data insertion with query-aware FIFO
1 Incoming Data: a batch of tuples batch for query with queryID
2 while (available space <(controlBlock.size + batch.size)) do
3 delID = queryID
4 if (there are no results of query with queryID in the buffer) then
5 delID = query with highest batchCounter
6 end
7 delete oldest batch of query with delID
8 move up subsequent batches
9 batchCounter[delID]- -

10 end
11 copy batch at writePointer
12 writePointer += (controlBlock.size + batch.size)
13 batchCounter[queryID]++

Data Extraction. Once the mobile device regains connection to the network, we can
proceed to send the buffered data. Extracting data from our buffer is fairly simple. Starting
at the Read Pointer, we calculate up to what address in the buffer each result is stored, as we
have information about the size of the batch in the control block. Since we use a circular
buffer, no data shuffling is required on data extraction. Once we have retrieved a batch, we
advance the Read Pointer up to the next control block.

3.3 Query Restart Process
Once the connection of a mobile device is reestablished, we have to restore the system to its
normal working state. First, the device notifies the coordinator of its return, indicates the
queries it was involved in, and transmits its current position by announcing which devices
are in its neighborhood. Based on that information, there are two possible scenarios that
determine the actions that should be taken by our system: re-connection without mobility
and re-connection with mobility. In the first scenario, the device can still reach its sink
nodes. This typically happens when the device did not move, or moved very little, during
the disconnection period. In the second scenario, the device can no longer reach its original
sink nodes, which happens in the case of high mobility.

Re-connection without Mobility. In this scenario, query execution can continue as
normal, i.e. there is no need to modify the query execution plan. Once the coordinator
receives the re-connection notification, it checks the position of the device and determines

Towards Resilient Data Management for the Internet of Moving Things 287

10 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Fig. 3: Mobility during the execution of a simple filtering query. Before the disconnection (left),
the device (Worker 4) acts as the source in the QEP, and also applies a filter operator. During the
disconnection, Worker 4 moves out of the range of its donwstream node (Worker 1). Once it returns at
a new point in the network (right), the new QEP (shown in blue) assigns the filter operator to Worker
3. As the buffered data have been already filtered, we want them to bypass Worker’s 3 filter. This is
achieved by deploying a forwarding query (shown in green) that sends the buffered tuples to Worker 2.

that the device remains connected to its previously assigned sink nodes. Then, query
execution resumes and the device transmits the data stored in the buffer.

Re-connection with Mobility. In this scenario, the device moves through the network
during the disconnection period, reappearing at a different position in the topology than
the one that it last registered for. When this occurs, the mobile device might be unable to
reach the sink nodes that had been previously assigned to it. Figure 3 shows an example:
the mobile source (Worker 4) was original connected to Workers 1 and 2 (left). After the
disconnection (right), it remains connected to Worker 2, but moves out of Worker’s 1 range.
Instead, it is now connected to Worker 3. This mobility affects query execution and requires
action from the system. Once the coordinator receives the notification that the device has
returned, it can see from its current position that it has moved. As a result, it triggers the
redeployment of every query for which the device can no longer connect to its sink nodes.
The coordinator can employ any of the available operator placement algorithms to perform
the redeployment. There are three possible scenarios that can arise in the newly generated
query execution plan: the device is assigned (a) the same operators as before, (b) a superset
of the original operators, or (c) a subset of the original operators.

If the data source is expected to apply the same set of operators over new data once the
re-connection is complete, then all operators have already been applied to the data that were
processed during the disconnection period. Therefore, we can simply retrieve the data from
the buffer and send them to the nodes indicated by the new query execution plan.

If the data source is assigned a superset of the operators that it was previously executing,
the data contained in the buffer have not been processed fully. In this case, every time a
batch of data is retrieved from the buffer, we first need to apply the remaining operators in
the pipeline to it, before sending it to the nodes specified in the query execution plan.

In the last scenario, the data source is assigned a subset of the original operators. In this case,

288 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 11

we cannot simply send the buffered data to the next node in the new query execution plan,
as that node would re-apply some operators that have already been applied to them. For that
purpose, we propose a mechanism that forwards the buffered data to the pertinent node in the
network and skips over the operators that have already been applied to them. As described
before, NES supports the forwarding of data through the topology using forward operators.
Therefore, a natural way to create a forwarding path is by issuing a new query that uses
forward operators to bypass the operators which have already been applied to the buffered
data. We call this query a forwarding query. The coordinator generates automatically the
forwarding query as follows. First, it specifies that the source of the forwarding query is
only the buffered data, and not the newly generated tuples. Then, it examines the QEP of the
original query to determine the node that contains the first operator that has not been applied
to the buffered data yet. This node is the sink of the forwarding query, named fwd_sink. Next,
the coordinator executes the shortest-path based operator placement algorithm and places a
forwarding operator in every node of the path between the source and the fwd_sink. Lastly,
the coordinator has to determine the operators that will be placed on the fwd_sink node. To
do so, it examines the operators that are assigned to the fwd_sink node in the original QEP.
If none of the operators has been applied to the buffered data, then the coordinator does
not need to place any additional operators on the fwd_sink node. Instead, the tuples of the
forwarding query will join the QEP of the original query. This is achieved by notifying the
fwd_sink node about the mapping between the original and the forwarding query, so that
the sink node can match the information arriving from the forwarding query to the original
QEP. However, if the fwd_sink node contains some operators that have already been applied
to the buffered data, the forwarding and the original query cannot be merged yet. Instead,
the coordinator generates a new pipeline of operators for the forwarding query that contains
only the operators that have not been applied to the buffered data yet. In this case, the
tuples of the forwarding query join the original QEP in the next downstream node. Figure 3
shows a simple example of mobility during disconnection that requires the deployment of a
forwarding query. Forwarding queries are short-running: once the buffer is empty, they are
removed from the system and processing continues normally.

Imagine now that for the scenario shown in Figure 3 (right), one of the nodes connecting the
source and sink in the forwarding query suffers from a disconnection as well. To handle such
cascading disconnections, we enable a certain level of replication in our forwarding queries.
We do so by finding as many paths between the source and the sink node as possible, up
to a maximum indicated by a user-specified replication rate. The buffered data are then
redundantly transmitted through all those paths, to avoid data loss in case of an intermediate
node suffering from a failure. Each path is modelled as a separate forwarding query, i.e. we
issue multiple forwarding queries concurrently that all have as input the same buffered data.
To avoid processing the same data received through different paths multiple times at the sink
node, each batch is assigned a timestamp and the sink node keeps track of the timestamps
that it has already seen for each query. These timestamps are flushed periodically at the sink
node, as we no longer expect to see duplicate batches after a certain period of time.

Towards Resilient Data Management for the Internet of Moving Things 289

12 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

4 Experimental Evaluation

In this section, we first describe the experimental setup and then present the evaluation
of our approach to support mobile sources in NebulaStream. The aim of the performed
experiments is to showcase the fault tolerance capabilities of our approach and its efficiency
when compared with the vanilla NebulaStream. Section 4.2 presents a comparative analysis
while section 4.3 analyzes the performance of our approach in more details.

4.1 Experimental Setup
Hardware. The experiments were performed on a machine with a 10th generation Intel®
Core™ i7 processor and 16 GB of RAM running Ubuntu 20.04 LTS.

Implementation. NES (and therefore also NebulaStream-MSS) is implemented in C++.
Control messages between the coordinator and other nodes are handled through gRPC [GRP],
while data transfer is performed using ZeroMQ [Hi].

Data. As we explain in Section 1, in our work we assume that we cannot control the data
source, i. e. we cannot pause and restart the source and we cannot modify the data generation
rate. The data source simply generates data infinitely, at a certain frequency. However, in
our experiments we want to show the benefit of processing data during the disconnection
period, which is what our approach enables, versus pausing query execution completely
during the disconnection, which is what NebulaStream does. For that purpose, we use a
CSV file as a source, which allows to pause data generation and easily restart it by storing
the last read position in the file. We use the DEBS 2013 Grand Challenge dataset (described
in [MZJ13]) which contains data generated from sensors attached on football players during
a match. Since we focus on a single data source, we extract the data corresponding to a
single player, the one with ID 10. The resulting CSV file contains a total of 6,575,830 tuples,
each of 62 bytes. In all the experiments, our CSV data source produces data at a rate of 3.33
MBps, i. e. we read 56,375 tuples every second. In addition, we use a binary generator that
produces tuples containing a single 64-bit unsigned integer field at a rate of 488 KBps.

Queries. We use two queries, one for each of the aforementioned data sources. The first,
referred to as “Query 1”, is a filtering query that takes as input the CSV source. It applies
two filters: filter 1 selects tuples that satisfy the condition vx > 0 and filter 2 selects tuples
satisfying the condition az > 1. The overall query selectivity is 24%. Once filtered, the
results are written to a file. Our second query, “Query 2”, simply streams the tuples of the
binary generator source through the topology and prints them in standard output at the sink.

Network Topology. All the experiments presented in this evaluation, start with the same
network configuration depicted in Figure 4 (left), consisting of the coordinator (that also
contains the sink), and 8 other workers, one of which contains the source for both queries.
Even though in a real-world scenario the full topology of the network would be significantly
larger, we consider our topology to be representative of the relevant part of the network

290 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 13

Fig. 4: Three topology snapshots along with the placement of Query 1 operators. (Left): Initial
topology and placement. (Middle): After a transient disconnection, worker 8 gets disconnected from
worker 5, which affects the placement of Query 1. There is no need for a forwarding query, as worker
8 applies the same operator as before (filter 1). (Right): After a transient disconnection, worker 8 gets
disconnected from worker 5 and connected to worker 2. In the new placement, worker 8 no longer
applies filter 1, and thus two forwarding queries are deployed.

that is involved in processing data captured by a given mobile data source. As we deal with
mobility of the data source during disconnections, the topology is not static. Following
a transient disconnection, the source might re-connect at a different location within the
network. The middle and right parts of Figure 4 show the different topology snapshots that
we use to simulate mobility. Given the different topology snapshots, we deploy Query 1 as
described next. As you can see in Figure 4 (left), in the initial topology, one filter operator
is placed at the source (worker 8), worker 5 applies the second filter, while workers 2 and 1
forward the data to the sink. The placement shown in Figure 4 (middle) is similar to the
original one. The only difference is that, since now the source is disconnected from worker
5, the second filter is applied by worker 6, while it is worker 3 that forwards the results
to worker 1. The last operator placement corresponds to the re-connection scenario that
requires query redeployment, and the source is assigned a subset of the original operators
after the redeployment (Figure 4 (right)). In this case, filter 1 is already applied to the
buffered data, so we forward them directly to worker 1 which applies the second filter. For
that, we employ the two forwarding queries shown with green color. “Query 2” (not shown
in the figure), simply forwards the generated data through the shortest path.

Configuration Parameters. Unless otherwise stated, the buffer size is set to 50MB. We
chose this size considering the characteristics of modern smartphones and wearables, but
also the fact that we focus on short disconnections during which a limited amount of data
are generated. When applying data forwarding, we use a replication factor of 2.

Towards Resilient Data Management for the Internet of Moving Things 291

14 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Evaluation Metrics. We use two metrics throughout our evaluation: query runtime and
data loss ratio. Query runtime gives us insight into the performance of our approach, while
the data loss ratio indicates the level of fault tolerance that we can achieve. We define query
runtime as the time between the moment that a new query starts processing data and the
moment that the query has processed a fixed amount of data. Specifically, in our runtime
experiments we measure the total time that it takes for Query 1 to process 2M tuples of our
CSV data source. Data loss ratio is the ratio of data that were evicted from the buffer due to
lack of space over the total amount of data that were generated during the disconnection
period after applying all local operators. Specifically, the data loss ratio (%) is calculated
over a fixed disconnection period as: amount of data evicted from the buffer

total amount of generated data after applying local operators · 100.
We ran each experiment 5 times and report the average results.

4.2 Comparative Analysis
We first perform a comparative analysis of NebulaStream-MSS with the vanilla implemen-
tation of NebulaStream. The baseline NES considers all node disconnections to be final, i. e.
upon a disconnection, the node is completely removed from the system. In the case of a
data source, this results in halting the execution of the queries that the source is involved in.
Furthermore, the data that are produced during a disconnection are lost.

Data Loss Ratio. This experiment explores the fault tolerance capabilities of
NebulaStream-MSS, based on the amount of data that are lost during transient disconnections.

0 10 20 30
0

50

100

Disconnection duration (s)

D
at
a
lo
ss
ra
tio
(%
)

Baseline NES
NES-MSS (FIFO)

NES-MSS (query-aware FIFO)

Fig. 5: Data loss ratio during a transient disconnec-
tion. After 15 seconds of disconnection, the buffer
becomes full and tuples start to be dropped.

We assume that the mobile data source
continues to produce data while being tran-
siently disconnected from the other nodes
in the network, as it would happen with
a sensor in a real-world scenario. We run
concurrently Query 1 and Query 2 in the
topology of Figure 4 (left), with worker 8
hosting the data sources for both queries.
Worker 8 also applies Filter 1 of Query 1,
even during the disconnection, and only
buffers the filtered data. The filter selectiv-
ity is 67.6%. To show the benefits of our
query-aware FIFO replacement strategy, we
also implemented a simple FIFO strategy.
As Figure 5 shows, the replacement strategy
impacts the amount of data loss. This is be-
cause we are running two different queries
that generate batches of different sizes, 3.33
MB and 488 KB respectively. Since the
FIFO strategy always removes the oldest batch, even when we only need space for 488 KB
in the buffer, we might end up removing a batch of 3.33 MB, if this batch is the oldest. This

292 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 15

0 5 10

50

100

150

Number of disconnections

Ru
nt
im
e
(s
)

Baseline NES NES-MSS

(a) NES-MSS avoids query redeployment.

0 50 100
50

60

70

80

90

Percentage of redeployments

Ru
nt
im
e
(s
)

(b) Impact of query redeployment.

Fig. 6: Runtime of Query 1 (processing 2M tuples). 6(a): By avoiding query redeployment, NES-MSS
has a constant runtime irrespective of the number of disconnections. 6(b): NES-MSS’s performance
converges to the one of baseline NES when the query needs to be redeployed after every disconnection.

can rapidly escalate the amount of data loss. Our query-aware FIFO strategy is far less
susceptible to the time at which batches arrive at the buffer since we remove batches of the
same query to make space for new data.

Query Runtime. We evaluate the runtime of Query 1 (i. e. the total time for processing
2M tuples), with a varying number of disconnections occurring during its execution. In
order to be able to fairly compare the performance of our approach (that buffers data) with
baseline NES (that loses any data generated during a disconnection), in this experiment we
use a source that can be paused and restarted so that both systems process the same data
throughout the experiment. Figure 6(a) shows the case where the query does not need to be
redeployed after the disconnections. As can be seen in the figure, the runtime of baseline
NES increases with the number of restarts while the runtime of our approach is almost
constant. This is because baseline NES views the failure as permanent and removes the
disconnected data source and the queries running on it from the system. When the source
regains connection, it is treated as a new node: first, the coordinator has to re-add the source
to the topology, and to register the streams that it generates in the system. Then, the queries
applied on the generated streams are redeployed and restarted (as described in Section 2).
Our approach, on the other side, does not remove the source and the queries from the
system, keeps processing data locally at the disconnected source, and resumes execution fast
once the source re-connects. In a real-world scenario, we expect to see multiple transient
disconnections of a given device over time, due to mobility and network instability. It is
likely that in some cases query redeployment will be required. We therefore study the impact
of query redeployment on execution and show the results in Figure 6(b). For a fixed number
of disconnections occurring during the processing of 2M tuples with Query 1, we evaluate
how the runtime varies based on the percentage of disconnections that require redeployment.
As expected, we found that with fewer redeployments, data are processed faster. On the other
side, when we need to redeploy queries after every single disconnection, the performance

Towards Resilient Data Management for the Internet of Moving Things 293

16 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

of NebulaStream-MSS converges to the one of baseline NES. That indicates the importance
of avoiding query redeployment whenever possible and having a lightweight query restart
mechanism, which is what our approach offers.

4.3 NebulaStream-MSS Analysis
In this section we take a closer look into the performance of our system to identify
optimization opportunities.

Buffer Sensitivity Analysis. Figure 7 shows the impact of the buffer size on the data loss
ratio for both buffer replacement strategies. We use the same setup as in the “Data Loss Ratio”

50 100
0

20

40

60

80

Buffer size (MB)

D
at
a
lo
ss
ra
tio
(%
)

NES-MSS (FIFO)
NES-MSS (query-aware FIFO)

Fig. 7: Data loss ratio for a transient disconnection
of 30 seconds. A buffer of 125 MB can fit all the
generated data. When the available buffer space is
more limited, the query-aware FIFO strategy can
make better use of it.

experiment and we fix the disconnection
duration to 30 seconds. As expected, there
is an obvious correlation between the buffer
size and the amount of the incurred data
loss. Choosing an appropriate buffer size
is vital to minimize the amount of data that
are discarded during disconnections. The
optimal size depends on the data generation
rate, the disconnection duration, the query,
and the available resources on the device.
Furthermore, comparing the two strategies,
we see that our query-aware FIFO strategy
benefits more from a larger buffer size. This
is because it makes better use of the avail-
able buffer space by dropping batches of
the same size as the ones it needs to make
space for. For 100 MB there is only a 6%
difference between the two strategies, as
the buffer can fit almost all the data that are
generated during 30 seconds, while for 125
MB no data are discarded.

Recovery Time Breakdown: Impact of Topology Size. This experiment investigates the
time elapsed between the moment that a source executing a query regains its connection
and the moment that the system resumes normal execution for different topology sizes.
We run Query 1 on three topology configurations. Topo5 corresponds to the topology of
Figure 4 (left), where the query path between the source (worker 8) and the sink (worker
0) contains 5 nodes in total, while there are two more paths of size 5 between worker 8
and worker 0 (worker 8 -> worker 6 -> worker 3 -> worker 1 -> worker 0 and worker 8 ->
worker 7 -> worker 4 -> worker 1 -> worker 0). Topo4 is the same as topo5, but all paths
are of size 4. Similarly, topo7 is the same as topo5, but all paths are of size 7. The source
disconnects after processing 2M tuples and re-connects after a short disconnection period.
As Figure 8(a) shows, the largest portion of time is spent on redeploying the original query

294 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 17

topo4 topo5 topo7
0

5

10

Re
co
ve
ry
Ti
m
e
(s
)

query redeployment
forwarding query deployment

buffer data retrieval

(a) Impact of topology size.

1 2 3 4 5
0

5

10

15

Replication factor

Re
co
ve
ry
Ti
m
e
(s
)

(b) Impact of replication factor.

Fig. 8: Recovery time breakdown. 8(a): The redeployment time increases for larger topologies. 8(b):
The time to deploy forwarding queries increases for higher replication factors.

and on creating and deploying forwarding queries, i. e. query deployment is clearly the main
overhead. In addition, as expected, query redeployment takes longer for bigger topologies.
We note, however, that we perform query redeployment only whenever necessary, i. e. when
the source can no longer reach its original downstream node upon re-connection. In section 6
we discuss some possible directions to further mitigate the redeployment overhead.

Recovery Time Breakdown: Impact of Replication Factor. We repeat the previous
experiment, but this time we vary the replication factor of the forwarding queries. The
topology used in this experiment is similar to the one of Figure 4 (left) but wider: it contains
8 additional paths between worker 8 and worker 0. As expected, the results in Figure 8(b)
show that the time to create and deploy forwarding queries increases for higher replication
factors. The time to retrieve and send the buffered data also increases slightly, as the data
are sent to more nodes. The query redeployment is independent of the forwarding queries,
and remains, thus, constant. Overall, there is a trade-off between the level of fault tolerance
and the recovery time, which we plan to further investigate in future work.

5 Related Work

Mobile Stream Processing. Mobile Stream Processing (MSP) [Ni15] refers to performing
stream processing tasks purely at the edge by combining resources of multiple mobile devices.
Given that our work focuses on the use of mobile devices in stream processing, fault tolerance
strategies that have been proposed in the context of MSP are the closest to our work. Existing
fault tolerance strategies in MSP fall broadly into two categories: checkpointing-based
and replication-based. MobiStreams [WP14] combines two checkpointing protocols, token-
triggered and broadcast-based checkpointing, aiming to reduce the network overhead that
checkpointing strategies typically induce. In token-triggered checkpointing, a controller node
periodically prompts data sources to checkpoint their state. To coordinate the checkpointing
process, the data sources generate tokens that are sent to the downstream node upon
completion of the checkpoint. Once a node receives tokens of all its upstream neighbors, it

Towards Resilient Data Management for the Internet of Moving Things 295

18 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

checkpoints its own state and sends its token downstream. To avoid losing the checkpointed
state when nodes exit the network, the broadcast-based checkpointing protocol broadcasts
nodes’ states in the network. The main shortcoming of MobiStreams is that it does not
consider the limited resources of mobile devices. Checkpointing operations and state
broadcasting have a considerable impact on battery life. In addition, MobiStreams consumes
memory resources on the devices to store the checkpointed state even when the system is
functioning correctly, introducing an unnecessary overhead. In contrast, NebulaStream-MSS
follows a reactive approach and only buffers data upon a disconnection. Symbiosis [MRH14]
attempts to optimize checkpoints not only for network overhead, but also for energy efficiency.
It proposes to trigger checkpointing when a node in the network either moves outside the
range of connectivity, or reaches a critical battery threshold. However, Symbiosis only
considers failures caused by mobility and energy levels and does not account for sudden
ad-hoc disconnections caused by network instabilities.

On the other end of the spectrum we find systems that base their fault tolerance strategy on
replication. Frontier [OSP18] models queries as replicated data flow graphs, where each
operator is replicated in multiple nodes resulting in multiple paths between a source and
a sink node. It then adjusts the data flow dynamically based on a backpressure stream
routing algorithm. To recover from the disconnections of data sources, Frontier applies
replication also at the source level. In IoT scenarios, however, it is not always possible to
have multiple sources (i. e. sensors) for the same data. MobileStorm [Ni15], is a stream
processing platform for clouds of mobile devices, but does not provide support for transient
disconnections. To address that, R-MStorm [CS20], an extension of MobileStorm, follows a
similar approach as Frontier. It introduces path diversity by replicating operators, so that
there is always a path between the source and the sink, even in case of failures, and performs
dynamic path selection. In addition, R-MStorm attempts to improve the overall system
availability by using an operator placement strategy that prioritizes devices with higher
availability during operator assignment. R-MStorm does not provide fault tolerance at the
data source level and therefore cannot recover from transient disconnections of data sources.
Finally, Swing [FSL18] is a MSP that considers the dynamism of mobile devices. Each
upstream node in Swing maintains routing information about the reachable downstream
nodes. When a network link is broken, the affected upstream nodes update their routing
records and re-route data to other nodes. However, any data that are generated from the
moment of the disconnection until the completion of the reconfiguration are lost. In contrast,
we reduce or completely eliminate data loss by buffering data on the disconnected device.

Distributed Stream Processing. Existing distributed stream processing systems provide
fault tolerance through one of the two following approaches [Hw05]: upstream backup,
where nodes buffer sent data while the downstream nodes process them and replay them to
a recovery node upon a failure [Qi13, STO], or replication, where each node is assigned a
second node as a backup [Ba08, SHB04]. As we already explained before, replication-based
approaches are not practical in IoT environments, given the limited amount of resources,
and can only provide fault tolerance at the data source level when there are multiple devices

296 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 19

capturing the same input data. Similarly to our work, the upstream backup approach also
relies on buffering. However, unlike our approach, upstream backups aim to handle failures
at the receiver by buffering data at the sender. In our approach, we deal with failures at
the data source which does not have an upstream node, i. e. is at the bottom of the QEP.
We therefore need to buffer data at the source itself. Furthermore, while the upstream
backup approach buffers data throughout query execution, our approach only buffers data
reactively upon a disconnection. Finally, our approach also considers topological changes
when forwarding the buffered data.

Mobile Computing and Networking. In the past decades, there has been a lot of research
in the area of data management in mobile computing [Ba99]. In [BI94], the authors propose
different caching strategies for mobile devices. They categorize devices into sleepers and
workaholics based on the duration of their disconnection and show the impact of the
disconnection duration on the effectiveness of the caching strategy. Wu et al. [WYC96],
address the problem of selectively discarding caches in mobile devices that have been
disconnected for a period of time. In contrast to the above work, we assume that the contents
of the buffer do not become obsolete during the disconnection period, as we are focusing on
transient disconnections. Another line of work, aims to provide network connection mobility.
Persistent Connections [YS95] interpose a library between the application and the sockets
API that provides the illusion of a single unbroken connection over successive physical
connection instances. When a physical connection is lost, the sender stores data in a buffer.
Once a new physical connection is established, any data buffered during disconnection
are sent through it. Similarly, our approach uses buffering at the data source during a
disconnection. However, instead of using an external library, we tightly integrate buffering
inside the streaming engine. Furthermore, unlike Persistent Connections, our approach is
holistic: in addition to buffering, we provide a query restart process that resumes query
execution upon a re-connection.

Buffering for Fault Tolerance. Clearly, there are plenty of fault tolerance strategies in
different domains that rely on buffering. Message logging and checkpointing are often used
for fault tolerance in distributed systems [El02]. In [ZJ87], the sender stores messages in its
local memory, which allows recovery from single failures, while [SBY88] builds upon that
approach by selectively logging only data that cannot be otherwise reconstructed. Unlike our
work, the above techniques do not support mobility of the sender. In addition, they follow
a pessimistic approach that logs messages irrespective of failures, while we only buffer
data upon a disconnection. DiscoTech [RGG12] is a toolkit for handling disconnections in
groupware networks. It includes fault tolerance strategies that use event queues to store data
in a centralized server during the disconnection of a receiver node. In contrast, we deal with
failures at the source that sends the data, and store the data locally during the disconnection.

Towards Resilient Data Management for the Internet of Moving Things 297

20 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

6 Conclusions & Future Work

This paper presents NebulaStream-MSS, an extension of NebulaStream that provides fault
tolerance capabilities for mobile sources in IoT environments. NebulaStream-MSS focuses
specifically on overcoming transient disconnections. At the core, the proposed solution is a
data logging mechanism that allows mobile devices to continue processing data while they
are in a disconnected state by temporarily storing the processed data in a circular buffer.
That way, we exploit the processing capabilities of the mobile devices and transform the
idle disconnection time into a productive period. Besides buffering data during transient
disconnections, our fault tolerance strategy also includes a query restart process that ensures
the consistent resumption of query execution, even when mobile devices move during
the period of disconnection. Our restart process determines whether queries need to be
redeployed, based on whether the device can still reach its downstream neighbours after the
re-connection. In addition, we introduce forwarding queries, to address the case where the
mobile device is assigned a subset of the operators previously assigned to it after a new
deployment. These forwarding queries create new paths in the DAG of a query through
which the data stored in the buffer can be forwarded further down the pipeline to avoid
redundant processing. Using a custom benchmark based on real data [MZJ13], we show that
NebulaStream-MSS reduces data loss by 63% over a disconnection period of 30 seconds
and provides nearly constant query runtime with an increasing number of disconnections
when no query redeployment is required.

In future work, we plan to further improve our buffering strategy. Since mobile devices
have limited resources, minimizing the memory requirements is critical. For that purpose,
we would like to investigate the use of more tailored replacement strategies that exploit
application knowledge to determine the most relevant information. In addition, we plan to
look into data compression and result sharing. Result sharing would allow us to only once
store duplicate results produced by different queries. Moreover, we plan to further investigate
the selection of an optimal buffer size based on the available resources of the device and the
workload. Our evaluation also showed that the largest performance overhead stems from the
redeployment of queries. To mitigate this overhead, we aim to perform dynamic and partial
redeployment. That way, we can reconfigure the data flow without involving the coordinator
thereby eliminating our system’s bottleneck. Finally, we have proposed the use of a level of
replication in our forwarding queries. To reduce network traffic, instead of broadcasting the
data through all redundant paths, we could use an approach similar to Frontier’s [OSP18]
where data are sent through a single path chosen dynamically at runtime.

Acknowledgements
This work was supported by the German Ministry for Education and Research as BIFOLD
- Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and ref
01IS18037A).

298 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

Towards Resilient Data Management for the Internet of Moving Things 21

Bibliography
[Ba99] Barbara, D.: Mobile computing and databases-a survey. IEEE Transactions on Knowledge

and Data Engineering, 11(1):108–117, 1999.

[Ba08] Balazinska, Magdalena; Balakrishnan, Hari; Madden, Samuel R.; Stonebraker, Michael:
Fault-Tolerance in the Borealis Distributed Stream Processing System. ACM Trans.
Database Syst., 33(1), March 2008.

[BI94] Barbará, Daniel; Imieliński, Tomasz: Sleepers and Workaholics: Caching Strategies in
Mobile Environments. In: International Conference on Management of Data SIGMOD. p.
1–12, 1994.

[CEH15] Carbone, Paris; Ewen, Stephan; Haridi, Seif: Apache Flink: Stream and Batch Processing
in a Single Engine. In: IEEE Data Engineering Bulletin. volume 36, 2015.

[CS20] Chao, Mengyuan; Stoleru, Radu: A Resilient Mobile Stream Processing System for
Dynamic Edge Networks. In: IEEE International Conference on Fog Computing (ICFC).
2020.

[El02] Elnozahy, E. N.; Alvisi, Lorenzo; Wang, Yi-Min; Johnson, David B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408,
2002.

[FSL18] Fan, S.; Salonidis, T.; Lee, B.: Swing: Swarm Computing for Mobile Sensing. In:
International Conference on Distributed Computing Systems (ICDCS). pp. 1107–1117,
2018.

[Ga20] Gavriilidis, Haralampos; Michalke, Adrian; Mons, Laura; Zeuch, Steffen; Markl, Volker:
Scaling a Public Transport Monitoring System to Internet of Things Infrastructures. In:
International Conference on Extending Database Technology (EDBT). pp. 627–630, 2020.

[GRP] Introduction to gRPC, https://grpc.io/docs/what-is-grpc/introduction/ Last ac-
cessed 12/12/2020.

[GS] The Mobile Economy 2020, https://www.gsma.com/mobileeconomy/wp-content/
uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf Last accessed at 23/09/2020.

[Hi] ZeroMQ guide: Preface, http://zguide.zeromq.org/page:preface Last accessed
12/12/2020.

[Hw05] Hwang, J. .; Balazinska, M.; Rasin, A.; Cetintemel, U.; Stonebraker, M.; Zdonik, S.:
High-availability algorithms for distributed stream processing. In: 2IEEE International
Conference on Data Engineering (ICDE). pp. 779–790, 2005.

[Ma05] Madden, Samuel R.; Franklin, Michael J.; Hellerstein, Joseph M.; Hong, Wei: Tinydb:
An acquisitional query processingsystem for sensor network. In: ACM Transactions on
Database Systems (TODS). 2005.

[MRH14] Morales, Jefferson; Rosas, Erika; Hidalgo, Nicolas: Symbiosis: Sharing mobile resources
for stream processing. In: IEEE Symposium on Computers and communications (ISCC).
pp. 1–6, 2014.

[MZJ13] Mutschler, Christopher; Ziekow, Holger; Jerzak, Zbigniew: The DEBS 2013 Grand
Challenge. In: International Conference on Distributed Event-Based Systems (DEBS). p.
289–294, 2013.

Towards Resilient Data Management for the Internet of Moving Things 299

https://grpc.io/docs/what-is-grpc/introduction/
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
http://zguide.zeromq.org/page:preface

22 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

[Ni15] Ning, Qian; Chien-An; Stoleru, Radu; Chen, Congcong: Mobile Storm: Distributed Real-
time Stream Processing for Mobile Clouds. In: IEEE International Conference on Cloud
Networking (CloudNet). pp. 139–145, 2015.

[NSP17] Narkhede, Neha; Shapira, Gwen; Palino, Todd: Kafka: The Definitive Guide: Real-Time
Data and Stream Processing at Scale. O’Reilly, 2017.

[OSP18] O’Keeffe, Dan; Salonidis, Theodoros; Pietzuch, Peter: Frontier: Resilient Edge Processing
for the Internet of Things. In: PVLDB. volume 11, pp. 1178–1191, 2018.

[Qi13] Qian, Zhengping; He, Yong; Su, Chunzhi; Wu, Zhuojie; Zhu, Hongyu; Zhang, Taizhi;
Zhou, Lidong; Yu, Yuan; Zhang, Zheng: TimeStream: Reliable Stream Computation in the
Cloud. In: European Conference on Computer Systems (EuroSys). p. 1–14, 2013.

[RGG12] Roy, Banani; Graham, T.C. Nicholas; Gutwin, Carl: DiscoTech: a plug-in toolkit to improve
handling of disconnection and reconnection in real-time groupware. In: ACM Conference
on Computer Supported Cooperative Work. 2012.

[SBY88] Storm, Robert E.; Bacon, David F.; Yemini, Shaula A.: Volatile logging in n-fault-tolerant
distributed systems. In: International Symposium on Fault-Tolerant Computing. 1988.

[Sh16] Shen, Zhitao; Kumaran, Vikram; Franklin, Michael J.; Krishnamurthy, Sailesh; Bhat,
Amit; Kumar, Madhu; Lerche, Robert; Macpherson, Kim: CSA: Streaming Engine for
Internet of Things. In: IEEE Data Engineering Bulletin. volume 38, 2016.

[SHB04] Shah, Mehul A.; Hellerstein, Joseph M.; Brewer, Eric: Highly Available, Fault-Tolerant,
Parallel Dataflows. In: International Conference on Management of Data SIGMOD. p.
827–838, 2004.

[STO] Storm, https://storm.apache.org/.

[WP14] Wang, Huayong; Peh, Li-Shiuan: Mobistreams: A reliable distributed stream processing
system for mobile devices. In: IEEE International Parallel and Distributed Processing
Symposium. pp. 51–60, 2014.

[WYC96] Wu, Kun-Lung; Yu, Philip S.; Chen, Ming-Syan: Energy-Efficient Caching for Wireless
Mobile Computing. In: International Conference on Data Engineering (ICDE). p. 336–343,
1996.

[YS95] Yongguang Zhang; Son Dao: A “persistent connection” model for mobile and distributed
systems. In: International Conference on Computer Communications and Networks
(ICCCN). pp. 300–307, 1995.

[Za16] Zaharia, Matei; Xin, Reynold S.; Patrick Wendell, Tathagata Das; Armbrust, Michael;
Dave, Ankur; Meng, Xiangrui; Rosen, Josh; Venkataraman, Shivaram; Franklin, Michael J.;
Ghodsi, Ali; Gonzalez, Joseph; Shenker, Scott; Stoica, Ion: Apache spark: a unified engine
for big data processing. In: Communications of the ACM. 2016.

[Ze20a] Zeuch, Steffen; Chaudhary, Ankit; Monte, Bonaventura Del; Gavriilidis, Haralampos;
Giouroukis, Dimitrios; Grulich, Philipp M.; Breß, Sebastian; Traub, Jonas; Markl, Volker:
The NebulaStream Platform: Data and Application Management for the Internet of Things.
In: Conference on Innovative Data Systems Research (CIDR). 2020.

300 Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, Volker Markl

https://storm.apache.org/

Towards Resilient Data Management for the Internet of Moving Things 23

[Ze20b] Zeuch, Steffen; Tzirita Zacharatou, Eleni; Zhang, Shuhao; Chatziliadis, Xenofon; Chaud-
hary, Ankit; Monte, Bonaventura Del; Giouroukis, Dimitrios; Grulich, Philipp M.; Ziehn,
Ariane; Markl, Volker: NebulaStream: Complex Analytics Beyond the Cloud. Open J.
Internet Things, 6(1):66–81, 2020.

[ZJ87] Zwaenepoel, Willy; Johnson, D.B.: Sender-based message logging. In: International
Symposium on Fault-Tolerant Computing. 1987.

Towards Resilient Data Management for the Internet of Moving Things 301

cba

(Hrsg.): Einreichung für BTW 2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Graph Sampling with Distributed In-Memory Dataflow
Systems

Kevin Gomez 1 2, Matthias Täschner1,2, M. Ali Rostami1,2, Christopher Rost1,2,
Erhard Rahm1,2

Abstract: Given a large graph, graph sampling determines a subgraph with similar characteristics
for certain metrics of the original graph. The samples are much smaller thereby accelerating and
simplifying the analysis and visualization of large graphs. We focus on the implementation of
distributed graph sampling for Big Data frameworks and in-memory dataflow systems such as Apache
Spark or Apache Flink and evaluate the scalability of the new implementations. The presented methods
will be open source and be integrated into Gradoop, a system for distributed graph analytics.

Keywords: Graph Analytics; Distributed Computing; Graph Sampling; Data Integration

1 Introduction

Sampling is used to determine a subset of a given dataset that retains certain properties
but allows more efficient data analysis. For graph sampling it is necessary to retain not
only general characteristics of the original data but also the structural information. Graph
sampling is especially important for the efficient processing and analysis of large graphs
such as social networks [LF06, Wa11]. Furthermore, sampling is often needed to allow the
effective visualization and computation of global graph measures for such graphs.

Our contribution in this paper is to outline the distributed implementation of known graph
sampling algorithms for improved scalability to large graphs as well as their evaluation.
The sampling approaches are added as operators to the open-source distributed graph
analysis platform Gradoop3 [Ju16, Ju18] and used for interactive graph visualization.
Like Gradoop, our distributed sampling algorithms are based on the dataflow execution
framework Apache Flink but the implementation would be very similar for Apache Spark.
To evaluate horizontal scalability, speedup and absolute runtimes we use the synthetic graph
data generator LDBC-SNB [Er15].

This work is structured as follows: We briefly discuss related work in Section 2 and provide
background information on graph sampling in Section 3. In Section 4, we explain the
distributed implementation of four sampling algorithms with Apache Flink. Section 5
describes the evaluation results before we conclude in Section 6.
1 University of Leipzig, Database Group & ScaDS.AI Dresden/Leipzig
2 [gomez, taeschner, rostami, rost, rahm]@informatik.uni-leipzig.de
3 http://www.gradoop.com

cba doi:10.18420/btw2021-15

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 303

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-15

2 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

2 Related Work

Several previous publications address graph sampling algorithms but mostly without
considering their distributed implementation. Hu et al. [HL13] surveyed different graph
sampling algorithms and their evaluations. However, many of these algorithms cannot be
applied to large graphs due to their complexity. Leskovec et al. [LF06] analyze sampling
algorithms for large graphs but there is no discussion of distributed or parallel approaches.
Wang et al. [Wa11] focuses on sampling algorithms for social networks but again without
considering distributed approaches.

The only work about distributed graph sampling we are aware of is a recent paper by
Zhang et al. [ZZL18] for implementations based on Apache Spark. In contrast to our work,
they do not evaluate the speedup behavior for different cluster sizes and the scalability to
different data volumes. Our study also includes a distributed implementation and evaluation
of random walk sampling. Zhang et al. [Zh17] have evaluated the influence of different
graph sampling algorithms on graph properties such as the distribution of vertex degrees as
well as on the visualization of the samples. These aspects do not depend on whether the
implementation is distributed and are thus not considered in this short paper.

3 Background

We first introduce two basic definition of a graph sample and a graph sample algorithm and
then specify some selected sampling algorithms.

3.1 Graph Sampling

A directed graph � = (+, �) can be used to represent relationships between entities, for
example, interactions between users in a social network. The user can be denoted as a vertex
E ∈ + and a relationship between two users E and D can be denoted as a directed edge
4 = (E, D) ∈ � .

Since popular social networks such as Facebook and Twitter contain billions of users and
trillions of relationships, the resulting graph is too big for both, visualization and analytical
tasks. A common approach to reduce the size of the graph is to use graph sampling to scale
down the information contained in the original graph.

Definition 1 (Graph Sample) A graph (= (+(, �() is a sampled graph (or graph sample)
that defines a subgraph of graph � = (+, �) iff the following three constraints are met:
+(⊆ + , �(⊆ � and �(⊆ {(D, E) |D, E ∈ +(}.4
4 In the existing publications, there are different approaches toward the vertices with zero-degrees in the sampled

graph. Within this work we choose the approach to remove all zero-degree vertices from the sampled graph.

304 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

3

Definition 2 (Graph Sample Algorithm) A graph sample algorithm is a function from
a graph set G to a set of sampled graphs S, as 5 : G → S in which the set of vertices +
and edges � will be reduced until a given threshold B ∈ [0, 1] is reached. B is called sample
size and is defined as the ratio of vertices B+ = |+B |/|+ | (or edges B� = |�B |/|� |) the graph
sample contains compared to the original graph.

3.2 Basic Graph Sampling Algorithms

Many graph sampling algorithms have already been investigated but we will limit ourselves
to four basic approaches in this paper: random vertex sampling, random edge sampling,
neighborhood sampling, and random walk sampling.

Random vertex sampling [Zh17] is the most straightforward sampling approach that
uniformly samples the graph by selecting a subset of vertices and their corresponding edges
based on the selected sample size B. For the distributed implementation in a shared-nothing
approach, the information of the whole graph is not always available in every node. Therefore,
we consider an estimation by selecting the vertices using B as a probability. This approach is
also applied on the edges in the random edge sampling [Zh17].

We extend the idea of the the simple random vertex approach to improve topological locality
using the random neighborhood sampling. Therefore, when a vertex is chosen to be in the
resulting sampled graph, all neighbors are also added to the sampled graph. Optionally, only
incoming or outgoing edges can be taken into account to select the neighbors of a vertex.

For the random walk sampling [Wa11], one or more vertices are randomly selected as start
vertices. For each start vertex, we follow a randomly selected outgoing edge to its neighbor.
If a vertex has no outgoing edges or if all edges were followed already, we jump to any other
randomly chosen vertex in the graph and continue the walk there. To avoid keeping stuck in
dense areas of the graph we added a probability to jump to another random vertex instead
of following an outgoing edge. This process continues until a desired number of vertices
have been visited, thus the sample size B has been met. All visited vertices and all edges
whose source and target vertex was visited will be part of the graph sample result.

4 Implementation

The goals of the distributed implementation of graph sampling are to achieve fast execution
and good scalability for large graphs with up to billions of vertices and edges. We therefore
want to utilize the parallel processing capabilities of shared-nothing clusters and, specifically,
distributed dataflow systems such as Apache Spark [Za12] and Apache Flink [Ca15]. In
contrast to the older MapReduce approach, these frameworks offer a wider range of
transformations and keep data in main memory between the execution of operations. Our
implementations are based on Apache Flink but can be easily transferred to Apache Spark.

Graph Sampling with Distributed In-Memory Dataflow Systems 305

4 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

Transf. Type Signature Constraints
Filter unary �, $ ⊆ � $ ⊆ �
Map unary � ⊆ �,$ ⊆ � |� | = |$ |
Reduce unary �, $ ⊆ � × � |� | ≥ |$ | ∧ |$ | ≤ |�|
Join binary $ ⊆ �1 Z �2 �1 ⊆ �, �2 ⊆ �

(I/O : input/output datasets, A/B : domains)

Tab. 1: Selected transformations and their characteristics.

We first give a brief introduction to the programming concepts of the distributed dataflow
model. We then outline the implementation of our sampling operators.

4.1 Distributed Dataflow Model

The processing of data that exceeds the computing power or storage of a single computer can
be handled through the use of distributed dataflow systems. Therein the data is processed
simultaneously on shared-nothing commodity cluster nodes. Although details vary for
different frameworks, they are designed to implement parallel data-centric workflows,
with datasets and primitive transformations as two fundamental programming abstractions.
A dataset represents a typed collection partitioned over a cluster. A transformation is a
deterministic operator that transforms the elements of one or two datasets into a new dataset.
A typical distributed program consists of chained transformations that form a dataflow.
A scheduler breaks each dataflow job into a directed acyclic execution graph, where the
nodes are working threads and edges are input and output dependencies between them. Each
thread can be executed concurrently on an associated dataset partition in the cluster without
sharing memory.

Transformations can be distinguished into unary and binary operators, depending on the
number of input datasets. Table 1 shows some common transformations from both types
which are relevant for this work. The filter transformation evaluates a user-defined predicate
function to each element of the input dataset. If the function evaluates to true, the element
is part of the output. Another simple transformation is map. It applies a user-defined map
function to each element of the input dataset which returns exactly one element to guarantee
a one-to-one relation to the output dataset. A transformation processing a group instead of a
single element as input is reduce where the input, as well as output, are key-value pairs.
All elements inside a group share the same key. The transformation applies a user-defined
function to each group of elements and aggregates them into a single output pair. A common
binary transformation is join. It creates pairs of elements from two input datasets which
have equal values on defined keys. A user-defined join function is applied for each pair that
produces exactly one output element.

306 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

5

Fig. 1: Dataflow RV Operator. Fig. 2: Dataflow RE Operator.

4.2 Sampling Operators

The operators for graph sampling compute a subgraph by either randomly selecting a subset
of vertices or a subset of edges. In addition, neighborhood information or graph traversal
can be used. The computation uses a series of transformations on the input graph. Latter is
stored in two datasets, one for vertices and one for edges. For each sampling operator a filter
is applied to the output graph’s vertex dataset to remove all zero-degree vertices following
the definition of a graph sample in Section 3.

4.2.1 Random Vertex (RV) and Random Edge (RE) Sampling

Both operators RV and RE are very simple to implement. A graph with it’s vertex set V
and edge set E serves as input for both operators. As well a sample size B has to be defined.
The RV operator (Figure 1) starts with applying a filter transformation on the vertex dataset.
Within the filter transformation a user-defined-function can be used to generate a random
value A ∈ [0, 1] for each vertex which is compared to the given sample size B. If the random
value A is lower or equal to B, the vertex will be part of a new dataset +1. Otherwise the
vertex will be filtered out. In the next step we join the vertices of +1 with the edge dataset � .
Within the join transformation we only select edges which corresponding source and target
vertex is contained within +1. Those selected edges will be part of the resulting edge set � ′.
+ ′ is the resulting vertex set which is equal to +1. The result is a graph sample containing
the vertex set + ′ and the edge set � ′.

The RE operator (Figure 2) works the other way around, as a filter transformation is applied
to the edge dataset � of the input graph. An edge will be kept, again if the generated random
value A ∈ [0, 1] is lower or equal to B. After the filter transformation, all remaining edges
will be stored in a new dataset �1. In the following we join �1 with the input vertex dataset
+ . Within the join we select all source and target vertices of the edges contained within �1.
The selected vertices are stored within the final vertex dataset + ′. � ′ contains the final edge
dataset which is equal to �1. The result is again a graph sample �(= (+ ′, � ′).

Graph Sampling with Distributed In-Memory Dataflow Systems 307

6 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

Fig. 3: Dataflow RVN Operator. Fig. 4: Dataflow RW Operator.

4.2.2 Random Vertex Neighborhood (RVN) Sampling

As for RV and RE, a graph and a sample size B serves as input for the RVN operator
(Figure 3). This approach is similar to the RV operator but also adds the direct neighbors of
a vertex to the graph sample. The selection of the neighbors can be restricted according to
the direction of the connecting edge (incoming, outgoing or both). In the implementation,
we start with using a map transformation and randomly selecting vertices of the input vertex
dataset + and mark them as sampled with a boolean flag, iff a generated random value
A ∈ [0, 1] is lower or equal than the given sample size B. In a second step, the vertex dataset
+1 is joined with the input edge dataset � , transforming each edge into a tuple containing
the edge itself and the boolean flags for its source and target vertex. In an additional filter
transformation on the edge tuples, we retain all connecting edges of the vertices of +1 and
apply the given neighborhood relation to create the final edge dataset � ′. This relation will
be either a neighbor on an incoming edge of a sampled vertex, a neighbor on an outgoing
edge, or both. Note that the vertex set + ′, which is equal to +1, of the resulting graph
can contain vertices with a degree of zero. Since we choose the approach to remove all
zero-degree vertices from the resulting graph sample, an additional filter transformation has
to be applied.

4.2.3 Random Walk (RW) Sampling

This operator uses a random walk algorithm to walk over vertices and edges of the input
graph. Each visited vertex and edges connecting those vertices will then be returned as the
sampled graph. Figure 4 shows the dataflow of an input graph to a sampled graph of this
operator. The input for this operator is a graph, a sample size B, an integer F and a jump
probability 9 . At the beginning we transform the input graph to a specific Gelly format.

We are using Gelly5, the Google Pregel [Ma10] implementation of Apache Flink, to
implement a random walk algorithm. Pregel utilizes the bulk-synchronous-parallel [Va90]
paradigm to create the vertex-centric-programming model. An iteration in a vertex-centric

5 For more technical details see: https://bit.ly/39UuEWS

308 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

7

SF |+ | |� | Disk usage B

1 3.3 M 17.9 M 2.8 GB 0.03

10 30,4 M 180.4 M 23.9 GB 0.003

100 282.6 M 1.77 B 236.0 GB 0.0003

Tab. 2: LDBC social network datasets.

program is called superstep, in which each vertex can compute a new state and is able to
prepare messages for other vertices. At the end of each superstep each worker of the cluster
can exchange the prepared massages during a synchronization barrier. In our operator we
consider a message from one vertex to one of its neighbors a walk. A message to any other
vertex is considered as jump.

At the beginning of the random walk algorithm F start vertices are randomly selected and
marked as visited. The marked vertices will be referred to as walker. In the first superstep
each walker either randomly picks one of its outgoing and not yet visited edges, walks to the
neighbor and marks the edge as traversed. Or, with the probability of 9 ∈ [0, 1] or if there
aren’t any outgoing edges left, jumps to any other randomly selected vertex in the graph.
Either the neighbors or the randomly selected vertices will become the new walker and the
computation starts again. Note, this algorithm is typically executed using only one walker.
Since this would create a bottleneck in the distributed execution we extended the algorithm
with the multi-walker approach as just explained.

For each completed superstep the already visited vertices are counted. If this number
exceeds the desired number of sampled vertices, the iteration is terminated and the algorithm
converges. Having the desired number of vertices marked as visited, the graph is transformed
back and is now containing the marked vertex set +2 and the marked edge set �2. Using a
filter transformation on +2 we create the resulting vertex set + ′. A vertex will be kept if it
is marked as visited. By joining + ′ with �2 we only select edges which source and target
vertex occur in the final vertex dataset + ′ and create the final edge dataset � ′. The result of
the operator is the graph sample �(= (+ ′, � ′).

5 Evaluation

One key feature of distributed shared-nothing systems is their ability to respond to growing
data sizes or problem complexity by adding additional machines. Therefore, we evaluate the
scalability of our implementations with respect to increasing data volume and computing
resources.

Setup. The evaluations were executed on a shared-nothing cluster with 16 workers connected
via 1 GBit Ethernet. Each worker consists of an Intel Xeon E5-2430 6 x 2.5 Ghz CPU,

Graph Sampling with Distributed In-Memory Dataflow Systems 309

8 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 4 8 16

R
un

tim
e

[s
]

Number of Workers

RV
RE

RVN
RW

Fig. 5: Increase worker count.

1

2

4

8

16

1 2 4 8 16

Sp
ee

du
p

Number of Workers

Linear
RV
RE
RVN
RW

Fig. 6: Speedup over workers.

10

100

1000

10000

LDBC.1 LDBC.10 LDBC.100

R
un

tim
e

[s
]

Dataset

RV
RE

RVN
RW

Fig. 7: Increase data volume.

48 GB RAM, two 4 TB SATA disks and runs openSUSE 13.2. We use Hadoop 2.6.0 and
Flink 1.9.2. We run Flink with 6 threads and 40 GB memory per worker.

To evaluate the scalability of our implementations we use the LDBC-SNB data set
generator [Er15]. It creates heterogeneous social network graphs with a fixed schema.
The synthetic graphs mimic structural characteristics of real-world graphs, e.g., node degree
distribution based on power-laws and skewed property value distributions. Table 2 shows the
three datasets used throughout the benchmark. In addition to the scaling factor (SF) used,
the cardinality of vertex and edge sets, the dataset size on hard disk as well the used sample
size B are specified. Each dataset is stored in the Hadoop distributed file system (HDFS). The
execution times mentioned later include loading the graph from HDFS (hash-partitioned),
computing the graph sample and writing the sampled graph back to HDFS. We run three
executions per setup and report the average runtimes.

5.1 Scalability

In many real-world use cases data analysts are limited in graph size for visual or analytical
tasks. Therefore, we run each sampling algorithm with the intention to create a sampled

310 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

9

graph with round about 100k vertices. The used sample size B for each graph is contained in
Table 2. As configurations, we use Direction.BOTH for the RVN algorithm and F = 3000
walker and a jump probability 9 = 0.1 for the RW algorithm.

We first evaluate the absolute runtime and scalability of our implementations. Figure 5
shows the runtimes of the four algorithms for up to 16 workers using the LDBC.10 dataset.
One can see, that all algorithms benefit from more resources. However RVN and RW gain
the most. For RVN, the runtime is reduced from 42 minutes on a single worker to 4 minutes
on 16 workers. In comparison the RW implementation needs 67 minutes on a single worker
and 9 minutes using the whole cluster. The more simpler algorithms RV and RE are already
executed relatively fast on a single machine. Their initial runtime of 405 seconds and 768
seconds on a single worker only got reduced to 105 seconds and 198 seconds.

In the second experiment we evaluate absolute runtimes of our algorithms on increasing data
sizes. Figure 7 shows the runtimes of each implementation using 16 workers on different
datasets. The results show that the runtimes of each algorithm increases almost linearly with
growing data volume. For example, the execution of the RVN algorithm required about 314
seconds on LDBC.10 and 2907 seconds on LDBC.100. The RW algorithm shows equal results
with 549 seconds on LDBC.10 and 5153 seconds on LDBC.100. The more simple algorithms
RV and RE show very good scalability results as well.

5.2 Speedup

In our last experiment we evaluate relative speedup of our implementations on increasing
cluster size. Our evaluation (Figure 6) show a good speedup for all our implementations
executed on the LDBC.10 dataset. The algorithms RVN and RW show the best speedup results
of 11.2 and 8.5 for 16 workers. We assume that the usage of multiple join transformations
within the RVN operator and the utilization of the iterative Gelly implementation used in the
RW operator limits the speedup performance of both algorithms. However, for RV and RE
we report the lowest speedup results of around 4.0. This behaviour can be explained with
the already low runtimes we discovered on a single worker during the scalability evaluation
in Figure 5. Hence, both operators won’t benefit much of increasing cluster size, since
increasing communication costs have an negative influence in both runtimes and speedup
capabilities.

6 Conclusion

We outlined distributed implementations for four graph sampling approaches using Apache
Flink. Our first experimental results are promising as they showed good speedup for using
multiple workers and near-perfect scalability for increasing dataset sizes. In our ongoing
work we will provide distributed implementations for further sampling algorithms and
optimization techniques such as custom partitioning.

Graph Sampling with Distributed In-Memory Dataflow Systems 311

10 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

7 Acknowledgements
This work is partially funded by the German Federal Ministry of Education and Research
under grant BMBF 01IS18026B in project ScaDS.AI Dresden/Leipzig.

Bibliography
[Ca15] Carbone, Paris; Katsifodimos, Asterios; Ewen, Stephan; Markl, Volker; Haridi, Seif;

Tzoumas, Kostas: Apache Flink: Stream and Batch Processing in a Single Engine. Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering, 36(4), 2015.

[Er15] Erling, Orri et al.: The LDBC social network benchmark: Interactive workload. In: Proc.
SIGMOD. 2015.

[HL13] Hu, Pili; Lau, Wing Cheong: A Survey and Taxonomy of Graph Sampling. CoRR,
abs/1308.5865, 2013.

[Ju16] Junghanns, Martin; Petermann, André; Teichmann, Niklas; Gómez, Kevin; Rahm, Erhard:
Analyzing Extended Property Graphs with Apache Flink. In: Proc. ACM SIGMOD
Workshop on Network Data Analytics (NDA). 2016.

[Ju18] Junghanns, Martin; Kiessling, Max; Teichmann, Niklas; Gómez, Kevin; Petermann, André;
Rahm, Erhard: Declarative and distributed graph analytics with GRADOOP. PVLDB,
11:2006–2009, 2018.

[LF06] Leskovec, Jure; Faloutsos, Christos: Sampling from Large Graphs. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’06, ACM, New York, NY, USA, pp. 631–636, 2006.

[Ma10] Malewicz, Grzegorz; Austern, Matthew H.; Bik, Aart J.C; Dehnert, James C.; Horn, Ilan;
Leiser, Naty; Czajkowski, Grzegorz: Pregel: A System for Large-scale Graph Processing.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’10, ACM, New York, NY, USA, pp. 135–146, 2010.

[Va90] Valiant, Leslie G.: A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103–
111, August 1990.

[Wa11] Wang, T.; Chen, Y.; Zhang, Z.; Xu, T.; Jin, L.; Hui, P.; Deng, B.; Li, X.: Understanding
Graph Sampling Algorithms for Social Network Analysis. In: 2011 31st International
Conference on Distributed Computing Systems Workshops. pp. 123–128, June 2011.

[Za12] Zaharia, Matei; Chowdhury, Mosharaf; Das, Tathagata; Dave, Ankur; Ma, Justin; McCauley,
Murphy; Franklin, Michael J; Shenker, Scott; Stoica, Ion: Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation. USENIX
Association, 2012.

[Zh17] Zhang, Fangyan; Zhang, Song; Chung Wong, Pak; Medal, Hugh; Bian, Linkan; Swan II,
J Edward; Jankun-Kelly, TJ: A Visual Evaluation Study of Graph Sampling Techniques.
Electronic Imaging, 2017(1):110–117, 2017.

[ZZL18] Zhang, Fangyan; Zhang, Song; Lightsey, Christopher: Implementation and Evaluation of
Distributed Graph Sampling Methods with Spark. Electronic Imaging, 2018(1):379–1–379–
9, 2018.

312 Kevin Gomez, Matthias Täschner, M. Ali Rostami, Christopher Rost, Erhard Rahm

cba

Aslihan Özmen et al. (Hrsg.): Database Systems for Business, Technology and Web,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 11

Combining Programming-by-Example with Transformation
Discovery from large Databases

Aslihan Özmen1, Mahdi Esmailoghli2, Ziawasch Abedjan3

Abstract: Data transformation discovery is one of the most tedious tasks in data preparation. In
particular, the generation of transformation programs for semantic transformations is tricky because
additional sources for look-up operations are necessary. Current systems for semantic transformation
discovery face two major problems: either they follow a program synthesis approach that only scales
to a small set of input tables, or they rely on extraction of transformation functions from large corpora,
which requires the identification of exact transformations in those resources and is prone to noisy data.
In this paper, we try to combine approaches to benefit from large corpora and the sophistication of
program synthesis. To do so, we devise a retrieval and pruning strategy ensemble that extracts the
most relevant tables for a given transformation task. The extracted resources can then be processed by
a program synthesis engine to generate more accurate transformation results than state-of-the-art.

1 Introduction

In the era of big data, various large datasets are generated from different sources and stored
in various forms. Integration and preparation of raw data from diverse sources with different
schema is an important step in every data-driven analysis tasks. The preparation steps
include cleaning tasks, such as normalization, entity resolution, and data transformation. In
this paper, we address the vital task of data transformation discovery, which refers to the
task of generating a transformation function that systematically converts values of columns
from one representation to another [Ab15; Ab16; GHS12; Ji17; Mo15; Ro17; Si16].

A data transformation task might be either syntactic or semantic. Syntactic transformation
tasks require syntactic manipulations on the input value via a program based on a formula
or, a regular expression. A typical example is a date conversion from "XX-XX-XXXX"to
"XX/XX/XXXX". Unlike the syntactic manipulation, semantic transformation cannot be
performed with a formula or program and the input value only. Semantic transformations
requires more context to identify an implicit relationship between the input and output
values. For example, there is no formula that can calculate the airport code for a given
city name. Practically one needs a lookup operation on external resources. Transformation
discovery is hence a tedious task that requires domain knowledge, programming expertise,
and access to external datasets. Therefore, research tried to come up with approaches to
facilitate this process.
1 TU Berlin, aslihan.ozmen@thoughtworks.com
2 Leibniz Universität Hannover, esmailoghli@dbs.uni-hannover.de
3 Leibniz Universität Hannover abedjan@dbs.uni-hannover.de

cba doi:10.18420/btw2021-16

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 313

https://creativecommons.org/licenses/by-sa/4.0/
mailto:aslihan.ozmen@thoughtworks.com
mailto:esmailoghli@dbs.uni-hannover.de
mailto:abedjan@dbs.uni-hannover.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-16

12 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

There are two general directions of research for data transformation discovery. One line of
research is focused on programming-by-example (PBE) approaches that learn a program to
syntactically manipulate an input value and search for semantic relationships in additionally
provided support tables [GHS12; Ji17; Ro17; Si16]. While PBE is highly innovative and
effective on spreadsheet scale, it is bound to a small set of given and related look-up tables
and cannot serve newly incoming transformation tasks. A different approach is taken by
the DataXFormer system [Ab16; Mo15] and TransformDatabyExample (TDE) [He18],
where transformations are to be retrieved from large repositories of tables or functions. Here
the given examples are used to swift through large repositories to find potential tables or
functions that implement the desired hidden transformation relationship. These approaches
have currently the limitation that they rely on the existence of at least one resource that fully
implements the whole relationship. Consider the example depicted in Table 1. The user
wants to map addresses such as “13701 Riverside Drive Pittsburgh” to the corresponding
state abbreviation “PA” and at this end, the user provides a set of examples as depicted in
table (a). Related tables in general purpose repositories are however unlikely to contain a
resource that explicitly shows this relationship. More likely a table lists mappings of more
general concepts, such as city to state as depicted in table (b). DataXFormer and TDE would
both not be able to use this related table because they follow a very coarse-granular look-up
approach that checks the exact match of input and output examples. Due to the large amount
of candidate tables, trying to search for all possible substrings of input and output examples
will hurt the performance of the transformation discovery significantly. Furthermore, it
might lead to extraction of many irrelevant tables.

In this paper, we tackle exactly this problem. We want to merge the benefits of transfor-
mation discovery from large repositories and the PBE approach to harvest more accurate
transformation functions. Since applying PBE on a large corpus of data is infeasible, we
need to define pruning techniques that effectively limit the set of relevant tables. This
problem is hard, as we do not know upfront which substrings inside the values of a table
might be relevant for a transformation task at hand.

Tab. 1: Nested Syntactic transformation with lookup operation

(a) Example pair and input values

Input Output
13701 Riverside Drive Pittsburgh PA

27700 Medical Center Road Scarborough ?
4270 North Blackstone Avenue Tucson ?

(b) Related table

Town State County
Pittsburgh PA Allegheny
Claremore OK Rogers

Scarborough ME Cumberland
Tucson AZ Pima

Indianapolis IN Marion

To this end, we propose Proteus that extends the DataXFormer system [Ab15; Ab16;
Mo15] to be able to detect more complex transformations. Proteus is able to detect
transformations that do not explicitly appear in the given data source. We achieve this by
relaxing the exact matching approach of the DataXFormer system. We propose a multi-step
filtering strategy that successively prunes irrelevant tables and cells before program synthesis

314 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

Combining Programming-by-Example with Transformation Discovery from large Databases 13

is applied. Finally, we enable parallel processing of the PBE-component to increase the
scalability of our proposed system. In summary, our contributions in this paper are:

• We enhance the data transformation tool DataXFormer [Ab15; Ab16; Mo15] with
the PBE framework. Therefore, our proposed system is able to detect semantically
and syntactically more complex transformations.
• To make PBE feasible on millions of tables, we propose a set of pruning rules for

filtering and reducing the search space to use only web tables and table entries that
are relevant for the transformation task.
• By considering transformation steps per example-pair independently, we are able to

process the PBE-based transformation detection task in parallel, so we are able to
process the same task in the scale of millions of web tables.

2 Related Work

Several lines of research attempt to solve the task of the data transformation discovery.
DataXFormer [Ab15; Ab16; Mo15] serves as the foundation of our approach. It leverages
different resource types, such as Web tables [LB17; Ya12], Web forms, knowledge bases,
and expert sourcing, for example-based transformation discovery. For this purpose, they
proposed an inverted index for fast retrieval of relevant tables and a web form wrapper
generator. The main limitation of DataXFormer is that it cannot support transformations
that do not exactly match individual resource entries, i.e., tuple values of a web table.

Another line of research concerns the discovery of transformations from smaller data
structures [GHS12; Ji17; SG12; Si16]. These approaches are referred to as programming-
by-example (PBE) techniques, which synthesize transformation programs using input
and output examples and a set of transformation operators on a small domain of data.
Consequently, in case of bigger scale use cases such as web tables, they lead to real-time
performance issues. In this paper, we try to combine the benefit of both lines of research. Our
approach improves on DataXFormer by synthesizing transformation functions require the
combination of multiple tables, by separating the retrieval process from the transformation
generation process. We solve the scalability issue of PBE by defining effective pruning rules
and filtering strategies.

Other than the scalability problem, systems such as REFAZER [Ro17] suffer from general-
izability problem. REFAZER only uses specialized Domain Specific Language to generate
codes for syntactic transformations. This system is only able to transform repetitive code
transformations by learning the observations but it is not general enough to apply the
transformations on pure text with unpredictable domain. Similar to Foofah, REFAZER does
not apply semantic transformations at all.

Finally, there is a line of research on interactive transformation script generation [HHK15;
Ji19; Ka11]. The main focus of this line of research is on interactive transformation

Combining Programming-by-Example with Transformation Discovery from large
Databases 315

14 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

generation and user-support during the transformation task, which is complementary to the
focus of transformation discovery for semantic transformations.

3 System Overview

Examples E

Input Values X
Output Values Y for input Values X

2
 Table Extractor

Table Query
Transformer

Table Retrievel

Corpus

String Analyzer

Graph Generator

String GeneratorLookup Transformer

Syntactic Transformer

Candidate
Tables

Table Analyzer
(Advanced Table

Filtering by
Examples)

Filtered Tables

Transformer 3

4

User

Asks for
feedback

Response

1
Indexed Virtual

Tables

Fig. 1: System overview of Proteus

Figure 1 shows the overall Proteus architecture. Proteus receives a set of values
- = {G8 |1 ≤ 8 ≤ =} that are desired to be transformed and a set of example pairs
� = {(G8 , H8) |G8 ∈ -, 1 ≤ 8 ≤ <} as inputs. In the end, the system outputs the discovered
transformation results . for the remaining input values X as {(G8 ,H8)}, where H8 is the
detected transformation of G8 . Proteus consists of two main components: Web Table
Extractor and Transformer. Web Table Extractor is responsible for detecting the most related
web tables from the table corpus and the Transformer component detects and generates the
transformations for values in X.

In the first step, we dynamically generate queries to extract candidate tables from the corpus.
The tables are indexed via an inverted index as proposed in prior work [Ab16]. The index
maps tokens to tables and vice versa. Unlike DataXFormer, we do not only extract tables with
exact matches but relax the extraction query to accommodate more resources and postpone
the refinement to the PBE engine in Transformer. Because of the relaxation technique,
many of the tables might be irrelevant for the transformation task at hand. Therefore, in
the second step, we filter candidate tables that are unlikely to support the transformation
task. In the third step, we send the relevant candidate tables to the Transformer component.
Transformer first applies finer-granular pruning rules and scoring functions to remove
potential noisy, irrelevant, and duplicate records from the extracted tables. For this purpose
it uses a row-level filtering approach to detect the most relevant entries inside each selected
external table. In the fourth step, we leverage the PBE framework to generate syntactic
manipulation programs for the relevant tables. The programs can be represented as graphs
of operations that connect input values to the output values of the provided examples in � .
The common path between all these graphs is the answer for the transformation task.

The graph generation for each example pair can be performed in parallel, which allows us
to scale the process for more extracted tables. If there is not a common path, the user can

316 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

Combining Programming-by-Example with Transformation Discovery from large Databases 15

choose the right graph among two disjoint graphs. In the end, Proteus applies the final
chosen graph as the desired program to generate the output for the remaining input values.

4 Web Table Extractor

The Web Table Extractor takes example pairs (E) and returns transformation-related web
tables. It consists of the two sub-components: Table Query Transformer and Table Analyzer.

The Table Query Transformer is implemented as an extension of the query generator of
DataXFormer. The original DataXFormer query generator creates a single SQL query with
two IN operators, one for the input values and one for the output values to identify tables
that contain at least g example pairs. To obtain more data, we relax this query twofold. First,
Proteus tokenizes every input and output value from the example pairs and uses each
generated token independently for table retrieval. For instance, if the given example-pair is
“13701 Riverside Drive Pittsburgh→ PA”, it generates queries to find tables that contain at
least one token from the input (here: “13701”,“Riverside”,“Drive”, “Pittsburgh”) and one
token from the output (here: “PA”). If no table is found, the system generates a new query to
find tables that contain any of the tokens as a substring of at least one entry. This is done
leveraging the LIKE predicate in SQL. The first query often returns a large number of web
tables, in which case we drop the time consuming query with the LIKE predicate.

A straightforward approach to detect the desired transformation would be to evaluate every
single retrieved table from the Table Query Transformer sub-component. This approach is
time-consuming and error-prone because of the large number of irrelevant tables. Therefore,
Table Analyzer further reduces the search space by filtering the irrelevant tables. First,
it determines whether at least the row alignment for input/output pairs in each table is
correct [Ab16]. Input and output pairs in each example should appear in the same rows.
While DataXFormer checks the row alignment for exact input/output values, we check
the row alignment of partial tokens and substrings of the input/output values. Note that
this alignment is necessary for the program generation later in order to obtain consistent
program paths that connect the input value to the output value. Furthermore, we also want
to get rid of tables where the tokens are randomly aligned. Especially in long column values
the occurrence of multiple tokens is likely. Thus we also drop tables where the Jaccard
similarity of the aligned rows and the corresponding original input examples is below 50%.

The remaining selected tables that pass the alignment test, will be rated based on their
relatedness to the transformation task. Depending on the number of matches and the strength
of the matches, tables differ in the degree of relatedness to the transformation task. Similar to
DataXFormer, Proteus leverages a refine technique based on expectation - maximization
(EM) to update the scores of tables and found alignments. However, our approach differs in
two ways. First, we also accommodate the fact that not every token is equally important
and further, we are only interested in obtaining the scores while DataXFormer uses the
final scores to choose the transformation. In the expectation step the scores of the tables are

Combining Programming-by-Example with Transformation Discovery from large
Databases 317

16 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

updated and in the maximization step the scores of the instances. In each step the scores of
the other step is used to update the scores. This process converges as soon as the the updates
are below a very low threshold n . The process starts with scores that reflect the ratio of
existing example pairs inside the extracted tables. However, as we are considering partial
values, i.e., tokens, we also consider the fact that not every token is equally important. For
instance, if there is a match for value “of” in table)1 and another match for value “New
York City” in table)2. It is desirable to give more weight to the table that contains “New
York City” because it is more specific and thus more likely to support our specific task.
To reflect this property in the EM formula, we use the Inverse Document Frequency(IDF).
Higher IDF score means that the token is more specific. Therefore in the EM model, we
multiply the score of each occurring example with its IDF. Finally, Table Analyzer sends
the tables along their calculated scores to the Transformer component.

5 Transformer

The Transformer component has two sub-components: String Analyzer and Graph Generator.

String Analyzer takes the tables from the Web Table Extractor sorted by their relatedness
scores and finds the most relevant table entries (rows) for each input value. Each input value
can be matched with more than one entry inside a table. Therefore, String Analyzer reduces
them to the most promising match to unburden the PBE step from generating programs for
the matches that are less likely to be a candidate for the transformation.

To find the most related entry to the input value of an example pair, we leverage a score
based on the Longest Common Substring (LCS) [AO11]. This is consistent with most
PBE algorithms, which use common string patterns between two strings to detect the
transformations. We calculate the LCS score between each input value from the example
pairs and all the matched entries in the related tables. The table entry with the maximum
LCS score is selected to be used in the program generation phase. If there are two table
entries with the same LCS score, the edit distance, a.k.a. Levenshtein distance [Le66] will
break the tie. The entry with lower edit distance will be picked as more related.

Consider the example in Table 2. The first two example pairs in the left table are provided
by the user who wants to transform the address of the last two inputs to their corresponding
state codes. The table on the right reflects a candidate web table, which contains aligned
input/output tokens of our examples (the result of the steps before). In this candidate table,
the first row and the value “Redmond” has the highest LCS with the given input example
“1906 Jackson Way Redmond”. The same way, we compute the LCS for the second example
pair. In this particular case, there are two entries with the same LCS, the third and the fifth
rows contain both entries with the LCS length of 8. Here, the similarity check would be the
tie breaker, which chooses the entry in the third row. The String Analyzer outputs the top
related tables and the injective mapping of example pairs to rows in each table.

318 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

Combining Programming-by-Example with Transformation Discovery from large Databases 17

Tab. 2: Simple LCS and similarity check example in Transformer
(a) Input values (X) including the example pairs (E)

Input Output
1906 Jackson Way Redmond WA

1703 Red Creek Road Richmond VA
101 Sundown Blvd Sacramento ?
510 Green Lake Road Beaumont ?

(b) Related web table

C1 C2
Redmond WA, Washington

Redm. branch is
open till 24/02 WA, Washington

Richmond VA, Virginia
Beaumont TX, Texas

Richmond branch is
open only till 03/03 VA, Virginia

Sacramento CA, California

Graph Generator discovers the programs that convert an input value to a provided output
transformation following the PBE approach [GHS12]. This sub-component receives the final
set of tables, top related entries, and the corresponding example pairs and then generates
the corresponding Directed Acyclic Graph (DAG) for each example pair. In this graph
each node represents a transformation state of a value and each edge corresponds to a
program that changed the value of its source node to the value in the target node. The
PBE approach combines programs for syntactic manipulations, which are concatenations
of regular expressions based on sub-strings and table mappings. For instance, a syntactic
manipulation would be a program that converts “Bob.Franklin@tu-berlin.de” to “Bob
Franklin” by learning to remove the substring after “@” and replace the first dot symbol by
a space. Depending on the provided resources, several possible paths can be generated to
map an input example to its output value.

Considering our running example, the graph for the first example pair shown in Figure 2 is
generated using the first row in the web table, because based on the LCS score, the first row
in the web table is the closest to the example pair. Edges with the labels of Prog8 represent the
generated code snippets and [9 represents the value in the 9 th node. Here, Prog1 represents
the program to extract the first alphabetic string after the last space from the input value. The
next program encodes the mapping from “Redmond” to “WA, Washington”. And finally,
Prog3 extracts the first alpha-numerical substring from “WA, Washington”.

Fig. 2: Generated graph for the first example pair in Transformer

Graph Generator greedily starts with the examples inside the table with the highest
relatedness score and starts to generate program graphs for them. Whenever it generates the

Combining Programming-by-Example with Transformation Discovery from large
Databases 319

18 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

graphs of the next example pair it starts to find the intersection of the two sets of graphs and
this way gradually identifies the graph that covers all example pairs.

In the end, the intersection of all paths will be the program that can be used to transform the
remaining inputs. Once all the input values are transformed, all tables have been processed,
or the result of graph intersection is empty, the algorithm stops. The latter suggests that no
transformation could be found that covers all example pairs but there are still other tables
that might contain a fitting graph path. In such cases, Proteus can return possible graph
candidates and ask the user to choose the correct one. Proteus can then proceed with the
chosen graph to find a match for remaining input values in the remaining tables. Figure 3
shows the application of graph intersection on our running example.

Fig. 3: Path after the result of the final intersection

We generate the graphs independently from each other so that we are able to run each
graph generation and graph intersection in parallel. For instance, while we simultaneously
generate graphs for first and second example pairs, once we start intersecting them, we
generate the third example pair at the same time and so on. Defining the transformation
tasks as sub-independent processes enables us to perform transformations in parallel.

6 Evaluation

In this section, we show the efficiency and effectiveness of our transformation discovery
system and compare it to the state-of-the-art.

6.1 Data and experimental setup

We use the Dresden Web Table Corpus4 [Eb15] as the table corpus to extract transformation-
related tables. It contains 145 million web tables from about 4 billion web pages. We evaluate
our approach by running 20 semantic data transformation tasks. Each transformation task
has 3 unique example pairs. Four of these transformation tasks (first two rows in Table 3) are
created manually to ensure that these tasks require syntactic manipulations before and after
lookup operations e.g., “Country is Ukraine→ City name: Kiev”. The rest of the tasks are
public benchmarks found in Bing Search Engine query logs and asked by Data Scientists
and BI Analysts in StackOverflow. Table 3 shows all the transformation tasks used in this
paper. We compare our system to four state-of-the-art approaches: DataXFormer [Ab15;

4https://wwwdb.inf.tu-dresden.de/misc/dwtc/

320 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

https://wwwdb.inf.tu-dresden.de/misc/dwtc/

Combining Programming-by-Example with Transformation Discovery from large Databases 19

Tab. 3: Transformation tasks used in this paper

Input Output Input Output
Country Names Capitals Country Names with Attributes Capitals
Element names Boiling point Country names Denonyms
Color Number Color code Regular time Military Time

Hijri Gregorian Caleandar Company Address State
MB GB yyyymmdd Datetime

Number Numeric Padding String Camelize Casing
Regular Format ISBN Format Datetime Month

Cookies Domain name Month number Month name
CUSIP Ticker Product Company
MEME Filename Time span hrs mins secs

Ab16; Mo15], Gulwani’s approach [GHS12], FlashFill [Gu16], and Foofah [Ji17]. We ran
our experiments on a machine with 2.9 GHz Intel Dual Core CPU and 8 GB RAM. Codes
are available in our GitHub repository5.

6.2 Results Tab. 4: Coverage, Precision, and Recall for 20 tasks.

Systems #Coverage Precision Recall
Proteus 95% (19/20) 90% 78%
FlashFill 50% (10/20) 50% 50%
Gulwani 50% (10/20) 50% 50%

DataXFormer 30% (6/20) 24% 17%
Foofah 5% (1/20) 5% 5%

Coverage. We define coverage as the
ratio of the number of transformation
tasks where the system returns a cor-
rect transformation output for at least
one of the input values. As depicted
in Table 4, Proteus achieves considerably higher coverage than the other baselines. It
achieves 95% coverage, which means that our system generates output for 19 out of the 20
transformation tasks. High coverage conveys the fact that Proteus is more robust to the
noisy data which is common in web tables. Noisy and erroneous data results in lower exact
match rate and in the end, it will lead to less related tables and lower coverage rate. Foofah,
due to the lack of ability in Regex matching, DataXFormer because of only using exact
match, Flashfill because of the lack of lookup operation and being limited to only program
generation, and Gulwani’s system due to the fact that it requires clean and user-defined
tables for the transformation tasks, have low coverage. The only task that was not covered
by Proteus was “hijri to the gregorian calendar”. This conversion is difficult based on
static web tables. Consider the following input/output example pair given by the user:

“11 Shawwal 1430”→ “Wednesday 30 September 2009 C.E”

Proteus cannot find web tables that contain the values “11→ 30” and “1430→ 2009”.

Effectiveness. As shown in Table 4, Proteus outperforms other systems in terms of
Precision and recall. Leveraging token-based matching that retrieves wider range of
candidate tables from the corpus improves the recall. More candidate tables increase the

5https://github.com/aslihanozmen/Proteus

Combining Programming-by-Example with Transformation Discovery from large
Databases 321

https://github.com/aslihanozmen/Proteus

20 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

chance to find the desired transformation. On the other hand, the LCS-based entry filtering
strategy allows the system to pick the most fitting table entries to the input values and drop
the irrelevant ones. Therefore, the final transformations are only generated using the most
promising candidates improving the precision. Gulwani’s approach because of being limited
to the provided tables, and FlashFill and Foofah because of their limitation to syntactic
transformations achieve lower precision and recall.

Runtime. As shown in Figure 4, Proteus is faster and more scalable than DataXFormer
and Gulwani’s approach. We excluded FlashFill and Foofah from the runtime evaluation
because they only cover syntactic manipulations based on the input values. Proteus is
fast due to its pruning rules, and parallelization of the graph processing. It is also faster
than DataXFormer because before any look up operations, Proteus checks whether
syntactic manipulations of the input values alone can perform the transformation for all the
input values. In these five cases it refrained from looking for more complicated semantic
transformations. These five tasks are “MB→ GB”, “Cookies→ Domain name”, “Regular
format→ ISBN format”, “Number→ Numeric padding”, and “String→ Camelize casing”.

DataXFormerPROTEUS Gulwani
0

10

20

30

20

11

5,118
Ru

nt
im

e
(s

ec
)

Fig. 4: Runtime comparison

String Analyzer. Our LCS-based entry scoring tech-
nique that only keeps the top related entry, reduces
the number of generated Progs more than 50 times
compared to the raw PBE approach. This reduction
is due to the elimination of the irrelevant table entries
before the program generation phase. As an example,
for the transformation task “CUSIP” → “Ticker”,
without using our LCS-based pruning, the first two
generated graphs for the first two examples contain
overall 44, 075 Progs (edges). Intersecting these two
graphs leads to a graph with 9, 276 Progs. Applying
the LCS pruning, the total number of Progs for the first two generated graphs decreases to
750 and their intersection to 8 Progs.

7 Conclusion

In this paper, we proposed a system to combine transformation discovery with programming
by example. The general idea was to first relax the transformation discovery systems to
obtain more partially relevant resources and then filter irrelevant resources with PBE. Our
experiments show that the approach is covering more transformation tasks than state-of-the-
art. Unlike the state-of-the-art, Proteus has higher robustness to noisy data that is very
common in web tables. In future, we would like to make the filtering steps more dynamic to
avoid heuristic-based thresholds.

Acknowledgements. This project has been supported by the German Research Foundation
(DFG) under grant agreement 387872445.

322 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

Combining Programming-by-Example with Transformation Discovery from large Databases 21

References

[Ab15] Abedjan, Z.; Morcos, J.; Gubanov, M. N.; Ilyas, I. F.; Stonebraker, M.; Papotti, P.;
Ouzzani, M.: Dataxformer: Leveraging the Web for Semantic Transformations.
In: CIDR. 2015.

[Ab16] Abedjan, Z.; Morcos, J.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.; Stonebraker, M.:
DataXFormer: A robust transformation discovery system. In: ICDE. Pp. 1134–
1145, 2016, url: https://doi.org/10.1109/ICDE.2016.7498319.

[AO11] Arnold, M.; Ohlebusch, E.: Linear Time Algorithms for Generalizations of the
Longest Common Substring Problem. Algorithmica 60/4, pp. 806–818, 2011,
url: https://doi.org/10.1007/s00453-009-9369-1.

[Eb15] Eberius, J.; Braunschweig, K.; Hentsch, M.; Thiele, M.; Ahmadov, A.;
Lehner, W.: Building the Dresden Web Table Corpus: A Classification Ap-
proach. In: BDC, 2015. IEEE Computer Society, pp. 41–50, 2015, url:
https://doi.org/10.1109/BDC.2015.30.

[GHS12] Gulwani, S.; Harris, W. R.; Singh, R.: Spreadsheet data manipulation using
examples. Commun. ACM 55/8, pp. 97–105, 2012, url: https://doi.org/
10.1145/2240236.2240260.

[Gu16] Gulwani, S.: Programming by Examples: Applications, Algorithms, and Ambi-
guity Resolution. In: Proceedings of the 8th International Joint Conference on Au-
tomated Reasoning - Volume 9706. Springer-Verlag, Berlin, Heidelberg, pp. 9–
14, 2016, isbn: 978-3-319-40228-4, url: https://doi.org/10.1007/978-3-
319-40229-1_2, visited on: 03/10/2019.

[He18] He, Y.; Chu, X.; Ganjam, K.; Zheng, Y.; Narasayya, V. R.; Chaudhuri, S.:
Transform-Data-by-Example (TDE): An Extensible Search Engine for Data
Transformations. Proc. VLDB Endow. 11/10, pp. 1165–1177, 2018, url:
http://www.vldb.org/pvldb/vol11/p1165-he.pdf.

[HHK15] Heer, J.; Hellerstein, J. M.; Kandel, S.: Predictive Interaction for Data Transfor-
mation. In: CIDR. 2015, url: http://cidrdb.org/cidr2015/Papers/CIDR15%
5C_Paper27.pdf.

[Ji17] Jin, Z.; Anderson, M. R.; Cafarella, M. J.; Jagadish, H. V.: Foofah: Transforming
Data By Example. In: SIGMOD. ACM, pp. 683–698, 2017, url: https:
//doi.org/10.1145/3035918.3064034.

[Ji19] Jin, Z.; Cafarella, M. J.; Jagadish, H. V.; Kandel, S.; Minar, M.; Hellerstein, J. M.:
CLX: Towards verifiable PBE data transformation. In: EDBT. Pp. 265–276,
2019.

[Ka11] Kandel, S.; Paepcke, A.; Hellerstein, J. M.; Heer, J.: Wrangler: interactive visual
specification of data transformation scripts. In: CHI. Pp. 3363–3372, 2011.

[LB17] Lehmberg, O.; Bizer, C.: Stitching Web Tables for Improving Matching Quality.
PVLDB 10/11, pp. 1502–1513, 2017.

Combining Programming-by-Example with Transformation Discovery from large
Databases 323

https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1007/s00453-009-9369-1
https://doi.org/10.1109/BDC.2015.30
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1007/978-3-319-40229-1_2
https://doi.org/10.1007/978-3-319-40229-1_2
http://www.vldb.org/pvldb/vol11/p1165-he.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper27.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper27.pdf
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034

22 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

[Le66] Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. Vol. 10. 8, pp. 707–710, 1966.

[Mo15] Morcos, J.; Abedjan, Z.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.; Stonebraker, M.:
DataXFormer: An Interactive Data Transformation Tool. In: SIGMOD. ACM,
pp. 883–888, 2015, url: https://doi.org/10.1145/2723372.2735366.

[Ro17] Rolim, R.; Soares, G.; D’Antoni, L.; Polozov, O.; Gulwani, S.; Gheyi, R.;
Suzuki, R.; Hartmann, B.: Learning syntactic program transformations from
examples. In: Proceedings of ICSE. IEEE, pp. 404–415, 2017, url: https:
//doi.org/10.1109/ICSE.2017.44.

[SG12] Singh, R.; Gulwani, S.: Learning Semantic String Transformations from Ex-
amples. CoRR abs/1204.6079/, 2012, arXiv: 1204.6079, url: http://arxiv.
org/abs/1204.6079.

[Si16] Singh, R.: BlinkFill: Semi-supervised Programming By Example for Syntactic
String Transformations. Proc. VLDB Endow. 9/10, pp. 816–827, 2016, url:
http://www.vldb.org/pvldb/vol9/p816-singh.pdf.

[Ya12] Yakout, M.; Ganjam, K.; Chakrabarti, K.; Chaudhuri, S.: Infogather: entity
augmentation and attribute discovery by holistic matching with web tables. In:
SIGMOD. Pp. 97–108, 2012.

324 Aslihan Özmen, Mahdi Esmailoghli, Ziawasch Abedjan

https://doi.org/10.1145/2723372.2735366
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
http://arxiv.org/abs/1204.6079
http://arxiv.org/abs/1204.6079
http://www.vldb.org/pvldb/vol9/p816-singh.pdf

cba

Herausgeber et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Towards Learned Metadata Extraction for Data Lakes

Sven Langenecker1, Christoph Sturm2, Christian Schalles3, Carsten Binnig4

Abstract: An important task for enabling the efficient exploration of available data in a data lake is
to annotate semantic type information to the available data sources. In order to reduce the manual
overhead of annotation, learned approaches for automatic metadata extraction on structured data
sources have been proposed recently. While initial results of these learned approaches seem promising,
it is still not clear how well these approaches can generalize to new unseen data in real-world data
lakes. In this paper, we aim to tackle this question and as a first contribution show the result of a
study when applying Sato — a recent approach based on deep learning — to a real-world data set.
In our study we show that Sato without re-training is only able to extract semantic data types for
about 10% of the columns of the real-world data set. These results show the general limitation of
deep learning approaches which often provide near-perfect performance on available training and
testing data but fail in real settings since training data and real data often strongly vary. Hence, as a
second contribution we propose a new direction of using weak supervision and present results of an
initial prototype we built to generate labeled training data with low manual efforts to improve the
performance of learned semantic type extraction approaches on new unseen data sets.

Keywords: data lakes; dataset discovery and search; semantic type detection

1 Introduction
Motivation:Data lakes are today widely being used to manage the vast amounts of
heterogeneous data sources in enterprises. Different from classical data warehouses, the
idea of data lakes is that data does not need to be organized and cleaned upfront when data
is loaded into the warehouse [Di14]. Instead, data lakes follow a more “lazy” approach that
allows enterprises to store any available data in its raw form. This raw data is organized and
cleaned once it is needed for a down stream task such as data mining or building machine
learning models. However, due to the sheer size of data in data lakes and the absence (or
incompleteness) of a comprehensive schema, data discovery in a data lake has become an
important problem [Ma17; Na20; RZ19].

One way to address the data discovery problem, is to build data catalogs that allow users to
browse the available data sources [Na19]. However, building such a data catalog manually
would again pose high effort since metadata needs to be annotated on data sources. An
important task for cataloging structured (table-like) data in a data lake (e. g., originating
from CSV files) is to derive semantic type information for the different columns of a data
1 DHBWMosbach, Germany sven.langenecker@mosbach.dhbw.de
2 DHBWMosbach, Germany christoph.sturm@mosbach.dhbw.de
3 DHBWMosbach, Germany christian.schalles@mosbach.dhbw.de
4 TU Darmstadt, Germany carsten.binnig@tu-darmstadt.de

cba doi:10.18420/btw2021-17

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 325

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sven.langenecker@mosbach.dhbw.de
mailto:christoph.sturm@mosbach.dhbw.de
mailto:christian.schalles@mosbach.dhbw.de
mailto:carsten.binnig@tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-17

2 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

set. The reason is that this information is often missing in many data sources or the column
labels available in data sources are not really helpful for data discovery since they use
technical names or have been annotated from users with a different background.

In order to tackle the problem of extracting semantic data types from structured data sources
in data lakes, recently learned approaches for metadata extraction have been proposed
[Ca18b; Hu19; Zh20]. The main idea of these learned approaches is that they use a deep
learning model for semantic type detection where the models are trained on massive table
corpora with already annotated columns. While initial results of these learned approaches
seem promising, it is still not clear how well these approaches can deal with the variety of
data in real data lakes.

Contributions: In this paper, we aim to tackle this question and report on our initial results
of analyzing the quality of the state-of-the-art learned approaches for metadata extraction
on real-world data. Moreover, we also show initial results of a new direction of tackling
the open problems of the learned approaches that we discovered in our analyses. In the
following, we discuss the two main contributions of this paper.

As a first contribution, we show the result of a study when applying Sato [Zh20] - a recent
approach based on deep learning to extract semantic types - to a real-world data set. A
inherent problem of deep learning-based approaches for semantic type extraction is that they
rely on a representative training data set; i.e., a set of columns with labeled semantic types.
Otherwise, if the training data set does not cover the broad spectrum of data characteristics
and types, the performance of the learned models quickly degrades when applied to a new
data set. In fact, we show that Sato without re-training was only able to extract semantic
data types for about 10% of the columns on the data sets used in our study.

As a second contribution, we thus suggest to take a new direction for learned metadata
extraction to tackle the shortcomings of the existing deep learning approaches. As mentioned
before, the root cause of why existing approaches often fail to extract semantic types is
that the training data of the learned approaches is too narrow and thus the performance
on new data sets is often poor. Hence, in this paper we propose a new direction of using
weak supervision to generate a much broader set of labeled training data for semantic type
detection on the new data set. Our initial results show that our approach can significantly
boost the performance of deep learning-based approaches such as Sato when re-training
these approaches on the additional synthesized training data.

Outline: In Section 2, we first provide an overview of approaches for metadata extraction
from structured data in data lakes. Afterwards, we discuss the results of our study of using
Sato as a recent learned approach on a real-world data set in Section 3. Moreover, we then
discuss our new approach based on weak supervision in Section 4. Finally, we present the
initial results of using our current prototype in Section 5 before we conclude in Section 6.

326 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Towards Learned Metadata Extraction for Data Lakes 3

2 Overview of Existing Approaches
In the following, we give a short overview of selected existing approaches for metadata
extraction. We first discuss approaches for semantic type extraction before we briefly
summarize recent approaches for the extraction of relationships.

2.1 Extraction of Semantic Types

Approaches that automatically extract types from metadata of data sources are already well
established in industry. Prominent examples are Azure Data Catalog [Az20], AWS Glue
[AW20] and GOODS [Ha16]. In addition, many other research efforts exist for developing
generic metadata models and special algorithms for metadata extraction (e. g. [QHV16]).

All these approaches rely on the fact that basic metadata information is already annotated
in the data source (e. g., as a header row in a CSV file) such as column and table names.
However, header rows exist only in few cases and even when they do, the attribute names are
not always useful as a semantic type. In this case, existing systems opt for manual metadata
annotation.

Considering the huge amount of heterogeneous, independent, quickly changing data sources
of real-world data lakes these approaches reach their limit. Therefore, some systems aim to
detect semantic types from the columns content instead of relying on already existing labels
in the sources. For this purpose, there exist two main research directions for automatic
semantic type detection: search-based approaches and learning-based approaches.

Search-based Approaches: The main idea of search-based approaches is to use external
information to annotate semantic information to data sets. One approach in this direction is
AUTOTYPE [YH18] which searches for existing custom extraction code to handle more
specific (domain dependent) semantic data types. By helping developers to find and extract
existing type detection code the supported semantic types of AUTOTYPE can be extended
semi-automatically.

Learning-based Approaches: In contrast to search-based approaches, learning-based
approaches aim to build a machine learning model that can derive semantic types of columns
from example data and not from extraction code. An early approach in this class is [LSC10]
which uses machine learning techniques to annotate web tables and their columns with
types. While this approach relies on graphical models for extracting semantic labels for
columns, more recent approaches such as [Hu19; Zh20] are based on a deep neural network.

Sato [Zh20] which is the successor of Sherlock [Hu19] thus requires training data with
labeled semantic types. While Sherlock only uses the individual column values as features
for predicting the semantic type, Sato also uses context signals from other columns in the
table to predict the semantic type of a given column.

Towards Learned Metadata Extraction for Data Lakes 327

4 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

2.2 Extraction of Relationships

While extraction of semantic types is one important direction for metadata extraction, there
also exist other approaches that are able to derive relationships between datasets (e. g., an
author writes a book) from data automatically. One prominent example for such an approach
is AURUM [Ca18a]. While AURUM represents an overall system for building, maintaining
and querying an enterprise knowledge graph for available data sources, SEMPROP [Ca18b]
is the subsystem of AURUM, which automatically derives links (i.e., relationships) between
the data sources using word embeddings.

As mentioned before, different from this work and similar to Sato in this paper we focus on
the extraction of semantic types for structured data sets. Hence, in the following sections
we will limit the analysis of learned approaches to this direction. However, extending our
approach towards relationship extraction is an interesting avenue of future work.

3 Study of Using Learned Approaches
In the following, we present the results of our study of using learned semantic type extraction
approaches on real-world data. For our study, we selected Sato [Zh20] as a recent approach
based on deep learning.

3.1 Data Sets and Methodology

Data Sets:As a data set in this study, we use the Public BI Benchmark5 data corpus. The
data corpus contains real-world data, extracted from the 46 biggest public workbooks in
Tableau Public6. In this corpus there are 206 tables each with 13 to 401 columns. The main
reason for choosing this corpus for our study was that it contains labeled structured data
from different real-world sources across various domains (e. g. geographic, baseball, health,
railway, taxes, social media, real estate). Hence, the benchmark comes with a high diversity
and heterogeneity of data sources that can typically also be found in data lakes of enterprises
today.

Methodology:Asmentioned before, the inherent problemof deep learning-based approaches
for semantic type extraction is that they rely on a representative training data set. To put it
differently, if the training data set does not cover the variety of cases that are also seen in
the real-world data, the performance of the learned models quickly degrades. As part of our
analysis, we wanted to see to which extent this inherent limitation influences the overall
quality of a learned approach such as Sato.

For the study, we thus annotated the data in the Public BI Benchmark manually with
the correct semantic types of Sato. For the annotation, we first preprocessed the data
automatically and searched for string matches between the column headers of the tables
in the Public BI Benchmark and the semantic types supported by Sato. To guarantee the
5 https://github.com/bogdanghita/public_bi_benchmark-master_project

6 https://public.tableau.com

328 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

https://github.com/bogdanghita/public_bi_benchmark-master_project
https://public.tableau.com

Towards Learned Metadata Extraction for Data Lakes 5

0

5

10

15

20

p
e
rc

e
n

ta
g

e
 f

re
q

u
e
n

c
y n

a
m

e
co

d
e

ty
p
e

d
e
sc

ri
p
ti

o
n

y
e
a
r

te
a
m

st
a
te

ci
ty

te
a
m

N
a
m

e
co

u
n
tr

y
g
e
n
d

e
r

a
d

d
re

ss
cl

a
ss

lo
ca

ti
o
n

ca
te

g
o
ry

re
g

io
n

d
u
ra

ti
o
n

d
a
y

co
u
n
ty

la
n
g

u
a
g

e
ra

n
g
e

o
p
e
ra

to
r

fo
rm

a
t

o
rg

a
n
is

a
ti

o
n

p
o
si

ti
o
n

se
x

w
e
ig

h
t

o
w

n
e
r

st
a
tu

s
ra

n
ki

n
g

se
rv

ic
e

co
lle

ct
io

n
co

n
ti

n
e
n
t

Public BI Benchmark
Sato Trainigs-Corpus

Corpus

Fig. 1: Distribution of semantic types in training data of Sato and the Public BI Benchmark

correctness of labels every column was additionally inspected and missing types where
added manually.

3.2 Results of the Study

As a first question, we analyzed the coverage rate of the 78 semantic types supported by
Sato in the Public BI Benchmark to see to which extend a pre-trained model can support
real-world data if no new training data is used for re-training. For this question, we analyzed
what fraction of columns in the Public BI Benchmark had a type that was covered by the
training data set of Sato. The main result of this analysis was that only 10.6% of the columns
are assignable to one of the semantic types.

As a second question, for the columns of the Public BI Benchmark that have types which
are supported by Sato, we then wanted to see how the distribution of the 78 semantic types
in the training data used for Sato and the Public BI Benchmark look like. The reason is that
different distribution of labels in the training and testing data can have a negative impact
on the overall quality of a learned approach. As can be seen in Fig. 1, the frequency for
many semantic types in both data sets (i.e., original training data of Sato and the Public BI
Benchmark), however, is almost identical.

As a final question, we thus aimed to analyze the 10.6% of the columns in the Public BI
Benchmark that are in principle covered by the training data of Sato. For this, we used
the pre-trained Sato model and applied it to only this fraction of the data of the Public BI
Benchmark. For this subset, Sato achieves an �1 score (macro average and weighted7) of
0.090 and 0.300 respectively, which is also shown in Tab. 1 in our evaluation in Section
5. The original paper [Zh20] reports an �1 score of 0.735 and 0.925 on the VizNet8 data
corpus. This indicates that the data characteristics of the supported data types of the Public
BI Benchmark is different from the data characteristics of the training data of VizNet
and thus Sato can not infer types in a robust manner (even if they should be supported in
principle).

7 F1 score macro average: averaging the unweighted mean �1 score per label
F1 score weighted average: averaging the support-weighted mean �1 score per label

8 https://github.com/mitmedialab/viznet

Towards Learned Metadata Extraction for Data Lakes 329

https://github.com/mitmedialab/viznet

6 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Fig. 2: Concept and step-by-step procedure of our weak supervision approach

Main Insights:As suspected, our study has shown that a deep model such as Sato trained
on one data set can only cover a fraction of data types of a new data set. Moreover, for the
overlapping data types, the accuracy is still pretty low due to different data characteristics of
the training data and the new data set. While the results of our study are specific to Sato, we
believe that our findings are much more general and translatable to any learned approach that
relies on manually curated training data (which is inherently limited as discussed before).
Hence, a new approach is required where one can easily adapt learning-based models for
type extractors to new data sets that covers types and data characteristics not covered in the
available manually labeled training data. As a solution for this requirement, we next present
our new weak supervision approach in the next section.

4 Weak Supervision for Semantic Type Extraction
The root cause of why deep learning-based approaches such as Sato often fail to extract
semantic types on a new data set is that the training data lacks generality as discussed before.
The main idea of using weak supervision is to generate a broad set of labeled training data
with only minimal manual effort and thus increase the robustness when applying a learned
approach such as Sato to a new data set. In the following, we discuss our initial ideas for
such an approach and present the first results of our prototype to showcase its potential.

4.1 Overview of Our Approach

Fig. 2 shows an overview of our approach. The main idea is that based on a set of simple
labeling functions, we generate new (potentially noisy) training data that is then used to
re-train a model such as Sato to increase the coverage of data types and data characteristics
of the learned model. In other words, we apply the ideas of data programming discussed in
[Ra17] for the domain of semantic type extraction.

For generating new training data in our approach, we differentiate between two different
classes of labeling functions: (1) The first class are labeling functions that can generate
labels (i.e., semantic types) for completely new semantic types in a data lake that are not
yet covered by a manually labeled training data set. Labeling functions of this class can

330 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Towards Learned Metadata Extraction for Data Lakes 7

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
re
s

n
a
m

e

co
d
e

ty
p
e

d
e
sc

ri
p
ti

o
n

y
e
a
r

te
a
m

st
a
te

ci
ty

te
a
m

N
a
m

e

co
u
n
tr

y

g
e
n
d
e
r

a
d
d
re

ss

cl
a
ss

lo
ca

ti
o
n

ca
te

g
o
ry

re
g
io

n

d
u
ra

ti
o
n

d
a
y

co
u
n
ty

la
n
g
u
a
g
e

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
re
s

ra
n
g
e

o
p
e
ra

to
r

fo
rm

a
t

o
rg

a
n
is

a
ti

o
n

p
o
si

ti
o
n

se
x

w
e
ig

h
t

o
w

n
e
r

st
a
tu

s

ra
n
ki

n
g

se
rv

ic
e

co
lle

ct
io

n

co
n
ti

n
e
n
t

0.0

0.2

0.4

0.6

0.8

1.0

m
ic

ro
 a

v
g

m
a
cr

o
 a

v
g

w
e
ig

h
te

d
 a

v
g

f1-score
precision
recall

category

Fig. 3: Performance of clustering semantically similar columns

be, for example, regular expressions, dictionary lookups, or other techniques such as using
alignment with existing ontologies. (2) Second, as we have seen in our study, another
problem of learned approaches such as Sato is that they often fail to predict semantic types
even if in principle the semantic type is already covered by the training data. The main
reason for this case is that the training data does not cover the wide spectrum of data
characteristics that might appear in a new data set. Hence, as a second class of labeling
functions we support functions that can generate new labeled columns that cover more data
characteristics (e.g., new values) for data types that are already available in a training data
set. One idea for a labeling function of this class is the use of word embeddings [Mi13] to
cluster new unlabeled with already labeled columns and thus generate new labeled columns
for existing semantic types. A more detailed description of such a labeling function is given
below.

4.2 Label Generation using Clustering

For generating more labeled training data for an existing semantic type, we implemented
a method based on clustering in our prototype system that we briefly introduced before.
As mentioned, the main idea is that we can start with a small training corpus of labeled
columns and by clustering new non-labeled to the labeled columns, we can derive new
labeled training data.

To implement this labeling approach, we first compute column embeddings for labeled and
unlabeled columns based on word embeddings of individual values. As word embeddings,
we currently use Google USE9 that was trained on 16 different languages and showed good
results. But in principle we could also use other word embeddings. Based on the embeddings
of individual values, we compute an embedding for all values of a column by calculating
the average across the embeddings of all values which is the dominant approach for building
representations of multi-words also mentioned in other papers [So12]. This approach is

9 https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

Towards Learned Metadata Extraction for Data Lakes 331

https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

8 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

reasonable also for us, since string-typed column values in the Public BI Benchmark are
only composed of single values. In general, in the case the column values themselves consist
of a sequence of words, we could also consider word embedding combining techniques as
represented in [LM14] or [Ca18b].

Once we computed an embedding for all values of a column, we next carry out the clustering
of labeled and unlabeled columns based on these embeddings. For this step, we use a
agglomerative clustering algorithm10. In our prototype, we use this clustering method to not
generate a fixed number of clusters, but to form groups based on the cosine similarity of
vectors (i.e., our embeddings) and a distance threshold that we discuss below. Once clustered,
we than compute a semantic type per cluster based on the majority vote of columns with
the same label. [Ma19] represents a system called Raha, which relies on a similar idea for
generating training data but for error detection and not for semantic type extraction.

A key parameter to be set in our clustering approach is the distance threshold which can
vary between 0.0 and 1.0 (i.e., a lower value means that we produce more clusters). In our
experiments, we used a threshold of 0.1 based on a hyper-parameter search on the already
labeled columns. This threshold provided high accuracy on the broad spectrum of data sets
in the Public BI Benchmark.

Initial Results: To analyze if the basic idea of clustering is working, we conducted a small
experiment where we measure how well the clustering approach works on the Public BI
Benchmark using our annotations of the 78 Sato types. By clustering, we wanted to see
whether columns with the same type would be assigned to the same cluster. As we see in
Fig. 3, with a few exceptions, the clustering algorithm achieves high precision. This means
that there is a very high probability that all elements in one cluster belong to the semantic
type representing the specific cluster. For many types, we achieve an �1 score of 1.0 such as
for the semantic types teamName, position, owner, ranking and collection.

Moreover, in a second experiment, we wanted to show the robustness of our clustering
approach to different data characteristics. For showing this, we analyzed the entropy and the
jaccard-coefficient for all columns with the same semantic type in the Public BI Benchmark.
The intuition is that columns with a high entropy (i.e., a high degree of divergence) or
pairs of columns which have a low jaccard-coefficient (i.e., where columns values are not
overlapping) are harder to cluster. Overall, our approach assigns column pairs with the same
semantic type to the very same cluster even if they strongly vary in the entropy or have a low
overlap (i.e., a low jaccard-coefficient). Unfortunately, due to space limitations we could not
add further details about this experiment to the paper.

10 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.

html#sklearn.cluster.AgglomerativeClustering

332 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering

Towards Learned Metadata Extraction for Data Lakes 9

Fig. 4: Confusion matrix of the clustering method

4.3 Future Directions

As mentioned before, in this paper we showed only a very first prototype where we apply the
idea of weak supervision for synthesizing labeled training data for semantic type extraction.
In our first prototype, we only covered the labeling approach based on clustering as discussed
before. Hence, the main avenue of future work is to extend this prototype and add a much
broader set of labeling functions.

Furthermore, another direction is to study alternatives for the training data generation
process. Currently, we directly use the potentially noisy training data generated by the
labeling functions for re-training. Another possible direction as shown in [Ra17], would be
to first train a generative model that can learn how to generalize from the additional training
data and thus mitigate the negative effects such as noisy data to a certain extent.

Finally, in the current state, we only consider semantic types whose data values are strings
or types that provide a semantic meaning when converted to a string (such as weights and
dates). The semantic type detection of numeric types such as temperature require additional
labeling functions and therefore represent future research.

5 End-to-End Evaluation
In the section before, we have already shown that the basic idea of weak supervision can
help to generate training data by clustering to improve the robustness w.r.t different data
characteristics. In the following, we report on the initial results of using this approach in an

Towards Learned Metadata Extraction for Data Lakes 333

10 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Macro average �1 Precision Recall Support-weighted �1

SHERLOCK (not re-trained) 0.114 0.375 0.309 0.322
SHERLOCK (re-trained) 0.806 0.879 0.859 0.860
SATO (not re-trained) 0.090 0.322 0.304 0.300
SATO (re-trained) 0.811 0.912 0.894 0.894

Tab. 1: Performance comparison of the models on Public BI Benchmark

end-to-end evaluation to show how this can boost the performance of learned type extraction
approaches such as Sato.

Setup and Data Preparation:We implemented our approach for automatic labeling in
Python using the Google USE embeddings as mentioned before. Moreover, for training and
evaluation, we used the source code provided by Sato11. However, Sato is designed to be
built and trained from scratch. Hence, we extended Sato with the appropriate functionality
for incremental re-training.

End-to-End Results: For showing the end-to-end performance of our approach, we restricted
ourselves to the 10% of the Public BI Benchmark data that is supported by Sato and its
semantic types. For this, we first generated additional training data and then re-trained the
pre-trained Sato model with our additionally labeled data. For generating additional training
data, we used the clustering approach discussed before for the Public BI Benchmark. For
this purpose, we split the Public BI Benchmark into a training and testing set.

As we see in Tab. 1, after re-training the Sato model with the synthesized training data of
our approach, Sato achieves �1 scores (macro average and weighted) of 0.811 and 0.89
respectively. This is a significant improvement of almost +0.60 compared to the performance
of Sato without re-training. In addition to show that our approach also generalizes to other
learned approaches, we furthermore used Sherlock [Hu19] (without and with re-training).
As shown in Tab. 1, this leads to a similar performance gain. In summary, these results
show that our approach is in principle able to boost the performance of learning-based
approaches that have been pre-trained on only a small training data set not covering all data
characteristics found in a new unlabeled data set.

6 Conclusions
Detecting semantic types for columns of data sets stored in data lakes results in an enormous
benefit building a data catalog to address the data discovery problem. While recent papers
have shown initial results for learned approaches that can be used for extracting semantic
types, they cannot support many real-world data sets since they only support a limited set of
semantic data types as we have shown in our study. To tackle this problem, we suggested a
new direction of using weak supervision for generating additional labeled training data and
use this for re-training the existing learned model. An initial evaluation of our new direction
using our current prototype shows that this approach can lead to huge performance gains.

11 https://github.com/megagonlabs/sato/tree/master

334 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

https://github.com/megagonlabs/sato/tree/master

Towards Learned Metadata Extraction for Data Lakes 11

References
[AW20] AWS, A.: AWS Glue Concepts - AWS Glue, https://docs.aws.amazon.com/

glue/latest/dg/components-key-concepts.html, 2020.
[Az20] Azure, M.: Common DataModel and Azure Data Lake Storage Gen2 - Common

Data Model | Microsoft Docs, 2020.
[Ca18a] Castro Fernandez, R. et al.: Aurum: A Data Discovery System. In: 2018 IEEE

34th International Conference on Data Engineering (ICDE). Pp. 1001–1012,
2018.

[Ca18b] Castro Fernandez, R. et al.: Seeping Semantics: Linking Datasets Using Word
Embeddings for Data Discovery. In: ICDE ’18. Pp. 989–1000, 2018.

[Di14] Dixon, J.: Data Lakes Revisited, https://jamesdixon.wordpress.com/2014/
09/25/data-lakes-revisited/, 2014.

[Ha16] Halevy, A. et al.: Goods: Organizing Google’s Datasets. In: SIGMOD ’16.
ACM, pp. 795–806, 2016.

[Hu19] Hulsebos, M. et al.: Sherlock: A Deep Learning Approach to Semantic Data
Type Detection. In: KDD ’19. ACM, pp. 1500–1508, 2019.

[LM14] Le, Q.; Mikolov, T.: Distributed Representations of Sentences and Documents.
In: ICML. 2014.

[LSC10] Limaye, G. et al.: Annotating and Searching Web Tables Using Entities, Types
and Relationships. Proc. VLDB Endow. 3/1–2, pp. 1338–1347, Sept. 2010.

[Ma17] Mathis, C.: Data Lakes. Datenbank-Spektrum 17/3, pp. 289–293, Nov. 2017.
[Ma19] Mahdavi, M. et al.: Raha: A Configuration-Free Error Detection System. In:

SIGMOD ’19. ACM, 2019.
[Mi13] Mikolov, T. et al.: Distributed Representations of Words and Phrases and Their

Compositionality. In: NIPS’13. Pp. 3111–3119, 2013.
[Na19] Nargesian, F. et al.: Data Lake Management: Challenges and Opportunities.

Proc. VLDB Endow. 12/12, pp. 1986–1989, 2019.
[Na20] Nargesian, F. et al.: Organizing Data Lakes for Navigation. In: SIGMOD ’20.

ACM, pp. 1939–1950, 2020.
[QHV16] Quix, C. et al.: Metadata Extraction and Management in Data Lakes With

GEMMS. Complex Syst. Informatics Model. Q. 9/, pp. 67–83, 2016.
[Ra17] Ratner, A. et al.: Snorkel: Rapid Training Data Creation with Weak Supervision.

Proc. VLDB Endow. 11/3, pp. 269–282, Nov. 2017.
[RZ19] Ravat, F.; Zhao, Y.: Metadata Management for Data Lakes. In: New Trends in

Databases and Information Systems. Springer, pp. 37–44, 2019.

Towards Learned Metadata Extraction for Data Lakes 335

https://docs.aws.amazon.com/glue/latest/dg/components-key-concepts.html
https://docs.aws.amazon.com/glue/latest/dg/components-key-concepts.html
https://jamesdixon.wordpress.com/2014/09/25/data-lakes-revisited/
https://jamesdixon.wordpress.com/2014/09/25/data-lakes-revisited/

12 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

[So12] Socher, R. et al.: Semantic compositionality through recursive matrix-vector
spaces. In: Proceedings of the 2012 joint conference on empirical methods
in natural language processing and computational natural language learning.
Association for Computational Linguistics, pp. 1201–1211, 2012.

[YH18] Yan, C.; He, Y.: Synthesizing Type-Detection Logic for Rich Semantic Data
Types Using Open-Source Code. In: SIGMOD ’18. ACM, pp. 35–50, 2018.

[Zh20] Zhang, D. et al.: Sato: Contextual Semantic Type Detection in Tables. Proc.
VLDB Endow. 13/12, pp. 1835–1848, July 2020.

336 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

cba

Herausgeber et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Tracing the History of the Baltic Sea Oxygen Level

Evolution and Provenance for Research Data Management

Tanja Auge1, Andreas Heuer2

Abstract: In order to guarantee the reproducibility of research results, large research communities,
conferences and journals increasingly demand the provision of original research data. Since this is
often not possible or desired, a certain tact and sensitivity is needed. With our method, combining
provenance and evolution, we can identify the source tuples necessary for the reconstruction of a query
result also in temporal databases. To avoid dirty data caused by the inverse evolution, we introduced
the what-provenance, which remembers the data types of the source relation.

Keywords: Long-term Data; Schema Evolution; Provenance; Research Data Management; CHASE

1 Introduction

"Death zones at the bottom of the sea", "Death zones are growing rapidly: is the Baltic
Sea dying?", "Death zones in the Baltic Sea: the air is getting scarce", such and similar
headlines have been appearing in the newspapers again and again in the past years. But what
is the meaning of this? These are oxygen-free regions at the bottom of the oceans [Ca14].
In the case of the Baltic Sea the Leibniz Institute for Baltic Sea Research Warnemünde
(IOW) names three causes3, whereof two are based on natural conditions. Even if these
death zones cannot be predicted, a certain increasing trend can be seen in the last 100 years.
However, in order to judge this objectively, long-term evaluations must be carried out.

Imagine a young scientist who is unsettled about these news and now eagerly tries to verify
the statements described in the newspapers. To assess the development of oxygen content
over the last 100 years, he is planning an article summarizing the results of all studies
conducted so far. He wants to reproduce and reconstruct the study results himself. For this
purpose, he contacts, among others, the IOW.

To guarantee the long-term availability of observational data and metadata the IOW provides
a sophisticated data management system. It enables easy data search and retrieval to
complement international data exchange and provide data products for scientific, political,
1 University of Rostock, DBIS, Germany, tanja.auge@uni-rostock.de
2 University of Rostock, DBIS, Germany, andreas.heuer@uni-rostock.de
3 For the sake of clarity we point to https://www.io-warnemuende.de/sauerstoff.html for the description of the

causes and more details.

cba doi:10.18420/btw2021-18

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 337

https://creativecommons.org/licenses/by-sa/4.0/
tanja.auge@uni-rostock.de
andreas.heuer@uni-rostock.de
https://www.io-warnemuende.de/sauerstoff.html
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-18

2 Tanja Auge, Andreas Heuer

industrial and public actors4. This system consists among others of a metadata catalogue
and oceanographic point data.

Like many other institutes and universities, the IOW strives after an integrated, reliable and
sustainable data management concept, which allows access according to the FAIR principles
(Findable, Accessible, Interoperable, Reusable). The principles define "characteristics that
contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist
discovery and reuse by third-parties" [Wi16]. One goal of FAIR is the reuse of data. To
achieve this, data and metadata must be described in detail so that they can be replicated
and/or combined in different environments5. Our contribution is a new approach (see Fig.
1) to the reproducibility and traceability of published research results. This is particularly
useful for changing databases.

The young scientist asks for the original data, for example from 1977. However, the IOW
can not provide the original data in the original "format" — the data can be on external
data storage devices, punch cards or simply on paper. This would be too costly and time-
consuming for the IOW. However, the data are additionally stored in an institute-wide,
changing database. We can now use the current materialized view and determine the original
data of interest to our researcher.

So let’s take a closer look at Fig. 1 summarizing our approach: Let there be a published
research result (green diagrams on the computer screen) and its associated evaluation query
— a query in the case of structured databases including selection, projection, join as well as
simple aggregation queries. The provenance enriched inversion of this evaluation query, the
so-called provenance query, (III) provides the source tuples necessary for the reconstruction
of the result. Thus we obtain a (minimal) sub-database of the original database (red dotted).
In case of changing databases, like the over 100 years developed oxygen database at the
IOW, this sub-database must be calculated from the current view, of course. For this purpose
we first invert the evolution (I) and then execute the evaluation request (II). The result of
this query can now be inverted (III) and the minimal sub-database (red dotted) can be
reconstructed with the help of Provenance. After the new evolution (IV) we get the evolved
(minimal) sub-database (blue dotted), the basis of our reformulated evaluation query (V).

Our method allows us to keep results reproducible, comparable and robust against (in-
terpretation or evaluation) errors. Instead of storing each database version, we only store
a (minimal) sub-database. For very large data sets (petabytes and more), which change
frequently, data reduction guaranteed by the sub-database, can reduce costs. In addition, the
data itself may be worth protecting. This applies not only to personal data but also to research
data. For example, the data of MOSAiC, an international project studying the central Arctic,
has been generated with great effort and is currently only available to the collaborators
of the project. This will not change until 2023, see MOSAiC Data Policy6. Military data

4 https://www.io-warnemuende.de/datenportal.html

5 https://www.ruhr-uni-bochum.de/researchdata/de/index.html

6 https://spaces.awi.de/display/DM/MOSAiC+Data+Policy

338 Tanja Auge, Andreas Heuer

https://www.io-warnemuende.de/datenportal.html
https://www.ruhr-uni-bochum.de/researchdata/de/index.html
https://spaces.awi.de/display/DM/MOSAiC+Data+Policy

Provenance and Evolution at IOW 3

Fig. 1: Combining query evaluation, evolution and provenance: (II + III) The result of an evaluation
query (shown as a set of green diagrams on the computer screen) can be inverted using provenance
(dashed red). This creates the minimal sub-database top left necessary for the reconstruction of the
query result. (I + IV) In case of a temporal databases, the minimal sub-database bottom left must be
calculated from the current materialized view. However, this is possible by combining evolution and
provenance query. The new evaluation query (dotted blue) results analogously as combination of the
inverse evolution and the original query evaluation (V).

have to be protected, too. Even though the data is private, sharing the sub-database still
guarantees the traceability of the published research results [Au20a].

Previous provenance queries are usually processed on fixed databases and a specific query.
By combining data provenance and evolution we are able to extend provenance queries
to temporal databases. First approaches can already be found in [AH18a]. After a short
overview of the current status of provenance and evolution in Section 2, we provide a short
introduction to IOW (see Section 3). However, the focus of this paper is on the reconstruction
of the source tuples in a changing database as well as defining a new provenance type, the
so-called what-provenance (see Section 4). We will conclude with our future contributions.

2 Provenance and Evolution

Since modern databases do not support schema development proactively, developers often
have to intervene manually. However, this is very error-prone and usually not feasible for
large data sets. Trying to solve this problem leads to various prototypical implementations:
PRISM/PRISM++ [CMZ08] allows to specify evolution steps using so-called Schema
Modification Operations (SMOs), defining SMOs as a set of SQL-based schema modification
operators including among others Create Table, Add Column and Merge Column. BiDEL
[He17] presents SMOs that are relationally complete, invertible and enable forward and

Tracing the History of the Baltic Sea Oxygen Level 339

4 Tanja Auge, Andreas Heuer

SMOs SMOs
CREATE Table R(a,b,c) MERGE Column a,c AS func(a,c) IN R TO d
DROP Table R SPLIT Column a IN R TO d USING func1, e USING func2
ADD Column d [AS const|func(a,b,c)] INTO R
DROP Column c FROM R
RENAME Column b IN R TO d

Tab. 1: Schema Modification Operators at IOW [Au20b]

backward query rewriting and data migration, whereas they can guarantee bidirectionality.
For this reason a SMO, if it exists, is unique and BiDEL can be considered a nice language
to describe SMOs [AK19]. VESEL on the other hand is the first system that allows visual
exploration of schema development by means of provenance queries [AK19]. These tools
are dependent on versioning the database, thus they have a different notion of provenance.

As shown in [Au20b], all schema evolution steps occurring at the IOW can be represented
by SMOs. The language of SMOs consists of eleven operators, which describe the evolution
of columns and tables [CMZ08]. In later work these operators were extended by six more,
the so-called Integrity Constraints Modification Operators (ICMOs) [Cu13]. The SMOs
relevant for the IOW, extended by two SMOs for combining and splitting attributes [Au20b]
are summarized in Tab. 1.

Data provenance is used to describe the traceability of a query result back to the relevant
original data [MH17]. This includes the data set itself (where-provenance) as well as the
travelled path (why- and how-provenance). While the why-provenance [BKT01] specifies a
witness base that identifies the tuples involved in the query result, the how-provenance uses
provenance polynomials for specify a calculation rule [GT17].

We use the CHASE algorithm [Fa11] as a the foundation for evaluation and provenance
queries as well as evolution. For the developed concept, introduced in this paper, it shall
be not object of the discussion. The CHASE is a procedure that modifies a given database
instance I by incorporating a set of dependencies Σ like s-t tgds (source-to-target tuple-
generating dependencies) and egds (equality-generating dependencies). Generalized, s-t
tgds create new tuples and tgds/egds clean the database [Be17].

The representation of the evolution as SMO and thus also as s-t tgd [CMZ08] allows the
processing of the evolution by the CHASE algorithm. Since relational algebraic queries
can also be represented by s-t tgds and egds, CHASE is also suitable for processing
evaluation queries. Given an instance I, an evaluation query Q and an evolution ε, chaseQ(I)
corresponds to our published query result and chaseε(I) to a database instance of a recent
version. The inverse evolution as well as the provenance query are calculated in a second
step, the so called BACKCHASE [DH13, Me14]. In our approach, the BACKCHASE is
nothing else than the CHASE algorithm itself, applied to the result of the CHASE. The only
difference is the amount of dependencies to be included.

340 Tanja Auge, Andreas Heuer

Provenance and Evolution at IOW 5

Before discussing the combination of evolution and provenance (see Section 4), we will
briefly introduce the IOW, an example for our research use case.

3 Evolution at a Research Institute

Especially for long-term data, schema and data changes are not exceptional. The same
applies to the data of the IOW as a use case. It maintains a number of databases on different
Baltic Sea specific topics. One of them is the IOWDB, the Oceanographic Database of
IOW 7. It contains oceanographic readings and metadata (mainly Baltic Sea) from 1877 to
2020, in total more than 78 million measured samples.

One third of the stored data in the IOWDB is obtained with a so-called CTD probe.
Primary parameters of this instrument are Conductivity (electrical conductivity, which is
used to determine salinity), water Temperature and Depth, which is determined by the
prevailing pressure. The scientific requirements at IOW have changed continuously over the
years, which has been accompanied by significant improvements in instrumentation, data
acquisition and processing on board research vessels and data storage on land. The data
evaluation from different years are therefore an essential task of data processing [Au20b].

When analyzing the evolution operations occurring at the IOW, in particular the addition
of attributes using the ADD Column as well as the merging and splitting of attributes have
proven to be extremely relevant. Almost 80% of all operations are responsible for adding
new attributes. Furthermore, 16% of the operations are merging or splitting attributes.
The corresponding SMOs MERGE Column and SPLIT Column and a detailed analysis of the
evolution at IOW can be found in [Au20b].

4 Provenance and Evolution for Research Data Management

After we have determined the schema modifications relevant for the integration of old data
sets and specified their operators, we now want to deal with the question, if and how a
given query can be executed on other schema versions? Accordingly, to execute the original
1977 query on the current materialized view, we are interested in the related (minimal)
sub-database. Sometimes additional information is necessary, too. In Fig. 1 the sub-database
from 1977 is highlighted as a dashed red box, the later version is highlighted as a green box.
The same coloring can be found in Fig. 2, a more detailed depiction of the figure above.

Imagine the following situation: A young scientist is concerned about newspaper articles on
the subject of "Death zones in the Baltic Sea". He would like to form his own opinion. In
order to judge the development of oxygen content over the last 100 years, he is planning an
article summarizing the results of all studies conducted so far. He wants to reproduce and
reconstruct the study results himself, which we would like to support.

7 https://www.io-warnemuende.de/en_iowdb.html

Tracing the History of the Baltic Sea Oxygen Level 341

https://www.io-warnemuende.de/en_iowdb.html

6 Tanja Auge, Andreas Heuer

Fig. 2: Unification of query evaluation, provenance and evolution, based on [AH18a]

The IOW’s research data is stored persistently for each research project as well as in
a developing institute database. For the IOW evaluations, however, we only have one
materialized view at our disposal (see J(St+1) in Fig. 2). Since we cannot hand over the
entire database J(St+1)— note the case of protected data —, we are looking especially
for the data J∗ necessary to reconstruct the original result. This data we can submit to our
young scientist for his replication study.

So we have to recalculate the old database I(St) from our materialized view J(St+1) to
execute the original query Q again which was executed some years ago. The repeated
execution of Q is necessary to get additional information for the inversion query Qprov. The
reconstructed source tuples I∗ are then transformed back into the materialized view J∗. On
J∗ our young scientist can now place all queries that he is interested in. In order to get the
same query result K∗ on J∗, we have to transform the query Q as well.

We have explained in [AH18a] how this process can look like. The idea we refined and
extended to four major steps, of which step I. and II. can be neglected if the provenance of
the query Q is already known.

I. Reconstructing the original database by inverting the evolution
II. Calculating the query result
III. Determining the source tuples using the query result as well as data provenance
IV. Evolving the minimal sub-database and transforming the evaluation query

Fig. 2 describes this process in a graphical way. Starting with the current materialized view
J(St+1) the inversion ε−1 of the evolution ε returns the original database instance I(St) and
the known query Q the result K(T), highlighted in green. In research data management, K∗

always corresponds to the entire result database K , i.e. K∗ = K , since the complete result of

342 Tanja Auge, Andreas Heuer

Provenance and Evolution at IOW 7

the scientific evaluation has to be reproducible. Deploying Qprov we determine the minimal
sub-database I∗ (red dashed box), i.e. the source tuples involved in the result. Finally, ε is
used to transform this into the current database version J∗ (blue dotted box). But let’s have
a closer look at the individual steps:

I. Reconstructing the original database by inverting the evolution By using the
inverse evolution ε−1 the old, original database I(St) can be calculated from the current
materialized view J(St+1). Thus we obtain: I(St) = ε−1(J(St+1)). Therefore the evolution
ε and its (exact) inverse ε−1 are formulated as s-t tgds and egds and processed by the
CHASE or BACKCHASE [Fa11]. All new tuples, which did not exist in the original version
(recognizable by their ID), are deleted and the remaining attributes are processed using the
inverse evolution ε−1. Operations like creating a new relation, renaming or inserting new
attributes are easy to invert and can be done without further loss of information.

In contrast the inversion of merge- and split-operations, which are a composition of add
and drop operators, requires a bit more work. First the used auxiliary function f needs to
be invertible or at least quasi-invertible and second the possible data-type-changes need to
be considered. For example, merging the attributes day, month and year to a common
date can be inverted by splitting the date again. Furthermore, this split must ensure that
the original attribute value is restored correctly. Since the mathematical inverse and the
implemented inverse can differ, there can occur dirty data. To solve the problem of dirty
data, we defined the so called what-provenance below.

The multiplication of two attribute values can not be inverted without further considerations,
as there is no information about the multiplicators. The usage of provenance-polynomials
[GT17] extended by the possibility to process functions would guarantee the unambiguous
inversion of the multiplication too. But without the concrete specification of the attribute
values, they will be lost. To the best of our knowledge, such an extension does not yet exist,
but we are already working on a solution.

II. Calculating the query result The evaluation query Q can be formulated as s-t tgd
or egd and processed by the CHASE algorithm as well. The resulting database instance
K∗(T) = Q(I(St)) is highlighted in green in Fig. 2.

III. Determining the source tuples using the query result as well as data provenance
The result of the evaluation query Q can be calculated with the CHASE algorithm. The
subsequent construction of the minimal sub-database I∗ is achieved by inverting the query
Q. This inverse Qprov returns using the BACKCHASE-algorithm the minimal subdatabase
I∗(St) = Qprov(K∗(T)), necessary for the calculation of the query result (Fig. 2, red dashed).
Here, too, data provenance, especially how-provenance, plays a decisive role. Most evaluation
queries, apart from the selection for inequality and difference [AH18b, ADT11] can be

Tracing the History of the Baltic Sea Oxygen Level 343

8 Tanja Auge, Andreas Heuer

inverted by using provenance. By specifying the corresponding CHASE inverse function
[Fa11] we can indicate how well the original database I can be reconstructed. An overview
of the most common evaluation requests can be found in [AH18b]. The evaluation of the
(minimal) sub-database returns the original query result. How closely the sub-database
matches the original database depends on the inverse type and provenance query.

IV. Evolving the minimal sub-database and transforming the evaluation query After
determining the minimal sub-database I∗ it is transformed into the current materialized
view by applying evolution. Here again, CHASE is used. A new minimal sub-database
J∗(St+1) = ε(Qprov(K(T))) (Fig. 2, blue dotted) is created, which we make available to
the young scientist. Since Q′(J∗(St+1)) = Q(I(St)), the original query result K∗ can now
be reconstructed without errors from the minimal materialized view J∗. The query Q′

corresponds to the composition of the original evaluation query Q and the inverse evolution
ε−1, i.e. Q′(J∗(St+1)) = Q(ε−1(St+1)).
In summary: We can provide the young scientist with all necessary information under the
mentioned conditions (i.e. considering the invertibility of evolution and evaluation). Thanks
to the minimal sub-database of our materialized view J∗ and the transformed query Q′, he
is now able to reconstruct the original published research results. The degree of accuracy
depends on the accuracy of the corresponding inverse Qprov and ε−1. So, our young scientist
will start his development of the oxygen content of the Baltic Sea with a simple example. Let
us examine the evolution of the attribute date in 1977 and 2017. For the sake of simplicity,
we will limit the relation series to the three ID, O2 and date.

Example 4.1 We are interested in the progression of the oxygen level O2 in 1977. Unfortu-
nately the format of the date has changed over the years. While it consisted of three separate
attribute values of type varchar in 1977, this is now stored in a common date of type date.
In order to determine the source tuples of the relation Series2017 necessary to detect the
oxygen level in 1977, we need the materialized view J(St+1) = Series2017, the evaluation
query Q = πID,O2 (Series1977) and the evolution

ε = MERGE Column Date AS func (Year,Month,Day) INTO Series2017.

First we invert the materialized view Series2017 and obtain the original database instance
Series1977 (Tab. 2a). Then we execute the evaluation query Q and invert the result using
data provenance (Tab. 2b). The so generated minimal sub-database Series∗1977 can now
be transformed back to the current materialized view (Tab. 2c). Due to the projection on
O2 as well as the ID all information about the attributes Day and Month is lost. Thus, we
insert a null value here. Only the value of the Year can be reconstructed from the blue
annotation si,1977. We get Series∗2017 and the source tuples with the IDs 1, 3 and 4, which
are necessary for the reconstruction of the query Q. �

344 Tanja Auge, Andreas Heuer

Provenance and Evolution at IOW 9

ID O2 Date
1 7.0 1977-03-11 s1,2017
2 8.0 1970-03-11 s2,2017
3 8.0 1977-06-12 s3,2017
4 8.1 2000-11-12 s4,2017

Series2017

−→
ε−1

ID O2 Day Month Year
1 7 11 03 1977 s1,1977
2 8 11 03 1970 s2,1977
3 8 12 06 1977 s3,1977

Series1977

(a) Inverse evolution ε−1

ID O2 Day Month Year
1 7 11 03 1977 s1,1977
2 8 11 03 1970 s2,1977
3 8 12 06 1977 s3,1977

Series1977

−→
Q

ID O2
1 7
3 8

Result

−→
Qprov

ID O2 Day Month Year
1 7 η1 η2 1977 s1,1977
3 8 η3 η4 1977 s3,1977

Series∗1977

(b) Query Q and provenance query Qprov

ID O2 Day Month Year
1 7 η1 η2 1977 s1,1977
3 8 η3 η4 1977 s3,1977
4 8 η5 η6 1977 s4,1977

Series∗1977

−→
ε

ID O2 Date
1 7.0 1977-η2-η1 s1,2017
3 8.0 1977-η4-η3 s3,2017
4 8.0 1977-η6-η5 s4,2017

Series∗2017

(c) Evolution ε

Tab. 2: Calculation of a (minimal) sub-database given the query Q = πID,O2 (Series1977) and the
result Result

What-Provenance Data provenance describes where a piece of data comes from, why and
how it was created. Data provenance currently does not provide any information about how
attribute values are defined; in fact, it doesn’t provide any information about the allowed data
types and their formats [Ma20]. This is particularly important when converting attribute
values. This avoids rounding errors or enables using pre-defined SQL functions like Concat
or Substring in the merge and split variants introduced in [Au20b]. The fact, that the
mathematical inverse of a function might not necessarily match its implemented inverse
makes the relevance of such an additional provenance more valid. For example, the data
may contain hidden information such as a leading 0 or 1 to identify original or validated
data. Also the significant digit is important, i.e. for rounding error calculations. In the case
of the oxygen level the values vary between 7 and 9, so a significant digit is important for
small changes. In the case of evolution, such changes can occur accordingly (see O2 in
Tab. 2). This is where what-provenance comes into play.

Definition 4.1 (what-provenance) Let St (A1, ..., An) and St+1(A′1, ..., A′m) be two temporal
versions of the same database. Let ε be the evolution between St and St+1. The what base
is defined as a set of tuples (A′i, (Ak,D(Ak)) × ... × (Al,D(Al))) with ε−1(A′i) = (Ak, ..., Al)
and D(Ai) domain of the attribute Ai . If A doesn’t have a pre-image, we write (A, (∅,∅)).

Tracing the History of the Baltic Sea Oxygen Level 345

10 Tanja Auge, Andreas Heuer

Hence the what-provenance provides the attribute itself as well as the associated source data
types, the provenance of a certain tuple corresponds to the provenance of the whole relation.

Example 4.2 We look again at the relation Series in the years 1977 and 2017. The
evolution of O2 is limited to data type and the evolution of Date can be described by the
SMO MERGE Column. The corresponding what-provenance is then:

{(ID, (ID, integer)), (O2, (O2, double)),
(Year, (Date, date)), (Month, (Date, date)), (Day, (Date, date))}.

And the what-provenance of the inverse evolution is:

{(ID, (ID, integer)), (O2, (O2, double)),
(Date, (Year, char(2)) × (Month, char(2)) × (Day, char(2)))}. �

5 Conclusion and Future Work

To guarantee the reproducibility of research results, large communities, conferences and
journals increasingly demand the provision of original research data. Since this is often
not possible or desired, a certain tact and sensitivity is needed. With our method, the
source tuples necessary for reconstruction can be determined to a minimal extent, which is
helpful for our young scientist, too. For this purpose we combine the original source tuples
reconstructed with data provenance with the evolution of the temporary database. Both, a
forward and a backward evolution is possible, depending on which database instance is
currently materialized. Additionally, to reduce dirty data caused by the inverse evolution,
we introduced the what-provenance, which remembers the data types of the source relation.

The detailed analysis of our concept is currently in progress. As stated in Section 2, evolution
and evaluation can be formalized using the CHASE. For the inversion we consider five
CHASE-inverse types [AH18b]. We already examined the inverse types of the evaluation
queries [AH18b], for evolution these types still must be identified. Inverse evolution may
not necessarily be unique depending on the formalization of the SMO. We also investigate
when a specific inverse is useful. There is a natural conflict of interest between publishing
original data (provenance) and protecting these data (privacy) introduced in [ASH20].

Acknowledgment

Thanks to the IOW for providing their research data, Erik Manthey for analyzing these data
as well as Boris Glavic and Bertram Ludäscher for the exciting discussions. Likewise many
thanks to the three reviewers and Tom Ettrich for helpful comments writing this paper.

346 Tanja Auge, Andreas Heuer

Provenance and Evolution at IOW 11

Bibliography
[ADT11] Amsterdamer, Yael; Deutch, Daniel; Tannen, Val: Provenance for Aggregate Queries. In:

PODS. ACM, pp. 153–164, 2011.

[AH18a] Auge, Tanja; Heuer, Andreas: Combining Provenance Management and Schema Evolution.
In: IPAW. volume 11017 of LNCS. Springer, pp. 222–225, 2018.

[AH18b] Auge, Tanja; Heuer, Andreas: The Theory behind Minimizing Research Data — Result
equivalent CHASE-inverse Mappings. In: LWDA. volume 2191 of CEUR Workshop
Proceedings. CEUR-WS.org, pp. 1–12, 2018.

[AK19] Athinaiou, Christos; Kondylakis, Haridimos: VESEL: VisuaL Exploration of Schema
Evolution using Provenance Queries. In: EDBT/ICDT Workshops. volume 2322 of CEUR
Workshop Proceedings. CEUR-WS.org, 2019.

[ASH20] Auge, Tanja; Scharlau, Nic; Heuer, Andreas: Privacy Aspects of Provenance Queries.
https://arxiv.org/abs/2101.04432, 2020. [Accepted for ProvenanceWeek 2020].

[Au20a] Auge, Tanja: Extended Provenance Management for Data Science Applications. In:
PhD@VLDB. volume 2652 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

[Au20b] Auge, Tanja; Manthey, Erik; Jügensmann, Susanne; Feistel, Susanne; Heuer, Andreas:
Schema Evolution and Reproducibility of Long-term Hydrographic Data Sets at the IOW.
In: LWDA. volume 2738 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 258–269,
2020.

[Be17] Benedikt, Michael; Konstantinidis, George; Mecca, Giansalvatore; Motik, Boris; Papotti,
Paolo; Santoro, Donatello; Tsamoura, Efthymia: Benchmarking the Chase. In: PODS.
ACM, pp. 37–52, 2017.

[BKT01] Buneman, Peter; Khanna, Sanjeev; Tan, Wang Chiew: Why and Where: A Characterization
of Data Provenance. In: ICDT. volume 1973. Springer, pp. 316–330, 2001.

[Ca14] Carstensena, Jacob; Andersena, Jesper H.; Gustafssonb, Bo G.; Conley, Daniel J.: De-
oxygenation of the Baltic Sea during the last century. J. Artif. Soc. Soc. Simul., 111(15),
2014.

[CMZ08] Curino, Carlo A.; Moon, Hyun J.; Zaniolo, Carlo: Graceful Database Schema Evolution:
the PRISM Workbench. Proc. VLDB Endow., 1(1):761–772, 2008.

[Cu13] Curino, Carlo; Moon, Hyun Jin; Deutsch, Alin; Zaniolo, Carlo: Automating the database
schema evolution process. VLDB J., 22(1):73–98, 2013.

[DH13] Deutsch, Alin; Hull, Richard: Provenance-Directed Chase&Backchase. In: In Search of
Elegance in the Theory and Practice of Computation. volume 8000 of Lecture Notes in
Computer Science. Springer, pp. 227–236, 2013.

[Fa11] Fagin, Ronald; Kolaitis, Phokion G.; Popa, Lucian; Tan, Wang Chiew: Schema Mapping
Evolution Through Composition and Inversion. In: Schema Matching and Mapping,
Data-Centric Systems and Applications, pp. 191–222. Springer, 2011.

[GT17] Green, Todd J.; Tannen, Val: The Semiring Framework for Database Provenance. In:
PODS. ACM, pp. 93–99, 2017.

Tracing the History of the Baltic Sea Oxygen Level 347

https://arxiv.org/abs/2101.04432

12 Tanja Auge, Andreas Heuer

[He17] Herrmann, Kai; Voigt, Hannes; Behrend, Andreas; Rausch, Jonas; Lehner, Wolfgang:
Living in Parallel Realities: Co-Existing Schema Versions with a Bidirectional Database
Evolution Language. In: SIGMOD Conference. ACM, pp. 1101–1116, 2017.

[Ma20] Manthey, Erik: , Beschreibung der Veränderungen von Schemata und Daten am IOW mit
Schema-Evolutions-Operatoren. Bachelor Thesis, University of Rostock, DBIS, 2020.

[Me14] Meier, Michael: The backchase revisited. VLDB J., 23(3):495–516, 2014.

[MH17] Melanie Herschel, Ralf Diestelkämper, Houssem Ben Lahmar: A survey on provenance:
What for? What form? What from? VLDB J., 26(6):881–906, 2017.

[Wi16] Wilkinson, Mark D. et al.: The FAIR Guiding Principles for scientific data management
and stewardship. Scientific Data, 3(1):160018, 2016.

348 Tanja Auge, Andreas Heuer

(Industrial) Use Cases & Applications

cba

Herausgeber et al. (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

The Data Lake Architecture Framework: A Foundation for
Building a Comprehensive Data Lake Architecture

Corinna Giebler1, Christoph Gröger2, Eva Hoos2, Rebecca Eichler1, Holger Schwarz1,
Bernhard Mitschang1

Abstract: During recent years, data lakes emerged as a way to manage large amounts of heterogeneous
data for modern data analytics. Although various work on individual aspects of data lakes exists,
there is no comprehensive data lake architecture yet. Concepts that describe themselves as a “data
lake architecture” are only partial. In this work, we introduce the data lake architecture framework. It
supports the definition of data lake architectures by defining nine architectural aspects, i.e., perspectives
on a data lake, such as data storage or data modeling, and by exploring the interdependencies between
these aspects. The included methodology helps to choose appropriate concepts to instantiate each
aspect. To evaluate the framework, we use it to configure an exemplary data lake architecture for
a real-world data lake implementation. This final assessment shows that our framework provides
comprehensive guidance in the configuration of a data lake architecture.

Keywords: Data Lake; Data Lake Architecture; Framework

1 Introduction

In recent years, data lakes emerged as platforms for big data management and analy-
ses [Ma17b]. They are used in various domains, e.g., healthcare [RZ19] or air traffic [Ma17a],
and enable organizations to explore the value of data using advanced analytics such as
machine learning [Ma17b]. To this end, data of heterogeneous structure are stored in their
raw format to allow analysis without predefined use cases.

However, implementing a data lake in practice proves challenging, as no comprehensive data
lake architecture exists so far. Such an architecture specifies, e.g., the data storage or data
modeling to be used. In this work, we define comprehensive as “all necessary architectural
aspects of a data lake and their interdependencies are covered”. An architectural aspect
is a perspective on a data lake architecture, such as data modeling or infrastructure. To
define a comprehensive data lake architecture, multiple such aspects have to be considered.
While some concepts are called “data lake (reference) architecture” (e.g., in [Sh18]) by their
authors, they only focus on a subset of necessary architectural aspects.

In addition, the possible applications of data lakes are very diverse. A data lake might only
process batch data [Ma17a] or both batch data and data streams [MM18]. It might be limited
1 Universität Stuttgart, IPVS, 70569 Stuttgart, Germany {firstname.lastname}@ipvs.uni-stuttgart.de
2 Robert Bosch GmbH, 70469 Stuttgart, Germany {firstname.lastname}@de.bosch.com

cba doi:10.18420/btw2021-19

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 351

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{firstname.lastname}@ipvs.uni-stuttgart.de
mailto:{firstname.lastname}@de.bosch.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-19

2 Corinna Giebler et al.

Aspect A

Aspect B

Aspect I

Data Lake
Architecture Framework

Data Lake
Architecture

Methodology

Aspect A

Aspect B

Aspect I

…

Possible implementation
concept

…

Chosen concept for
concrete architecture

Decision-Making
Process

• Guiding Questions
• Decision Guidelines

Aspects

E.g., Aspect A:

Fig. 1: The data lake architecture framework contains possible implementation concepts. To configure
a data lake architecture, concrete concepts are chosen from the framework using the contained
methodology.

to data scientists and advanced analytics [ML16] or additionally support traditional data
warehousing [Ma17b]. Depending on the kind of data in the data lake and on the scenario in
which it is used, different requirements are posed on a data lake architecture. Thus, defining
a generic and universally applicable data lake architecture proves difficult. Instead, we
propose the data lake architecture framework (DLAF) as a foundation for comprehensive
data lake architecture development. Architecture frameworks exist in varoius domains, e.g.,
the Zachman framework [Za87] provides both guidance and a methodology to define an
appropriate information system architecture. However, in the context of data lakes, we
are not aware of such an approach. Fig. 1 depicts the connection between the framework
and a configured data lake architecture. The guidance provided by the DLAF is threefold:
1) It defines the architectural aspects necessary for a data lake, e.g., data modeling, 2) it
associates each aspect with a set of possible implementation concepts, e.g., data vault [Li12],
and 3) it provides a methodology that helps picking appropriate concepts for a data lake
architecture while also considering interdependencies between aspects, e.g., between data
modeling and infrastructure. A data lake architecture derived from the framework can be
understood as a DLAF instance. In this paper, we make the following contributions:

• From a categorization of literature on data lakes, we identify their necessary architec-
tural aspects.We use these aspects to build the data lake architecture framework, which
serves as a support for the configuration of a comprehensive data lake architecture.

• We present a methodology as part of the data lake architecture framework that guides
the development of a specific data lake architecture from the aspects in the framework.

• We assess the data lake architecture framework with regards to its comprehensiveness
and applicability. This assessment shows that the data lake architecture framework
is not missing any important aspects for data lakes, and that its methodology is
applicable in practice to configure a comprehensive data lake architecture.

352 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 3

• We show how the framework can be used to configure a comprehensive data lake
architecture, to evaluate existing data lake architectures, and to extend incomprehensive
data lake architectures to become comprehensive.

The remainder of this work is structured as follows: Sect. 2 discusses related work on data
lake architectures and architecture frameworks. Sect. 3 describes the developedDLAF, before
Sect. 4 presents the contained methodology for its use. Sect. 5 assesses the framework by
analyzing existing data lake implementations and by defining an exemplary comprehensive
data lake architecture for real-world industry. Finally, Sect. 6 concludes the work.

2 Related Work

In literature, multiple so called “data lake architectures” are proposed (e.g., in [In16; JQ17;
RZ19; Sh18]). The goal of these architectures is to be generic. Sawadogo and Darmont
differentiate three kinds of data lake architectures [SD20]: 1) functional architectures
that cover data ingestion and storage, e.g., [JQ17], 2) data maturity-based architectures,
where data are organized according to their refinement level, e.g., [Sh18], and 3) hybrid
architectures that combine both. As functional architectures and data maturity-based
architectures focus only on singular aspects of the data lake [SD20], they do not qualify as
comprehensive data lake architectures. We thus only consider hybrid architectures in the
remainder of this section. Sawadogo and Darmont name two hybrid architectures: Inmon’s
data pond architecture [In16] and Ravat’s data lake functional architecture [RZ19]. To the
best of our knowledge, no other generic hybrid architectures are available.

However, defining data ingestion, data storage, and data organization is not sufficient for
a data lake. Examples for further aspects of importance are data modeling and metadata
management [Gi19a]. Neither Inmon’s nor Ravat’s architecture cover these additional
aspects. While there is work on both data modeling and metadata management in data lakes
(e.g., [Ei20; HGQ16; Ho17; NRD18]), it focuses only on singular aspects. Overall, none of
the generic data lake architectures in literature is comprehensive.

In addition to the generic architectures, there are hybrid data lake architectures in specific
implementations, e.g., in [Ma17a; MM18]. These architectures are however tailored to
specific use cases and are not applicable as generic data lake architectures. Thus, to the best
of our knowledge, there is no guidance for defining a comprehensive data lake architecture.

3 Aspects forming the Data Lake Architecture Framework

To address the lack of support for configuring a comprehensive data lake architecture, we
present the data lake architecture framework (DLAF) as a foundation for such a configuration.
The framework consists of two parts: I) It describes necessary architectural aspects of a

The Data Lake Architecture Framework 353

4 Corinna Giebler et al.

Data Flow

Data Modeling

Data Organization

Data Processes

D
at

a
Se

cu
rit

y
&

Pr
iv

ac
y

D
at

a
Q

ua
lit

y

C

D

E

F

G H I

Data Storage

Infrastructure

B

A

Conceptual and physical

Only conceptual, implementation
through individual layers

M
et

ad
at

a
M

an
ag

em
en

t
e.g., HDFS

e.g., Distributed File System

e.g., Lambda Architecture

e.g., Data Droplets

e.g., Data Zones

e.g., Archiving Processes

e.
g.

, H
AN

D
LE

e.
g.

, C
he

ck
in

g
Le

ga
l C

on
fo

rm
an

ce

e.
g.

, T
ru

st
ed

D
at

a
in

 Z
on

e
Ar

ch
ite

ct
ur

es

Fig. 2: The data lake architecture framework consists of nine data lake aspects that have to be
considered when creating a comprehensive data lake architecture.

data lake. In doing so, it defines the scope for a comprehensive data lake architecture. This
section first describes the DLAF aspects that represent the different architectural aspects
(Sect. 3.1) before detailing on their interdependencies (Sect. 3.2). II) Moreover, the DLAF
includes a methodology to configure a comprehensive data lake architecture, guiding the
selection of appropriate concepts for each aspect. This methodology is presented in Sect. 4.

Each part of the framework in Fig. 2 represents one architectural aspect of data lakes
associated with a set of concepts for its implementation (cf. Fig. 1). The architectural
aspects included in the DLAF were derived by clustering the results of a thorough literature
review on concepts for data lake implementation (cf. [Gi19a]). The nine resulting clusters
we formulated into disjoint architectural aspects depicted in Fig. 2: A) infrastructure, B)
data storage, C) data flow, D) data modeling, E) data organization, F) data processes, G)
metadata management, H) data security & privacy, and I) data quality. These aspects can
neither be combined further, as they describe different perspectives on the data lake, nor did
we find further aspects to be considered. Aspects A-F are sorted by their abstraction degree,
with infrastructure as the most physical aspect at the bottom and data processes as the most
abstract aspect at the top. Aspects G-I span all of these aspects. We differentiate between
aspects that consist of a concept and its physical implementation (white), and aspects that
comprise only a conceptual view but are implemented through other aspects (grey). For
example, if the data security & privacy aspect requires data encryption, the infrastructure
has to offer this functionality. The following paragraphs explain the architectural aspects.

3.1 DLAF Aspects

A) Infrastructure. The infrastructure aspect comprises concepts for the physical imple-
mentation of the data lake. The focus lies on concrete storage systems and tools, e.g.,

354 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 5

HDFS3 as distributed file system or MySQL4 as a relational database, and their deployment
on-premise or in the cloud. An example is given by [Zi15], who use Hadoop5 and DB26. As
an exemplary concept for deployment, hybrid data lakes [Lo16] are data lakes built both
on-premise and in the cloud.

B) Data Storage. The data storage focuses on the types of systems and tools used for data
storage and processing (e.g., file systems and NoSQL databases, or batch processing and
stream processing tools). In contrast to the infrastructure aspect, no specific tools are chosen.
Exemplary data lakes are built on a single distributed file system (e.g., [Ma17a]) or on
multiple storage systems (e.g., [Zi15]).

C) Data Flow. The data flow aspect covers the architecture and interaction for the two modes
of data movement that may occur in a data lake: batch data and streaming data. Batch data
are persistently stored in a storage system and are processed in large volumes [CY15]. In
contrast, streaming (or real-time) data are continuously delivered into the data lake and
typically need to be processed immediately [CY15]. Streaming data can also become batch
data if it is stored for later use. Examples for data flow concepts are hybrid processing
architectures such as the Lambda architecture [MW15] or BRAID [Gi18].

D) Data Modeling. The data modeling aspect describe whether and how data are modeled
within the data lake. Typically, the modeling technique used will differ depending on the
data’s characteristics and their usage. Examples of data modeling techniques applicable in
data lakes are data droplets [Ho17] or data vault [Li12].

E) Data Organization. The data organization aspect defines the conceptual set-up within the
data lake. To this end, associated concepts describe what data can be found where and what
state they are in (e.g., raw or pre-processed). Examples are the data pond architecture [In16],
the zone architectures (e.g., [Gi20; Sh18]), Jarke’s and Quix’ conceptual architecture [JQ17],
and data meshes for semantical data organization [De19].

F) Data Processes. The data processes aspect comprises all concepts that focus on data
movement and processing. Data processes can be divided into processes for data lifecycle
management and for data pipelining. Data lifecycle management processes manage the
data from creation and obtaining to disposure [DA17]. These processes have to be carefully
defined and standardized within a data lake to facilitate self-service, ensure data usability,
and support legal compliance. In contrast, data pipelining processes focus on the technical
ingestion, movement, and processing of data, such as extract-transform-load (ETL) processes.
They are used to describe, e.g., how data move between zones in a zone model. In contrast
to the data flow aspect, the data processes aspect rather describes what is done with data
instead of focusing on the characteristics of the data themselves. An exemplary data lifecycle
management process for data lakes is the archiving process given in [Ch15]. Examples for

3 hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
4 www.mysql.com/de/
5 hadoop.apache.org/
6 www.ibm.com/analytics/db2

The Data Lake Architecture Framework 355

6 Corinna Giebler et al.

data pipelining can be found in most zone architectures (e.g., in [Gi20]), or in Jarke’s and
Quix’ conceptual data lake architecture [JQ17].

G) Metadata Management. The metadata management aspect comprises two sub-aspects:
The first one,metadata as enabler, overlaps the horizontal aspects in Fig. 2. In this sub-aspect,
metadata enable other aspects. For example, metadata describe what zone a piece of data
belongs to in a zone model or when data was created for lifecycle management. The other
sub-aspect is metadata as a feature, depicted as the right side of the metadata management
aspect in Fig. 2. This sub-aspect contains the functionalities that metadata can provide
in addition to their enabler capabilities, such as business glossaries [Ba14] or semantical
descriptions. For all metadata, aspects A-F have also to be defined, as metadata have to
be stored, modeled, etc. Exemplary concepts are metadata management systems, such as
Constance [HGQ16], or metadata models, such as HANDLE [Ei20].

H) Data Security & Privacy. Data security & privacy is a solely conceptual aspect. It is of
great importance in a data lake, as it ensures legal conformance, alignment with business
objectives, and much more [Ch15]. Exemplary concepts for this aspect are, e.g., checking
legal conformance in the data wrangling process [Te15] or AMNESIA for GDPR-compliant
machine learning [St20], where data security & privacy are implemented through zones.

I) Data Quality. The data quality aspect is also solely conceptual. Maintaining data quality
is important to ensure the data’s usability and prevent the data lake from turning into a data
swamp [Ch14]. While there are data quality tools, e.g., Informatica data quality7, these still
rely on implementations of other aspects, e.g., metadata management. Data quality can also
be found in, e.g., data organization, where some zones hold trusted data (e.g., [Gi20]).

3.2 Interdependencies between DLAF Aspects

The aspects of the DLAF are not independent from each other, as decisions for one aspect
affect other aspects. For example, the aspect of data storage influences data modeling,
as different kinds of storage systems support different kinds of modeling (e.g., relational
modeling for relational databases, graphs for graph databases). This section explores the
interdependencies between aspects and their implications. Fig. 3 depicts these interdepen-
dencies as a graph. They are in line with interdependencies as described in existing literature.
In this graph, six of the overall nine aspects are visually grouped together for a simpler
visualization. The influences between aspects depicted in this graph form the basis of the
methodology presented in Sect. 4.

The graph shows that the aspects data security & privacy and data quality influence all
other aspects of the DLAF (I1-I4). This is because these two aspects are not implemented
directly, but instead implemented through other aspects. Thus, decisions made for data
security & privacy and data quality have to be considered when choosing concepts for

7 www.informatica.com/de/products/data-quality/informatica-data-quality.html

356 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 7

Metadata
Management Data QualityData Security

& Privacy

Data
Processes

Data
Organization

Data
Modeling

Data Flow Data Storage Infrastructure

I1

I2 I3

I4I5

I6 I7

I8I9
I10

I11

I12

I13

I14

Fig. 3: The influence graph for the DLAF aspects. Directed arrows point from the influencing aspect
to the influenced aspect.

all other aspects. For the aspect of metadata management all aspects produce and rely on
metadata, e.g., metadata describing how data should be processed (I5). They influence what
metadata should be collected and how it should be organized. At the same time, metadata
are data and thus need to be considered when defining all other aspects (I5).

The data organization aspect influences data processes (I6), as data pipelining processes
have to be adapted to the chosen data organization, e.g., data zones or ponds. Data
organization also influences data modeling (I7), as e.g., data zone architectures typically
dictate standardized data modeling in at least one zone. This means that all data in this zone
are modeled according to specified rules, e.g., the rules of data vault. Furthermore, data
organization influences data storage (I8), as, e.g., the data pond architecture, where data are
separated by their structure, necessitates a different storage concept than, e.g., data zone
architectures. The data flow aspect influences data processes (I9), data organization (I10),
data storage (I11), and infrastructure (I12). This is because the data flow aspect comprises
the different modes of data (batch and stream). Depending on the decisions made for this
aspect, other aspects have to support the respective modes as well. For example, if the
concept chosen for the data flow aspect includes stream processing, the concept chosen for
infrastructure has to include stream processing engines. However, for data organization and
data storage (I10, I11), the influence can also be reversed, as, e.g., using a batch-only data
organization or choosing batch and stream processing in data storage dictates a certain data
flow. The aspect of data storage influences and is influenced by both data modeling (I13)
and infrastructure (I14). Depending on the types of storage systems chosen, certain data
modeling techniques can or cannot be used. For example, if relational storage is chosen,
data models should be applicable to relational schemata. At the same time, the choice of
a certain data model will necessitate a different data storage concept. Data storage and
infrastructure are closely connected, as one chooses the types of systems while the other
defines the concrete systems and tools.

The Data Lake Architecture Framework 357

8 Corinna Giebler et al.

H I

C E B A

D G F G

9: Design Metadata
as a Feature

1: Identify
Scenario

2: Design
Data Flow

3: Design Data
Organization

4: Design
Data Storage

5: Design
Infrastructure

6: Design Data
Modeling

7: Design Metadata
as Enabler

8: Design Data
Processes

H I

Fig. 4: To configure a comprehensive data lake architecture with the DLAF, nine steps are necessary.
Each step is associated with different DLAF aspects, depicted in the circles.

4 Methodology for Configuring a Data Lake Architecture

To configure a comprehensive data lake architecture from the framework, specific concepts
have to be chosen from the set of concepts associated with each aspect (see Fig. 2). This
section provides a methodology for this task consisting of nine steps. Several of these steps
directly correspond to aspects of the DLAF (see Fig. 4), and the order of the steps was
determined from the aspects’ interdependencies (see Fig. 3). As shown in Fig. 4, the aspects
data security & privacy and data quality are associated with steps 1 through 9. This means
that during all steps, these two aspects have to be taken into consideration and included
accordingly. Our methodology provides guiding questions for each step that support the
selection of appropriate concepts for architectural aspects. To the best of our knowledge,
no further sources on such questions exists. In addition, we include typical concepts and
associated decision guidelines for each aspect. However, these are not exhaustive due to the
wide variety of available concepts for implementation.

Step 1: Identify Scenario. Understanding the key requirements of the data lake’s application
scenario is a crucial prerequisite for all following architecture decisions. To this end, the
following questions should be answered: 1) What kind of data are managed in the data lake?
What are their characteristics? This question also targets the data security & privacy and
data quality requirements. 2) What time requirements are associated with data and their
usage (e.g., real-time, hourly updates)? 3) How are data used (e.g., advanced analytics only
or also reporting)? Further requirement elicitation should also be performed in this step.

Step 2: Design Data Flow. To determine a suitable data flow concept, especially question 2
from Step 1 (what time requirements are associated with data and their usage) is of relevance.
If data should be both processed in real-time and in larger time intervals, both batch and
stream processing should be used. Hybrid processing architectures comprise both, such as
the Lambda architecture [MW15] or BRAID [Gi18]. A guiding question to this decision is:
Are batch and stream processing independent from each other or should results from one
be available to the other? If they are independent, the Lambda architecture is a sufficient
concept. If data and results should be exchanged, BRAID offers the needed functionality.

358 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 9

Data are
rarely

accessed

Unsegmented

Data can be
separated

semantically

Data Mesh

Data ZonesData Ponds

Y Y

N

YY

NN

N There is
need for raw

data

Data of different
structure are

often combined

Fig. 5: The decision process for choosing an appropriate data organization concept. Combinations of
concepts are not included due to space restrictions.

Step 3: Design Data Organization. Data organization focuses on the efficient management
of data for different uses. Thus, to choose an appropriate concept for this aspect, question 3
from step 1 (how are data used) is of high importance again. Fig. 5 depicts a possible
decision process for data organization, including some of the guiding questions to be asked.
In our example, the concepts to choose from are no segmentation of the data, semantical
data meshes [De19], Inmon’s data pond architecture [In16], or data zone architectures
(e.g., [Gi20]). A properly segmented and structured data lake provides more efficient
access and usage than an unsegmented one, however, segmenting the data lake increases its
complexity. Note there might be other suitable concepts for data organization, as well as
combinations of these concepts. In addition, some of the concepts mentioned require further
definition, as there are multiple variants of, e.g., the data zone architecture [Gi19a]. Concepts
for data quality are included in most zone architectures and in the pond architecture. Data
security & privacy however are only included in some zone architectures (e.g., [Gi20;
Go16]) and not in the data pond architecture. For other data organization concepts, neither
of the two aspects is considered. However, these aspects cannot be neglected.

Step 4: Design Data Storage. The configuration of a data storage concept depends on the
kind of data to be managed (question 1 from step 1) and how they are used (question
3 from step 1). Exemplary guiding questions for this aspect are: Are multiple types of
storage systems necessary? Which storage systems can support the data’s characteristics?
For example, relational databases provide the most appropriate support for structured data.
If the managed kinds of data are widely varied, a combination of storage systems might
be appropriate. When working with data ponds, each pond can be realized on a different
system, e.g., an relational database for the analog data pond and a file system for the textual
data pond. For this decision, exemplary guiding questions are: How are data used? What
characteristics have to be supported? For example, highly connected data should be managed
in a graph database, while structured data can be stored in relational databases. Further
decision support can be found in e.g., [Ge17]. It is necessary to consider data security &

The Data Lake Architecture Framework 359

10 Corinna Giebler et al.

privacy and data quality requirements when defining the data storage aspect, as different
types of data storage systems support different degrees of consistency, constraints, etc.

Step 5: Design Infrastructure. In this step, the defined data storage and data flow concepts
are used to decide on an appropriate infrastructure for the data lake. Storage systems and
data processing tools are constantly maturing, and the requirements towards infrastructure
are manifold. We thus do not provide details on infrastructure decision support in this paper.
However, some guiding questions are: What ingestion rates are required? Are indexes or
foreign keys needed? What read/write performance should be offered? Infrastructure can
then be chosen in accordance with the answers to these questions.

Step 6: Design Data Modeling. The answers given for question 1 and 3 from step 1 (what
data are managed and how are they used) are of great importance for deciding on data
modeling concepts, as they determine which data models are suitable. Exemplary guiding
questions for this step are: How should structured and semi-structured data be modeled?
For example, data vault [Li12] can be used to model these data in data lakes [Gi19b].
How can data be connected across systems? How can unstructured data be connected to
structured data? Possible answers to these questions are data droplets [Ho17] or link-based
integration [GSM14]. If zones are used as a concept for data organization, modeling concepts
differ for each zone. Typically, one zone holds raw data replicated from the source, while
another zone contains data in a standardized format, or even in a use-case specific format
(e.g., as dimensional schema). Requirements towards data security & privacy and data
quality have to be addressed, e.g., through separately treated tables for sensitive data or data
models that consolidate data.

Step 7: Design Metadata as Enabler. The leading question to configure metadata as enabler
is: What information is needed on the data to manage them meaningfully? This includes
1) metadata that are needed to reflect the concepts chosen in other aspects (e.g., metadata
describing the zone of a data), and 2) metadata that are needed for the general operation
of the data lake (e.g., information on lineage, access operations, or last-accessed dates).
Some metadata are needed for the execution of data processes defined in step 8. Thus,
it might be necessary to revisit this step during the definition of data processes to add
additional metadata needed. Step 7 also includes metadata for data security & privacy and
data quality, such as security classifications, a to-be-deleted date, or known quality issues.
As the metadata as enabler identified in this step may vary greatly from one application
scenario to another, it is impossible to provide a decisive guideline. Choosing a flexible
metadata management model such as HANDLE [Ei20] is beneficial, as it can be adapted
and even extended later on. If metadata management has not been considered as data in steps
1-6, step 7 is to fill these gaps. Metadata, just like other data, are in need of infrastructure,
data storage, data flow, data modeling, and data organization concepts.

Step 8: Design Data Processes. Due to space restrictions, we cannot provide detailed
guidelines for the data process configuration. Some guiding questions for this aspect are:
How do data move in the data lake? How are they processed? What is the data’s lifecycle?

360 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 11

Most data organization concepts include appropriate data process concepts, e.g., how data
move and are processed between zones/ponds in data zone architectures (e.g., [Gi20]) and
the data pond architecture [In16]. These processes have to be adapted and extended to fit
the concepts chosen for the remaining aspects. If it turns out that data processes require
further metadata, step 7 is revisited here. Data processes for data security & privacy, such as
processes for accessing sensitive data, and data quality have to be chosen meaningfully to fit
the application scenario’s needs. The data wrangling process [Te15] and existing lifecycle
management processes can serve as a base for the data process configuration.

Step 9: Design Metadata as a Feature. This final step includes all functionality that
goes beyond the simple description of data. Metadata management systems such as data
catalogs [Ch15] or data marketplaces [Mu13] offer functionalities that go beyond the scope
of metadata as enabler, namely semantical data access or data purchase offers. As these
additional functionalities can only be implemented with a detailed knowledge on the data
lake’s architecture, this step is done last. This part of the data lake can be designed quite
freely. An associated guiding question is: What further benefit can metadata provide?

5 Assessment and Application of the DLAF

In this section, we assess the DLAF’s suitability as architecture configuration guidance
in two ways: 1) we analyze existing data lake implementations and sort their architectural
decisions into the DLAF’s aspects to demonstrate the framework’s comprehensiveness
(Sect. 5.1). The DLAF aids us in identifying shortcomings of existing architectures and
provides pointers for improvement. 2) We assess the methodology’s applicability by defining
an exemplary data lake architecture using the DLAF (Sect. 5.2).

5.1 Comprehensiveness of DLAF

We use two real-world data lake implementations for the evaluation of the DLAF’s
comprehensiveness, in particular AIRPORTS DL [Ma17a] and the Smart Grid Big Data
Ecosystem [MM18]. We chose these implementations because they provide detailed
information on the concepts used and were evaluated using real-world data. They cover
two different domains (air traffic, smart grids) and deal with different data management
requirements. Neither of these papers includes a methodology for the configuration of their
data lake. Tab. 1 matches the decisions made in these implementations with the DLAF
aspects. Based on this categorization, we discuss the implementations’ comprehensiveness
and how they should be extended.

AIRPORTS DL. The AIRPORTS DL [Ma17a] focuses on storing surveillance data of flights,
such as a plane’s position or altitude. These data are combined with data from third parties,
such as weather data, and are streamed into the data lake. The middle column in Tab. 1

The Data Lake Architecture Framework 361

12 Corinna Giebler et al.

DLAF Layer AIRPORTS DL [Ma17a] Smart Grid Big Data Eco-
System [MM18]

A. Infrastructure Hadoop (HDFS, MapReduce),
Apache Flume, Apache Spark,
Apache Oozie, Apache Pig,
Apache Atlas, R Studio, Shiny,
Apache Sqoop

Hadoop (HDFS, MapReduce),
Apache Flume, Apache Spark
Streaming,Apache Spark SQL,
Apache Hive, Apache Im-
pala, Radoop,Matlab, Tableau,
Google Cloud Computing

B. Data Storage Single File System Single Eco-System
C. Data Flow Data are ingested as streams,

but processed as batches
Based on the Lambda Archi-
tecture, data are processed as
stream and as batches

D. Data Modeling Raw Messages, AIRPORTS
Data Model

Undefined

E. Data Organization Four Zone Architecture Two Zone Architecture for
the data storage (Master data
and Serving Layer) based on
Lambda Architecture

F. Data Processes Processing Pipeline for Mes-
sages (ETL Processes), Pro-
cesses for Ingestion and Use

Processing Pipeline from the
Lambda Architecture

G. Metadata Management Managed by Apache Atlas Undefined
H. Data Security & Privacy Tracking manipulation of data Undefined
I. Data Quality Tracking manipulation of data,

Quality through Zones
Undefined

Tab. 1: Categorization of Architectural Decisions in Existing Data Lake Implementations

lists the architectural decisions made in this data lake implementation with respect to the
aspects of the DLAF. The following paragraphs detail selected DLAF aspects. There is no
explicit explanation for the data flow aspect in the paper, aside from data being ingested
as data streams. However, data are stored before being processed. In addition, the tools
used for processing (e.g., Hadoop MapReduce8, Apache Pig9) are for batch processing.
These decisions suggest that data are processed in batches only and not as data streams. For
data modeling, data first are stored as raw key-value messages. Then, as they move through
processing, they are transformed to fit the AIRPORTS data model, which was specifically
created for this application scenario. For data organization, a zone architecture consisting
of four zones, called layers in the paper, was chosen. These layers are 1) Raw Layer, 2)
Alignment Layer, 3) Flight Leg Reconstruction Layer, and 4) Integration Layer. Data are
ingested into the Raw Layer and then processed from layer to layer. Finally, data are made
available in the Delivery Layer, which is not a processing layer, but an interface to the data
lake. The data processes in this data lake implementation mostly focus on the movement of

8 hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html

9 pig.apache.org/

362 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 13

data between zones. In addition, it is defined how data are ingested into the data lake and how
they can be analyzed and delivered to external systems. Apache Atlas10 is used to implement
a governance system on top of the data lake, which provides metadata management, and
basic data security & privacy and data quality by tracking data manipulation. The data
quality aspect is also addressed by the zone architecture of the AIRPORTS DL, where the
quality of data is increased from one zone to the other.

Overall, all architectural decisions of the AIRPORTS DL can be reflected by the aspects of
the DLAF. It also shows that the AIRPORTS DL provided a concept for each of the DLAF
aspects. Thus, the AIRPORTS DL architecture covers all aspects from infrastructure to data
quality and thus underlines the comprehensiveness criteria.

Smart Grid Big Data Eco-System. The second data lake implementation analyzed is applied
in a scenario of smart grids as part of a smart grid big data eco-system [MM18]. The data to
be stored and analyzed in this scenario are highly diverse, including sensor data from, e.g.,
farms and consumers, but also images and videos from plant security cameras. These data
are enriched with data from additional sources, e.g., weather data. Data are ingested into the
data lake as a stream. The right column of Tab. 1 summarizes the architectural decisions
in this data lake. The data storage of this data lake is realized as a single system, namely
the Hadoop eco-system as seen in infrastructure, including HDFS, Hive11, and Impala12.
The data flow concept of this data lake is based on the lambda architecture [MW15]: Data
ingested as data stream are forwarded to both batch processing, where they are stored
persistently, and to stream processing, where they are processed in real-time. The results
from both processing modes are combined in a Serving Layer. The usage of the lambda
architecture influences the data organization concept. According to the lambda architecture,
the data lake is divided into two zones: a Raw Zone, where data are persistently stored
before processing, and the Serving Layer that holds the processing results. Similarly, data
processes are given by the lambda architecture.

While all architectural decisions of this implementation could be assigned to a DLAF aspect,
this analysis shows that the architecture of the smart grid data lake is not comprehensive.
There are no concepts for data modeling, metadata management, data security & privacy,
or data quality. However, without these concepts, a data lake risks turning into a data
swamp, where data are unusable [Ch14]. Using the DLAF, this data lake can be re-designed
including extensive metadata management to also address security and quality.

5.2 Application of the DLAF Methodology

In the second part of our assessment, we configure a data lake architecture using the
DLAF and its methodology introduced in Fig. 2 and Fig. 4. In doing so, we evaluate the

10 atlas.apache.org/
11 hive.apache.org/
12 impala.apache.org/

The Data Lake Architecture Framework 363

14 Corinna Giebler et al.

Step Resulting Decision

1: Identify Scenario Structured, semi-structured, and unstructured data
Batch and stream processing
Both advanced and traditional analyses

2: Data Flow Hybrid Processing Architecture BRAID
3: Data Organization Zone Reference Model
4: Data Storage Multi-Storage System
5: Infrastructure Hadoop (HDFS, MapReduce), Kafka, MySQL, Apache Spark, . . . ,

partially Cloud-based
6: Data Modeling Data Vault, Link-Based Integration
7: Metadata as Enabler Metadata Types based on HANDLE
8: Data Processes Organization Specific Processes
9: Metadata as Feature Data Catalog

Tab. 2: Overview of Resulting Decisions in the Definition of an Exemplary Data Lake Architecture

applicability of the DLAF based on a real-world industry case from a large, globally active
manufacturer. The manufacturer’s business is highly diverse, with business domains ranging
from manufacturing to quality management to finance. To increase efficiency and reduce
costs, an enterprise-wide data lake is implemented to employ data analytics in everyday
business. Tab. 2 provides an overview over the decisions made for the data lake architecture.
The following paragraphs describe the decision process that led to these solutions. The data
flow and data organization of the resulting data lake architecture is depicted in Fig. 6.

Step 1: Identify Scenario. In the use case introduced above, a wide variety of data are used
for a multitude of different projects and analyses. To create a proper base for the definition
of an exemplary data lake architecture, we refer to the questions defined in Sect. 4, Step
1. Based on these answers, the remaining steps are performed to configure a data lake
architecture suited for the manufacturer’s needs.

1) Throughout the entire business, data are collected from various source systems, such
as enterprise resource planning systems and manufacturing execution systems, or the IoT.
These data managed in the data lake are highly diverse, not only in structure (e.g., structured
product data, semi-structured sensor data, and unstructured computer aided design (CAD)
files), but also in their characteristics. These characteristics range from highly sensitive
master data to voluminous IoT data of unknown quality.

2) Various time requirements exist in the data lake. In regular intervals, data are extracted
from source systems and transferred to the data lake, where they are processed in periodic
batches. Some of these data should be available within an hour, others need to be processed
once a day or less. At the same time data from sensors arrives as data stream. These data
should be processed immediately, to enable quick and timely reactions to, e.g., malfunctions
in the manufacturing process. Also, they should be stored for later use as batch data. Thus,
both batch and stream processing are of importance in this data lake.

364 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 15

Sources
Data Lake

Landing
Zone

Raw Zone Harmonized
Zone

Distilled
Zone

Delivery
Zone

Explorative
Zone

Storage Storage Storage Storage Storage Storage

Stream

Batch

Data Flow Grouping (Stream/Batch)

Fig. 6: An excerpt of the resulting data lake architecture, including data organization and data flow.

3) The data lake is the enterprise’s central data repository that is accessed for a wide variety
of use cases. These range from advanced analytics [Bo09], e.g., data mining and machine
learning, to traditional reporting and online analytical processing (OLAP). For example,
data in the data lake might be used to train a machine learning model to improve the quality
of manufactured products, and to create a report for the supervisor of a specific plant.

Step 2: Design Data Flow. As specified in Step 1, the manufacturer relies on both batch
and stream processing for the used data. Thus, the chosen data flow concept has to support
both of these processing modes. For this exemplary data lake architecture, we decided to
use the hybrid processing architecture BRAID [Gi18] as the data flow concept. In this
architecture, data ingested as a stream are both forwarded to a persistent storage and to
a stream processing engine. This behavior is similar to that of the Lambda Architecture
as briefly described in Sect. 5.1. However, the BRAID architecture allows to use results
from batch processing in stream processing. For example, a machine learning model can be
trained on batch data and used to classify data from the data stream. In addition, results can
be stored persistently and are available for later use. These characteristics of BRAID align
with the manufacturer’s requirements. Data ingested in batches are stored in the persistent
storage and processed in batches. This data flow concept is depicted in Fig. 6.

Step 3: Design Data Organization. Because data are frequently accessed and used, a
segmentation of the data lake into different portions is needed in this scenario. As data of
different structure are often combined and the availability of raw data is crucial, we decided
to use a data zone architecture. Due to the decisions made for the data flow aspect, this
architecture needs to support both batch and stream processing. We chose the zone reference
model [Gi20] as it provides fitting zones for the envisioned use cases for both batch and
stream processing. It also contains concepts for both data quality and data security, e.g., the
protected part, or varying access rights for different zones. Fig. 6 depicts the zone reference
model and its interaction with batch data and streaming data.

The Data Lake Architecture Framework 365

16 Corinna Giebler et al.

Zone Characteristics that influence Data
Modeling

Data Modeling Technique

Landing Zone Temporary Raw Format
Raw Zone Large amounts of data Raw Format
Harmonized Zone Standardized Modeling Technique Data Vault (Raw Vault), Link-based

Integration
Distilled Zone Standardized Modeling Technique,

Use Case Dependance
Data Vault (Business Vault), Link-
based Integration

Delivery Zone Prepared for specific tools Modeling according to needs
Explorative Zone Modeling done by data scientist Modeling according to needs

Tab. 3: Overview of Data Modeling Decisions

Step 4: Design Data Storage. As the data to be managed is highly diverse, the data storage
concept for this data lake comprises multiple different storage systems. That way, data can
be managed where their characteristics and usage are supported best. For example, sensor
data are stored in time series databases that support effective time-oriented queries (such as
aggregations over time) while unstructured data are stored in a distributed file system.

Step 5: Design Infrastructure. As mentioned in step 4, multiple different storage systems and
tools should be used. We chose various tools for storage and processing from the Hadoop
ecosystem, e.g., HDFS and Apache Spark. Other systems, RDBMS and NoSQL databases
alike, are added to this core to support more data characteristics. In addition, parts of the
data lake are realized on a cloud-based structure to give third parties access to the stored
data, such as suppliers or even end customers.

Step 6: Design Data Modeling. The usage of a data zone architecture for the data organization
results in different modeling techniques in the zones. This is to support the required
characteristics of the zones in the zone reference model. While data in the Landing Zone
and Raw Zone are kept in their original format, Data Vault is used for structured data
in the Harmonized Zone and the Distilled Zone. Data Vault allows flexible, use-case-
independent, and scalable modeling of data in data lakes [Gi19b]. In addition, link-based
integration [GSM14] is used to link structured and semi-structured data to unstructured data.
The Harmonized Zone uses Raw Vault, while the Distilled Zone is modeled in Business
Vault to include business logic. Finally, data in the Delivery Zone and the Explorative Zone
are modeled according to specific needs.

Step 7: Design Metadata as Enabler. To handle all the stored data and to enable their usage,
metadata management is needed. As metadata are also data, steps 1-6 have to be performed
for them as well. Metadata may be structured or semi-structured and are ingested in the same
way as the data it belongs to (e.g., as data stream for streaming data). The data flow concept
for metadata thus is the same as for normal data. The data organization is unsegmented for
metadata, as they span across the zones. For data storage, we decided to manage metadata
in a graph database to support their highly connected structure (e.g., lineage metadata is

366 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 17

connected to data sources, operations, and resulting data). As infrastructure, we decided
on Neo4J13. The metadata are modeled using HANDLE, which can represent, but is not
limited to, lineage metadata, zone affiliations, and access information [Ei20]. This way, data
security & privacy and data quality metadata can be stored, too.

Step 8: Design Data Processes. Data processes need to be specified in two sub-aspects, data
lifecycle processes and data pipelining processes.

1) Data lifecycle processes in the scenario are defined in accordance with [DA17]. These
processes manage data in all steps of the data lifecycle, ranging from creation over storage,
use, and enhancement, to disposal. In all of these steps, metadata are captured and stored
with the data, e.g., lineage metadata about data’s creation, or metadata on who accessed
data. Due to space reasons, we cannot discuss the aspect of lifecycle management in more
detail. However, appropriate measures to comply with the data security & privacy and data
quality concepts are taken, such as access control and change management.

2) Data pipelining processes are heavily intertwined with the data zone model used in data
organization. Data are ingested and buffered in the Landing Zone before extract-transform-
load (ETL) processes forward them to the Raw Zone. From there on, further ETL processes
move the data into the other zones. These ETL processes apply transformations to the data
to make them fit for the zone they are moving into. For example, data may be transformed
according to data vault when moving from the Raw Zone to the Harmonized Zone. These
processes are also responsible to realize the defined data security & privacy and data quality
concepts. For example, personal data moving from the Landing Zone into the Raw Zone
have to be anonymized. Similarly, data moving from the Raw Zone to the Harmonized Zone
must follow certain quality guidelines.

Step 9: Design Metadata as a Feature. The final step is to specify concepts for metadata as
a feature. In the scenario, we use three concepts that provide features in addition to those of
metadata as enabler, namely a data catalog [Ch14] to allow access of data.

This completes the configuration of an exemplary data lake architecture using the DLAF. As
can be seen in the description above, the usage of the DLAF and the associated methodology
enabled a structured decision-making process. In the industry case, the DLAF provided
guidance on what aspects to include and how to choose appropriate concepts for their
implementation. It thus ensured that every aforementioned aspect is included in the data
lake architecture and that their interdependencies are considered. For example, we could
define data modeling with respect to the chosen zone model, or adjust the data processes
to the chosen metadata management. The DLAF enabled interdisciplinary collaboration
between domain experts, IT, and data scientists at the manufacturer’s site by providing
a common understanding of what a data lake architecture should comprise. Overall, the
definition of this exemplary data lake architecture shows both the guidance DLAF provides
as well as its applicability.

13 neo4j.com/

The Data Lake Architecture Framework 367

18 Corinna Giebler et al.

6 Conclusion and Future Work

While various concepts refer to themselves as data lake architectures, none of them covers all
aspects necessary for a functional data lake. Thus, we developed the data lake architecture
framework (DLAF) to support the definition of a scenario-specific data lake architecture.
The DLAF consists of nine data lake aspects to be considered, their interdependencies, and a
methodology to choose appropriate concepts for each aspect. The evaluation showed that the
DLAF can be applied in two ways: 1) It can be used to identify missing aspects in existing
data lake implementations and provide pointers towards re-design of the architecture. Our
discussion of existing real-world data lake architectures showed that important aspects
had been forgotten during the architecture’s definition, such as metadata management. We
showed that the DLAF supports not only the evaluation of existing data lake architectures to
identify such shortcomings, but also their extension towards comprehensiveness. 2) The
DLAF can be used to define a novel comprehensive data lake architecture. We used it in a
real-world industry case. The DLAF enables a structured, step-by-step decision process,
while providing decision support for choosing appropriate concepts. As interdependencies
between aspects are considered by the DLAF methodology, the concepts of the resulting
data lake architecture are well-matched to each other.

For future work, we plan to further apply and evaluate the developed data lake architecture
in practice. Furthermore, the implications of the DLAF for an enterprise-wide usage across
multiple data lakes should be investigated.

References

[Ba14] Ballard, C. et al.: Information Governance Principles and Practices for a Big
Data Landscape. IBM, 2014.

[Bo09] Bose, R.: Advanced analytics: opportunities and challenges. Industrial Manage-
ment & Data Systems (IDMS) 109/2, pp. 155–172, Mar. 2009.

[Ch14] Chessell, M. et al.: Governing and Managing Big Data for Analytics and
Decision Makers. IBM, 2014.

[Ch15] Chessell, M. et al.: Designing and Operating a Data Reservoir. IBM, 2015.
[CY15] Casado, R.;Younas,M.: Emerging trends and technologies in big data processing.

Concurrency and Computation: Practice and Experience 27/8, pp. 2078–2091,
June 2015.

[DA17] DAMA: DAMA-DMBOK: Data Management Body of Knowledge. Technics
Publications, 2017.

[De19] Dehghani, Z.: How to Move Beyond a Monolithic Data Lake to a Distributed
Data Mesh, 2019, visited on: 05/27/2019.

368 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

The Data Lake Architecture Framework 19

[Ei20] Eichler, R. et al.: HANDLE - A Generic Metadata Model for Data Lakes. In:
Proceedings of the 22nd International Conference on Big Data Analytics and
Knowledge Discovery (DaWaK2020). 2020.

[Ge17] Gessert, F. et al.: NoSQL database systems: a survey and decision guidance.
Computer Science - Research and Development 32/3-4, pp. 353–365, July 2017.

[Gi18] Giebler, C. et al.: BRAID - A Hybrid Processing Architecture for Big Data. In:
Proceedings of the 7th International Conference on Data Science, Technology
and Applications (DATA 2018). SCITEPRESS - Science and Technology
Publications, pp. 294–301, 2018.

[Gi19a] Giebler, C. et al.: Leveraging the Data Lake - Current State and Challenges. In:
Proceedings of the 21st International Conference on Big Data Analytics and
Knowledge Discovery (DaWaK 2019). 2019.

[Gi19b] Giebler, C. et al.: Modeling Data Lakes with Data Vault: Practical Experiences,
Assessment, and Lessons Learned. In: Proceedings of the 38th Conference on
Conceptual Modeling (ER 2019). 2019.

[Gi20] Giebler, C. et al.: A Zone ReferenceModel for Enterprise-Grade Data LakeMan-
agement. In: Proceedings of the 24th IEEE Enterprise Computing Conference
(EDOC 2020). 2020.

[Go16] Gorelik, A.: The Enterprise Big Data Lake. O’Reilly Media, Inc., 2016.
[GSM14] Gröger, C.; Schwarz, H.; Mitschang, B.: The Deep DataWarehouse: Link-Based

Integration and Enrichment of Warehouse Data and Unstructured Content. In:
Proceedings of the 2014 IEEE 18th International Enterprise Distributed Object
Computing Conference (EDOC 2014). IEEE, pp. 210–217, Sept. 2014.

[HGQ16] Hai, R.; Geisler, S.; Quix, C.: Constance: An Intelligent Data Lake System.
In: Proceedings of the 2016 International Conference on Management of Data
(SIGMOD’16). Pp. 2097–2100, 2016.

[Ho17] Houle, P.: Data Lakes, Data Ponds, and Data Droplets, Online, 2017.
[In16] Inmon, B.: Data Lake Architecture - Designing the Data Lake and avoiding the

Garbage Dump. Technics Publications, 2016.
[JQ17] Jarke, M.; Quix, C.: On Warehouses, Lakes, and Spaces: The Changing Role of

Conceptual Modeling for Data Integration. In (Cabot, J. et al., eds.): Conceptual
Modeling Perspectives. Springer International Publishing AG, chap. 16, pp. 231–
245, 2017.

[Li12] Linstedt, D.: Super Charge Your Data Warehouse: Invaluable Data Modeling
Rules to Implement Your Data Vault. 2012.

[Lo16] Lock, M.: Maximizing your Data Lake with a Cloud or Hybrid Approach,
tech. rep., 2016.

The Data Lake Architecture Framework 369

20 Corinna Giebler et al.

[Ma17a] Martínez-Prieto, M.A. et al.: Integrating Flight-related Information into a (Big)
data lake. In: Proceedings of the 36th IEEE/AIAA Digital Avionics Systems
Conference (DASC). IEEE, 2017.

[Ma17b] Mathis, C.: Data Lakes. Datenbank-Spektrum 17/3, pp. 289–293, Nov. 2017.
[ML16] Madera, C.; Laurent, A.: The Next Information Architecture Evolution: The

Data Lake Wave. In: Proceedings of the 8th International Conference on
Management of Digital EcoSystems (MEDES). ACM Press, New York, New
York, USA, pp. 174–180, 2016.

[MM18] Munshi, A.A.; Mohamed, Y.A.-R. I.: Data Lake Lambda Architecture for
Smart Grids Big Data Analytics. IEEE Access 6/, pp. 40463–40471, 2018.

[Mu13] Muschalle, A. et al.: Pricing Approaches for Data Markets. In: International
Workshop on Business Intelligence for the Real-Time Enterprise (BIRTE 2012).
Pp. 129–144, 2013.

[MW15] Marz, N.; Warren, J.: Big Data - Principles and best practices of scalable
real-time data systems. Manning Publications Co., 2015.

[NRD18] Nogueira, I.; Romdhane, M.; Darmont, J.: Modeling Data Lake Metadata with
a Data Vault. In: Proceedings of the 22nd International Database Engineering
Applications Symposium (IDEAS 2018). 2018.

[RZ19] Ravat, F.; Zhao, Y.: Data Lakes: Trends and Perspectives. In: Proceedings of the
30th International Conference on Database and Expert Systems Applications
(DEXA 2019). Pp. 304–313, 2019.

[SD20] Sawadogo, P.; Darmont, J.: On data lake architectures andmetadatamanagement.
Journal of Intelligent Information Systems/, 2020.

[Sh18] Sharma, B.: Architecting Data Lakes - Data Management Architectures for
Advanced Business Use Cases. O’Reilly Media, Inc., 2018.

[St20] Stach, C. et al.: AMNESIA: A Technical Solution towards GDPR-compliant
Machine Learning. In: Proceedings of the 6th International Conference on
Information Systems Security and Privacy (ICISSP 2020). Pp. 21–32, 2020.

[Te15] Terrizzano, I. et al.: Data Wrangling: The Challenging Journey from the Wild
to the Lake. In: Proceedings of the 7th Biennial Conference on Innovative Data
Systems Research (CIDR’15). 2015.

[Za87] Zachman, J. A.: A framework for information systems architecture. IBMSystems
Journal 26/3, pp. 276–292, 1987.

[Zi15] Zikopoulos, P. et al.: Big Data Beyond the Hype. McGraw-Hill Education, 2015,
isbn: 978-0-07-184466-6.

370 Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

cbe

X et al. (Hrsg.): 19th Symposium for Database Systems for Business, Technology and Web,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

FactStack: Interoperable Data Management and
Preservation for the Web and Industry 4.0

Lars Gleim1, Jan Pennekamp2, Liam Tirpitz1, Sascha Welten1, Florian Brillowski3,
Stefan Decker1,4

Abstract:

Data exchange throughout the supply chain is essential for the agile and adaptive manufacturing
processes of Industry 4.0. As companies employ numerous, frequently mutually incompatible data
management and preservation approaches, interorganizational data sharing and reuse regularly requires
human interaction and is thus associated with high overhead costs. An interoperable system, supporting
the unified management, preservation, and exchange of data across organizational boundaries is
missing to date. We propose FactStack, a unified approach to data management and preservation based
upon a novel combination of existing Web-standards and tightly integrated with the HTTP protocol
itself. Based on the FactDAG model, FactStack guides and supports the full data lifecycle in a FAIR
and interoperable manner, independent of individual software solutions and backward-compatible with
existing resource oriented architectures. We describe our reference implementation of the approach and
evaluate its performance, showcasing scalability even to high-throughput applications. We analyze the
system’s applicability to industry using a representative real-world use case in aircraft manufacturing
based on principal requirements identified in prior work. We conclude that FactStack fulfills all
requirements and provides a promising solution for the on-demand integration of persistence and
provenance into existing resource-oriented architectures, facilitating data management and preservation
for the agile and interorganizational manufacturing processes of Industry 4.0. Through its open-source
distribution, it is readily available for adoption by the community, paving the way for improved utility
and usability of data management and preservation in digital manufacturing and supply chains.

Keywords: Web Technologies; Data Management; Memento; Persistence; PID; Industry 4.0

1 Introduction

While the management and preservation of manufacturing data regularly play a crucial
role to fulfill legal and contractual accountability requirements, today’s industrial data
management is frequently considered an overhead factor instead of a valuable tool for data
reuse, e.g., in the context of process optimization. While many aspects of data reuse have
been studied in prior work [Gl20d; Ka17; LGD20], low-overhead data management solutions
for industry are missing to date [Pe19b]. In the following, we introduce a representative use
case scenario in the aerospace domain to motivate the remainder of the paper.
1 Databases and Information Systems, RWTH Aachen University, Germany · gleim@dbis.rwth-aachen.de
2 Communication and Distributed Systems, RWTH Aachen University, Germany
3 Institute of Textile Technology, RWTH Aachen University, Germany
4 Fraunhofer FIT, Sankt Augustin, Germany

cba doi:10.18420/btw2021-20

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 371

https://creativecommons.org/licenses/by-nc/3.0/
gleim@dbis.rwth-aachen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-20

2 Gleim et al.

Data Management and Preservation for Aircraft Manufacturing. The manufacturing
of parts in the aerospace industry has strict certification requirements throughout the
manufacturing process and supply chain, requiring detailed data about each process step
to be collected, validated, and archived for years. For example, US-American regulations
require the secure storage of type design case files, comprising drawings and specifications,
information about dimensions, materials, and processes, for more than 100 years [Fe06].
Such strict requirements make sophisticated data management and preservation systems
indispensable. At the same time, managing data in compliance with such regulations
is traditionally associated with significant costs due to overheads incurred e.g., through
manual data handling and inspection processes [Po17]. Considering a modern aircraft
manufacturing supply chain, massive amounts of production data need to be managed and
preserved [Pe19c], involving human paper-based signature mechanisms and leading to high
associated overhead costs. In contrast, the efficient digital collection, management, exchange,
and preservation of this data could lead to significant cost savings and productivity gains as
part of Industry 4.0, not only in aviation but in many industries producing safety-critical
components or otherwise facing strict certification and data retention requirements (e.g.,
textile, food processing, or plastics industry).

Use Case Scenario. Especially the manufacturing of structural elements in the aerospace
industry relies on a large variety of technical textiles, such as light-weight, yet stiff
carbon-fiber-reinforced plastics. We consider a common and simple aerospace scenario as
illustrated in Fig. 1. ManufacturerA produces a light-weight carbon-fiber wing profileR-001,
manufacturer B produces airscrew PX9, both collecting manufacturing process information
along the process. Manufacturer C assembles an airplane A1-001, employing wing profile
R-001 sourced from A and airscrew PX9, sourced from B. C further conducts regular
maintenance work on airplane A1-001 throughout its lifetime, collecting corresponding
maintenance data throughout its lifetime. Although material and workpiece identifiers
within individual companies are usually standardized and production process data are often
collected locally, individual resources are typically allocated to a specific cost center within
the company’s management and ERP system and cannot be easily linked to information in
external systems, e.g., about which product, workpiece, or application may have been used
during the manufacturing process. When, e.g.,C buysR-001 fromA, existing manufacturing
data, such as collected by A during the production process, is seldomly or only insufficiently
passed on. Additionally, data collected during later stages of the product lifecycle, such as
the maintenance data collected by C, is typically not passed back throughout the supply
chain although it may serve as a valuable tool, e.g., in the context of wear and fatigue
analysis of parts and products. Today, especially product quality data is mostly shared on
paper and typically discarded after respective quality checks have been passed. Additionally,
the quality of fiber-reinforced products is typically controlled only after post-processing
is finished and changes are no longer possible [Me12]. A product is then either certified
for the intended application during quality control or scrapped, while it may be perfectly
reusable for other subsequent applications.

372 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 3

Physical

Data Store

Data Flow

C
B

R-001

PX9

A

Secure Storage
(30+ Years)

Used for Audits
and Production

Fig. 1: Aerospace use case scenario: Manufacturer A produces wing profile R-001 and
ManufacturerB airscrewPX9. Both collect quality data as part of their respective certification
requirements during the process. Manufacturer C acquires the parts, employing them in
the manufacturing of plane A1-001, keeps all related certification data and maintenance
records in secure storage for 30+ years to comply with legal regulations.

Similar scenarios can be described for other domains in industry [Da19; Ni20; Pe19c; Pe20a;
Pe20b]: Today, the collection, exchange, and preservation of data is frequently limited by the
overhead cost of this data management (or fears of a loss of control over valuable data) while
exactly the same data could be used for subsequent manufacturing process optimizations.
Thus, an interoperable and principled data management and preservation system is needed
to reduce data management overheads and therefore the associated costs and risks.

Principal Requirements. Data management and preservation for Industry 4.0 must enable
the integration, exchange, and preservation of a wide variety of different types of data from
all kinds of information systems employed throughout both the automation pyramid and the
product lifecycle. Building upon the FAIR principles [Wi16] of scientific data management,
an implementation should notably ensure that data is findable, accessible, interoperable,
and reusable. Recent work has argued that these principles are equally applicable for data
exchange throughout the supply chain and in Industry 4.0 [Gl20b]. For the realization
of these principles, a number of specific services that need to be provided by any data
management solution have been identified in prior work [GD20a; Gl20b; Hu00; Wi16],
notably including:

1. identification, enabling globally unique and reliable referencing and citation of
resources,

2. versioning, ensuring the immutability of individual resource revisions to avoid
references from becoming incorrect due to content changes and enable change
monitoring and state synchronization,

3. persistence, allowing individual resource revisions to be archived and persistently
identified through so-called persistent identifiers (PIDs),

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
373

4 Gleim et al.

4. an access mechanism for resource retrieval and modification which should be open,
free, and universally implementable,

5. discovery mechanisms, to make resources, metadata, and archives findable, and
6. accuratemetadata, to ensure interoperability and reusability through clear semantics,
e.g., by keeping track of data provenance, i.e., information about data origins,
influences, and evolution over time.

To address these requirements, Gleim et al. [Gl20b] recently proposed the FactDAG data
interoperability model, for which we present a suitable implementation in this paper.
Importantly, this implementation should further: provide the identified services in a
manner that ensures backward-compatibility with existing resource oriented infrastructure
and patterns as far as possible, be optionally adoptable, provide interoperability across
software vendors and domains, employ non-proprietary, free, universally implementable
and established standards whenever possible, and incur low overheads—both technical
and otherwise—to support sustainability.

Contributions. To provide this implementation, we propose FactStack, an interoperable
approach to data management and preservation based upon a novel combination of ex-
isting Web standards and tightly integrated with the HTTP protocol itself. Thereby, we
directly realize the FactDAG data interoperability layer model, which we proposed in prior
work [Gl20a; Gl20b], in a FAIR and interoperable manner, independent of individual
software solutions and backward-compatible with existing resource oriented architectures.
FactStack digitally supports data management throughout the full data lifecycle [Ba12;
Co19] and directly integrates data management into the technology stack of the Web, instead
of just using HTTP as an access mechanism. We further provide an open-source reference
implementation of this approach, paving the way for its rapid adoption by the community
and, subsequently, the proliferation of best practices for data management and preservation
in digital manufacturing and supply chains. We demonstrate the scalability of the system to
high-throughput applications and qualitatively highlight its applicability to industry using a
real-world use case in the aerospace domain.

Paper Organization. The remainder of this paper is structured as follows. Sect. 2 provides
an overview of related work and fundamental technologies. Sect. 3 conceptualizes our data
management and preservation system, based upon open and standardized Web technologies.
Sect. 4 then describes FactStack, our open-source implementation of this system, and
evaluates its performance, before we discuss the impact of the proposed solution for data
management and preservation in Sect. 5. Finally, we conclude our work in Sect. 6.

2 Related Work and Foundational Web Technologies

As related and foundational work, we first introduce existing data management solutions and
the specific data characteristics and infrastructure requirements in the context of Industry
4.0. We then detail how Web technologies and standards provide fundamental primitives

374 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 5

and building blocks for the realization of interoperable data management. We discuss
essential aspects of interorganizational interoperability and outline the role and importance
of provenance information for reliable data reuse. Finally, we summarize the FactDAG
data interoperability layer model [Gl20b] as the theoretical foundation of our practical data
management solution.

Data Management for Industry 4.0. The digital transformation already affects many areas
of data management and preservation processes, ranging from the usage of collaborative
file systems and well-known products, such as Dropbox or Google Drive, over collaborative
model-based engineering environments [La19] to specialized version control systems
(such as Git [AM19] or Mercurial [Ma06; RA12]). While industrial data management
systems typically rely on database and data warehousing systems, the data in these systems
is traditionally managed through external software and applications and not explicitly
optimized for reuse. Therefore, data is typically only managed and accessed through
respective application programming interfaces offered by the ERP (enterprise resource
planning), MES (manufacturing execution system) or SCADA (supervisory control and
data acquisition) systems, depending on the level of abstraction within the automation
pyramid [In03]. Within organizations, data reuse is typically realized through use case
specific ETL (extract, transform, load) processes, which require significant amounts of
manual data cleaning and integration effort. Additionally, none of the individual data
management systems are particularly suitable for the wide range of volume, velocity,
variety, and veracity of heterogeneous data formats that need to be continuously managed,
exchanged, and integrated at Internet scale for the full realization of Industry 4.0 [Gl20b].
Pennekamp et al. [Pe19b] summarize, that an infrastructure for Industry 4.0 should be able
to ingest, store, integrate, and query the heterogeneous production data (i.e., structured, semi-
structured, or unstructured) in task-appropriate storage systems according to process-specific
requirements and should also be generic and extensible for possible future needs. The
authors further conclude, that existing systems are typically lacking semantic enrichment
of data, e.g., using Semantic Web technologies [BHL01], which allows for them to be
shared and reused across application, enterprise, and community boundaries, and enables
the creation of machine-actionable knowledge. Based on their success in the realization
of scalable, interoperable, and extensible enterprise solutions [Bl13], Web technologies
are already integral components of many existing data management systems (such as the
aforementioned). In combination with Semantic Web technologies, they provide a promising
basis for the development of interoperable and sustainable data management solutions for
Industry 4.0 and the Web [GD20a].

Web Technologies for Interoperability. Interoperability in theWeb is based on a number of
fundamental standards, notably including: the global Domain Name System (DNS) [Mo87],
the HTTP protocol and its implementation of the Representational State Transfer (REST)
architectural pattern [Fi00], the Uniform Resource Identifier (URI), as well as its directly
resolvable incarnation, the Uniform Resource Locator (URL) [BFM05]. Building on top
of these foundations, Linked Data and the Semantic Web enable data interoperability on

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
375

6 Gleim et al.

the Web. Using the Resource Description Framework (RDF) [WLC14] data model and its
serializations and enable machine-to-machine data interchange, the semantic enrichment
of data, and the ability to interlink data across organizational boundaries. Deploying these
standards supports interoperability. Notable standardized extensions of the basic HTTP
protocol for distributed data exchange and management on the Web include (i) the Linked
Data Platform (LDP) standard [SAM15], and (ii) the HTTP Memento protocol [VNS13].
The Linked Data Platform defines how Linked Data resources can be read and written
using HTTP REST methods, i.e., HTTP GET, POST, PUT, PATCH, and DELETE. Besides resource
access, the LDP enables the creation of containers that can be used to organize resources
and to express relationships between them. Thus, it enables simplified resource discovery,
as well as providing a mechanism to provide a dedicated metadata record for arbitrary Web
resources using the HTTP rel="describedby" Link header. Using the LDP protocol, Linked
Data and Web resources can be managed similarly to regular files in a local file system
while enabling the augmentation of arbitrary resources with semantic metadata. A detailed
introduction to the LDP can be found in [SAM15]. TheMemento protocol introduces a
mechanism to manage and retrieve persistent versions of Web resources by using timestamps
as a resource version indicator and access key. Resource versions may be redundantly stored
on multiple servers and managed independently of each other, enabling sustainable and
distributed resource archiving [VNS13]. The Memento protocol provides primitives to
address resource versioning, persistence, access, and discovery. As such, prior work already
suggested the Memento protocol as a promising candidate for the implementation and
standardization of data management and preservation systems [GD20a; Va14; Va18]. A
detailed overview of the Memento protocol is provided in [VNS13].

Interorganizational Interoperability. An important factor limiting the adoption of interor-
ganizational data exchange is uncertainty about the reliability of data, accountability, and
liability questions for damages incurred by inaccurate data [Pe19a]. To this end, the concept
of data provenance plays an important role in the realization of trust, accountability, and
better interpretability of data and the processes that lead to their creation in collaborative
manufacturing and supply chain systems. The term provenance, sometimes also called data
lineage, refers to metadata regarding the formation history, origins, and influences that
impacted the state of individual data. An open and extensible standard for provenance data
is the W3C PROV data model (PROV-DM) for provenance interchange on the Web [MM13].
A primer on this model and its primitives can be found in [Gi13]. Provenance records
are, e.g., successfully employed to build and analyze scientific workflows through process
mining [Ze11], to ensure the reproducibility of such workflows [Ko10], to establish trust
across heterogeneous sources of data [LLM10] and to further data reuse [Yu18]. Provenance
data is special, in the sense that it is metadata that is relevant and collectible for practically
any kind of resources and directly relates to the data authoring and management process. As
such, it may serve as a generic kind of interoperable ‘glue’, relating resources throughout
their formation history.

FactDAG Model. The conceptual FactDAG data interoperability model proposed by Gleim

376 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 7

et al. [Gl20b] similarly employs data provenance to interlink resources and data throughout
supply chain processes and in Industry 4.0. By using a persistent identification mechanism
called FactID, FactDAG simultaneously addresses the requirements of identification,
versioning, and persistence, constructing persistent identifiers from unique triples of
global authority ID, internal resource ID and respective revision ID of a given immutable
resource revision, also referred to as a Fact. The model further employs Authorities,
entities (e.g., companies or organizations) that are responsible for Facts, Processes, which
describe prototypical interactions with Facts, and ProcessExecutions, which refer to their
instantiations and are introduced to capture individual influences and results (i.e., newly
created Facts or Fact revisions). Additionally, a single relation (called influence, oriented
forward in time) is used to express provenance relations between the elements of the FactDAG,
thus constructing a provenance-based, directed acyclic graph of Facts, the FactDAG. Thus,
the model allows tracing back the origins of Facts throughout time, revealing the resources,
authorities, and processes involved in its conception and throughout the data management
process. By globally and persistently identifying immutable revisions of resources, the
model allows for information to be reliably referenced in global collaboration scenarios.
The deep incorporation of provenance information into the model provides companies
with a solid base of relevant metadata for the establishment of accountable, reliable, and
sustainable data integration, even in interorganizational scenarios. For additional details, we
refer to the specification of the FactDAG model [Gl20b].

While we believe that the abstract FactDAG model provides a promising basis for the
implementation of a data management and preservation system for Industry 4.0, it lacks
both a concrete implementation, as well as a principled integration with best practices of
data management to date. Thus, we propose a concrete implementation concept based on
the fundamental data management lifecycle in the following section.

3 A Concept for Interoperable Data Management and Preservation

Data represent corporate assets with potential value beyond any immediate use, and therefore
need to be accounted for and properly managed throughout their lifecycle [Fa14]. Various
data lifecycle models [Ba12; Co19] have been proposed in recent years to serve as a high-
level guideline for the data management process—from conception through preservation
and sharing—to illustrate how data management activities relate to processes and workflows,
to assist with understanding the expectations of proper data management and to ensure that
data products will be well-described, preserved, accessible, and fit for reuse. The recurring
elements of such models can be summarized in a five-step data management lifecycle model
as illustrated in Fig. 2, consisting of the steps: (i) creation, processing, modification, and
analysis, (ii) metadata management and data preservation, (iii) release and publishing of
data, including proper licensing, documentation, etc., (iv) discovery for reuse of available
data, and (v) the retrieval, curation, and capture of this data for subsequent processing.
In the following, we consistently refer to these steps using the names provided in Fig. 2.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
377

8 Gleim et al.

Create, Process
& Analyze

Manage &
Preserve

Release
& Publish

Discover
& Reuse

Curate &
Capture Data

Lifecycle

Identification
Provenance
Metadata

Access
Retrieval

Attribution

Validation
Cleanup

Integration

Versioning
Persistence
Integrity
Compliance

Licensing
Terms & Conditions
Other Metadata

Fig. 2: The data management lifecycle consists of five steps providing an abstract model for
data management processes, both in industry and academia. Adapted from [Ba12; Co19].

Traditionally, data management infrastructure is mainly employed as a kind of mediating
service between the Release & Publish and the Discover & Reuse phase of the data lifecycle,
while the remaining steps are carried out independently by human actors. In contrast, we
aim to support the full data lifecycle process, integrating it directly with the fundamental
infrastructure of the Web.

Technical Approach. Based on the principles of the FactDAG model [Gl20b], we strive to
realize an interoperable data management and preservation system for usage throughout the
data management lifecycle, the product lifecycle and the full supply chain, which satisfies
the requirements identified in Sect. 1. As already motivated in Sect. 2, this system should
build upon existing open Web standards whenever possible, ensuring compatibility and
interoperability with existing systems and deployed solutions, as well as profiting from
an ecosystem of developers with corresponding proficiency [St20] and the wide variety
of available authentication and authorization mechanisms [TCS18]. The implementation
should allow for incremental adoption, enabling the management and preservation of
existing data according to the principles of the FactDAG model in an ad-hoc, on-demand
fashion. Additionally, it should be backward-compatible, allowing clients that have no use
for, do not support, or are unaware of data management principles in general, to simply
ignore all related additional information. Provenance data should be collected and processed
automatically whenever possible, especially during the Curate & Capture and Manage &
Preserve phases, to minimize the amount of explicit markup and metadata management
required and prevent easily avoidable user errors.

For the realization of these goals, we build upon two recent proposals by Gleim et al.: a PID

378 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 9

system employing dated URIs in conjunction with a resolution mechanism based on the
HTTP Memento protocol [GD20b] (addressing aspects of data identification, versioning,
persistence, and access), as well as an alignment of FactDAG provenance with the W3C
PROV standard for provenance information [Gl20c] (addressing aspects of data provenance
and discovery). In the following, we outline and extend upon these proposals, integrating
them with the W3C Linked Data Platform and other Web standards to form a comprehensive
data management solution, addressing all requirements as formulated in Sect. 1.

3.1 FactID: Time-based Persistent Data Identification

To fulfill the identification, versioning, and persistence requirements as defined in Sect. 1
within the FactDAG model, a suitable persistent resource identification mechanism for the
implementation of the FactID scheme is needed. As mentioned in Sect. 2, a FactID consists
of the three components authority, internal resource ID and revision identifier. Inspired
by the original FactID proposal [Gl20b], we map all three components to a single URI to
enable backward-compatibility with the Web infrastructure, as follows:

Authority auth.All data in the FactDAGmodel is placed under the exclusive and authoritative
control of an organizational body, as identified by its global (but not persistent) authority ID
𝑎𝑢𝑡ℎ ∈ Authority. We map Authority to the set of all DNS domain names [Mo87].

Internal ID iID. All resources available under the control of auth are identified by their
respective internal resource ID 𝑖𝐼𝐷 ∈ P. We map P to the set of all URI Paths [BFM05]
(including query and fragment suffixes). Combining auth and iID in a tuple creates a global
(but not persistent) resource identifier, which we practically materialize as traditional HTTP
URLs of the form http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷.

Revision ID 𝜏. Individual resource revisions are further identified by their respective revision
ID 𝜏 ∈ T . We map T to the set of all RFC3339 [NK02] arbitrary precision UTC timestamps.
While other revision identification mechanisms (such as content hashing) are conceivable,
we specifically employ UTC timestamps due to their globally agreed-upon semantics.
Timestamps are further unaffected by content-variations (e.g., due to content-negotiation)
and allow for the intuitive ordering of resource revisions and their direct interpretation
as time series data. Subsequently, the triple (𝑎𝑢𝑡ℎ, 𝑖𝐼𝐷, 𝜏) ∈ Authority × P × T yields a
persistent global identifier – a FactID – for the immutable state (i.e., revision) of the resource
identified by the tuple (𝑎𝑢𝑡ℎ, 𝑖𝐼𝐷) at the point in time 𝜏. We employ the term Fact to refer
to this immutable data state.

FactID URI Scheme. Many PID approaches require the assignment, registration, and
management of PIDs outside of the Web infrastructure and already existing URL identifiers.
This causes overhead for identifiermapping and discovery [Va14]. Thus,Gleim et al. [GD20b]
proposed a system capable of reusing existing URLs as PIDs by combining dated URIs
(for identification) with an HTTP Memento-inspired resolution mechanism (for versioning

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
379

10 Gleim et al.

Memento RetrievalPersisting Resources

URL Retrieval
Time

FactID+ = FactID

Retrieval Persistent
Identification Archiving

FactID

URL
Creation
Time+

HTTP GET URL
Accept-Datetime: Time

FactID Resolution

Fig. 3: Persisting and retrieving data using FactID. A FactID uniquely identifies a Fact (i.e.,
an immutable resource revision) by combining its URL with a timestamp. Such a FactID
can be used to retrieve that Fact via the Memento protocol. Adapted from [GD20b].

and persistence). We employ this approach to realize a URI scheme for FactID through the
following mapping:

While it is possible and common practice to resolve specific resource versions through
URLs including HTTP query parameters, such an approach is hard to standardize in a
backward-compatible manner. While a URL of e.g., the form http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷/?v=𝜏 may
be employed to uniformly express a persistent identifier according to the semantics of the
FactID, the query parameter v is likely already used with different semantics in other contexts,
creating the potential for naming conflicts. To avoid this problem, we adapt Larry Masinter’s
‘duri:’ dated URI proposal [Ma12] for the identification of specific resource revisions,
resulting in the ‘factid:’ URI scheme: A FactID of the form factid:𝜏:http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷
persistently identifies the immutable state of the resource http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷 at the point in
time 𝜏, also referred to as a Fact orMemento. We refer the interested reader to Masinter’s
RFC proposal [Ma12] for an additional discussion of the benefits and implications of
employing dated URI.

HTTP-based Data Retrieval. To materialize and implement a practical resolution mecha-
nism for such a FactID, we employ the HTTP Memento protocol as an access mechanism.
Given a fixed ID, the resolution function 𝑟𝑒𝑠 : Authority × P × T → Fact (with Fact as the
set of all Facts) retrieves the Fact 𝑓 identified by a given FactID through HTTP datetime
negotiation via the HTTPMemento protocol [VNS13]. To maintain backward-compatibility,
𝑟𝑒𝑠 defaults to resolving the current state of the resource identified by the tuple (𝑎𝑢𝑡ℎ, 𝑖𝐼𝐷),
i.e., the URL http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷, if no revision ID is provided. The current resource state, as
resolved via HTTP, may be lifted to a Fact by a consumer through incorporating the current
timestamp as revision ID, as outlined in the original Fact construction procedure in [Gl20b]
and illustrated in the left half of Fig. 3. This way, it is possible to enable the on-demand
incorporation of persistence into existing systems implementing REST semantics. Given
such a factid, the original resource state may then be retrieved from an archive through an

380 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 11

HTTP GET request employing the Memento Accept-Datetime header with the Memento’s
creation time as specified in the 𝜏 part of the factid as depicted in the right half of Fig. 3. An
overview of the different retrieval patterns and further features supported by the Memento
protocol is given in [VNS13].

Data Persistence.As postulated byKunze and Bermes [KB19], persistence (and analogously
immutability) is purely a matter of service. It is neither inherent in an object nor conferred
on it by a particular naming syntax but only achieved through a provider’s successful
stewardship of resources and their identifiers. Since the architecture of the HTTP Memento
protocol “is fully distributed in the sense that resource versions may reside on multiple
servers, and that any such server is likely only aware of the versions it holds” [VNS13],
the service of data persistence may subsequently be provided by the authoritative data
source, by any data consumer, by third parties such as governmental institutions or archiving
providers or any number thereof, as long as volitional and legally permitted. By allowing
for the discovery and retrieval of immutable data revisions over time, the Memento protocol
further enables state synchronization between storage and archive locations as the data
changes over time, thus additionally supporting redundant storage, e.g., for long-term data
preservation. A detailed discussion of these applications may be found in [GD20b].

3.2 Automated Provenance Annotation and Distribution

As already discussed in Sect. 2, provenance is a particularly important category of metadata
for data management. In alignment with the principal requirements identified in Sect. 1,
we strive to minimize the metadata management overhead, by collecting provenance
information automatically whenever possible. To ensure interoperability with existing
tooling and reuse existing standards, we employ the recently proposed alignment [Gl20c]
of FactDAG provenance to the W3C PROV-O ontology standard [LSM13]. The mapping,
illustrated in Fig. 4, thus allows for the expression of FactDAG provenance information
as RDF metadata. For any given Fact 𝑓 with FactID 𝑓 𝐼𝐷 = (𝑎𝑢𝑡ℎ, 𝑖𝐼𝐷, 𝜏), the following
provenance relation may be directly derived:

– 𝑓 is an instance of the prov:Entity class.
– 𝑎𝑢𝑡ℎ is an instance of the prov:Organization class.
– 𝑓 is prov:wasAttributedTo its authoritative source 𝑎𝑢𝑡ℎ.
– If 𝑓 is a direct revision of predecessor Fact 𝑓 ′, then 𝑓 prov:wasRevisionOf 𝑓 ′.
– 𝑓 is a prov:specializationOf its respective original resource, identified by the URL
derived from the tuple (𝑎𝑢𝑡ℎ, 𝑖𝐼𝐷).

Additionally, information about any prov:Entitywhich was prov:used or prov:wasGeneratedBy
a given prov:Activity may be automatically collected through the usage of a runtime library
for Fact management, which we detail in Sect. 4. Nevertheless, further metadata and
provenance information may have to be collected manually and can be added using RDF-
compatible metadata vocabularies or other domain-specific ontologies, following the FAIR

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
381

12 Gleim et al.

Organization
Authority

Entity
Fact

Activity
ProcessExecution

Agent
Process

(0,1)
wasRevisionOf
(0,n)

(1,1)

actedOnBehalfOf

(0,n)

(1,1)wasAssociatedWith(0,n)

(0,n)

used

(0,n) (1,1)

wasGeneratedBy

(0,n)

(1,1)wasAttributedTo(0,n)

Fig. 4: The elements of the FactDAG model (in italic) and their provenance relations
expressed using PROV-O primitives with corresponding (min,max)-cardinalities [Ab74].
The shapes represent the PROV core classes Entity, Activity, and Agent (with Organization as
a subtype), respectively. Adapted from [Gl20c].

principle that metadata shall use a formal, accessible, shared, and broadly applicable
language for knowledge representation and be described with a plurality of accurate and
relevant attributes [Wi16].

3.3 Fact Discovery and Creation

The final missing conceptual component is a standardized discovery and read/write mecha-
nism for data resource management. Due to its potential for interoperability with existing
HTTP REST APIs and conceptual simplicity, we implement the Linked Data Platform
specification [SAM15] for this task. Thus, resources (as identified by their respective HTTP
URLs of the form http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷) can be organized in a hierarchy of LDP Containers
within their authoritative source 𝑎𝑢𝑡ℎ, enabling for resource discovery within it through
exploration. In contrast, resource creation and modification are handled through the specified
LDP HTTP REST methods.

To support a wide variety of structured, semi-structured, or unstructured data formats,
including binary blobs of arbitrary file-type, the LDP specification further provides the
option to augment Non-RDF LDP resources with a respective RDF metadata resource,
linked through the HTTP rel="describedby" Link header, which we employ in practice, to
store provenance information and further metadata. Both data and metadata can then be
discovered through one single URL (or FactID respectively) and retrieved via HTTP.

Overall Concept. By combining dated URIs, the HTTP Memento protocol and the
Linked Data Platform standard with PROV-O provenance and extensible RDF metadata,
we ultimately propose a concept for semantic data management directly based on core
technologies of the Web—URI, HTTP, and RDF—as illustrated in Fig. 5. By considering
resource versioning and persistence as additional service layers of the basic Web technology
stack and implementing them as extensions of URI and HTTP, we ensure backward-
compatibility and interoperability with existing resources on the Web. By reusing existing

382 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 13

Identification

Versioning

Persistence

Access

Discovery

Metadata

HTTP
Memento
Protocol

Provenance

RDF PROV Standard
Linked Data

Platform

URI
Dated URIs

Fig. 5: The novel combination of existing protocols and Web standards provides a unified
data management solution, addressing all principal requirements identified in Sect. 1.

standards where possible, and enabling on-demand resource versioning and persistence
through consumers and third parties, the concept effectively addresses all requirements
identified in Sect. 1, providing a promising foundation for its long-term sustainability.
Based on this concept, we present our reference implementation of an interoperable data
management and preservation solution for the Web and Industry 4.0.

4 FactStack: A Concrete Realization of the FactDAG Model

Following the conceptual approach presented in Sect. 3, we realize FactStack as a concrete
open-source implementation of the FactDAG model for interoperable data management
and preservation. Based upon the basic REST paradigm at the core of the Web, FactStack
employs standardized and open Web technologies to provide a uniform data management
API for arbitrary data resources on the Web, while enabling persistent data preservation
through the HTTP Memento protocol.

Our realization consists of three open-source components, available for practical usage: A
server component1, adapted from the Trellis LDP project and implementing the LDP and
Memento protocols for data storage andmanagement, a JavaScript client library2 simplifying
both the interaction with the LDP server and the management of data provenance, as well as
an optional broker, which enables real-time subscriptions to changes of LDP resources, i.e.,
newly created data revisions.

Data Storage. For the realization of a Fact authority, we employ a data storage server1
based on the LDP implementation of the Trellis open-source project3. Trellis provides
both direct integrations with a number of freely available storage backends, as well as the

1 Available at: https://git.rwth-aachen.de/i5/factdag/trellis
2 Available at: https://git.rwth-aachen.de/i5/factdag/factlibjs
3 https://www.trellisldp.org/

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
383

https://git.rwth-aachen.de/i5/factdag/trellis
https://git.rwth-aachen.de/i5/factdag/factlibjs
https://www.trellisldp.org/

14 Gleim et al.

ability to integrate with existing information systems as its data store. The project further
implements the HTTP Memento protocol [VNS13] for resource versioning, which we
adapted to support RFC3339 [NK02] timestamps with up to nanosecond precision, as per
the recent proposal of Gleim et al. [GD20b]. By default, all resources are identified by
traditional URLs of the form http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷, their Mementos by corresponding FactIDs
and revisions managed through the Memento protocol. To enable backward-compatible
linking to Facts with standard URLs and resolution over plain HTTP, the server assigns an
additional unique Memento URL𝑈𝑅𝐿-𝑀 (cf. [VNS13]) of the form http://𝑎𝑢𝑡ℎ/𝑖𝐼𝐷/?v=𝜏
to each Fact. Finally, we implemented Memento headers to also be returned in response to
LDP PUT and POST requests, as proposed by [GD20b], avoiding race conditions between
competing resource updates and Memento header retrieval, thus ensuring efficient atomic
resource updates.

Data Management. To guide the data management process in client applications, the
FactLib.js library2 mirrors the data lifecycle (cf. Fig. 2) in code. Facts are retrieved or
created within the context of an activity and are subsequently registered as used, respectively
generated by this activity, i.e., automatically recorded as corresponding provenance links.
The library further handles the transparent and unified retrieval and creation of both RDF
and Non-RDF Facts and their respective metadata, as well as automatically adding collected
and inferred provenance information (cf. Sect. 3.2) as RDF metadata using the W3C PROV
standard. For RDF resources, the provenance information is directly part of the resource
stored in the LDP and can be found and retrieved by all clients that resolve the FactID to that
resource. For binary resources, the Factlib.js library automatically discovers and manages
metadata through the HTTP rel="describedby" Link header (cf. Sect. 3.3), retrieves it via
HTTP and delivers it to the client application as part of the Fact. While authorities only
store and provide access to Facts under their own control, clients can read and write from
and to resources associated with different authorities. Clients may learn about Facts under
the control of third-party authorities, e.g., by following provenance links (i.e., traversing
the FactDAG), through explicit membership links provided by the LDP implementation
or through other generic RDF triples or links. Each authority server may employ its
own authentication and access authorization mechanisms, as well as providing its own
data licensing terms, in order to maintain control over access to its data. Once a client
successfully retrieved a resource, they may optionally (if legally allowed) archive it with any
number of external Memento archiving providers (such as their own organization’s) to serve
as long-term persistence providers for arbitrary Facts. This distributed and usage-based
archiving mechanism allows for flexible and use case driven trade-offs between persistence
guarantees and associated costs, further contributing to the long-term sustainability of the
data management approach as a whole. Retrieving Facts from third-party archives does,
however, raise associated questions regarding authenticity and integrity, which we plan to
consider in future work.

WebSocket Subscriptions. Since many applications in Industry 4.0 may profit from push-
based real-time updates of changes to resources, e.g., to react to events with low latency,

384 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 15

a useful, practical feature consists of subscription support. Whenever new revisions of
resources are created, a subscribed client receives a corresponding notification. Since for
any pair of authority ID and internal ID, a series of data revisions could exist over time, all
data within the FactDAG model is effectively time-series data. As such, every data point (as
identified by authority and internal ID) is a stream of Facts and processing of facts is stream
processing, which may, in turn, result in new Facts. To implement subscription support, we
employ a broker-based approach to communicating change notifications in Activity Streams
2.0 [SP17] format using a STOMP4 message encoding and a WebSockets [MF11] transport.

Performance. Finally, we conduct a performance evaluation of a single-node deployment
of the server application on a workstation with Intel i7-8700K CPU, 64 GB of RAM and
NVMe SSD. We configure Trellis to store Mementos in the file system and employ a local
Apache ActiveMQ Artemis5 broker to support resource subscriptions via its Stomp over
WebSockets implementation. We measure the average response time for Fact creation using
HTTP PUT requests under different loads via Apache JMeter6, as well as the average
time until a change notification is received back by a subscriber which consists of a basic
collection script based on stomp.py7. To simulate random access to resources, 100 000
different resources are initially created containing five RDF triples each, as may be expected
for small resources, such as single sensor values. The local JMeter client application issues
PUT request to the server to update resources randomly chosen from this pool to apply
the desired load and only starts the measurement of the average response times after an
initial warm-up period. The stomp.py script subscribes to all resources with the ActiveMQ
broker and records the timestamps of received notifications and the associated resource. The
notification time is computed afterward, by comparing the timestamp of the request with
the recorded timestamp of the collection script. To guarantee independent measurements,
the whole system including the stored data is reset after each measurement.

The results plotted in Fig. 6 indicate a relatively stable average response time of around 10ms
for throughputs of up to 1000 insertions per second. For a throughput up to approximately
580 requests per second, the average response time is between 6ms and 12ms and the
subscriber receives the notification in under 60ms after the response confirming the
resource modification is received by the sender. Around the 600 requests per second
mark, the performance of the ActiveMQ broker deteriorates significantly, stabilizing at
a notification latency of roughly 1 s for 680 requests per second and above. We attribute
this behavior to the performance of the collector. If the collector cannot keep up with the
processing of the incoming messages, the broker performance may be significantly reduced,
as documented by the ActiveMQ project.8 Therefore, the maximum achieved load does not
indicate the maximum capacity of the broker, but only the performance with regard to a
single collector, which may be achieved by multiple collectors independently. In a practical

4 https://stomp.github.io/stomp-specification-1.2.html

5 https://activemq.apache.org/components/artemis/download/release-notes-2.14.0

6 https://jmeter.apache.org/

7 https://github.com/jasonrbriggs/stomp.py

8 https://activemq.apache.org/components/artemis/documentation/latest/slow-consumers.html

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
385

https://stomp.github.io/stomp-specification-1.2.html
https://activemq.apache.org/components/artemis/download/release-notes-2.14.0
https://jmeter.apache.org/
https://github.com/jasonrbriggs/stomp.py
https://activemq.apache.org/components/artemis/documentation/latest/slow-consumers.html

16 Gleim et al.

0 200 400 600 800 1000
Load [requests/s]

100

101

102

103
Re

sp
on

se
 T

im
e

[m
s]

HTTP Response Time
STOMP Notification Time

Fig. 6: Response times for random Fact creation under different loads as well as the time the
system needs to notify a subscriber of the changed data (with 99% CI). The results indicate
sufficiently low and stable average response times for throughputs of up to 1000 insertions/s,
as well as for notifications to the subscriber for throughputs up to 600 insertions/s.

scenario, a client would not typically subscribe to all resources, but only to the subset of
those resources that are relevant to its immediate use case application. Thus, the ability
to process up to 580 change notifications per second on a single client already provides
a sufficient capacity for many practical scenarios. In order to expand the overall capacity
beyond 1000 requests per second, e.g., for scenarios with multiple data producers and high
update frequencies, users may instead profit from the horizontal scalability of Trellis LDP’s
server architecture. In future work, we further plan to evaluate the performance of different
data persistence backends and potential alternatives to Trellis for additional performance
optimization.

With FactStack, we provide a concrete, open-source implementation of the FactDAG model
for interoperable data management and preservation, facilitating the rapid adoption and
evaluation by the community. After demonstrating the system’s scalability to high data-
throughput scenarios, we discern its practical value for data management in Industry 4.0 in
the following.

5 Applying the FactStack to Data Management in Industry 4.0

To ascertain FactStack’s value for practical application scenarios, we illustrate its data and
control flow by mapping it to the research data management lifecycle presented in Fig. 2,
resulting in the workflow shown in Fig. 7.

Starting with the Release & Publish phase, data is made available as resources on the Internet
through regular HTTPWeb services, each its own Authority identified by its domain name. In
the Discover & Reuse phase, these resources may then be discovered either through existing

386 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 17
H

TT
P

 +
 U

R
I

LD
P

, M
em

en
to

, D
a

te
d

 U
R

I
R

D
F

P
R

O
V

Internet

En
ti

ty

En
ti

ty

Authority

FactID

URL

FactID

URL

Retrieve

Persistently
Identify

Archive

Influence
/ Input

Record Metadata
& Provenance

Archive

Retrieve

Create/Modify/Delete Data
Activity

Signs & Symbols

Resource

Lifecycle Step

Activity

Memento Archive

Entity

Authority

Create, Process
& Analyze

Manage &
Preserve

Release
& Publish

Discover
& Reuse

Curate &
Capture

Fig. 7: The FactStack data management and preservation lifecycle provides a mapping from
the FactStacks data and control flow to the research data management lifecycle presented in
Fig. 2 using a combination of open Web standards.

Web indexing and information retrieval techniques, by exploring the LDP resource hierarchy
of a given Authority, or by following the fundamental provenance relations of the FactDAG.

To reuse a discovered resource 𝑅 with URL𝑈, a consumer retrieves it via HTTP as part of the
Curate & Capture phase and persistently identifies it using themechanism describe in Sect. 3.1.
Therefore, the consumer checks for the presence of an HTTP Memento-Datetime header upon
retrieval of 𝑅 to determine if the resource already is a Memento. If so, the resource is
already persistently identified by FactID factid:𝜏𝑀 :𝑈, where 𝜏𝑀 is the Memento’s creation
time as indicated by the Memento-Datetime header. Otherwise, the resource is lifted to a Fact
as described on the original FactDAG paper [Gl20b], persisting the state of 𝑅 at the time
of retrieval 𝜏𝑐𝑢𝑟 as a new Memento identified with FactID factid:𝜏𝑐𝑢𝑟:𝑈. The consumer
may optionally opt in to archive an immutable copy of this persistently identified Fact in an
archiving service of its choice, e.g., under its own control, or potentially at a third party or
regulatory institution, ensuring the reliable preservation of consumed resources. If a client
requests a non-Memento resource multiple times and is able to validate that the resource
did not change in the meantime (e.g., through a strong HTTP ETAG provided by the server),

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
387

18 Gleim et al.

it may choose to either reuse the previously created Fact or to create an additional Memento
analogously to the previous procedure.

During the Curate & Capture phase, an arbitrary number of resources may be collected,
validated, cleansed, integrated, and subsequently provided as an input to the Create, Process
& Analyze phase, in which data is created, modified, or deleted. To capture this process, it
is modeled as a PROV Activity 𝐴, capturing all resources used as an input to or resulting
from the execution of the activity as corresponding Entities. All Facts 𝑆 provided as input
to 𝐴 are then related to it using the prov:used predicate, while any resources generated
in the process are similarly persistently identified and immutably archived and related
to 𝐴 using the prov:wasGeneratedBy relation. Notably, if a generated resource 𝑆 is a new
revision of a previously existing resource 𝑅, this information is captured using the triple 𝑆
prov:wasRevisionOf 𝑅.

During the Manage & Preserve phase, additional metadata may be added to the resource in
order to capture more of its semantic context and provenance, while newly created resources
are uniquely identified for future reference. Finally, resource and metadata (including any
other applicable information such as licensing terms, etc.) are then stored together, identified
by a single PID, during the Release & Publish phase, creating a new Memento or Fact in the
process. Herein, the metadata may either be merged directly into the primary data – such
as possible with RDF sources – or by adding it to the resource’s LDP Metadata resource
accessible using HTTP content-negotiation or discoverable throughHTTP rel="describedby"
Link header (cf. Sect. 3.3), which enables structured RDF metadata to be stored for other
text or binary file formats.

As all newly generated data are now persistently identified, immutably preserved, published,
and discoverable on the Web, a full data management lifecycle was completed.

Use Case Application. Revisiting the use case example introduced in Sect. 1 and visualized
in Fig. 1, we can now illustrate the concrete impact of data management and preservation
using FactStack in Fig. 8. In this scenario, manufacturer A, identified by its authority
domain name A.com, collects manufacturing data as part of the production of workpiece
R-001, which it stores identified with internal resource ID /R-001/qualitydata in its data
storage system Trellis A, creating a corresponding Memento at the point in time 𝜏1. The
internal Reporter process analyzes this data and creates a quality report with internal
resource ID /R-001/report for this workpiece at the point in time 𝜏2, certifying the part for
usage in aerospace applications and again creating a corresponding immutable Memento.
Company C, identified by its authority domain name C.com, now acquires workpiece R-001
and retrieves the associated certification report Memento, recording its persistent FactID
factid:𝜏2:https://A.com/R-001/report.C then stores a copy of this immutable Fact in its own
data storage system Trellis C, where the Fact is still identifiable and retrievable through the
standardized Memento protocol, using its original FactID, even if A deletes its copy or goes
out of business. Even if a Fact becomes globally unavailable, knowing its FactID still allows
for the derivation of basic metadata (cf. Sect. 3), as required by the FAIR data principles.

388 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 19

publish

subscribe
notify

Broker A

write /R-001/qualitydata at 𝛕1

Product
Manufacturing

Weaving
Machine Data
Collection

Reporter

Trellis
A

re
ad

/
R
-
0
0
1
/
q
u
a
l
i
t
y
d
a
t
a

w
rit

e
/
R
-
0
0
1
/
r
e
p
o
r
t

at
 𝛕

2

https://A.com/R-001/report
subscribe to

notify

https://C.com/A1-001/data

Trellis
C

w
rit

e
/
A
1
-
0
0
1
/
d
a
t
a

R-001
f
a
c
t
i
d
:
𝛕

2
 :
h
t
t
p
s
:
/
/

A
.
c
o
m
/
R
-
0
0
1
/
r
e
p
o
r
t

read

w
rit

e

S igns & Sym bols

LDP
Instance

Message Broker

Process
Application

A C

Maintenance

publish

w
rit

e
/
A
1
-
0
0
1
/
d
a
t
a

B

https://C.com/A1-001/data
subscribe to

notify

Product
Optimization

Broker C

https://A.com/R-001/report
read

Fig. 8: To exemplify, FactStack enables continuous data sharing along the supply chain.

Additionally, C subscribes to the resource https://A.com/R-001/report to be automatically
notified of any future updates to the resource, allowing for immediate reaction to change. C
further aggregates and maintains all data related to airplane A1-001 (both from Product
Manufacturing and later Maintenance) in the RDF graph resource https://C.com/A1-001/data.
Airscrew supplier B (which in this example does not provide any data using FactStack itself)
then subscribes to this resource in order to continuously incorporate the maintenance data
collected by C in its own Product Optimization process, thus (at least in theory) enabling the
continuous improvement of its airscrew product designs.

Following FactStack’s data management lifecycle as illustrated in Fig. 7, metadata about each
Process Execution in the described use case scenario is recorded through a corresponding
PROV Activity. Links to all used (i.e., read) and generated (i.e., written) Facts (as identified
by their corresponding FactIDs) are maintained as part of the RDF metadata of the
corresponding generated resources. Subsequently, the origins and influences of any resource
managed using FactStack can easily be traced back through the captured provenance
relations, even across organizational boundaries and as resources change over time.

Discussion. To summarize, FactStack allows for the integration, exchange, and preservation
of any type of data exchangeable on the Web and from any information system complying
with the basic HTTPREST interface pattern. By implementing data identification, versioning,
persistence, access, discovery, and metadata management through a novel combination of
existing protocols and Web standards, it provides a backward-compatible and sustainable
solution for datamanagement and preservation. FactStack thusmeets the system requirements
posed in Sect. 1 and provides a promising solution for the management and preservation of
the constantly evolving and diverse data of the Web and Industry 4.0.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
389

20 Gleim et al.

Nevertheless, there are also some notable limitations. Although mandated by the FAIR data
principles [Wi16], FactStack does not currently register nor index (meta)data in a searchable
resource and does not enforce clear and accessible data licensing, nor domain-relevant
community standards. Additionally, FactStack’s reliance on HTTP and its LDP andMemento
protocol extensions can lead to high numbers of HTTP requests when managing data, since
neither protocol supports request batching. Especially for resource discovery and RDF
metadata management, significant performance improvements could likely be accomplished
through the usage of the SPARQL query and update language [PPG13; SH13].

6 Conclusion and Future Work

In this work, we presented FactStack, an interoperable data management and preservation
approach for evolving data on the Web and in Industry 4.0. Based upon open and tightly
integrated with standardized Web technologies, FactStack realizes the FactDAG data
interoperability model approach, providing on-demand support for persistent data archiving,
identification, retrieval, and synchronization through an interoperable HTTP API, backward-
compatible with existing REST services. By employing dated URIs according to the
FactID scheme, we enable the persistent identification of arbitrary Web resources, resolved,
managed, and preserved through a combination of the HTTP Memento and Linked Data
Platform standards. We further implemented the semi-automated provenance collection
with the W3C PROV-O ontology to enable the standard-compliant collection of data and
process provenance as Linked Data.

To illustrate FactStack’s application in Industry 4.0, we focused on an exemplary, represen-
tative use case scenario in textile engineering for aerospace, highlighting corresponding
opportunities for improved data management and preservation and interoperability. We
support the practical adoption of the FactStack by releasing our implementation, which
demonstrated scalability to high-throughput applications in the presented performance
evaluation, as open-source software. FactStack promotes best practices for data management
by directly supporting the full data management lifecycle and enables the continuous
exchange and reuse of data using Web technologies throughout the supply chain and across
domains, supporting the establishment of transparency and accountability through adequate
and interoperable metadata and provenance management.

For future work, we plan to investigate the integration of the FactStack with existing
enterprise resource planning and manufacturing execution systems to showcase FactStack’s
universality and deployability. Additionally, future work should address related questions
of authenticity, integrity, and trust within the FactDAG model, as well as improving the
performance of the LDP server. Finally, we plan to implement and evaluate easy to use
front-end applications for the intuitive collection of FactDAG data to simplify adoption for
end-users and validate its merit in practical data management and preservation scenarios.

390 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 21

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC-2023 Internet of Production – 390621612.

References

[Ab74] Abrial, J.-R.: Data Semantics. In: Proceeding of the IFIP Working Conference
on Data Base Management. Elsevier, pp. 1–60, 1974, isbn: 978-0-7204-2809-4.

[AM19] Arndt, N.; Martin, M.: Decentralized Collaborative Knowledge Management
Using Git. In: Proceedings of the 28th International Conference Companion on
World Wide Web (WWW ’19 Companion). IW3C2, pp. 952–953, 2019, isbn:
978-1-4503-6675-5.

[Ba12] Ball, A.: Review of Data Management Lifecycle Models, tech. rep., University
of Bath, 2012.

[BFM05] Berners-Lee, T.; Fielding, R. T.; Masinter, L.M.: Uniform Resource Identifier
(URI): Generic Syntax, IETF RFC 3986, 2005.

[BHL01] Berners-Lee, T.;Hendler, J.; Lassila, O.: The SemanticWeb. ScientificAmerican
284/5, pp. 34–43, 2001.

[Bl13] Bloomberg, J.: The Agile Architecture Revolution: How Cloud Computing,
REST-Based SOA, and Mobile Computing Are Changing Enterprise IT. Wiley,
2013, isbn: 978-1-118-41787-4.

[Co19] Corti, L.; Van den Eynden, V.; Bishop, L.; Woollard, M.: Managing and Sharing
Research Data: A Guide to Good Practice. SAGE, 2019, isbn: 978-1-5264-
8238-9.

[Da19] Dahlmanns, M.; Dax, C.; Matzutt, R.; Pennekamp, J.; Hiller, J.; Wehrle, K.:
Privacy-Preserving Remote Knowledge System. In: Proceedings of the 2019
IEEE 27th International Conference on Network Protocols (ICNP ’19). IEEE,
2019, isbn: 978-1-7281-2700-2.

[Fa14] Faundeen, J. L.; Burley, T. E.; Carlino, J.; Govoni, D. L.; Henkel, H. S.; Holl, S.;
Hutchison, V. B.; Martin, E.; Montgomery, E. T.; Ladino, C. C.; Tessler, S.;
Zolly, L. S.: The United States Geological Survey Science Data LifecycleModel,
USGS Open-File Report 2013-1265, 2014.

[Fe06] Federal Aviation Administration: Aircraft Certification Service Records, N1-
237-05-003, 2006.

[Fi00] Fielding, R. T.: Architectural Styles and the Design of Network-Based Software
Architectures, PhD thesis, University of California, 2000.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
391

22 Gleim et al.

[GD20a] Gleim, L.; Decker, S.: Open Challenges for theManagement and Preservation of
Evolving Data on the Web. In: Proceedings of the 6th Workshop on Managing
the Evolution and Preservation of the Data Web (MEPDaW ’20). CEUR
Workshop Proceedings, 2020.

[GD20b] Gleim, L.; Decker, S.: Timestamped URLs as Persistent Identifiers. In: Pro-
ceedings of the 6th Workshop on Managing the Evolution and Preservation of
the Data Web (MEPDaW ’20). CEUR Workshop Proceedings, 2020.

[Gi13] Gil, Y.; Miles, S.; Belhajjame, K.; Deus, H.; Garijo, D.; Klyne, G.; Missier, P.;
Soiland-Reyes, S.; Zednik, S.: PROV Model Primer, W3C Working Group
Note, 2013.

[Gl20a] Gleim, L.: FactStack: Interoperable Data Management and Preservation for the
Web and Industry 4.0. In: RDA 16th Plenary Meeting — Poster Sessions. 2020.

[Gl20b] Gleim, L.; Pennekamp, J.; Liebenberg, M.; Buchsbaum, M.; Niemietz, P.;
Knape, S.; Epple, A.; Storms, S.; Trauth, D.; Bergs, T.; Brecher, C.; Decker, S.;
Lakemeyer, G.; Wehrle, K.: FactDAG: Formalizing Data Interoperability in an
Internet of Production. IEEE Internet of Things Journal 7/4, pp. 3243–3253,
2020, issn: 2327-4662.

[Gl20c] Gleim, L.; Tirpitz, L.; Pennekamp, J.; Decker, S.: Expressing FactDAG Prove-
nance with PROV-O. In: Proceedings of the 6th Workshop on Managing the
Evolution and Preservation of the Data Web (MEPDaW ’20). CEURWorkshop
Proceedings, 2020.

[Gl20d] Gleim, L. C.; Karim, M.R.; Zimmermann, L.; Kohlbacher, O.; Stenzhorn, H.;
Decker, S.; Beyan, O.: Enabling ad-hoc reuse of private data repositories
through schema extraction. Journal of Biomedical Semantics 11/1, 2020, issn:
2041-1480.

[Hu00] Hunter, G. S.: Preserving Digital Information: A How-to-do-it Manual. Neal-
Schuman Publishers, 2000, isbn: 978-1-55570-353-0.

[In03] International Electrotechnical Commission: Enterprise-control system integra-
tion - Part 1: Models and terminology, IEC 62264-1, 2003.

[Ka17] Karim, R.; Heinrichs, M.; Gleim, L. C.; Cochez, M.; Porter, E.; Gioia, A. L.;
Salahuddin, S.; O’Halloran, M.; Decker, S.; Beyan, O.: Towards a FAIR
Sharing of Scientific Experiments: Improving Discoverability and Reusability
of Dielectric Measurements of Biological Tissues. In: Proceedings of the
10th International Conference on Semantic Web Applications and Tools for
Health Care and Life Sciences (SWAT4LS ’17). Vol. 2042, CEUR Workshop
Proceedings, 2017.

[KB19] Kunze, J. A.; Bermès, E.: The ARK Identifier Scheme, IETF draft-kunze-ark-24,
2019.

392 Lars Gleim, Liam Tirpitz, Stefan Decker

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 23

[Ko10] Koop, D.; Santos, E.; Bauer, B.; Troyer, M.; Freire, J.; Silva, C. T.: Bridging
Workflow and Data Provenance Using Strong Links. In: Proceedings of the 22nd
International Conference on Scientific and Statistical Database Management
(SSDBM ’10). Vol. 6187, Springer, pp. 397–415, 2010, isbn: 978-3-642-
13817-1.

[La19] de Lange, P.; Nicolaescu, P.; Rosenstengel, M.; Klamma, R.: Collaborative
Wireframing for Model-Driven Web Engineering. In: Proceedings of the 20th
International Conference on Web Information Systems Engineering (WISE
’19). Vol. 11881, Springer, pp. 373–388, 2019, isbn: 978-3-030-34222-7.

[LGD20] Lipp, J.; Gleim, L.; Decker, S.: Towards Reusability in the Semantic Web :
Decoupling Naming, Validation, and Reasoning. In: Proceedings of the 11th
Workshop on Ontology Design and Patterns (WOP ’20). CEUR Workshop
Proceedings, 2020.

[LLM10] Li, X.; Lebo, T.; McGuinness, D. L.: Provenance-Based Strategies to Develop
Trust in Semantic Web Applications. In: Proceedings of the 3rd International
Provenance and Annotation Workshop on Provenance and Annotation of Data
and Processes (IPAW ’10). Vol. 6378, Springer, pp. 182–197, 2010, isbn:
978-3-642-17818-4.

[LSM13] Lebo, T.; Sahoo, S.; McGuinness, D.: PROV-O: The PROV Ontology, W3C
Rec. 2013.

[Ma06] Mackall, M.: Towards a Better SCM: Revlog and Mercurial. In: Proceedings of
the 2006 Ottawa Linux Symposium. Pp. 83–90, 2006.

[Ma12] Masinter, L.M.: The ’tdb’ and ’duri’ URI schemes, based on dated URIs, IETF
draft-masinter-dated-uri-10, 2012.

[Me12] Mersmann, C.: Industrialisierende Machine-Vision-Integration im Faserver-
bundleichtbau, PhD thesis, RWTH Aachen University, 2012, isbn: 978-3-
86359-062-8.

[MF11] Melnikov, A.; Fette, I.: The WebSocket Protocol, IETF RFC 6455, 2011.
[MM13] Missier, P.; Moreau, L.: PROV-DM: The PROV Data Model, W3C Rec. 2013.
[Mo87] Mockapetris, P.: Domain names - concepts and facilities, IETF RFC 1034,

1987.
[Ni20] Niemietz, P.; Pennekamp, J.; Kunze, I.; Trauth, D.; Wehrle, K.; Bergs, T.: Stamp-

ing Process Modelling in an Internet of Production. Procedia Manufacturing
49/, pp. 61–68, 2020, issn: 2351-9789.

[NK02] Newman, C.; Klyne, G.: Date and Time on the Internet: Timestamps, RFC
3339, 2002.

[Pe19a] Pennekamp, J.; Dahlmanns, M.; Gleim, L.; Decker, S.; Wehrle, K.: Security
Considerations for Collaborations in an Industrial IoT-based Lab of Labs. In:
Proceedings of the 3rd IEEE Global Conference on Internet of Things (GCIoT
’19). IEEE, 2019, isbn: 978-1-7281-4873-1.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
393

24 Gleim et al.

[Pe19b] Pennekamp, J.; Glebke, R.; Henze, M.; Meisen, T.; Quix, C.; Hai, R.; Gleim, L.;
Niemietz, P.; Rudack, M.; Knape, S.; Epple, A.; Trauth, D.; Vroomen, U.;
Bergs, T.; Brecher, C.; Bührig-Polaczek, A.; Jarke, M.; Wehrle, K.: Towards an
Infrastructure Enabling the Internet of Production. In: Proceedings of the 2019
IEEE International Conference on Industrial Cyber Physical Systems (ICPS
’19). IEEE, pp. 31–37, 2019, isbn: 978-1-5386-8500-6.

[Pe19c] Pennekamp, J.; Henze, M.; Schmidt, S.; Niemietz, P.; Fey, M.; Trauth, D.;
Bergs, T.; Brecher, C.; Wehrle, K.: Dataflow Challenges in an Internet of
Production: A Security & Privacy Perspective. In: Proceedings of the ACM
Workshop on Cyber-Physical Systems Security & Privacy (CPS-SPC ’19).
ACM, pp. 27–38, 2019, isbn: 978-1-4503-6831-5.

[Pe20a] Pennekamp, J.; Bader, L.; Matzutt, R.; Niemietz, P.; Trauth, D.; Henze, M.;
Bergs, T.; Wehrle, K.: Private Multi-Hop Accountability for Supply Chains. In:
Proceedings of the 2020 IEEE International Conference on Communications
Workshops (ICC Workshops ’20). IEEE, 2020, isbn: 978-1-7281-7440-2.

[Pe20b] Pennekamp, J.; Buchholz, E.; Lockner, Y.; Dahlmanns, M.; Xi, T.; Fey, M.;
Brecher, C.; Hopmann, C.; Wehrle, K.: Privacy-Preserving Production Process
Parameter Exchange. In: Proceedings of the 36th Annual Computer Security
Applications Conference (ACSAC ’20). ACM, pp. 510–525, 2020, isbn:
978-1-4503-8858-0.

[Po17] Ponemon Institute: The True Cost of Compliance with Data Protection Regula-
tions, White Paper, Ponemon Institute, 2017.

[PPG13] Passant, A.; Polleres, A.; Gearon, P.: SPARQL 1.1 Update, W3C Rec. 2013.
[RA12] Rodriguez-Bustos, C.; Aponte, J.: How Distributed Version Control Systems

impact open source software projects. In: Proceedings of the 2012 9th IEEE
Working Conference on Mining Software Repositories (MSR ’12). IEEE,
pp. 36–39, 2012, isbn: 978-1-4673-1761-0.

[SAM15] Speicher, S.; Arwe, J.; Malhotra, A.: Linked Data Platform 1.0, W3C Rec.
2015.

[SH13] Seaborne, A.; Harris, S.: SPARQL 1.1 Query Language, W3C Rec. 2013.
[SP17] Snell, J.; Prodromou, E.: Activity Streams 2.0, W3C Rec. 2017.
[St20] Stack Overflow: Developer Survey 2019, https://insights.stackoverflow.

com/survey/2019, 2019 (accessed December 12, 2020).
[TCS18] Trnka, M.; Cerny, T.; Stickney, N.: Survey of Authentication and Authorization

for the Internet of Things. Security and Communication Networks/, 2018, issn:
1939-0114.

[Va14] Van de Sompel, H.; Sanderson, R.; Shankar, H.; Klein, M.: Persistent Identifiers
for Scholarly Assets and the Web: The Need for an Unambiguous Mapping.
International Journal of Digital Curation 9/1, pp. 331–342, 2014, issn: 1746-
8256.

394 Lars Gleim, Liam Tirpitz, Stefan Decker

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 25

[Va18] Vander Sande, M.; Verborgh, R.; Hochstenbach, P.; Van de Sompel, H.: Toward
sustainable publishing and querying of distributed LinkedData archives. Journal
of Documentation 74/1, pp. 195–222, 2018, issn: 0022-0418.

[VNS13] Van de Sompel, H.; Nelson, M.; Sanderson, R.: HTTP Framework for Time-
Based Access to Resource States – Memento, IETF RFC 7089, 2013.

[Wi16] Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I. J. J.; Appleton, G.; Axton, M.;
Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E., et al.:
The FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data 3/, 2016, issn: 2052-4463.

[WLC14] Wood, D.; Lanthaler, M.; Cyganiak, R.: RDF 1.1 Concepts and Abstract Syntax,
W3C Rec. 2014.

[Yu18] Yuan, Z.; Ton That, D.H.; Kothari, S.; Fils, G.; Malik, T., et al.: Utilizing
Provenance in Reusable Research Objects. In: Informatics. Vol. 5. 1, MDPI,
2018.

[Ze11] Zeng, R.; He, X.; Li, J.; Liu, Z.; van der Aalst, W.M. P.: A Method to Build
and Analyze Scientific Workflows from Provenance through Process Mining.
In: Proceedings of the 3rd Workshop on the Theory and Practice of Provenance
(TaPP ’11). USENIX Association, 2011.

FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0
395

cbe

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Silentium! Run–Analyse–Eradicate the Noise
out of the DB/OS Stack

Wolfgang Mauerer12, Ralf Ramsauer3, Edson R. Lucas F.4, Daniel Lohmann5,
Stefanie Scherzinger6

Abstract: When multiple tenants compete for resources, database performance tends to suffer. Yet
there are scenarios where guaranteed sub-millisecond latencies are crucial, such as in real-time data
processing, IoT devices, or when operating in safety-critical environments. In this paper, we study how
to make query latencies deterministic in the face of noise (whether caused by other tenants or unrelated
operating system tasks). We perform controlled experiments with an in-memory database engine in
a multi-tenant setting, where we successively eradicate noisy interference from within the system
software stack, to the point where the engine runs close to bare-metal on the underlying hardware.

We show that we can achieve query latencies comparable to the database engine running as the sole
tenant, but without noticeably impacting the workload of competing tenants. We discuss these results
in the context of ongoing efforts to build custom operating systems for database workloads, and point
out that for certain use cases, the margin for improvement is rather narrow. In fact, for scenarios like
ours, existing operating systems might just be good enough, provided that they are expertly configured.
We then critically discuss these findings in the light of a broader family of database systems (e.g.
including disk-based), and how to extend the approach of this paper accordingly.

Keywords: Low-latency databases; tail latency; real-time databases; bounded-time query processing;
DB-OS co-engineering

1 Introduction
The operating system is frequently considered boon and bane for the development of scalable
service stacks. While general-purpose operating systems (like Linux) provide a great deal of
hardware support, drivers and system abstractions, they have also been identified as a cause
of jitter in network bandwidth, disk I/O, or CPU [Ar09; SDQ10; Xu13] when operating
software services in cloud environments, where multiple tenants compete for resources.
Naturally, this also affects the performance of cloud-hosted database engines [Ki15].
1 Ostbayerische Technische Hochschule Regensburg, Germany wolfgang.mauerer@othr.de
2 Siemens AG, Corporate Research and Technology, Munich, Germany
3 Ostbayerische Technische Hochschule Regensburg, Germany ralf.ramsauer@othr.de
4 Universität Passau, Germany edson.lucas@uni-passau.de
5 Leibnitz Universität Hannover, Germany lohmann@sra.uni-hannover.de
6 Universität Passau, Germany stefanie.scherzinger@uni-passau.de

cba doi:10.18420/btw2021-21

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 397

https://creativecommons.org/licenses/by-nc/3.0/
wolfgang.mauerer@othr.de
ralf.ramsauer@othr.de
edson.lucas@uni-passau.de
lohmann@sra.uni-hannover.de
stefanie.scherzinger@uni-passau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-21

2 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

Unacceptable noise and long-tailed latency distributions, but also the recent advances in
hardware technology, have renewed interest in building database-specific operating systems.
While historically, database and operating-systems research have been highly interwoven,
the communities have parted ways in the past, and are just now rediscovering potential
synergy effects (e.g. [Ca20; Mü20]). This has sparked immense interest in devising novel
system architectures [KSL13], especially for database-centric operating systems kernels
(e.g., [Ca20; Gi13; Gi19; MS19; Mü20]) that aim at deterministic performance. However,
implementing an OS kernel is a herculean effort with tremendous follow-up costs, requiring
substantial and largely duplicate effort for otherwise generic tasks, such as writing and
maintaining device drivers, file systems, and infrastructure code, among others.

About This Paper. We take a fresh look at standard operating systems for low-latency/high
determinism workloads, as they arise in real-time scenarios. Similar problems arise in
cloud settings, where latency effects along the data path add up and can lead to substantial
systemic problems, as Dean and Barroso have pointed out [DB13]. Rather than designing
a new kernel from scratch7 to avoid noise and jitter, we follow an orthogonal approach,
employing existing open-source components: Identify the root causes, analyse, and then
address them as far as possible within the existing components. If necessary, enhance.

By vertical, cross-cutting engineering, we tailor the stack towards the needs of database
engines, eradicate interference, and ultimately, reduce any noise-induced latencies in query
evaluation. Our first results show that in many cases, a large degree of jitter is avoidable
by the well-considered and purposeful employment of existing architectural measures –
actually measures originally developed for other domains, such as embedded real-time
systems. We present controlled experiments with an in-memory database engine running in
a multi-tenant scenario on a number of different system software stack scenarios.

We focus on in-memory database engines as a specific (and deliberately narrow) use case, as
they are often employed in domains for which deterministic latencies are essential [BL01],
and thus considered a particularly convincing use case for developing specific operating-
systems or even a bare-metal database stack [Bi20; Ca20; Gi13]. In this realm, our
experimental setup, which is available as a Docker image for easy reproduction, can also
serve as a baseline for researchers building special-purpose operating systems to compare
their results against. In particular, we claim the following contributions:

• We perform controlled experiments with an in-memory database engine running
on custom system software stacks based on existing open source components. By
careful cross-cutting engineering, we modify this stack to eradicate interference, and
to ultimately reduce any noise-induced latencies in query evaluation.
• We show that we can achieve the same performance using available operating systems
as compared to running the database workload (near) bare-metal.

7Whether to build a new operating system from scratch or whether to extend existing systems to cater to data
processing needs has been an ongoing debate for decades [Gr78].

398 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 3

• We show that we can achieve the same performance in a multi-tenant scenario as
compared to a database engine executing as the sole tenant without competing load.
• We voice doubts whether these specific scenarios can benefit from operating systems
custom-designed towards database workloads, as they are currently being proposed.
• We discuss the potential generalisability of our approach to disk-based database
engines, and systems involving I/O. In particular, we discuss opportunities that call
for the joint efforts of the operating systems and database communities.

Structure. Our paper is structured as follows. We give an overview in Section 2, survey
related work in Section 3, and present our experiments in Section 4. Their consequences
are discussed in a more general context in Section 5. We conclude in Section 6.

2 Overview
We start with a brief summary of possible perturbations of an executing database workload
by neighbourly noise, followed by an overview of the system software stack scenarios
considered in this paper. In this section and beyond, by the term kernel we refer to the
operating systems kernel (not the database kernel).

2.1 Sources of Noise
The three major sources of noise as observed by an unprivileged userspace workload (as
compared to system services or the kernel) are (1) other processes and system services
that compete for CPU usage, (2) CPU performance optimisations (caches, pipelines, . . .)
that can usually not be disabled or controlled, and (3) contention of implicitly shared
resources (memory bus etc.). The signature of such systemic noise is not necessarily
distinguishable from the intrinsic noise of the application, that is, variations in run-time
caused by data-dependent code paths, application-specific optimisations, and so forth.

Processes and system services. Multi-tasking operating systems manage " schedulable
entities that compete for # processors, with" � # . Linux uses a completely fair scheduling
(CFS) [Ma10] policy for regular processes, but also includes support for (soft) real-time
scheduling via FIFO and round robin. The kernel can preempt most userland activities
(depending on the preemption model statically configured at kernel build time), for instance
upon the arrival of interrupts. It can also place kernel threads into the schedule that perform
activities on behalf of the kernel (for instance, to support migrating processes across CPUs,
to perform post-interrupt actions, etc.), and enjoy higher priority than regular processes,
regardless whether these are governed by real-time policies. The interplay of these factors
creates noise compared to an uninterrupted, continuous flow of execution of a single job.

CPU noise. Even given the uninterrupted execution of code on a CPU, pipelined and
superscalar execution of code may lead to different temporal behaviour than would be

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 399

4 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

CPU CPU CPU CPU

Linux

K K K K DBE

(a) No load.

CPU CPU CPU CPU

Linux

K L K L K L K L DBE

(b) Load.

CPU CPU CPU CPU

Linux

K L K L K L DBE

(c) Shielding the database engine.

CPU CPU CPU CPU

Linux RTEMS

DBEK L K L K L

(d) Isolation via hardware partitioning.

Fig. 1: System software stack scenarios.

achieved by a straightforward execution of assembly instructions, which manifests itself as
another source of noise. Also, caching mechanisms (most importantly, the cache hierarchy
that comes into play with memory references, but possibly also mechanisms like translation
lookaside buffers used in virtual-to-physical address translation) cause (widely) varying
latencies in accessing memory. This effectively adds noise.

Shared resources. Workloads executing on different CPUs are not entirely isolated from
each other, but interact via shared resources (cache, memory, etc.) that are accessed via
system buses. This even holds despite a possible logical partitioning of system components
that we discuss later. While the overall situation (for instance, handling competing requests
for bus usage) is deterministic from a system-global view, delays caused by competing
requests manifest as noise when viewed from the perspective of an individual process.

2.2 Experimental System Configurations
The configurations of the system software stack, as used in our experiments, are visualised
in Figure 1. For now, we treat the in-memory database engine (DBE) as a black box.

No Load. In the no-load scenario (Figure 1a), a single database engine executes on an
otherwise quiet multicore system. The database payload is pinned to one CPU (c.f. the
dashed arrow), to avoid perturbations, for instance caused by the scheduler moving the
process across CPUs. However, standard system services, as limited to the bare necessity,
and kernel threads required by the operating system proper (“K” in the figure) can execute
on all CPUs, including the CPU dedicated to the database workload.

400 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 5

Load. In the load scenario (Figure 1b), additional tenants put the system under maximum
strain. We simulate this payload (marked “L”) by running synthetic workloads on each CPU.

While the database workload is again pinned to one particular CPU, it is scheduled by the
operating system alongside kernel threads and the described payload. In the load scenario,
we assume the viewpoint of a cloud provider maximising the utilisation of the available
resources, while serving all tenants equally. We therefore refrain from assigning the database
workload higher priority than the payload generated by the competing tenants.

Load/FIFO. A variation of the load scenario uses standard Linux mechanisms to set
a real-time scheduling policy for the database workload. All load processes fall under
scheduling policy “other”, and compete for CPU resources as managed by the Linux standard
scheduler. We place the database task in the real-time scheduling group SCHED_FIFO, so
it can preempt any other userland tasks that execute on the CPU. However, the database task
can still be preempted by the kernel, or by incoming interrupts.

Shielding. Another approach towards isolating the database workload from noise is to use
CPU shielding (Figure 1c). This distributes all existing tasks and kernel threads on a given
CPU to the rest of the system, and prevents utilisation of the shielded CPU by the standard
scheduling for processes that are not explicitly assigned to this CPU.

We additionally make sure that incoming external interrupts only arrive at other CPUs.
Nevertheless, main memory, buses, caches, etc. remain shared resources in the system, and
accesses can induce additional noise that goes beyond the pure CPU noise. Additionally,
the kernel can still preempt the single running userland task (for instance, when timers
expire), and latencies can arise from administrative duties performed by the kernel on such
occasions, or in the context of system calls issued by the task.

One set of measurements combines shielding and real-time priorities. This limits the
kernel’s abilities to preempt the running userspace task. However, some caution needs to be
administered: Not only the ability to preempt a running task, but also the amount of work
performed in kernel context when a preemption occurs influences latency variance, and this
amount is highly dependent on specific (static) kernel configuration settings.8 Isolation in
this scenario is based on guarantees provided by the Linux kernel. This implies trust in a
complex, monolithic code base, which is undesirable for safety-critical scenarios.

Partitioning. The strongest form of isolation that we consider in this paper (Figure 1d)
relies on the Jailhouse hypervisor [Ra17]. Jailhouse can partition system hardware resources
by establishing independent and strictly isolated computing domains. Jailhouse leverages
extensions of the underlying system architecture which include essential virtualisation
mechanisms for system partitioning, such as segregation of CPUs, memory and devices, as

8 Linux provides a tick-less mode, which eliminates periodic interventions by a regular timer (at frequencies
ranging from 100Hz to 1,000Hz, depending on compile-time settings), but which may cause overhead on other
occasions, because maintenance of data structures performed during such ticks must be performed “en block”.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 401

6 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

well as additional extensions that allow to control the utilisation of shared resources, such
as caches or system buses.

Jailhouse comes at a negligible performance overhead, as it does neither (para-)virtualise or
emulate resources, nor schedule its partitions (guests) among CPUs. The virtual machine
monitor only interferes in case of critical exceptions and access violations. This architecture
can find application in multi-tenant database scenarios, described in [MKN12], and in
particular, safety-critical scenarios, which require spatial-temporal isolation between tenants.

Bare-Metal Operation. Data center, cloud and high performance data processing systems
often employ x86 server class CPUs, and we have argued before that such use cases benefit
from bounded tail latencies. Other important use cases that require determinism are found
in embedded systems, which are typically equipped with ARM CPUs. Consequently, our
investigation addresses both, x86 and ARM.

Using a simplistic ARM core that is just capable enough for realistic database deployment
reduces systemic noise that stems from multicore effects, as found on server-class x86
CPUs [PH90] to the bare minimum, (e.g. long pipelines, large caches, and strong interference
on buses). This allows us to explore the intrinsic variations of our database workload.

We employ the in-memory database engine DBToaster [Ko14] (see also Section 4), a highly
portable serverless database engine that requires a C++/STL run-time environment, but no
other libraries or system services. Plain C++ can be executed without relying on an OS
proper with moderate effort, but the STL requires (at least conceptual) support for threads
and preemptive locking, as well as a full memory allocator. These requirements do not
create a need to deploy it on top of a fully-fledged general-propose operating system, such as
Linux or Windows, but we deem the implementation efforts large enough to warrant a tiny
operating system. Thus, we ported the database engine to RTEMS (real-time executive for
multiprocessor systems) [BS14], a mature, tailorable embedded real-time operating system
(with a 25-year development history) that finds deployment in systems ranging from IoT
devices to Mars orbiters. Similar to unikernel approaches [Br15; Ma13], RTEMS and the
database engine are linked together into one single executable. This binary can be either
booted as stand-alone operating system on a bare-metal system, or (given low-level changes
like the use of a custom bootloader and adaptations of the RTEMS kernel to Jailhouse) be
executed in parallel to Linux on a partitioned system (as visualised in Figure 1d).

To reduce operating system noise as far as possible, we essentially limit RTEMS to providing
only a console driver, and execute the database engine in a single thread, which eliminates
the need for a scheduler. This configuration is supposed to reduce any OS noise to the bare
minimum, and is comparable to a bare-metal,9 main-loop style binary.

9 Bare-metal operation refers to code that runs without distinction between payload and OS close to the hardware,
without intermediary layers. This in contrast to, for example, Ref. [RF18], which uses the term to denote code
that runs without containers or virtual machines, but still relies on heavyweight, multi-million-LoC OS kernels.

402 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 7

3 Related Work
In this paper, we focus on in-memory database engines. We refer to [GS92] for an early
overview of their architecture, and to [Fa17] for a more recent survey.

In real-time scenarios, where in-memory database engines traditionally play an important
role [BL01], deterministic latencies are crucial. However, aspects such as consistency of
query answers given transactional workload, or alternative tuple consumption strategies, are
of no concern to the work presented in our paper, since we treat the database largely as a
black box, and are interested in the overall system software stack.

What is indeed highly relevant for us is the existing work on worst-case execution time
(WCET) of queries in in-memory databases [Bu05], which considers control-flow graphs
through the code (in fact, in the presentation of our experiments, effects of different paths
through control flow graphs during query processing actually become visible).

Also close to our work in both methodology and context is research on the influence of
NUMA effects, focusing on in-memory database engines in particular. It is known that
assigning threads to CPUs improves database performance, due to caching effects [Do18;
Ki15; KSL13]. Similar studies of assigning database workloads to computational units
can be found throughout database research, for instance in Refs. [DAM17; Po12]. Our
experiments also assign threads to dedicated CPUs, and we benefit from data caching, but
our motivation differs, as we isolate the database workload from harmful noise.

Databases operating in multi-tenant environments are another focus of our work. This
differs from many benchmarks conducted in database research, where database workload
often runs in isolation, while multi-tenant environments are closer to real-world conditions.
Similarly, an overview over performance isolation for cloud databases is provided in [Ki15].

A systematic discussion of multi-tenant in-memory databases is provided in [MKN12]:
From the viewpoint of a cloud provider, guaranteeing narrow service-level-agreements is a
challenge, since the provider must cater to all tenants, while utilising the hardware resources.
This mindset is also found in engineering for mixed-criticality systems [BD17; Ve07], where
a critical workload (in our case, the database engine) must be shielded from noise (in our
case, competing tenants), without cutting into the performance of the remaining workload.

In designing multi-tenant database engines, shielding tenants can be implemented on several
levels in the system software stack. Aulbach et al. [Au08] enable multi-tenancy on the level
of the database schema; by appropriately mapping between the tenants’ schemas and the
internal schema, tables may be transparently shared between tenants. By rewriting queries,
the authors ascertain isolation between tenants in an otherwise standard database engine.

Narasayya et al. [Na13] also aim at resource isolation, for the database-a-service provider
Microsoft SQL Azure. They explore virtual machine mechanisms in userland without
relying on mechanisms provided by the kernel (and, consequently, not benefiting from the

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 403

8 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

guarantees provided by the OS kernel – for instance, some isolations are not possible in
userland, such as access to shared buses and other resources).

Noll et al. [No18] discuss how to accelerate concurrent workloads inside a single database
engine by partitioning caches. This feature is not targeted at multi-tenant databases per
se, but applicable in general. However, this feature is specific to Intel CPUs. Further, it
is not directly subject to control from userland, but exposed to applications by the sysfs
pseudo-filesystem interface of the Linux kernel. Our x86-based RTEMS measurements in a
Jailhouse cell actually use the same infrastructure to assign a portion of the cache to the
system performing the measurements, which reduces variations in memory access times.

The general idea of using existing OS-level isolation mechanisms to reduce the amount
of inference between latency (or otherwise) sensitive database workloads and the rest
of a system has also been pursued by Rehmann et al. [RF18]: The authors use Docker
containers to isolate database instances from system and competing payload noise. Their
work essentially implements limiting the CPU quota available to tasks, and pinning database-
relevant operations to specific CPUs in the system. Especially the latter is similar to some
of our experiments, albeit we additionally include scheduling prioritisation and control the
system noise on pinned CPUs with various measures. Thus, we make use of a richer toolset
to achieve stronger levels of isolation, as our measurements show. In fact, containers are
conceptually not intended to isolate a given workload from other workloads, but to provide
a specific, probably restricted view of the system to a given workload.

Currently, there is renewed interest in building database-specific operating systems, partly
motivated by such problems as unpredictability in performance. For instance, the MXKernel
project [Mü20] proposes an alternative to the classic thread model, to cater to the demands of
large-scale data processing. The DBOS initiative [Ca20] goes so far as to envision managing
database-internal data structures inside the OS kernel. Further, there are suggestions to share
the database cost model with the operating system [Gi13], to allow for more transparency
and to ultimately arrive at better scheduling decisions.

Recent developments in modern hardware, and in particular modern memory technology,
motivate database architects to re-evaluate the entire DBMS systems architecture and
in-memory data structures [AP17; Re19; St07]. Over the years, research in this area has
delivered promising propositions, e.g. [APD15; Ch18; GTS20; Le20]. In contrast, we
evaluate how far existing technology will take us, given careful, cross-cutting engineering.

4 Experiments
We next describe the setup of our experiments, and then present our results. Our Docker
image10, which we describe in Appendix 7, allows for inspection and reproduction.

Database Engine. We conduct our experiments with the in-memory database engine
DBToaster [Ko14]. DBToaster can compile SQL queries to C++ code, whichwe then compile
10 Available online from https://github.com/lfd/btw2021.

404 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

https://github.com/lfd/btw2021

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 9

(in a second step) for our target platform. The resulting executable is a single-threaded
database engine that incrementally updates a SQL view given a tuple stream. DBToaster
is thus a SQL-to-code compiler, designed to maintain materialised SQL views with low
refresh latencies. Typical application scenarios would be in stream processing, such as
algorithmic trading, network monitoring, or clickstream analysis11. The DBToaster system
and its theory have been prominently published (e.g. [KLT16; Ko10; Ko14; NDK16]).

We have created our own fork of the DBToaster code base (which is open source), with
minor modifications for our experiments (e.g., buffering measurement data in memory,
rather than writing directly to standard output). Our fork is part of our reproduction package.

Data and Queries. Weconsider two benchmark scenarios from theDBToaster experiments
in [Ko13]. To be able to discuss the run-time results in greater detail, we focus on only a
subset of queries. In particular, we exclude queries that display a high level of intrinsic
variability in their latencies, where the computational effort between tuples can vary greatly,
for instance because of nested correlated sub-queries and multi-joins. These queries are per
se not well-suited for stream processing. The queries considered by us are listed in Figure 2.

Finance queries. The queries over financial data process a tuple stream with stock market
activity; we chose three queries which use different relational operators: Query coun-
tone (C1) is designed by us and serves as a minimal baseline. DBToaster can incrementally
evaluate this query with constant-time overhead per tuple. The queries axfinder (AXF) and
pricespread (PSP) each compute a join, a selection, aggregation, and in the case of axfinder
also a group-by on the input stream. Here, we use the exact same query syntax as in [Ko13],
as DBToaster has certain restrictions (e.g., no LEFT OUTER join). To be able to execute
these queries on hardware devices with very limited memory, we use a base data set of
100 tuples12, over which we iterate 5k times, yielding 500k data points. Since the query
predicates do not filter on time-stamps, this does not affect query semantics.

TPC-H queries.We generated TPC-H data with the dbgen data generator, set to scale factor 4.
We chose the queries Q6, Q1, and Q11a (shown in Figure 2) from the DBToaster experiments
in [Ko13]. The queries perform selections, aggregations, and in the case of Q11a also a join.

Execution Platforms. For x86 reference measurements, we use a Dell PowerEdge T440.
The T440 is equipped with a single 12 core Intel®™ Xeon®™ Gold 5118 CPUs and 32 GiB
of main memory. For measurements on Linux, we use kernel version 5.4.38 (vanilla kernel
as provided by kernel.org) as baseline, with the Preempt_RT real-time preemption patch.

Since delays are caused by parallel access to shared execution units and resources, symmetric
multithreading (SMT) is a source of undesired high latencies and noise in real-time systems.
Consequently, we deactivate SMT on our target, in accordance with the original DBToaster
experiments. Furthermore, we deactivate Intel®™ Turbo Boost®™, as sporadic variations of

11 See the project homepage at https://dbtoaster.github.io/home_about.html, last accessed January 2021.
12 https://github.com/dbtoaster/dbtoaster-experiments-data/blob/master/finance/tiny/finance.csv

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 405

https://dbtoaster.github.io/home_about.html
https://github.com/dbtoaster/dbtoaster-experiments-data/blob/master/finance/tiny/finance.csv

10 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger
C1 SELECT count (1) FROM bids;

ax
fin
de
r

SELECT b. broker_id ,
SUM(a. volume +(−1∗b. volume)) AS axfinder

FROM bids b, asks a
WHERE b. broker_id = a. broker_id

AND ((a. price +((−1) ∗ b. price) >1000)
OR (b. price +((−1) ∗ a. price) >1000))

GROUP BY b. broker_id ;

TP
CH
Q
11
a SELECT ps.partkey ,

SUM(ps. supplycost ∗ ps. availqty)
AS query11a

FROM partsupp ps , supplier s
WHERE ps. suppkey = s. suppkey
GROUP BY ps. partkey ;

pr
ic
es
pr
ea
d SELECT SUM(a. price + (−1∗b. price))

AS psp
FROM bids b, asks a
WHERE (b. volume > 0.0001 ∗

(SELECT SUM(b1. volume) FROM bids b1))
AND (a. volume > 0.0001 ∗

(SELECT SUM(a1. volume) FROM asks a1));

TP
CH
Q
6

SELECT SUM(l. extendedprice ∗l. discount)
AS revenue

FROM lineitem l
WHERE l.shipdate >= DATE('1994 −01 −01 ')

AND l.shipdate <DATE('1995 −01 −01 ')
AND (l. discount BETWEEN (0.06 −0.01)

AND (0.06+0.01))
AND l.quantity <24;

TP
CH
Q
1

SELECT returnflag , linestatus ,
SUM(quantity) AS sum_qty , SUM(extendedprice) AS sum_base_price ,
SUM(extendedprice ∗(1 − discount)) AS sum_disc_price ,
SUM(extendedprice ∗(1 − discount)∗(1+ tax)) AS sum_charge ,
AVG(quantity) AS avg_qty , AVG(extendedprice) AS avg_price ,
AVG(discount) AS avg_disc , COUNT (∗) AS count_order

FROM lineitem
WHERE shipdate <= DATE('1997 −09 −01 ')
GROUP BY returnflag , linestatus ;

Fig. 2: SQL queries used in the experiments (queries from [Ko13], with the exception of C1).

the core frequency result in non-deterministic execution times for identical computational
paths. We configure the CPUs in the highest possible P-State (performance setting) that
guarantees a stable core frequency of 2.29 GHz.

For the shielding scenario, we try to remove all operating system noise from the target CPU.
The Linux kernel provides multiple mechanisms for this purpose, of which we choose CPU
namespaces that can be dynamically reconfigured during system operation.13

For the partitioned Jailhouse setup, we release one single CPU and 1 GiB of main memory
from Linux, and assign them to a new computational domain. On that domain, we boot
the RTEMS + DBToaster binary14 that runs in parallel to Linux. We use Intel’s Cache
Allocation Technology (CAT), part of Intel’s Resource Director Technology, to partition
last-level caches and exclusively assign 5 MiB of Level 3 Cache (L3$) to the RTEMS +
DBToaster domain. This mitigates noise (cache pollution) of neighboured CPUs, as the L3$
is shared across all cores [In15].

For the ARM reference platform, we use a BeagleBone Black with a single-core Sitara
AM3358, a 32 bit ARM Cortex-A8 processor and 512 MiB of main memory. In contrast to
the powerful Intel server CPU, such ARM processors are typically found in embedded or
industrial applications. We boot the RTEMS + DBToaster application directly on bare-metal.

13 Other mechanisms like CPU isolation at boot-time would provide a slightly higher level of isolation, but must be
statically configured at boot-time, limiting the flexibility of the setup.

14 Getting DBToaster to run on RTEMS was not straightforward; along our trials, several fixes were proposed to
open source systems, such as a decade-old bug revealed in GCC, as well as a bug identified in RTEMS.

406 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 11

Methodology. DBToaster logs a time-stamp for every # input tuples processed. This
allows us to compute the latency per # input tuples processed, averaged over # tuples. While
averaging is a sensible and established choice for throughput measurements to minimise
overhead of the measurement intervention, we are interested in a precise characterisation
of system noise vs. intrinsic variation of the core processing code, and therefore resort to
measuring processing times on a per-tuple basis (# = 1).

We distinguish between two units of measurements: (1) time stamps obtained by the standard
POSIX API (clock_gettimewith CLOCK_MONOTONIC). This allows for nanosecond resolution,
but also inflicts considerable overheads in the microsecond range, and introduces a noise
level that is on par with the processing time proper for some of the simpler queries. Therefore,
we extend DBToaster with the optional capability of (2) using x86 time stamp counter (TSC)
ticks. While there are several problems and pitfalls associated with using the TSC on SMP
configurations, and while the obtained measurement values cannot be converted to walltime
without further ado [Ma10], TSCs are one of the highest-precision clock sources available
on x86 hardware, and can be read from userspace without transition to kernelmode.15

As is a standard approach in settings like ours [BL01], we start measuring time once the
input is in memory. In particular, we pre-load all tuples prior to stream processing, to
exclude noise caused by I/O. Of course, in any real-world setting, the tuples would be
read over peripheral communication channels, such as ethernet. To further avoid noise in
our measurements, we have modified the code generated by DBToaster such that these
time-stamps are cached in memory during query evaluation, in a pre-allocated array, rather
than being continuously written to the standard output console.

Simulating tenant load. We simulate further tenants executing on the same system using
the standard utility stress-ng, running 6 synthetic workloads.16 In Figure 1, we depict
stress-ng running as additional load on the CPUs that are annotated with “L”.

4.1 Results
4.1.1 Noise and Determinism: Finance Queries
We begin our discussion of results for the finance queries. The time series in Figure 3 show
observed latencies for processing each out of 500k input tuples. Red, labelled triangles
mark the minima and maxima. Since almost all measured values fall into a comparatively

15 Using a high-resolution, low overhead time source is not necessary on our ARM reference platform because the
time required to obtain a time stamp is negligible in comparison to the average processor performance, and our
operating system has a flat memory and privilege model – that is, there is no distinction between kernel- and
usermode on our near-bare-metal measurements on this platform.

16 (1) Binary search on a sorted array (exercises random memory access and processor caches), (2) matrix
multiplication (to stress memory cache and floating point units), (3) compressing/decompressing random data
(exercising CPU, cache, and memory), (4) randomly spread memory read and writes (to thrash the CPU cache),
(5) sequential, random and memory mapped read/write operations (to exercise the I/O subsystem), and (6) timer
interrupts at the frequency of 1 MHz (to induce continuous kernel/userspace transition due to interrupt handling).

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 407

https://wiki.ubuntu.com/Kernel/Reference/stress-ng

12 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

18.1

2.11

42.3

2.1

12.1

2.1

43.2

2.11

17.5

2.1

44.4

1.16

42.2

1.09

44.8

0.936

44.6

1.09

43.3

1.01

44.6

0.906

44.9

0.886

40.7

0.798

44.9

0.876

38.6

0.796

countone axfinder pricespread

N
o
Load

Load
Load/FIFO

Load/Shield
L/S/FIFO

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

100k Tuples Processed

La
te
nc
y
[k
TS
C
Cy
cl
es
]

Observation Extreme Value Standard Value

Fig. 3: Latency time series for finance queries on x86, using the high-speed time stamp counter (TSC).

narrow standard range, which would lead to massive over-plotting and loss of information,
we colour all “extreme” measurement points that fall in the bottom 0.05% percentile, or that
exceed the 99.95% percentile, in grey. We consider all other data points (marked ochre) as
the normal observations. Note that such outliers have no noticeable influence when it comes
to performance measurements, which usually concern query throughput, based on temporal
averages, but are of paramount importance for real-time, bounded latency scenarios. For
instance, the experiments in [Ko14] consider the query refresh times for processing batches
of 1,000 tuples, and we compute a sliding mean window over 1,000 tuples as a consistency
check; the resulting red line nicely reproduces the original DBToaster experiments [Ko14].

Each subplot of a given column corresponds to one system software stack scenario from
Section 2. Almost all latencies are centred around the sliding mean value. However, a few
outliers exceed the mean by a factor of about four.17

We have also tracked the average performance of the simulated other tenants, and found that
it was essentially identical regardless of the measurement setup, which shows that improved

17 In the scenario discussed in this paper, the maximum observed latency is essential. Exceeding a threshold in
industrial control scenarios might have severe consequences, from lost capital over destroyed machinery to bodily
harm or loss of life, which can never be compensated by the fact the this does not happen on average.

408 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 13

determinism for a given workload does not necessarily decrease average throughput for
non-real-time loads. Detailed data are available in the reproduction package.

While we consider queries of different intrinsic complexity, there is no direct relation
between query complexity and noise – however, there is a relation between query complexity
and average performance, as visible in the increasing latencies of the red line from left
(simpler query) to right (more complicated query).

Query countone merely counts the number of input tuples processed so far (and is refreshed
for each input tuple), whereas the other finance queries compute joins. As can be expected,
the average latency for countone is distinctly lower. For the other queries, we can observe
densely populated discrete “horizontal bands” that group the majority of all observed
values. They correspond, based on an analysis of profiling data, to the main execution paths
taken by the DBToaster-generated code (two main execution paths are a consequence of
the “orderbook adapter” that distinguishes between the two types of input data, bids and
asks). Also, when DBToaster-internal dynamic data structures grow in size (such as when
buffering tuples for computing hash joins), additional DBToaster-intrinsic latencies incur.

The vertical spread of observations around these bands is an obvious visual noise measure.
By comparing against the “Load” scenario, it is visually apparent that the different isolation
mechanisms substantially reduce the observed jitter, typically to the level of an otherwise
unloaded system. The strongest form of isolation, CPU shielding plus realtime scheduling
(L/S/FIFO), produces latency distributions that are not only comparable, but even better in
terms of maximum values than in the “No Load” scenario. The amount of noise decreases
in order Load/Shield, Load/FIFO, and Load/Shield/FIFO. It might surprise that a shielded
CPU performs worse than a CPU with additional load, but with a real-time prioritised task of
interest. Recall that there is a complex interaction of kernel features as outlined in Sec. 2.2,
and that, for instance, a larger set or possible preemption points, together with delayed
kernel administrative work in a shielded scenario, may well compensate the advantages
gained by exclusive CPU access.

While the measurements show a noticeable reduction of noise when using more advanced
isolation techniques, the reduction of maximal latencies comprises only a factor of two.

4.1.2 Noise and Determinism: TPC-H Queries
The latency measurement results for the TPC-H queries are shown in Figure 4. While the
general observations are identical – measured values concentrate around a few horizontal
“bands”,18 and noise decreases with the various forms of systemic isolation – the behaviour
of the queries under high load differs considerably from the “No load” and isolated case:

18 Notice that such bands may also be caused by system effects, and are then not necessarily present in all
measurement combinations: For instance, the Load/Shield scenario in Figure 4 contains a band that disappears
when FIFO scheduling is activated. Bands present in all scenarios are typically, but not necessarily, caused by the
payload software. Such detail observations are not possible in measurements that average over observations.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 409

14 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

30.7

6.88

74200

6.89

35.6

6.92

35.7

6.9

33.8

6.92

38.1

8.65

8.65

98700

8.73

40.1

8.5

41.1

8.72

35.2

8.67

33.1

2.47

99700

2.51

32.2

2.47

36.7

2.48

31.4

2.42

Q6 Q1 Q11a

N
o
Load

Load
Load/FIFO

Load/Shield
L/S/FIFO

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

10

20

30

0
25000
50000
75000
100000

10

20

30

40

10
20
30
40

10

20

30

100k Tuples Processed

La
te
nc
y
[k
TS
C
Cy
cl
es
]

Observation Extreme Value Standard Value

Fig. 4: Latency time series for TPC-H queries on x86, using the high-speed time stamp counter (TSC).

The difference in maximal latencies comprises more than three decimal orders of magnitude
(observe the different scales of the vertical axes in the plots), and a similar statement can be
made for the width of the spread around the running mean value, the latter again plotted
with a red line. While such high variance has grave consequences for real-time systems, it is
not even observable when throughput measurements are averaged.

So far, we have relied on visual means for characterising noise. For a quantitative measure,
consider the set of observed latencies {ΔC8} (each data point in Fig. 4 corresponds to one
value of ΔC8). While we have focused on x86 so far, we will also consider ARM-based
systems below. These platforms vary widely in their performance, and absolute values
consequently require interpretation. It is therefore pertinent to consider relative deviations
from the expected response time, which allows us to compare across platforms.

To this end, we define spreads, which are not influenced by the absolute processing
speed. The maximum spread is given by max({ΔC8})/med({ΔC8}), and minimum spread
by med({ΔC8})/min({ΔC8}), where med(·) denotes the median of the argument set. The
quantities characterise the system-global relative span between a “typical” observed value,
and the most extreme outliers in both directions. The results shown in the row labelled “TSC”
of Fig. 5 quantitatively underlines this: Spread in the “Load” scenario typically exceeds

410 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 15

Q6 Q1 Q11a

TSC
Clock

No L
oadLoadLoad

/FIFO
Load

/Shie
ld
L/S/F

IFO
No L

oadLoadLoad
/FIFO
Load

/Shie
ld
L/S/F

IFO
No L

oadLoadLoad
/FIFO
Load

/Shie
ld
L/S/F

IFO

100
101
102
103
104

100
101
102
103
104

Re
la
tiv
e
Sp
an
[lo
g]

Maximum

Minimum

Fig. 5: Span of observations relative to median query latency of the TPC-H queries in Figure 4. Clock:
Measured using clock_gettime. TSC: Measured using the high-resolution time stamp counter.

the spread in the isolation scenarios by orders of magnitude. The differences between the
various isolation scenarios (and the “No Load” case) are much less pronounced, but can
still encompass a factor of two or three (note the log-transformation of the H axis).

Recall that we distinguish between two units of measurements for latencies, (1) wallclock
time in nanoseconds, and (2) x86 time-stamp counter ticks. The row labeled “Clock” of
Figure 5 highlights another issue related to this fact that is mostly technical, but nonetheless
requires careful consideration: how to perform the measurement itself. It shows the relative
span for the identical measurement as considered in the other row, but this time using
per-tuple latency measurements based on the POSIX API call clock_gettime offered as
service by the Linux kernel (and often replaced by the lower-precision variant gettimeofday,
in a good fraction of published performance measurements). Especially the maximum span
can differ considerably among measurement variants. For TPC-H query 11a, it is even the
major source of noise, as the right part of Fig. 5 shows.

Fig. 6 illustrates, for a subset of the isolation mechanisms, the increase in spread and noise
distribution for clock-based measurements. It particularly highlights that even the mean
throughput value (red line) is substantially influenced by the increased overhead.

4.2 The Role of CPU Noise
To a major extent, the previous experiments concern the control of noise introduced by
the operating system and the presence of other tasks that compete for CPU time and other
shared resources. Especially the scenario using CPU isolation, combined with a real-time
scheduling policy, eliminates a substantial fraction of this noise. We now question how
much of the remaining noise is caused by the executing CPU itself, and can thus be seen as
an effective lower bound on any systemic noise.

We thus run our binaries as close to the bare-metal as possible, which reduces OS overhead.
We perform these measurements on an ARM processor that we deem powerful enough
to execute reasonable database operations, but that uses substantially fewer performance

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 411

16 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

80000

2.98

6

3.01

30000

3.77

20.2

3.81

101000

101000

1.09

1.09

19300

1.08

L/S/FIFO | Q6 L/S/FIFO | Q1 L/S/FIFO | Q11a

Load | Q6 Load | Q1 Load | Q11a

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

101

103

105

100
101
102
103
104

101

102

103

104

5

10

20

101
102
103
104
105

3

4

5

100k Tuples Processed

La
te
nc
y
[`
s,
lo
g]

Observation Extreme Value Standard Value

Fig. 6: Latency time series for TPC-H queries on x86, using a kernel-provided clock.

optimisations than x86 server-class CPUs (and, thus, suffers from less intrinsic noise). Our
choice for an ARM CPU is not just driven by simplicity, though: Processors of this type
are the most frequent choice in embedded systems and IoT devices, where low latency
data processing is a common requirement (for instance, think of sensor-based systems that
derive action decisions by combining previously measured values stored in a database with
current data points). Our measurements are therefore representative for this large class of
systems that we expect will gain even more importance in future applications. Of course,
measurements on CPUs with drastically different capabilities cannot be directly compared,
and this is not our desire: Instead, it is important to consider the relative difference between
average and maximal latencies, and the span within measurements, as discussed below.

Fig. 7 shows latency time series for three finance queries. Again, observations centre around
horizontal bands induced by the main execution paths, but the overall jitter is limited. The
reduction compared to Jailhouse on x86 is quantified in Fig. 8.

65.8

10.2 10.2 10.2

73.2

11.9

74.1

13.1 13.1 13.1 13.1

countone axfinder pricespread

RTEM
S/A
RM

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

20

40

60

100k Tuples Processed

La
te
nc
y
[`
s]

Observation Extreme Value Standard Value

Fig. 7: Latency time series for finance queries on an ARM system (BeagleBone Black) using RTEMS.
Red, labelled triangles represent minima and maxima (not necessarily unique).

412 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 17

countone axfinder pricespread

A
RM

x86/JH

Load No L
oad Load No L

oad Load No L
oad

0.0
2.5
5.0
7.5
10.0

0.0
2.5
5.0
7.5
10.0

Re
la
tiv
e
Sp
an

Maximum

Minimum

Fig. 8: Span of observations relative to median query latency of finance queries on bare-metal, on a
high-end (x86) and low-end (ARM) CPU.

The summary for a second set of measurements shown in the bottom part of Fig. 8 represents
bare-metal results obtained on the x86 CPU, but this time driven by an RTEMS kernel
running inside a Jailhouse cell. Since the system is equipped with a total of 12 cores
(compared to the single-core ARM), and only one of the cores is needed to run the database
workload, we extend the measurement with an additional aspect that quantifies the aptitude
of the setup to decouple latency-critical database operations performed by one tenant from
other, perhaps throughput-oriented operations performed by other tenants. The spread is,
as Fig. 8 shows, almost identical between the scenarios. This is also reflected in the time
series shown in Fig. 9, which demonstrates that the results of the two configurations do
not deviate in any substantial way. Since the isolation provided by Jailhouse does not only
address execution timing, but also extends to other security and privacy related aspects of
database workload processing, we deem this configuration a suitable basis for multi-tenant
systems with strong separation guarantees.

19.4
15.5

18.9

15.5

26.9

5.69

26.3

5.69

27.2

5.65

27.1

1.69

countone axfinder pricespread

Load
N
o
Load

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

10

20

10

20

100k Tuples Processed

La
te
nc
y
[`
s]

Observation Extreme Value Standard Value

Fig. 9: Latency time series for finance queries on an RTEMS-based near bare-metal CPU provided by
the Jailhouse hypervisor.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 413

18 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

5 Consequences
Our experimental results show that – at least for our use-case of an in-memory database
engine – building a database stack on a plain-vanilla Linux with custom settings can already
compete with running close to bare-metal on the hardware. In our experiments we reached
a state where the major source of noise turned out to be the interruptions to measure time
(and noise) itself – any other sources for system-software induced jitter had been eradicated.
In the following, we discuss some of these results in a broader context.

There’s life in the old dogs, yet. Our results suggest that it may not be necessary to
design dedicated DB-aware operating systems from scratch. Rather, a prudent strategy to
extend and enhance existing systems selectively may pay off equally well, and provide
faster results. This is a recurring experience in the systems community: About a decade
ago, the upcoming “multicore challenge” was supposed to render existing system-software
designs unviable, and new kernel designs were deemed necessary [Ba09; Bo08; WA09].
It later turned out that existing system software could be scaled-up almost equally well
by a systematic examination of their bottlenecks, which then could be fixed by employing
standard techniques of parallel programming combined with a few novel abstractions [Bo10].
In a similar run–analyse–fix-approach, we have shown that existing system software, such
as Linux, might just be good enough for many more database use cases, given proper
configuration and adaptation. Of course, this does not invalidate the ongoing research on
novel operating systems customised for database engines. Instead, the lesson to be learned
here is that studying the actual reasons behind noise observed with existing operating
systems is important. Only if we can pinpoint and understand the root causes, can we think
of innovative solutions to these problems.

The cure might come by foreigners. Basically all of the measures we applied have
originally been introduced into Linux to improve determinism and worst-case latencies not
in database engines, but for the domain of embedded real-time systems: SCHED_FIFO,
CPU shields, interrupt redirection, and PREEMPT_RT were developed and introduced
to make Linux a suitable platform for mixed-criticality [BD17; Ve07] workloads in the
real-time domain. This is also the main motivation behind partitioning hypervisors, such as
Jailhouse. In our understanding, multi-tenant database engines that need to provide isolation
and a guaranteed quality of service could (and should) be considered as (soft) real-time
systems. Hence, operating-system solutions originally developed for the real-time domain
might be a promising solution vector for the development of time-critical database systems.
This underlines the necessity to rejoin the database and system communities.

Many challenges remain. Even though our results are promising, it should be pointed
out that we eradicated only the CPU noise, and deliberately ignored I/O noise. Compared
to the (narrow) case of a pure in-memory database, disk-based or otherwise I/O-intensive
database stacks can be treated using the same measures as employed in this paper, but
would face different challenges. In fact, most of Linux’s built-in real-time measures do
not interact well with the I/O subsystem without further ado; it is often assumed that

414 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 19

the time-critical part can be decoupled from all I/O activities. While we have not yet
examined disk-based database engines in this respect, we expect this to become a larger
challenge that probably requires more invasive changes to the existing software stack. Direct
I/O [Pe14] might be a promising way to approach this. Likewise, low-latency [Le19] or
deterministic [SC03; Ya15] I/O scheduling have received a fair amount of attention outside
the database community. External input via networks must consider additional stochastic
parameters (e.g. unpredictable arrival times of data packets) that add to the complexity
of the investigation. Real-time [KW05], or time-sensitive networking, and userland-based
low-latency interaction with networking hardware can also be applied in database use-cases,
albeit details must be left to future work.

What’s next. Consider, as a specific and current example, how in-memory database
engines can be extended with disk support – as, for instance, happens in the extension of
Hyper to Umbra, where the authors propose to use SSDs for storage [NF20]. Especially
parallel combinations of multiple SSDs promise RAM-like access performance.

However, parallel SSDs must be managed and driven. Database engines frequently aim
at controlling block devices (at least to schedule access) from userland, since they have
more complete usage pattern information than the OS. Yet this approach inevitably suffers
from (at least) the amount of noise we have observed in our measurements, and advanced
functionalities like RAID require substantial engineering effort. Operating systems provide
such services as a commodity, but lack integration with the database query optimiser and its
cost model. Additionally, operating systems are commonly optimised for throughout, so
considerable tail latencies can be expected without adaptations. However, we are optimistic
that moderate extensions of existing kernel mechanisms will combine the benefits of already
existing infrastructure with little noise. This is important since increased determinism is
beneficial to finding optimal query plans.

For all of the challenges listed above, we are optimistic that the required changes will be
comparatively small compared to developing a new operating system from scratch.

6 Conclusion
We have shown that proper use of standard mechanisms of full-featured OSes can achieve
database query latencies comparable to running an in-memory database engine directly
on raw hardware. We reach a point where measuring time becomes the largest source of
noise. By addressing challenges beyond CPU noise, we plan to bridge to the domain of
real-time systems, and leverage techniques established for mixed-criticality systems which
we apply to the database domain. After all, the underlying ideas match our scenario: One
workload (the database engine) is to be shielded, without impairing the other workloads.
We are confident that the respective research communities will enjoy many mutual benefits.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 415

20 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

Docker Container

Public Git

Repository
PatchesBinaries

Build

Recipe

Compiled

Queries
DispatcherEvaluation

Tarball

Measurement A

(x86)

Results A

Charts A

Measurement B

(ARM)

Results B

Charts B

A −→ B, B integrates A
A =⇒ B, B is produced by A

Temporal flow

Fig. 10: Components and workflow of the reproduction package.

7 Appendix: Reproduction Package
Our publicly available reproduction package is based on Docker.19 The process is illustrated
in Figure 10: A Docker build recipe produces the docker container, and scripts that run
therein produce a tarball with executables for all measurements in this paper. By transferring
this tarball to a target, the experiments can be automatically executed, and charts generated.

We use binary sources for distribution-level software, and build other components
(DBToaster, embedded compilers, RTEMS board support packages, . . .) from source using
the latest released state, augmented with local patches, to address issues found during
this work that relate to the RTEMS kernel, the Jailhouse hypervisor, the GNU C compiler,
and DBToaster itself (we include patches as explicit diff files to make any deviations from
upstream sources explicit without relying on git history inspection). Additionally, we do
not rely on the long-term availability of external sources by providing a pre-built Docker
image. It contains all sources and dependencies, and enables re-building the exact same
binaries from source that we use for the measurements (of course, our peers may choose
to build the Docker image from scratch, depending on the latest binaries).

Finally, we provide all raw measurement results for all system combinations considered in
the paper, and all post-processing scripts to evaluate and visualise the data.

Acknowledgements. This work was supported by the iDev40 project and the German Research
Council (DFG) under grant no. LO 1719/3-1. The information and results set out in this publication are
those of the authors and do not necessarily reflect the opinion of the ECSEL Joint Undertaking. The
iDev40 project has received funding from the ECSEL Joint Undertaking (JU) under grant no. 783163.
The JU receives support from the European Union’s Horizon 2020 research and innovation programme.
It is co-funded by the consortium members, grants from Austria, Germany, Belgium, Italy, Spain and
Romania. We thank the DBToaster team, and Jan Kiszka for guidance on difficile technical issues
related to Jailhouse on x86 systems.

19 Available online from https://github.com/lfd/btw2021.

416 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

https://github.com/lfd/btw2021

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 21

References
[AP17] Arulraj, J.; Pavlo, A.: How to Build a Non-Volatile Memory Database Man-

agement System. In: Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data. SIGMOD’17, pp. 1753–1758, 2017.

[APD15] Arulraj, J.; Pavlo, A.; Dulloor, S. R.: Let’s Talk About Storage & Recovery
Methods for Non-Volatile Memory Database Systems. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data.
SIGMOD’15, pp. 707–722, 2015.

[Ar09] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.;
Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia, M.: Above the Clouds:
A Berkeley View of Cloud Computing, tech. rep., University of California at
Berkeley, 2009.

[Au08] Aulbach, S.; Grust, T.; Jacobs, D.; Kemper, A.; Rittinger, J.: Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques. In
(Wang, J. T.-L., ed.): Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. SIGMOD’08, pp. 1195–1206, 2008.

[Ba09] Baumann, A.; Barham, P.; Dagand, P.-E.; Harris, T.; Isaacs, R.; Peter, S.;
Roscoe, T.; Schüpbach, A.; Singhania, A.: The multikernel: A New OS
Architecture For Scalable Multicore Systems. In: Proceedings of the 22nd
ACM Symp. on Operating Systems Principles. SOSP’09, pp. 29–44, 2009.

[BD17] Burns, A.; Davis, R. I.: A Survey of Research into Mixed Criticality Systems.
ACM Comput. Surv. 50/6, 2017.

[Bi20] Bittman, D.; Alvaro, P.; Mehra, P.; Long, D.D. E.; Miller, E. L.: Twizzler: a
Data-Centric OS for Non-VolatileMemory. In: 2020USENIXAnnual Technical
Conference. USENIX ATC’20, pp. 65–80, 2020.

[BL01] Buchmann, A. P.; Liebig, C.: Distributed, Object-Oriented, Active, Real-Time
DBMSS: We Want It All - Do We Need Them (at) All? In. Annual Reviews in
Control, pp. 147–155, 2001.

[Bo08] Boyd-Wickizer, S.; Chen, H.; Chen, R.; Mao, Y.; Kaashoek, F.; Morris, R.;
Pesterev, A.; Stein, L.; Wu, M.; Dai, Y.; Zhang, Y.; Zhang, Z.: Corey: An
Operating System for Many Cores. In: 8th Symposium on Operating System
Design and Implementation. OSDI’08, pp. 43–57, 2008.

[Bo10] Boyd-Wickizer, S.; Clements, A. T.; Mao, Y.; Pesterev, A.; Kaashoek, M. F.;
Morris, R.; Zeldovich, N.: An Analysis of Linux Scalability to Many Cores. In:
9th Symposium on Operating System Design and Implementation. OSDI’10,
2010.

[Br15] Bratterud, A.; Walla, A.-A.; Haugerud, H.; Engelstad, P. E.; Begnum, K.:
IncludeOS: A Minimal, Resource Efficient Unikernel For Cloud Services. In:
2015 IEEE 7th International Conference on Cloud Computing Technology and
Science. CloudCom’15, pp. 250–257, 2015.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 417

22 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

[BS14] Bloom, G.; Sherrill, J.: Scheduling and Thread Management with RTEMS.
SIGBED Rev. 11/1, pp. 20–25, 2014.

[Bu05] Buchmann, A. P.: Real-Time Databases. In (Rivero, L. C.; Doorn, J. H.; Ferrag-
gine, V. E., eds.): Encyclopedia of Database Technologies and Applications.
Idea Group, pp. 524–529, 2005.

[Ca20] Cafarella, M. J.; DeWitt, D. J.; Gadepally, V.; Kepner, J.; Kozyrakis, C.;
Kraska, T.; Stonebraker, M.; Zaharia, M.: DBOS: A Proposal for a Data-
Centric Operating System. CoRR abs/2007.11112/, 2020.

[Ch18] Chandramouli, B.; Prasaad, G.; Kossmann, D.; Levandoski, J.; Hunter, J.;
Barnett, M.: FASTER: A Concurrent Key-Value Store with In-Place Updates.
In: Proceedings of the 2018 International Conference on Management of Data.
SIGMOD’18, pp. 275–290, 2018.

[DAM17] Dominico, S.; de Almeida, E. C.; Meira, J. A.: A PetriNet Mechanism for
OLAP in NUMA. In: Proceedings of the 13th International Workshop on Data
Management on New Hardware. DaMoN’17, pp. 1–4, 2017.

[DB13] Dean, J.; Barroso, L. A.: The Tail at Scale. Commun. ACM 56/2, pp. 74–80,
2013.

[Do18] Dominico, S.; de Almeida, E. C.; Meira, J. A.; Alves, M.A. Z.: An Elastic
Multi-Core Allocation Mechanism for Database Systems. In: 2018 IEEE 34th
International Conference on Data Engineering. ICDE’18, pp. 473–484, 2018.

[Fa17] Faerber, F.; Kemper, A.; Larson, P.-Å.; Levandoski, J. J.; Neumann, T.; Pavlo, A.:
Main Memory Database Systems. Found. Trends Databases 8/1-2, pp. 1–130,
2017.

[Gi13] Giceva, J.; Salomie, T.-I.; Schüpbach, A.; Alonso, G.; Roscoe, T.: COD:
Database / Operating System Co-Design. In: Sixth Biennial Conference on
Innovative Data Systems Research, Online Proceedings. CIDR’13, 2013.

[Gi19] Giceva, J.: Operating System Support for Data Management on Modern
Hardware. IEEE Data Eng. Bull. 42/1, pp. 36–48, 2019.

[Gr78] Gray, J. N.: Notes on Data Base Operating Systems. In: Operating Systems: An
Advanced Course. Springer Berlin Heidelberg, pp. 393–481, 1978.

[GS92] Garcia-Molina, H.; Salem, K.: Main Memory Database Systems: An Overview.
IEEE Trans. on Knowl. and Data Eng. 4/6, pp. 509–516, 1992.

[GTS20] Götze, P.; Tharanatha, A.K.; Sattler, K.-U.: Data Structure Primitives on
Persistent Memory: An Evaluation. In: Proceedings of the 16th International
Workshop on Data Management on New Hardware. DaMoN’20, 2020.

[In15] Intel Corporation: Improving Real-Time Performance by Utilizing Cache
Allocation Technology, https://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/cache-allocation-technology-white-

paper.pdf (last accessed February 2021), 2015.

418 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 23

[Ki15] Kiefer, T.; Schön, H.; Habich, D.; Lehner, W.: A Query, a Minute: Evaluating
Performance Isolation in Cloud Databases. In: Performance Characterization
and Benchmarking. Traditional to Big Data, pp. 173–187, 2015.

[KLT16] Koch, C.; Lupei, D.; Tannen, V.: Incremental ViewMaintenance For Collection
Programming. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. PODS’16, pp. 75–90, 2016.

[Ko10] Koch, C.: Incremental Query Evaluation in a Ring of Databases. In: Proceedings
of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. PODS’10, pp. 87–98, 2010.

[Ko13] Koch, C.; Ahmad, Y.; Kennedy, O.A.; Nikolic, M.; Nötzli, A.; Lupei, D.;
Shaikhha, A.: DBToaster: Higher-order Delta Processing for Dynamic, Fre-
quently Fresh Views, tech. rep., EPFL, 2013.

[Ko14] Koch, C.; Ahmad, Y.; Kennedy, O.; Nikolic, M.; Nötzli, A.; Lupei, D.;
Shaikhha, A.: DBToaster: Higher-Order Delta Processing for Dynamic, Fre-
quently Fresh Views. VLDB J. 23/2, pp. 253–278, 2014.

[KSL13] Kiefer, T.; Schlegel, B.; Lehner, W.: Experimental Evaluation of NUMA
Effects on Database Management Systems. In: Datenbanksysteme für Business,
Technologie und Web (BTW) 2025. BTW’13, pp. 185–204, 2013.

[KW05] Kiszka, J.; Wagner, B.: RTnet-A Flexible Hard Real-Time Networking Frame-
work. In: 2005 IEEE Conference on Emerging Technologies and Factory
Automation. Vol. 1, IEEE, pp. 456–464, 2005.

[Le19] Lee, G.; Shin, S.; Song, W.; Ham, T. J.; Lee, J.W.; Jeong, J.: Asynchronous
I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low Latency SSDs. In:
USENIX Annual Technical Conference. USENIX ATC’19, pp. 603–616, 2019.

[Le20] Lersch, L.; Schreter, I.; Oukid, I.; Lehner, W.: Enabling Low Tail Latency on
Multicore Key-Value Stores. Proc. VLDB Endow. 13/7, pp. 1091–1104, 2020.

[Ma10] Mauerer, W.: Professional Linux Kernel Architecture. John Wiley & Sons,
2010.

[Ma13] Madhavapeddy, A.; Mortier, R.; Rotsos, C.; Scott, D.; Singh, B.; Gazagnaire, T.;
Smith, S.; Hand, S.; Crowcroft, J.: Unikernels: Library Operating Systems for
the Cloud. SIGARCH Comput. Archit. News 41/1, pp. 461–472, 2013.

[MKN12] Mühe, H.; Kemper, A.; Neumann, T.: The Mainframe Strikes Back: Elastic
Multi-Tenancy UsingMain Memory Database Systems On aMany-Core Server.
In: Proceedings of the 15th International Conference on Extending Database
Technology. EDBT’12, pp. 578–581, 2012.

[MS19] Müller, M.; Spinczyk, O.: MxKernel: Rethinking Operating System Architec-
ture for Many-Core Hardware. In: 9th Workshop on Systems for Multi-core
and Heterogenous Architectures. EuroSys’19, 2019.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 419

24 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie Scherzinger

[Mü20] Mühlig, J.; Müller, M.; Spincyk, O.; Teubner, J.: mxkernel: A Novel System
Software Stack for Data Processing onModern Hardware. Datenbank-Spektrum
20/3, pp. 223–230, 2020.

[Na13] Narasayya, V.; Das, S.; Syamala,M.; Chandramouli, B.; Chaudhuri, S.: SQLVM:
Performance Isolation in Multi-Tenant Relational Database-as-a-Service. In:
6th Biennial Conf. on Innovative Data Systems Research. CIDR’13, 2013.

[NDK16] Nikolic, M.; Dashti, M.; Koch, C.: How to Win a Hot Dog Eating Contest:
Distributed Incremental ViewMaintenancewith BatchUpdates. In: Proceedings
of the 2016 International Conference on Management of Data. SIGMOD’16,
pp. 511–526, 2016.

[NF20] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-Memory
Performance. In: 10th Conference on Innovative Data Systems Research, Online
Proceedings. CIDR’20, 2020.

[No18] Noll, S.; Teubner, J.; May, N.; Böhm, A.: Accelerating Concurrent Workloads
with CPU Cache Partitioning. In: IEEE 34th International Conference on Data
Engineering. ICDE’18, pp. 437–448, 2018.

[Pe14] Peter, S.; Li, J.; Zhang, I.; Ports, D. R.K.; Woos, D.; Krishnamurthy, A.;
Anderson, T.; Roscoe, T.: Arrakis: The Operating System is the Control Plane.
In: Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. USENIX’14, pp. 1–16, 2014.

[PH90] Patterson, D.A.; Hennessy, J. L.: Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 1990, isbn: 1558800698.

[Po12] Porobic, D.; Pandis, I.; Branco,M.; Tözün, P.; Ailamaki, A.: OLTP onHardware
Islands. Proc. VLDB Endow. 5/11, pp. 1447–1458, 2012.

[Ra17] Ramsauer, R.; Kiszka, J.; Lohmann, D.; Mauerer, W.: LookMum, no VMExits!
(Almost). In: Proceedings of the 13th Annual Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT ’17). 2017.

[Re19] van Renen, A.; Vogel, L.; Leis, V.; Neumann, T.; Kemper, A.: Persistent
Memory I/O Primitives. In: Proceedings of the 15th International Workshop
on Data Management on New Hardware. DaMoN’19, 12:1–12:7, 2019.

[RF18] Rehmann, K.-T.; Folkerts, E.: Performance of Containerized Database Manage-
ment Systems. In: Proceedings of the Workshop on Testing Database Systems.
DBTest’18, 2018.

[SC03] Swaminathan, V.; Chakrabarty, K.: Energy-conscious, deterministic I/O device
scheduling in hard real-time systems. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 22/7, pp. 847–858, 2003.

[SDQ10] Schad, J.; Dittrich, J.; Quiané-Ruiz, J.-A.: Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance. PVLDB Endow. 3/1, pp. 460–
471, 2010.

420 Wolfgang Mauerer, Ralf Ramsauer, Edson R. Lucas, D. Lohmann, Stefanie
Scherzinger

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 25

[St07] Stonebraker, M.; Madden, S.; Abadi, D. J.; Harizopoulos, S.; Hachem, N.;
Helland, P.: The End of an Architectural Era: (It’s Time for a Complete Rewrite).
In: Proceedings of the 33rd International Conference on Very Large Data Bases.
VLDB’07, pp. 1150–1160, 2007.

[Ve07] Vestal, S.: Preemptive Scheduling of Multi-Criticality Systems with Varying
Degrees of Execution Time Assurance. In: Proceedings of the 28th IEEE
International Real-Time Systems Symposium. RTSS’07, pp. 239–243, 2007.

[WA09] Wentzlaff, D.; Agarwal, A.: Factored Operating Systems (fos): The Case for a
Scalable Operating System for Multicores. ACM SIGOPS Operating Systems
Review 43/2, pp. 76–85, 2009.

[Xu13] Xu, Y.; Musgrave, Z.; Noble, B.; Bailey, M.: Bobtail: Avoiding Long Tails in
the Cloud. In: 10th USENIX Symposium on Networked Systems Design and
Implementation. NSDI’13, pp. 329–341, 2013.

[Ya15] Yang, S.; Harter, T.; Agrawal, N.; Kowsalya, S. S.; Krishnamurthy, A.; Al-
Kiswany, S.; Kaushik, R. T.; Arpaci-Dusseau, A. C.; Arpaci-Dusseau, R.H.:
Split-Level I/O Scheduling. In: Proceedings of the 25th Symposium on Operat-
ing Systems Principles. SOSP’15, pp. 474–489, 2015.

Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack 421

cbe

Herausgeber et al. (Hrsg.): Fachtagung für Datenbanksysteme für Business, Technologie und Web,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Data Management in Multi-Agent Simulation Systems

From Challenges to First Solutions

Daniel Glake1, Fabian Panse1, Norbert Ritter1, Thomas Clemen2, Ulfia Lenfers2

Abstract: Multi-agent simulations are an upcoming trend to deal with the urgent need to predict
complex situations as they arise in many real-life areas, such as disaster or traffic management. Such
simulations require large amounts of heterogeneous data ranging from spatio-temporal to standard
object properties. This and the increasing demand for large scale and real-time simulations pose many
challenges for data management. In this paper, we present the architecture of a typical agent-based
simulation system, describe several data management challenges that arise in such a data ecosystem,
and discuss their current solutions within our multi-agent simulation system MARS.

Keywords: Multi-agent simulations, Spatio-temporal data, Polyglot data management

1 Introduction

In the digital age, more and more data is available used to predict future conditions and
effects emerging from potential (re)actions. A popular approach to make such predictions
are simulation systems. They can be used to predict the course of catastrophic events, such
as social-ecological changes [LWC18], nuclear disasters [Wa18] or epidemics [ZKC05]
(e.g., to play through the effects of various measures), but can also be used to control,
predict and evaluate everyday aspects, such as traffic with climate influence, topographic
changes and individual-driven decision-making [WGC18]. One way to simulate such
complex social-world processes is to use a multi-agent simulation (MAS) [WR15] in which
the system models every individual by a separate agent interacting directly or indirectly
with other agents or the considered world. Since MASs are temporal systems and often
deal with spatial properties given by the represented world and locations of simulated
objects, spatio-temporal data management is a crucial part of modern MAS systems such
as GAMA [Gr13], NetLogo [WR15] or MARS (Multi-Agent Research and Simulation)
[We19]. Due to the ongoing digitalization (e.g., through the Internet of things) and the
growing availability of data (e.g., open data), simulations receive more and more attention
while the heterogeneity and volume of useful data are continually growing. For short-term
planning, such as city-wide traffic-jam forecasting [We19], simulation results must be
1 Universität Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany {glake,panse,ritter}@informatik.uni-
hamburg.de
2 HAW Hamburg, Berliner Tor 7, 20099 Hamburg, Germany {thomas.clemen, ulfia.lenfers}@haw-hamburg.de

cba doi:10.18420/btw2021-22

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 423

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-22

2 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

determined and aggregated quickly to provide value for decision support. In contrast, for
long-term planning, e.g., infection spreading estimations [Ye06], the data management and
simulation must be robust and offer sufficient capacity. Global sensitivity analyses further
intensify these requirements. These circumstances cause several challenges in the data
management of MAS systems, which we address in this paper from a general perspective
before discussing some first solutions currently implemented in the MARS system.

This paper is structured as follows: In Section 2, we describe the typical components of a
MAS system and how they are involved in the system’s data management. Thereafter, we
discuss open challenges for different data management aspects in Section 3 and describe in
which way we address these challenges in MARS in Section 4. Finally, we discuss related
work, conclude our paper and give an outlook on open research in Section 5.

2 Multi-Agent Simulation Systems

In this section, we describe the typical architecture of a MAS system (see Figure 1) and
describe the individual components that interact within such a system. The architecture
contains four main (represented by solid frames) and several optional (represented by dashed
frames) components.

Simulation: The simulation component is the core of a simulation system. It receives a
simulation model selected by the user and then loads all relevant input data from the data
management component into the simulation’s class model via the input adapter or the query
mediator (see below). The simulation data can be categorized into four basic classes: Vector
layers, graph layers, raster layers, and objects (agents and entities). Vector layers contain
spatial information such as the position and structure of buildings, streets, or squares. Graph
layers represent networks, for example, to model roads or public transport routes such as
metro lines. Raster layers divide the considered space into equally large cells and store one
or multiple – usually numerical – values per cell (e.g., the amount of rainfall). Agents are
the active components of a simulation. Based on their environmental data, they are capable
of autonomous actions and interact with each other to coordinate them. Such multi-agent
interactions take place either directly via messages or indirectly via an environmental layer.
Entities are not active, i.e., they cannot make decisions and initiate actions stand-alone, but
have a life-cycle and can be used by agents (e.g., a car driven by a person).

After the initial state of the simulation has been created, the component starts the time-discrete
simulation process. During this process, the simulation state is subject to a continuous
change in each expiration of a previously defined step size (a so-called tick) with an optional
real-time reference, e.g., layer values can change or agents can move. At the end of each tick,
the current simulation state (including objects, layers, and tick metadata) is collected and
passed to the output adapter, which forwards these results to their respective output channels
(see below). State changes of individual agents, entities, and layers are synchronized to
enable a consistent world state, i.e., all of them are always in the same tick. If the system

424 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Data Management in Multi-Agent Simulation Systems 3

Graph Array Spatial/Vector Time-Series Relational Document Key-ValueFilesystem

Analysis

Visualization

Validation

Public Data

Source
Discovery

ETL / Data
Preparation

Quality
Verification

Data Management

Input
Adapter

Output
Adapter

Data Stream

Private Data

Indexes

Query Mediator

Query Decomposition/Rewriting
& Result Integration

Agents & Entities

Environment/Layers

Simulation Model

Simulation

Indexes

In-memory
Databases

Run-specific Local Data Management
State Transitions (one per tick)

Query Types

point/rangepoint/rangek-NN

1
2

3

4
1

2

3

4
1

2

3

4

k-NN

1
2

3

4

path traversalpath traversal

Data
Migrationrangerange

Spatio-Temporal
Polystore

Fig. 1: Architecture of a Multi-Agent Simulation System

cannot load new data during runtime, the calculation of the following state can always only
be based on the current one.

Data Management: The data management component includes various database systems
of different data models, all of which serve a specific purpose. The user-defined agent-based
models and some additional input files are persisted in a simple file system. Spatial rasters,
e.g., for location-specific weather information, are suitable for data stores with array support
(e.g., SciDB, Postgres, or Oracle GeoRaster). Vector-based features3, including houses,
factories, and other points of interest, are stored in databases supporting spatial indexing
(e.g., PostGIS or MongoDB). The temporal data management (e.g., Timescale or InfluxDB)
concerns the validity periods and transactions of data objects as well as aspatial time-related
data, e.g., business hours. Single or combinations of aggregate-oriented NoSQL or relational
systems with graph abstraction or mapping collection, as applied by multi-model databases
(e.g., ArangoDB or OrientDB), are suitable for storing domain data. This domain includes

3 A vector-based feature is a spatial geometry associated with a set of attributes and values.

Data Management in Multi-Agent Simulation Systems 425

4 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

entities and agents, each comprising subsets of value- or (un)directed reference-typed
attributes (1:1, 1:n, or n:m) along inheritance hierarchies. Other facts or validity checks
and analysis results can be stored in it as well. Finally, the input to the simulation system
can be a data stream containing real-time data originating from sensor systems, such as
temperature or air quality measurements. Additionally, the data management component
manages several indexes, such as kd-trees for vector layers, that allows the input adapter and
the query mediator (see below) fast access to the data.

The datamanagement component has three subcomponents: The source discovery component
is responsible for automatically detecting new and relevant datasets. Such a search can
occur within a specific intranet (e.g., cloud), but also in the World Wide Web. The ETL/data
preparation component loads external data (from private systems or the Web) into the data
management component. Before loading it into an appropriate database, it standardizes,
cleans, and enriches the data. The quality verification component is responsible for the high
quality of the data already in the system. It includes a cross-database verification to detect
inconsistencies between separately stored datasets.

Input Adapter: The input adapter supplies the runtime system with the simulation model
(usually loaded from the file system) and initializes the first state as configured by the
investigated scenario. This data mapping needs to overcome the impedance mismatch of
the input data to the different kinds of models supported by the simulation component (i.e.,
vector, raster and graph layers as well as agent and entity classes). Therefore, it loads the
data into local (in-memory) databases and indexes, kept for the duration of the currently
running simulation process and – if implemented – are frequently updated by posing queries
to the mediator (see below). These local databases allow fast access on layers, agents and
entities, but limit the support only to point queries and k-NN queries with range filters.
Unlike the query mediator, the input adapter is only used to map and load data to build the
initial state of the simulation by utilizing user-defined scripts.

Query Mediator: In contrast to the input adapter, the query mediator enables dynamic
and flexible ad-hoc access to the data management component by abstracting the required
operations via a logical single query interface. Based on the mapping between defined
operations and the underlying stores, themediator decomposes queries into several subqueries
while utilizing available store-specific features to make the most of their unique advantages.
The subqueries are rewritten into native queries of the addressed stores and passed to
them. Finally, their results are merged and forwarded to the running simulation or the user
applying the analytical task. A rich query interface (including spatio-temporal operations
and result formats), knowledge of store-specific features as well as planning, decomposing
and rewriting queries are essential aspects in ensuring data transparency and providing short
runtimes. The query mediator is supposed to support various types of queries, including:
(i) spatio-temporal queries (e.g., to get objects from specific intersecting areas of Hamburg
in the last month), (ii) range queries (e.g., to identify persons, cars, or buildings that are
within a specific range to the ground zero of a disaster), (iii) k-NN queries (e.g., to identify
the nearest bus stations or restaurants of a pedestrian), (iv) path traversals (e.g., to traverse

426 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Data Management in Multi-Agent Simulation Systems 5

along the stations of a metro line), and (v) point queries (e.g., to access data of a particular
point of interest). For practical reasons, k-NN queries must be combinable with range queries
(i.e., the k-NN search is limited to a predefined range). Together with the data management
and migration components, the query mediator forms a spatio-temporal polystore.

Data Migration: The structure and requirements for individual data objects change from
time to time and often depend on the simulation processes using them. To meet such
changing conditions, it can be useful to replicate data in different databases with different
data models or migrate them from one model to another. Ideally, the system itself recognizes
the demand for such a migration and automatically starts the corresponding migration
process. Under certain circumstances, the query mediator initiates such a migration if it
detects that the requested data are not available in the required format. In such a case, the
migration must be performed at runtime either eagerly or lazily, for the current query only, or
permanently. Since every migration step changes the location of the data, existing mappings
between the databases and the simulation model may need to be updated.

Output Adapter: The output adapter is responsible to collect and forward snapshots of
the individual objects and layers to the data management component and/or other software
artifacts that aim to process them. Since the amount of data can be overwhelmingly large,
exporting all of them can delay the simulation. Thus, it may be necessary that the adapter
reduces the output to the most relevant values. It must also select a suitable format and
compression method to keep the volume of data transferred as small as possible. Examples
for relevant output data can be the volatile parts of the individual agents (e.g., position or
vitality), but also the states of the different layers (e.g., temperature or water level) and
additional measurements (e.g., traffic load).

Result Processing: Data exported by the output adapter can be stored directly in some of
the databases, but can also be analyzed, visualized, and validated for violated constraints
and expected behavior. The (often aggregated) results can, in turn, also be persisted in the
databases. All three processing methods can be executed in real-time or batch mode, but
only the first mode allows an intermediate intervention into the simulation’s current state.

3 Challenges for Data Management

Besides the challenges that still need to be solved for polyglot data management in
general [Pa16, Kr19, Ta17], such as query mediation [Cl98], automatic data migration [Kl16,
SLD16] or cross-model replication [VSS18], there are a number of challenges that are
specific to MAS systems. We will take a closer look at these challenges in this section.

Simulation Input: Although most simulations are limited to a specific area, it is almost
always beneficial to transfer them to other areas by exchanging their location-specific data.
For example when transferring a traffic simulation from Hamburg to Beĳing, we need to
exchange site maps, road networks and aspatial data, such as bus schedules. Since such a

Data Management in Multi-Agent Simulation Systems 427

6 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

location-based transfer is to be performed very often, flexibly and at short notice, adequate
support in terms of (i) an automatic discovery and acquisition of relevant and qualitatively
suitable input data, (ii) preparation of the newly acquired data, and (iii) an automatic
integration of these data into the simulation model, is more relevant and crucial than in
many other data integration use cases.

Dataset Discovery: Many spatio-temporal datasets are published in a structured form using
a data portal/repository software, such as CKAN4 [As20] or dataverse [Te20]. To find
useful data in those portals, we must first discover a suitable data portal and then search for
the required data in it. To support the second step, CKAN and dataverse provide several
functionalities including full-text search and fuzzy matching on the datasets’ meta data as
well as browsing between related datasets. In contrast, finding a suitable data portal is – to
the best of our knowledge – currently not supported by any software. If we do not find the
required data in any portal, we have no choice but to crawl the World Wide Web and to
extract the – often unstructured – data from the found websites [Fu13, Fe14, Fa18].

Preparation: After loading the data from the discovered sources, we restrict them to the
spatio-temporal range of the simulation by removing all data points that are outside the
area and time period of the corresponding scenario. Thereafter, we need to standardize,
clean and enrich the remaining data. Spatial standardization includes transformations
into the same spatial reference system, such as UTM or USNG. Raster layers have to be
transformed to the same scale and converted so that their cells are congruent. Graph layers
need to be transformed into compatible graph models [AG08]. Timestamps have to be
normalized by transforming them into the same format, calendar and time zone. Finally, the
attribute data can be standardized using conventional preparation techniques [Py99, KJN20].
The data cleaning has to include a removal (or repair) of (i) spatial [CS06, KL17] and
temporal [Gu14, Zh17] outliers, (ii) inconsistencies between different polygons (e.g.,
overlapping borders) or timestamps (e.g., a building was demolished before it was built), and
(iii) errors in the attribute data, such as typos or violated dependencies [GS13, IC19, Ch14]
where some of these errors can only be detected by comparing data from different layers.
Useful examples of data enrichment include using alternative data sources to refine the road
network of Open Street Map (OSM) [RFS16] or applying geocoding to locate address data
in the spatial layers accurately [CCW04].

Integration: After collecting and preparing relevant source data, we need to integrate them
into the simulation model. This includes resolving conflicts in the sources’ spatial and
temporal overlaps, such as contradicting geographical details (e.g., the same building is
represented by different polygons). The integration can be materialized or virtual [LN07,
DHI12]. In the first case, we initially integrate all source layers of the same type (raster,
vector or graph) into a single layer persisted in the simulation system. Thus, all data conflicts
are resolved in a typical ETL process [KR02] once before the simulation process starts.
This approach, however, is static and cannot deal with real-world changes that happen when

4 Comprehensive Kerbal Archive Network

428 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Data Management in Multi-Agent Simulation Systems 7

the simulation process is already running (see stream based input described below). In
the second case, we integrate the source layers (and thus resolve conflicts) at query time
by defining a global-as-view mapping [DHI12]. This is computationally more expensive,
but flexible to changes against the source data. The same integration principles apply to
temporal dimensions when we have several data sources covering different periods of time
of the same spatial areas. To the best of our knowledge, there is currently no research that
addresses a virtual integration of spatio-temporal data layers [GRC20].

Simulation Output: Exporting the snapshot of the current tick quickly becomes a bottleneck
if the simulation is using a large number of agents. The biggest challenge is therefore to
export the data without blocking the simulation process or creating a significant delay that
would make it impossible to analyze, validate or visualize them in real time. The volume
of the exported data is significantly related to whether we export only data changes or
entire snapshots. The former reduces the volume, but makes immediate (possibly real-time)
analyses, validations and visualizations of the simulation much more difficult because we
need to reconstruct the actual snapshots from the exported changes.

Stream Based Input: The computed simulation states, including agent attributes and
environment information, become fuzzier in their correctness as the simulation progresses
and reaches further into the future. Public sensor data systems and APIs, such as the
widely used SensorThingsAPI standard [LHK16], offer updates for temporally available
environmental and entity-level information that can be used to reduce the corridor of
uncertainty. Frequently updating the simulation states according to sensor-based input data
by synchronizing the simulation with the real-time, results in a digital representation of
real-world scenarios suitable for short-term forecasts and simplified global views of real-life
happenings (e.g., to identify superspreading events within a pandemic). Problems are scalable
handling of massive push-based inputs [WRG19] and merging incoming values on different
time and granularity levels [CV86] without producing unrealistic simulation behavior (e.g., a
full car park is emptied by beaming cars to remote locations). The latter can be done by either
introducing them into the current simulation or forking a new one with the corrected state.
Particularly relevant is the identification of model-independent growing uncertainties under
consideration of user-defined constraints, defined via windowing queries and evaluated at the
simulation’s runtime. In addition to the usual integration problems, stream-based data present
specific problems in dealing with non-equidistant inputs, duplicates, erroneous or noisy
values, and sharp peaks. Solutions include the application of Kalman filters with wavelet
corrections, comparisons of running windows for duplicate detection [SZ08, DNB13], and
sliding aggregate functions [CV86]. For example, continuously averaging the attribute
values of particular vector-based features can correct the simulation step by step.

Spatio-Temporal Query Interface: Because of the time-based definition of simulations,
temporal operators are an essential aspect in the mediator’s query interface. As it has been
discussed by Siabato et al. [Si18], the support for Allen’s interval operator [Al83] is essential
for interval-based logical reasoning on time-series, getting versioned model objects. In
context to the spatial characteristic, agents need access to environmental information for their

Data Management in Multi-Agent Simulation Systems 429

8 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

own decision making. This often corresponds to their current location,which requires k-NN
queries with range filters. Such queries often have a circular shape, but can be abstracted
to any geometrical shape. Polygon-based intersections require a pre-triangulation task to
check for containment of the polygons’ coordinates. Data access has to be provided by
operators, such as include, overlap or adjacent, which also need to be part of the query
interface [GRC20]. Since not only users perform analytical queries, but also the active
agents themselves, the simulation can control queries against the mediator in time.

Spatio-Temporal Query Planning: The polystore has to manage the mapping between
the simulation model’s instance and its cross-system representation in the databases. This
mapping requires a cross-system perspective, including requirements from the applied
operations of the active agents in the simulation and subsequent analysis of results by
the user. Populating the model with data from the polystore should be independent of the
underlying databases and therefore transparent in the selection of convenient stores. Polyglot
data storage offers the potential to meet a large set of (non-)functional requirements by
taking into account the respective capabilities of each connected store in the mediated
data processing. In order to exploit this potential for simulations, it is necessary to know
the respective spatial, aspatial and temporal features of the individual databases and to
describe them in a structured way. This description has to contain an input specification
including constraints on expected objects as well as potentially produced outputs and their
limitations. Query planning utilizes these feature descriptions to compute plans for distinct
spatial and temporal queries, in which constraints are primarily affected by the expected
models, for example, for relational data processing [SLD16]. Therefore, plans must address
minimal intermediate migration steps where the cost of transfer does not exceed the cost
of data processing. However, finding an optimal migration plan is NP-hard and can only
be approximated [Kr19]. Beside migration problems, the system has to resolve references
between data objects by providing an integration of partial results, either by implementing
the bind-join [Ko16] approach or applying spatial-joins according to their references.

Further challenges concern cross-model data matching/merging [DHI12] and data lin-
eage [HDB17] (e.g., to debug the simulation in case of errors).

4 Current Implementation

To meet the challenges of Section 3, we are extending our existing MARS architecture [Gl17,
WGC18, We19], which aims to provide large scale, agent-based simulations for any domain
expert. The key idea behind MARS is to combine the flexibility of self-adaptive and data
model agnostic simulation systems, by following an as-a-service perspective on modeling
and simulation (MSaaS). MARS schedules and runs simulation (or optional other agent-
systems) pods within a heterogeneous cluster environment and scale-up and out along
available processing units and computing nodes.

430 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Data Management in Multi-Agent Simulation Systems 9

Simulation Input: For the integration of new input data, MARS provides an external
Python subsystem called ODDI 5 [Gl19]. ODDI integrates a CKAN, Open Data Protocol,
and Open Street Map client. The system utilizes a keyword search on the portals and
retrieves all metadata by using the MinHash similarity. Results include vector, raster and
table meta data, loaded in memory through OpenGIS Web services (WFS, WCS for vector
and WMS for raster data)6. ODDI can also be used to audit the datas’ quality through
statistic analyses using a small statistics package and integrated plotter. New spatial data is
prepared by transforming it into the WGS:84 EPSG:4326 reference system. Timestamps are
uniformly converted to the same format. To integrate spatio-temporal data, MARS uses a
hybrid approach. While spatial data layers are integrated materially, temporal changes are
integrated virtually (i.e., we manage a separate layer for every time period).

Simulation Output: Since the focus of MARS are large-scale scenarios, the calculated
results are proportional to the dimensioned agent types with their respective number of
instances per simulated tick [WGC18]. The system persists snapshots of agents and layers
along the underlying databases according to the current workload. Collected snapshots
are persisted either as complete object versions or as deltas from the last versions. Each
persistence task is applied in a specified output frequency or if a model object has been
changed since the last tick. In the data management component, it can be decided whether
the results are fully replicated in all data stores, a subset of data stores is used in order to
produce specific output formats, or all data are saved only in one store or file format. Due to
wrong or missing semantics in the resulting data, not all output combinations are possible
for every layer or agent type (e.g., in the case of a missing support for matrix types or raster
files). In addition, the output can be reduce to specific states by using predefined output
conditions (e.g., the current spatial extension coming from the visualization on the client
map). In order to enable a fast and parallel transfer of the output data to analysis, validation
and visualization tools, the data are passed to a Kafka pipeline.

Modelling & Querying: MARS uses a polyglot approach to data modeling. The entire
platform supports the complete workflow of simulative analyses and offers the external
static-typed MARS DSL modeling and query language [Gl17]. The language includes a
type inference system and links the agent-based paradigm with the spatio-temporal layer.
The language conceptualize type definitions (agent, entity, vector- and raster-layer) and
allows spatial queries by applying conditional area filters and k-NN queries as well as access
on time series by specifying concrete points in time.

When comparing our current solution to the challenges described in Section 3, the following
differences become apparent: (i) The system accesses the data management component only
via the in- and output adapter. (ii) No requests are delegated to the database by a mediator.
Data is kept entirely in-memory during the simulation. (iii) Spatio-temporal queries are
limited to in-memory indexes. (iv) Query planning is considered at compile-time and does
not include online data migration. (v) ODDI allows for automated retrieval of public data and

5 Open Data Discovery and Integration
6WFS = Web Feature Service, WCS = Web Coverage Service, WMS = Web Map Service

Data Management in Multi-Agent Simulation Systems 431

10 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

spatial linking, but the datas’ quality has to be checked manually. (vi) Streaming data into a
running simulation is currently not supported. We plan to fill these gaps by extending MARS
to a spatio-temporal polystore [Ta17]. In developing the mediator, we plan to use the MARS
DSL as the logical query interface. We intend to implement data migration by adapting
current approaches [Kr19, HKS19] to our needs, including an extension to spatio-temporal
features. Query planning is firstly accomplished by pushing-down operations to store-related
features, applying selection queries for spatial or temporal data and integrating results
via bind-joins. We will leverage existing research on web data extraction [Fa18] and data
cleaning [Ch14] to improve ODDI. To realize an integration of data streams into a running
simulation, we plan to evaluate several strategies for adapting simulation states to these real
values, without producing significant anomalies in the simulation behaviour.

5 Related Work & Conclusion

The main goal of MARS is to support large-scale scenarios for general purposes by
utilizing polyglot data management with spatial and temporal data processing. Other existing
simulation systems, such as NetLogo [WR15] and GAMA [Gr13], focus on smaller-scaled
scenarios with less complexity or involved agents. Although GAMA offers direct SQL
database access to its agents, it does not consider a polyglot design and keeps transparency on
the level of the SQL language. Yang et al. [Ya18] also use the layer concept for simulations,
but do not consider temporal changes of spatial objects. The system of Zehe et al. [Ze16]
involves multi-store data management and attempts to use each store appropriately for the
tasks at hand, but lacks in making these decisions transparent and generic by integrating
an automatic query planning component. In addition, the system does not allow spatio-
temporal queries. Existing multi-/polystore systems, such as RHEEM [Al19], Myria [Wa17],
Polybase [De13] and ESTOCADA [Al19], follow a general-purpose approach by unifying
the query-interface or applying intermediate (self-defined or automatic) migration steps
between stores, providing uniform read-only access. In our opinion, this approach is
unsuitable for simulations, because it ignores change operations, processing queries with
store-specific features, which is a major challenge in polyglot data management [Pa16, Ta17],
and capabilities for querying spatio-temporal data. Systems, such as CloudMdSql [Ko16]
and BigDAWG [Du15], are first promising candidates. CloudMdSql provides users with
direct access to native data storage languages by embedding them into a SQL-like language,
but lacks in providing data independence, so that the user must always know which data is
stored in which data store. BigDAWG provides transparency at the level of multiple query
languages, but does not support any kind of updates.

In this paper we presented the general architecture for data management in spatio-temporal
multi-agent simulations. We concluded a number of challenges and gave a brief overview of
the current status with open issues of our own system MARS. Future work will address the
development of a query mediator as well as the (further) development of components for
data migration, quality management, and real-time processing.

432 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Data Management in Multi-Agent Simulation Systems 11

References
[AG08] Angles, Renzo; Gutiérrez, Claudio: Survey of Graph Database Models. ACM Comput.

Surv., 40(1):1:1–1:39, 2008.

[Al83] Allen, James F: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM, 26(11):832–843, 1983.

[Al19] Alotaibi, Rana; Bursztyn, Damian; Deutsch, Alin; Manolescu, Ioana; Zampetakis, Stamatis:
Towards ScalableHybrid Stores: Constraint-BasedRewriting to the Rescue. In: Proceedings
of the International Conference on Management of Data (SIGMOD). Association for
Computing Machinery, pp. 1660 – 1677, 2019.

[As20] Association, CKAN: , CKAN – The Open Source Data Portal Software. https://ckan.
org/, 2020. [Online; accessed 12-12-2020].

[CCW04] Christen, Peter; Churches, Tim; Willmore, Alan: A Probabilistic Geocoding System
based on a National Address File. In: Proceedings of the 3rd Australasian Data Mining
Conference. 2004.

[Ch14] Chiang, Yao-Yi; Wu, Bo; Anand, Akshay; Akade, Ketan; Knoblock, Craig A.: A System for
Efficient Cleaning and Transformation of Geospatial Data Attributes. In: Proceedings of the
International Conference on Advances in Geographic Information Systems (SIGSPATIAL).
ACM, pp. 577–580, 2014.

[Cl98] Cluet, Sophie; Delobel, Claude; Siméon, Jérundefinedme; Smaga, Katarzyna: Your
Mediators Need Data Conversion! In: Proceedings of the International Conference on
Management of Data (SIGMOD). ACM, p. 177–188, 1998.

[CS06] Chawla, Sanjay; Sun, Pei: SLOM: A New Measure for Local Spatial Outliers. Knowl. Inf.
Syst., 9(4):412–429, 2006.

[CV86] Chair, Z; Varshney, PK: Optimal Data Fusion in Multiple Sensor Detection Systems. IEEE
Transactions on Aerospace and Electronic Systems, (1):98–101, 1986.

[De13] DeWitt, David J.; Halverson, Alan; Nehme, Rimma; Shankar, Srinath; Aguilar-Saborit,
Josep; Avanes, Artin; Flasza, Miro; Gramling, Jim: Split Query Processing in Polybase.
In: SIGMOD. SIGMOD ’13, Association for Computing Machinery, New York, New
York, USA, p. 1255–1266, 2013.

[DHI12] Doan, AnHai; Halevy, Alon; Ives, Zachary G.: Principles of Data Integration. Morgan
Kaufmann, 2012.

[DNB13] Dutta, Sourav; Narang, Ankur; Bera, Suman K.: Streaming Quotient Filter: A Near Optimal
Approximate Duplicate Detection Approach for Data Streams. Proc. VLDB Endow.,
6(8):589–600, 2013.

[Du15] Duggan, Jennie; Elmore, Aaron J; Stonebraker, Michael; Balazinska, Magda; Howe, Bill;
Kepner, Jeremy; Madden, Sam; Maier, David; Mattson, Tim; Zdonik, Stan: The BigDAWG
Polystore System. ACM SIGMOD Record, 44(2):11–16, 2015.

[Fa18] Fayzrakhmanov, Ruslan R.; Sallinger, Emanuel; Spencer, Ben; Furche, Tim; Gottlob,
Georg: Browserless Web Data Extraction: Challenges and Opportunities. In: Proceedings
of the International Conference on World Wide Web. ACM, pp. 1095–1104, 2018.

Data Management in Multi-Agent Simulation Systems 433

https://ckan.org/
https://ckan.org/

12 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

[Fe14] Ferrara, Emilio; Meo, Pasquale De; Fiumara, Giacomo; Baumgartner, Robert: Web Data
Extraction, Applications and Techniques: A Survey. Knowl. Based Syst., 70:301–323,
2014.

[Fu13] Furche, Tim; Gottlob, Georg; Grasso, Giovanni; Schallhart, Christian; Sellers, Andrew Jon:
OXPath: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep
Web. VLDB J., 22(1):47–72, 2013.

[Gl17] Glake, Daniel; Weyl, Julius; Dohmen, Carolin; Hüning, Christian; Clemen, Thomas:
Modeling through Model Transformation with MARS 2.0. In: ADS@SpringSim. pp.
1–12, 2017.

[Gl19] Glake, Daniel; Weyl, Julius; Lenfers, Ulfia A.; Clemen, Thomas: SmartOpenHamburg
Verkehrssimulation: Automatisierte OpenData Integration für Multi-Agenten Simulation
mit MARS. In: Simulation in Umwelt- und Geowissenschaften. 2019.

[Gr13] Grignard, Arnaud; Taillandier, Patrick; Gaudou, Benoit; Vo, Duc An; Huynh, Nghi Quang;
Drogoul, Alexis: GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and
Simulation. In: PRIMA. pp. 117–131, 2013.

[GRC20] Glake, Daniel; Ritter, Norbert; Clemen, Thomas: Utilizing Spatio-Temporal Data In
Multi-Agent Simulation. unpublished, 2020.

[GS13] Ganti, Venkatesh; Sarma, Anish Das: Data Cleaning: A Practical Perspective. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2013.

[Gu14] Gupta,Manish; Gao, Jing; Aggarwal, Charu C.; Han, Jiawei: Outlier Detection for Temporal
Data: A Survey. IEEE Trans. Knowl. Data Eng., 26(9):2250–2267, 2014.

[HDB17] Herschel, Melanie; Diestelkämper, Ralf; Ben Lahmar, Houssem: A Survey on Provenance:
What for? What form? What from? VLDB J., 26(6):881–906, 2017.

[HKS19] Holubová, Irena; Klettke, Meike; Störl, Uta: Evolution Management of Multi-model Data
- (Position Paper). In: Heterogeneous Data Management, Polystores, and Analytics for
Healthcare - VLDB Workshops, Poly and DMAH. Springer, pp. 139–153, 2019.

[IC19] Ilyas, Ihab F.; Chu, Xu: Data Cleaning. ACM, 2019.

[KJN20] Koumarelas, Ioannis K.; Jiang, Lan; Naumann, Felix: Data Preparation for Duplicate
Detection. ACM J. Data Inf. Qual., 12(3):15:1–15:24, 2020.

[Kl16] Klettke, Meike; Störl, Uta; Shenavai, Manuel; Scherzinger, Stefanie: NoSQL Schema
Evolution and Big Data Migration at Scale. In: IEEE Big Data. pp. 2764–2774, 2016.

[KL17] Kou, Yufeng; Lu, Chang-Tien: Outlier Detection, Spatial. In: Encyclopedia of GIS, pp.
1539–1546. Springer, 2017.

[Ko16] Kolev, Boyan; Bondiombouy, Carlyna; Valduriez, Patrick; Jimenez-Peris, Ricardo; Pau,
Raquel; Pereira, José: The CloudMdsQL Multistore System. In: Proceedings of the
International Conference on Management of Data (SIGMOD). ACM, p. 2113–2116, 2016.

[KR02] Kimball, Ralph; Ross, Margy: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd Edition. Wiley, 2002.

434 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Data Management in Multi-Agent Simulation Systems 13

[Kr19] Kruse, Sebastian; Kaoudi, Zoi; Quiané-Ruiz, Jorge-Arnulfo; Chawla, Sanjay; Naumann,
Felix; Contreras-Rojas, Bertty: Optimizing Cross-Platform Data Movement. In: Proceed-
ings of the International Conference on Data Engineering (ICDE). IEEE, pp. 1642–1645,
2019.

[LHK16] Liang, Steve; Huang, Chih-Yuan; Khalafbeigi, Tania: OGC SensorThings API Part 1:
Sensing, Version 1.0. 2016.

[LN07] Leser, Ulf; Naumann, Felix: Informationsintegration - Architekturen und Methoden zur
Integration verteilter und heterogener Datenquellen. dpunkt.verlag, 2007.

[LWC18] Lenfers, Ulfia A; Weyl, Julius; Clemen, Thomas: Firewood Collection in South Africa:
Adaptive Behavior in Social-Ecological Models. Land, 7(3):97, 2018.

[Pa16] Papakonstantinou, Yannis: Polystore Query Rewriting: The Challenges of Variety. In:
EDBT/ICDT Workshops. 2016.

[Py99] Pyle, Dorian: Data Preparation for Data Mining. Morgan Kaufmann, 1999.

[RFS16] Richter, Andreas; Friedl, Hartmut; Scholz, Michael: Beyond OSM – Alternative Data
Sources and Approaches Enhancing Generation of Road Networks for Traffic and Driving
Simulations. In: SUMO - Traffic, Mobility, and Logistics. Deutsche Zentrum für Luft-
und Raumfahrt, pp. 23–31, 2016.

[Si18] Siabato, Willington; Claramunt, Christophe; Ilarri, Sergio; Manso-Callejo, Miguel Ángel:
A Survey of Modelling Trends in Temporal GIS. ACM Computing Surveys, 51(2):1–41,
2018.

[SLD16] Schildgen, Johannes; Lottermann, Thomas; Deßloch, Stefan: Cross-System NoSQL Data
Transformations with NotaQL. In: Proceedings of the 3rd ACM SIGMODWorkshop on
Algorithms and Systems for MapReduce and Beyond (BeyondMR@SIGMOD). ACM,
p. 5, 2016.

[SZ08] Shen, Hong; Zhang, Yu: Improved Approximate Detection of Duplicates for Data Streams
over Sliding Windows. Journal of Computer Science and Technology, 23(6):973–987,
2008.

[Ta17] Tan, Ran; Chirkova, Rada; Gadepally, Vĳay; Mattson, Timothy G: Enabling Query
Processing across Heterogeneous Data Models: A Survey. In: IEEE Big Data. pp.
3211–3220, 2017.

[Te20] Team, Dataverse: , The Dataverse Project – Open Source Research Data Repository
Software. https://dataverse.org/, 2020. [Online; accessed 12-12-2020].

[VSS18] Vogt, Marco; Stiemer, Alexander; Schuldt, Heiko: Polypheny-DB: Towards a Distributed
and Self-Adaptive Polystore. In: 2018 IEEE International Conference on Big Data (Big
Data). IEEE, New York, New York, USA, pp. 3364–3373, 2018.

[Wa17] Wang, Jingjing; Baker, Tobin; Balazinska, Magdalena; Halperin, Daniel; Haynes, Brandon;
Howe, Bill; Hutchison, Dylan; Jain, Shrainik; Maas, Ryan; Mehta, Parmita; Moritz, Do-
minik; Myers, Brandon; Ortiz, Jennifer; Suciu, Dan; Whitaker, Andrew; Xu, Shengliang:
The Myria Big Data Management and Analytics System and Cloud Services. In: Proceed-
ings of the Conference on Innovative Data Systems Research (CIDR). 2017.

Data Management in Multi-Agent Simulation Systems 435

https://dataverse.org/

14 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

[Wa18] Waldrop, Mitchell: Free Agents - Monumentally Complex Models are Gaming out Disaster
Scenarios with Millions of Simulated People. Science, 360(6385):144–147, 2018.

[We19] Weyl, Julius; Lenfers, Ulfia A; Clemen, Thomas; Glake, Daniel; Panse, Fabian; Ritter,
Norbert: Large-Scale Traffic Simulation for Smart City Planning with MARS. In:
SummerSim. pp. 1–12, 2019.

[WGC18] Weyl, Julius; Glake, Daniel; Clemen, Thomas: Agent-Based Traffic Simulation at City
Scale with MARS. In: ADS@SpringSim. pp. 1–9, 2018.

[WR15] Wilensky, Uri; Rand, William: An Introduction to Agent-Based Modeling: Modeling
Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, 2015.

[WRG19] Wingerath, Wolfram; Ritter, Norbert; Gessert, Felix: Real-Time & Stream Data Manage-
ment - Push-Based Data in Research & Practice. Springer Briefs in Computer Science.
Springer, 2019.

[Ya18] Yang, Liang Emlyn; Hoffmann, Peter; Scheffran, Jürgen; Rühe, Sven; Fischereit, Jana;
Gasser, Ingenuin: An Agent-Based Modeling Framework for Simulating Human Exposure
to Environmental Stresses in Urban Areas. Urban Science, 2(2):36, 2018.

[Ye06] Yergens, Dean; Hiner, Julie; Denzinger, Jörg; Noseworthy, Tom: Multiagent Simulation
System for Rapidly Developing Infectious Disease Models in Developing Countries. In:
MAS*BIOMED. pp. 104–116, 2006.

[Ze16] Zehe, Daniel; Viswanathan, Vaisagh; Cai, Wentong; Knoll, Alois: Online Data Extraction
for Large-Scale Agent-Based Simulations. In: Proceedings of the 2016 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. pp. 69–78, 2016.

[Zh17] Zhang, Aoqian; Song, Shaoxu; Wang, Jianmin; Yu, Philip S.: Time Series Data Cleaning:
From Anomaly Detection to Anomaly Repairing. Proc. VLDB Endow., 10(10):1046–1057,
2017.

[ZKC05] Zaiyi, GUO; Kwang, HAN Hann; Cing, TAY Joc: Sufficiency Verification of HIV-1
Pathogenesis Based on Multi-Agent Simulation. In: GECCO. pp. 305–312, 2005.

436 Daniel Glake, Fabian Panse, Norbert Ritter, Thomas Clemen, Ulfia Lenfers

Liste der Autorinnen und Autoren

A
Abedjan, Ziawasch, 313
Auge, Tanja, 337

B
Beer, Anna, 175
Binnig, Carsten, 325
Böhm, Alexander, 79
Brendle, Michael, 79

C
Clemen, Thomas, 423

D
D. Lohmann, 397
Dann, Jonas, 101
Decker, Stefan, 371

E
Eichler, Rebecca, 351
Esmailoghli, Mahdi, 313

F
Fischer, Stefan, 237
Franke, Martin, 257
Fröning, Holger, 101

G
Giebler, Corinna, 351
Glake, Daniel, 423
Gleim, Lars, 371
Gomez, Kevin, 303
Gröger, Christoph, 351
Groppe, Sven, 237
Grossniklaus, Michael, 79

H
Habich, Dirk, 135
Hagedorn, Stefan, 195
Hartmann, Claudio, 135
Herschel, Melanie, 155
Heuer, Andreas, 337
Hoos, Eva, 351

K
Karnowski, Lukas, 123
Kemper, Alfons, 39, 123
Kläbe, Steffen, 195
Kumaigorodski, Alexander, 19

L
Langenecker, Sven, 325
Lässig, Nico, 155
Lehner, Wolfgang, 135
Leis, Viktor, 39
Lenfers, Ulfia, 423
Lerm, Stefan, 217
Lucas, Edson R., 397
Lutz, Clemens, 19

M
Markl, Volker, 19, 279
Mauerer, Wolfgang, 397
May, Norman, 79
Mitschang, Bernhard, 351
Moerkotte, Guido, 79

N
Neumann, Thomas, 39, 123

O
Obermeier, Sandra, 175

Oppold, Sarah, 155
Özmen, Aslihan, 313

P
Panse, Fabian, 423
Papenbrock, Thorsten, 59
Paz, Elena Beatriz Ouro, 279

R
Rahm, Erhard, 217, 257, 303
Ramsauer, Ralf, 397
Rehan, Muhammad Waqas, 237
Ritter, Daniel, 101
Ritter, Norbert, 423
Rohde, Florens, 257
Rost, Christopher, 303
Rostami, M. Ali, 303

S
Saeedi, Alieh, 217
Schalles, Christian, 325
Scherzinger, Stefanie, 397
Schmeißer, Josef, 39
Schmidl, Sebastian, 59

Schüle, Maximilian E., 39, 123
Schulze, Robert, 79
Schwarz, Holger, 351
Sehili, Ziad, 257
Seidl, Thomas, 175
Sturm, Christoph, 325

T
Täschner, Matthias, 303
Tirpitz, Liam, 371

V
Valiyev, Mahammad, 79

W
Wahl, Florian, 175
Warnke, Benjamin, 237
Weber, Nick, 79
Weise, Julian, 59
Woltmann, Lucas, 135

Z
Zacharatou, Eleni Tzirita, 279

	Titelseite
	Vorwort
	Tagungsleitung
	Programmkomitee
	Organisationsteam
	Inhaltsverzeichnis
	Wissenschaftliche Beiträge
	Database Technology
	Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing – Alexander Kumaigorodski , Clemens Lutz , Volker Markl
	B2-Tree: Cache-Friendly String Indexing within B-Trees – Josef Schmeißer , Maximilian E. Schüle , Viktor Leis , Thomas Neumann , Alfons Kemper
	Optimized Theta-Join Processing – Julian Weise , Sebastian Schmidl , Thorsten Papenbrock
	Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design – Michael Brendle , Nick Weber , Mahammad Valiyev , Norman May , Robert Schulze , Alexander Böhm , Guido Moerkotte , Michael Grossniklaus
	Exploring Memory Access Patterns for Graph Processing Accelerators – Jonas Dann , Daniel Ritter , Holger Fröning
	Umbra as a Time Machine: Adding a Versioning Type to SQL – Lukas Karnowski , Maximilian E. Schüle , Alfons Kemper , Thomas Neumann

	ML & Data Science
	Aggregate-based Training Phase for ML-based Cardinality Estimation – Lucas Woltmann , Claudio Hartmann , Dirk Habich , Wolfgang Lehner
	Using FALCES against bias in automated decisions by integrating fairness in dynamic model ensembles – Nico Lässig , Sarah Oppold , Melanie Herschel
	Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering – Sandra Obermeier , Anna Beer , Florian Wahl , Thomas Seidl
	Applying Machine Learning Models to Scalable DataFrames with Grizzly – Steffen Kläbe , Stefan Hagedorn

	Data Integration, Semantic Data Management, Streaming
	Extended Affinity Propagation Clustering for Multi-source Entity Resolution – Stefan Lerm , Alieh Saeedi , Erhard Rahm
	Flexible data partitioning schemes for parallel merge joins in semantic web queries – Benjamin Warnke , Sven Groppe , Muhammad Waqas Rehan , Stefan Fischer
	Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space – Ziad Sehili , Florens Rohde , Martin Franke , Erhard Rahm
	Towards Resilient Data Management for the Internet of Moving Things – Elena Beatriz Ouro Paz , Eleni Tzirita Zacharatou , Volker Markl
	Graph Sampling with Distributed In-Memory Dataflow Systems – Kevin Gomez , Matthias Täschner , M. Ali Rostami , Christopher Rost , Erhard Rahm
	Combining Programming-by-Example with Transformation Discovery from large Databases – Aslihan Özmen , Mahdi Esmailoghli , Ziawasch Abedjan
	Towards Learned Metadata Extraction for Data Lakes – Sven Langenecker , Christoph Sturm , Christian Schalles , Carsten Binnig
	Tracing the History of the Baltic Sea Oxygen Level – Tanja Auge , Andreas Heuer

	(Industrial) Use Cases & Applications
	The Data Lake Architecture Framework – Corinna Giebler , Christoph Gröger , Eva Hoos , Rebecca Eichler , Holger Schwarz , Bernhard Mitschang
	FactStack: Interoperable Data Management and Preservation for the Web and Industry 4.0 – Lars Gleim , Liam Tirpitz , Stefan Decker
	Silentium! Run–Analyse–Eradicate the Noise out of the DB/OS Stack – Wolfgang Mauerer , Ralf Ramsauer , Edson R. Lucas , D. Lohmann , Stefanie Scherzinger
	Data Management in Multi-Agent Simulation Systems – Daniel Glake , Fabian Panse , Norbert Ritter , Thomas Clemen , Ulfia Lenfers

	Liste der Autorinnen und Autoren

