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Abstract: Industrial Wireless Sensors and Actuators Networks (IWSANs) are gateway to the Industrial
».0, which promises to realize smart factory leading to the Industrial Internet of Things (IIoT). It
employs Cyber-Physical Systems (CPSs) to enhance operational efficiency and flexibility while
reducing cost. IWSANs are delay-sensitive and always require low latency and reliable connection
from sensor to actuator to successfully perform a physical action. Reliability and low-latency
complement each other to prevent expected failures in wireless medium. In this way, detecting and
predicting failure before it actually occurs is key to actually avoid it well in time. Detection and
predictions are imperative in locating faults and failures. The causes of failures in a sensor or actuator
can include hardware malfunction, poor battery life, interference, accident, and short term wireless
connectivity problems. Although, industrial environment mostly undertakes redundant resource to
circumvent such issues, yet poor coordination among multiple resources and inaccurately predicting
failures may result in losses. In such a scenario, migration of services come to be a rescue, where
an intermediary can migrate service from one device, which cannot complete a task due to resource
exhaustion, to a more resource-rich device.

Thus, in this paper, we focus on wireless connectivity failures caused by interference in the 2.»GHz
frequency band. We do it by designing an Multi Channel Sniffing Setup (MCSS) testbed, that acts
as a spectrum observer and is deployed in different locations in industrial WSAN. Alongside, we
use the concept of Cognitive Radio (CR) to predict interference and noise level in the spectrum
by proposing an Intelligent Low-power Wireless Spectrum Prediction (ILPWSP) based on Deep Q
Network (DQN). The MCSS testbed and the ILPWSP coordinate in assessing wireless connectivity
risks, predict failures in sensor and actuator nodes and then make efficient decisions on the migration
of services from one device to another device. Our results show the feasibility of spectrum prediction
with an acceptable ratio for reliable IWSN.
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1 Introduction

The proliferation of low-cost processors along with low-power wireless technologies and
advancement in the production of small high-performance microprocessors have enabled
the Internet of Things (IoT) [Bl10; Gü09; Ni18]. It is predicted that the number of devices
connected to the Internet will increase by 75 billion devices [Na18], by 2025. It includes
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applications such as smart homes, smart cities, and smart factories. Each application has
its unique Quality of Service (QoS) requirements. For example, while video surveillance
requires high-throughput, timeliness is critical in applications such as autonomous driving
to avoid a fatal accident. Industry ».0 is one of the main domains benefiting from IoT by
employing Cyber-Physical Systems (CPSs). It is predicted that by 2026, the worldwide
market for industrial wireless will reach 7 Billion dollars. Furthermore, over « million robots
will operate in industries by 2020. In some cases, robots and actuators will be responsible
for a critical task that has to be executed in real-time. According to International Society
of Automation (ISA) based on the QoS requirements three categories are defined. Fig. 1
explains the importance of timeliness in safety and control applications. Because wired
networks suffer from issues such as scalability, mobility, and high cost, there is a need for
reliable wireless solutions to guarantee low-cost, flexibility, and packet delivery in real-time.

Category Class Application Description
Safety 0 Emergency action Always critical

1 Closed-loop regulatory control Often critical
2 Closed-loop supervisory control Usually non-criticalControl
3 Open-loop control Human in loop
4 Alerting Short-term operational consequence

Monitoring
5 Logging and downloading/uploading No immediate operational consequenceIE
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Fig. 1ȷ Different classes of industrial applications defined by ISA

Despite such benefits, wireless solutions need to be energy efficient as the sensor/actuator
nodes are battery-powered. Because radio is the major cause of energy consumption in
IoT devices. An extended radio operation time will reduce battery life, thus an unexpected
death of nodes will harm network reliability. Medium Access Control (MAC) protocols are
designed to manage and schedule wireless communication, but the static nature of MAC
protocols fail to predict a highly dynamic wireless spectrum.

In this regard, an efficient protocol called Time-Slotted Channel Hopping (TSCH) has
been proposed as part of the IEEE 802.15.» standard, which dynamically involves channel
hopping to overcome channel impairments such as interference and fading. However,
such random channel hopping still suffers from dynamic channel conditions at different
transmission times and locations, which makes some nodes highly prone to transmission
failures at one location while other nodes having a higher likelihood of transmission success
at a different location. In many cases, it can be beneficial to assign the task of another
sensor/actuator nodes, who can not complete their task optimally, and then reassign the
same task to nodes who are more capable. This can be achieved by migrating the code to
another device with similar resources and adopting its functionality to the task requirements.
Failure in Industrial Wireless Sensors and Actuators Networks (IWSANs) can be due to
many reasons such as defected parts, accidents, or poor network connectivity.

In this work, we focus on the lack of a reliable wireless connection because of interference
in an operational location. Most of the time, the industrial environment is harsh for wireless
transmissions due to the operation of various wireless networks such as surveillance cameras
and Wi-Fi access points, as they may cause major interference for Industrial Wireless Sensor
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Networks (IWSNs). Interference may cause a node to fail its transmission, and this not only
wastes energy for re-transmission but also causes increased latency which may be a threat
to real-time operation for IWSNs applications. In such cases, migration of service can play
a major role, in which the case at a neighboring distance, a device with similar capability
might be available to provide the same services whose interference level is lower. In this way,
service migration can ensure that the entire system works reliably and with optimal resource
usage. However, decision making an important part of the migration of services. The system
has to compute the cost of migration based on application requirements such as latency,
energy efficiency, and reliability in wireless transmission. In addition, in real-time networks,
failure needs to be predicted intelligently to meet the task deadline constraints. Accuracy in
interference prediction is critical to decide if because of connectivity conditions, the device
is capable to accomplish the task or not. In such cases, we witness the use of Cognitive
Radio (CR) to observe, learn, predict, and provide link quality estimations.

To this end, many researchers have suggested embedding machine learning in network
design. Consequently, with the integration of Software-Defined Radio (SDR) and machine
learning, CR algorithms are developed to control network parameters intelligently. The idea
is to have a cycle of sensing, learning, and decision making by considering the consequence
of decided actions as feedback for the learning process. However, training of algorithms in
machine learning is an extremely time-consuming process, which makes it an undesirable
solution for time-sensitive wireless networks. Approaches, such as cloud radio, are proposed
to overcome this limitation by handing over the process to powerful servers located in the
cloud. But even then, because of communication distance between the cloud and wireless
transceivers, there is a significant delay in exchanging data. Recently, intermediary solutions
such as fog and edge computing are proposed to fulfill the latency gap. Still, due to freshness
of advancement in designing high power processing units (i.e., GPU) on single board
computers and complexity of implementation of lightweight (i.e., energy-efficient and low
bandwidth occupancy), knowledge transfer from the end node to fog server is missing.

In this paper, we develop a Intelligent Low-power Wireless Spectrum Prediction (ILPWSP)
model based on Q-learning algorithm to predict the interference in the wireless spectrum.
To provide the training data set for ILPWSP, we design a Multi Channel Sniffing Setup
(MCSS) to sense the wireless spectrum concurrently and constantly. Consequently, the
network manager will have real-time information about the interference in each location and
it can determine the high-risk neighborhood for wireless transmission in terms of packet
loss. Packet loss risk identification helps the network manager to migrate the service to the
less risky location by assigning the task to a device with similar capability and resources. In
this way, it can potentially increase the chance of successful transmission at a new node and
location. Our results show that using ILPWSP we can achieve a reliable degree of accuracy
in noise prediction in the wireless channel.

The rest of the paper is organized as follows. A brief overview and introduction is given in
Section 2. The methodology of research is explained in Section «. Section » presents results
and finally, we conclude the paper in Section 5.
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2 Background

Real-time wireless communication in IWSAN: IWSANs are the integral parts of the
industry ecosystem, they could be deployed in many industrial applications resulting in
concepts like CPSs, smart factory, etc. IWSANs integrates sensor networks as well as
actuator networks, they complement each other in sensing and then performing required
actions. This sensor-actor integration helps achieve the autonomy of many industrial
processes and control systems which results in less human intervention. A rising trend
of using IWSANs is seen owing to the compelling benefits of wireless networks such as
low-cost of deployment and maintenance, and the flexibility and self-organizing features
of sensors and actuators networks. The communication between sensors and actuators
require reliable transmission of data to successfully support a mission-critical industrial
application. Often such reliability is compromised due to wireless channel impairments
like fading, interference, collisions, and noise. Industrial applications inherently require
low-delay (real-time) and high reliability, otherwise, a successful transmission from the
sensor to the actuator is difficult to maintain. Further, the industrial environment is harsh
owing to the presence of heavy machinery, high-temperature conditions, high voltage
induction, electrical motors, and drives operating at high voltage. Alongside this, there
could be other wireless networks operating in the unlicensed 2.» GHz spectrum. Such an
environment could pose threats to reliable communication for IWSANs and hence it may
compromise on the required QoS for a given industrial application. A typical scenario of
wireless link failure due to the interference between an actuator and a network manager
is depicted in Fig. «(a). Mostly TSCH employs centralized network architecture, as it is
widely preferred in the industrial environment due to its ease of management compared
to distributed architecture [De1»]. In such architecture, a network manager is responsible
to assesses the overall network and takes care of the scheduling of nodes, updates the list
of best channels, and selects best routes, and security measures. Employing multi-channel
operation and random selection of channels instead of a single operation reduces the risk
of collision because of interference. This architecture is also commercialized and used
in industrial wireless network technologies such as WirelessHART. Although, channel
hopping has the potential to circumvent the effects of fading and interference, yet many
wireless technologies and standards share 2.» GHz band. This sharing of the spectrum
with technologies like WiFi and Bluetooth makes 2.» GHz band crowded resulting in
degrading each other’s performance. Many researchers studied the impact of interference
on link failure in TSCH network. For example, authors in [ZPD18] studied the cost a
benefit of channel blacklisting in TSCH network. The study analyzes the local or the global
implementation of channel blacklisting suggested by many researchers [Ko17]. However,
the concept of channel blacklisting in TSCH is involved with the cost of delay because of
channel observation and negative impact on timeliness as a result. Therefore, researchers
propose the concept of CR [Mi02] using artificial intelligence and smart radio to find the
interference-free time slots in the wireless spectrum. Especially with the advancement in
powerful processors and lightweight machine learning algorithms, the idea of deployment
of CR is becoming more practical.

1260 Ali Nikoukar, Saleem Raza, Tharakeswara Rao, Mesut Güneş, Behnam Dezfouli



Cognitive radio: Cognitive Radio (CR) in a wireless network consists of three main partsȷ
sensing the wireless spectrum to provide a dataset that can be fed to the machine learning
algorithm, a desirable machine learning model to predict interference, and making the
decision to tune transmitter parameters to avoid collision and achieve required Packet Error
Rate (PER). Fig. 2 shows the basic concept of CR. Below we describe important actions
performed by CR.

Policy maker 

Reinforcement learning Agent

Device’s radio

State

Wireless spectrum 

Action
) = State(St) =

) = Reward(Rt)

Action(At) =

Transmitter 
Spectrum 

sensing 

Machine learning 

Training 

Dataset Prediction

Fig. 2ȷ The basic concept of cognitive radio for wireless network.

A) Sensing. In wireless communication and specifically, MAC layer channel sensing is an
efficient approach to determine channel conditions. Generally, it is assumed that the device
itself is responsible to sense channel and make transmission decisions. On one hand, this
method has the advantage of higher accuracy, because the same radio in the same location
is listening to the wireless channel and the interference level in the neighbor location may
vary. But, this is costly in terms of power consumption due to the longer radio operation
time. Cooperative and external sensing is proposed to solve this issue. In this way, wireless
devices can share their observation and can have a more accurate estimation of wireless
channel condition. Another benefit of this method is to assign the sensing task to devices
with a constant power source to save energy for low-power devices.

B) Prediction. An optional interference prediction algorithm is critical to avoid collisions
and transmission in free time slots in the spectrum. Because IEEE 802.11 has a higher data
rate, transmit power, and wider channels, it is the main cause of interference in the 2.» GHz
frequency band for IEEE 802.15.» networks. As a result, for IEEE 802.15.» transmission in
interference-free time is more desirable to save power while maintaining acceptable PER
and efficiently use the shared wireless spectrum. In this direction researchers in [DT18] use
Reinforcement Learning (RL) as a machine learning and prediction algorithm to optimize
transmission success by decision making for channel selection in TSCH network. Sensing
the spectrum helps find these interference-free gaps, however, the spectrum is very dynamic,
and sensed data can lose their validity over time. In addition, to increase the accuracy of
the prediction results, the machine learning algorithm demands more training samples.
Low-power wireless devices are designed to save power by minimizing the radio operation
and they are not capable of providing continuous high frequency sensed samples. Besides,
they need to transfer these samples to more powerful computers such as fog or cloud to
avoid wasting energy because of the training process. Although CR is an intelligent solution
to optimize spectrum efficiency, yet in a highly crowded spectrum, it may fail to maintain
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a reliable connection link. Still, CR can help understand the risk of transmission on a
certain wireless link. In high risky scenarios for wireless transmission, central management
networks such as TSCH can assign the task to devices with a similar capability and resources
placed in interference-free locations [RFG19]. This concept is called the migration of
service and it is achievable using the virtualization machine to be operating system agnostic
to execute any codes written for different platforms.

The need for service migration in IWSAN: In traditional IWSNs scalability is challenging
because of the direct connection of the end node and cloud service. The reasons for this
challenge are bandwidth limitation and response delay because of physical distance of
cloud service from operational node and increasing the size of collected data to process and
analyze. The concept of IoT at the edge or introducing the intermediate fog nodes helps to
increase the scalability and timeliness by dis-aggregation of services.

3 Migration service architecture using MCSS testbed and ILPWSP

In our design we deploy several multi-channel sniffing devices alongside the operating
nodes in IWSNs. In this case, MCSS continuously observes and monitors the interference
conditions in the target location and provides feedback to the central manager. When a
transmission in the location 𝐴 has a high risk in terms of packet loss, the central manager can
assign the task to another device in location 𝐵 with similar resources. We consider a typical
industrial network architecture as shown in Fig. «, which comprises of existing architecture
in Fig. «(a) and our proposed architecture in Fig. «(b). Industrial environments are full of
wireless devices such as surveillance cameras, WiFi access points, and smartphones. The
operation of these devices in the neighborhood of the industrial sensors and actuators causes
interference in the wireless channel. Lack of reliable connection for real-time IWSNs may
cause a severe impact on the functionality of the entire network. Our proposed solution
for this problem is presented in Fig. «(b), where we introduce the MCSS and fog radio for
interference prediction. In this scenario, MCSS is continuously monitoring the wireless
channels and feeding the machine learning based prediction model deployed in the fog
computing.

Multi Channel Sniffing Setup (MCSS): As shown in Fig. «(c), MCSS consists of »0
nRF528»0 USB dongles, each dongle is responsible to sniff a single channel with 2MHz
width in 2.» GHz frequency band. The nRF528»0 includes an ARM Cortex-M» processor
with 1MB flash memory, 256KB RAM, and has -95dBm antenna receiver sensitivity.
This setup allows us to collect noise samples of all the channels with 9𝜇s interval for
major low-power wireless technologies operating in 2.» GHz, such as different versions
of Bluetooth Low Energy (BLE), IEEE 802.15.», and 2.» GHz proprietary protocols. The
observation provides real-time feedback about the noise in wireless spectrum in a defined
location. Using the collected dataset ILPWSP can predict the channel condition in the future.
ILPWSP helps to reduce the risk or PER caused by interference, by assigning the task to

1262 Ali Nikoukar, Saleem Raza, Tharakeswara Rao, Mesut Güneş, Behnam Dezfouli



Fig. «ȷ The proposed network scenario

other devices with similar resources and capability. The output recorded by this tested setup
is fed to the fog radio.

Intelligent Low-power Wireless Spectrum Prediction (ILPWSP): Reinforcement Learn-
ing (RL) is one of the active research areas in machine learning for time series prediction. In
RL, the environment, and defining adaptive policy using perceived states of the environment
helps to improve the accuracy of decision making and continuous adaptation with the
environment. RL is also known as a semi-supervised machine learning algorithm, because
it receives feedback from its previous actions to improve accuracy over time. In the wireless
spectrum, due to the high variation of interference level in a short period, RL algorithms are
suitable to continuously observe and predict. The key entities in RL are agent, environment,
actions, rewards, and states. The agent interacts with the environment and takes action.
In return, it retrieves the rewards or penalty from the effect of previous action in the
environment. This feedback helps to improve decision accuracy. In ILPWSP, the agent,
which is our Q-learning model, interacts with the wireless spectrum environment based
on the configuration parameters given through actions. In each corresponding state, the
agent receives the reward based on the action. In our simulation experiments, the agent
keeps track of all the errors based on the actions taken, and the rewards received, through
this online learning, it generates an optimal policy to minimize those errors. The agent
minimizes errors by comparing error values with the available training data set, which we
feed as input to the model. In the next step, the model is validated through testing data set so
as to examine if the optimal parameters selection is performed with reasonable prediction
accuracy. The optimal configuration parameter is expressed as Markov Decision Process
(MDP) [SB18]. Among many variants of RL, Q-learning is a unique approach of online
learning. It arrives at a policy based on a Q-table which stores the results of actions taken
from a given state. ILPWSP is based on Q-learning and it can navigate high dimensional
configuration parameter space depending on strategy value function𝑄. Equation (1) explains
the Q-learning where 𝑄 is a state-action value denoted by 𝑄(𝑠𝑡 , 𝑎𝑡 ) and works as follows.
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Agent observes the environment and performs an action in it and aims towards maximizing
the expected reward. For real-time spectrum prediction in a complex wireless environment,
Q-learning is efficient to find out the best policy of RL based on value function. Q-Learning
is an incremental algorithm that determines optimal policy in a step by step process at each
step 𝑡, agent observes current state 𝑠𝑡 , selects and performs an action 𝑎𝑡 and observes the
next state 𝑠𝑡+1 in the process, receives reward 𝑟𝑡 , and finally updates the 𝑄 values 𝑄(𝑠𝑡 , 𝑎𝑡 ).

𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) = 𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 ) + 𝜂
[
𝑟𝑡 + 𝛾min𝑎𝑡 𝑄𝑡 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 )] (1)

Process repeats until 𝑄 value function converges to an optimal value as 𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) →
𝑄∗(𝑆, 𝐴).

In this paper, we implement ILPWSP model based on DQN network which is a variant of
Q-Learning. The ILPWSP uses grid search method to find optimal configuration parameters
such as testing and training data sizes. In ILPWSP, we limit the range of configuration
parameters to batch size, epochs, hidden layer nodes, input dimension, and difference order.
The batch size is the number of samples to input into the model. An epoch is defined as
passing of data set forward and backward once in the whole network. Hidden layers nodes act
as intermediate nodes which add weights to the inputs and perform an activation function on
them to produce outputs. We pass the data set multiple times into the same neural network.
We collected the interference samples in an office environment operating with IEEE 802.11
enabled APs. The samples were collected on channel 11 of IEEE 802.15.». In the dataset,
we witness non-stationary behavior in different timestamps, therefore, we need to convert
the dataset to stationary series by using the difference transformation technique. The main
goal of ILPWSP is to predict the interference level on channel 11 in IEEE 802.15.» with the
help of DQN, where we try to find optimal policy by tuning the available parameters. The
number of steps taken is 10 as selected by the grid search.

4 Results and Discussions

In this Section, we present and discuss the interference prediction results using ILPWSP.
Furthermore, we compare our results with State Action Reward State Action (SARSA) as
an implemented baseline algorithm to evaluate the performance of ILPWSP.
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Fig. »ȷ (a) SARSA and (b) ILPWSP results for channel 11 in IEEE 802.15.».
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The results for the evaluation is presented in Fig. », where Fig. »(a) shows the prediction
results for SARSA and Fig. »(b) demonstrates the prediction results for ILPWSP. As can
be observed in the Y-axis, we use the RMSE metric to evaluate the performance of the
prediction. In each part, we train and predict 0.5 million, and the samples are divided into
train and test size of 0.«0 and 0.20 million at each step. The optimal sample size is selected
by the grid search and agent navigates through the environment and along with each step size
until a terminal state. In Fig. »(b), at the starting of the steps, the agent left free to randomly
explore the environment and learning takes place by considering all possible configuration
parameters of batch size, epochs, input dimension, difference order, and hidden layer node.
At the second step the agent starts learning, and the error is relatively high, where the
ratio of exploration is balanced and the agent by selecting all configuration parameters that
result in a high error. At the third step the error has gradually decreased the agent avoided
selecting the similar parameters. From the fourth step the model gradually minimize the
error. At the final step, policy by the ILPWSP agent selects the optimal configuration by
gaining the confidence of parameter selection and achieves low prediction error. However a
detailed look at the Fig. »(b), we notice that several trails and the number of samples length
respectively the error is minimized, which determines agent selecting the right actions
that result in a low error. Where in the SARSA, error increases constantly because it only
considers local optimal value as the best value. While the ILPWSP follows the greedy
policy. In SARSA, it takes the policy strategy into account and joins into its updates and
refreshes by considering the approach of previous actions. In Fig. »(a) shows the values of
SARSA approach and concludes the result it is unable to converge the values and shows
high variance. Although, in times of low interference, ILPWSP and SARSA show almost
the same performance, however, when interference increases ILPWSP shows its strength
over SARSA. The little differences in performance can impact the timeliness of the network
and inaccuracy in the prediction which may cause collision. In this way, ILPWSP serves
critical feedback that helps decide the link reliability to predict failure and efficiently make
decisions of service migrations.

5 Conclusion

In this paper, we introduced ILPWSP model based on CR network for IEEE 802.15.» to
enhance the reliability and timeliness of the network. Our design is a hybrid approach
that consists of three major elementsȷ First we design a MCSS for external cooperative
sensing method in CR. Second, we use fog radio to dis-aggregate the computing for machine
learning in ILPWSP to achieve low latency. Last, for prediction part in ILPWSP we develop
a DQN model. Our results for ILPWSP prove the feasibility of spectrum prediction for
decision making to migrate the service in case of a high risk of interference.
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