
Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 47

Ulrich Frank

A Conception of a Presentation Development and
Management System Featuring ‘Smart Slides’

This paper presents a conception of a presentation development and management system (PDMS) and a

related process model that guides its adequate use. It is inspired by the idea to replace certain graphical

representations on presentation slides with diagrams that are constructed with domain-specific modelling

languages (DSML) and corresponding model editors. The PDMS features an extensible set of graphical

DSML that originate in a method for enterprise modelling. They provide the conceptual foundation for

graphical representations that include domain-specific semantics. Specifying DSML and generating code

for corresponding model editors is supported by an integrated metamodelling environment. Various DSML

can be combined to create interactive, multi-language diagrams. The embedded semantics enables versatile

machine analysis and allows for interactive slides. An accompanying compound architecture allows for

integrating interactive diagrams with slides that contain traditional types of content such as text or drawings.

Furthermore, it provides the conceptual foundation for storing presentations in a steadily growing common

repository of organisational knowledge, thereby promoting reuse on various levels of abstraction.

1 Introduction

Presentation slides are an important medium to
foster communication in many business scenar-
ios. Often, especially in consulting firms, the pro-
fessional design of presentation slides is regarded
as an important prerequisite for illustrating prob-
lems and project results. As a consequence, pres-
entation software is an important instrument for
structuring and representing problem domains
in business. Respective tools have matured over
several years and allow for the creation of im-
pressive presentations. While we do not know
of a study on the scale and the economics of
designing, using and maintaining business pres-
entations, it seems reasonable to suppose that
many firms have accumulated a large amount of
slides. As a consequence, one can assume that the
creation and maintenance of presentation slides
causes remarkable costs – and that correspond-
ing presentation tools are probably regarded as
an instrument of outstanding relevance by many.
However, despite the remarkable convenience
and functionality offered by these tools as well

as the impressive look of professionally devel-
oped business presentations, current practice is
far from being satisfactory.

Occasionally, the use of presentation software –
especially of PowerPoint© – has been criticised
for corrupting creativity and individual presen-
tation styles, thus contributing to boring pres-
entations that compromise a ‘contemplative ana-
lytical method’ (Tufte 2006, p. 6). To counter this
effect, Tufte emphasises the relevance of a ‘cog-
nitive approach’ that should not be dominated
by the ‘limitations of the presentation techno-
logy’ (ibid). While it is the question whether
boring presentations should be contributed to
the software or rather to the author, from an in-
formation systems perspective further aspects
are more relevant anyway. They relate to pro-
ductivity, quality, integrity and reuse.

On the one hand, current shortcomings are af-
fected by the technology that is used to man-
age presentations as sequences of slides: Usually,
presentations are stored as files. Whenever a
new presentation is created, reuse is restricted to

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

48 Ulrich Frank

copying slides from an existing file to another –
or to copy a file and afterwards modify the du-
plicate. The resulting redundancy is a serious
threat to integrity and may increase maintenance
costs tremendously. On the other hand, produc-
tivity, quality and integrity suffer from a missing
conceptual foundation of the content that is rep-
resented in slides. In other words: The tools that
are used to produce slides and the content of the
slides themselves lack formal semantics (in the
remaining text, the use of the term ‘semantics’
will always relate to formal semantics). The text
that is used within slides does not include much
formal semantics. Nevertheless it allows for cer-
tain kinds of analysis such as retrieval and spell
or grammar checking. The lack of semantics is
a particular problem for graphical representa-
tions. If they are not just bitmaps, they are at
best structured and weakly typed drawings. They
are structured, if they are composed of various
elements that can be manipulated separately in
terms of presentation style or animation. They
are typed because there are different types of
presentation objects – such as text, graphical
shapes, tables, video etc. – each of which is char-
acterised by a certain set of operations. Typing
is, however, restricted to presentation issues. It
does not account for the semantics of the rep-
resented objects. The lack of semantics, i.e., the
lack of rules that constraint the use of objects,
promotes flexibility: Users can draw whatever
they like. However, it also reveals a number of
severe shortcomings. Retrieval is restricted to
superficial representation patterns, e.g., strings
or graphical shapes. Apart from that, machine
retrieval of the represented objects, i.e., the con-
tent, is not possible because these objects – as
well as corresponding types or classes – simply
do not exist in the presentation software. Re-
use of graphical elements is restricted to copy
and paste, causing an ever growing amount of
redundant material. In addition to that, integrity
is jeopardised by the lack of semantics: There
is no protection against absurd or contradictory
content. Independent from semantic integrity,
there is no support for a coherent representation

of content within an organisation. This is the
case both for concepts and graphical layout. The
lack of semantics also limits the use of machine
analysis and transformation. Finally, the lack of
a conceptual foundation prevents integrating the
content of a presentation with data that reside
in an information system. It is only possible to
copy representations of data, such as strings, into
the presentation, which will, however, cause the
loss of the original semantics. If, for instance, a
pie chart is used to represent the revenues of a
set of branch offices, this information is lost in-
side the presentation software. The implications
of the poor conceptual foundation are remark-
able. While the plethora of presentation slides
that exist in many companies could serve as a
versatile knowledge repository that is tightly in-
tegrated with the corporate information system,
they are not much more than an amorphous ac-
cumulation of textual and graphical symbols. As
a consequence, there is only little protection of
the investment into the creation of presentation
slides.

This paper presents an approach to overcome the
dissatisfactory production and use of presenta-
tion slides. The approach puts specific emphasis
on reuse and integrity. For this purpose, it sug-
gests the use of domain-specific modelling lan-
guages (DSML) and corresponding model editors
to develop slides that support methodical ana-
lysis and that promote a higher level of reuse and
integrity. The proposed solution is not intended
as a total replacement of today’s presentations.
Instead, it is aimed at augmenting traditional con-
tent with conceptually grounded graphics. For
this purpose, it provides a conceptual foundation
for integrating various types of content and for
storing presentations in a common repository.
While the approach targets mainly business pres-
entations, it should be applicable to a wide range
of other presentations, too. On the one hand, the
approach is motivated by our experience with the
production and use of presentations for teaching
purposes. We often copy graphics produced by
modelling tools into presentations. This does not

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 49

only slow down the production process, it also
removes the semantics originally embedded in
the diagrams. On the other hand, the approach
is inspired by our work on enterprise modelling
in general and on the specification of domain-
specific modelling languages in particular.

The paper starts with a requirements analysis.
Against this background, the conceptual found-
ation of the proposed system is developed. Sub-
sequently, the corresponding tool is presented.
Since the use of the tool requires changing ex-
isting patterns of producing presentations, or-
ganisational guidelines for establishing a corre-
sponding practice are suggested in the follow-
ing section. A discussion of related work is fol-
lowed by an evaluation of the proposed solution.
While the research presented in this paper corre-
sponds clearly to the so called Design Science
approach, we did not take the corresponding
method (Hevner et al. 2004) as a model. Instead,
we refer to an approach for the configuration of
research methods (Frank 2006b). Different from
Hevner et al. it does not prescribe the use of
behaviourist approaches to evaluate an artefact.
Instead, it emphasises the need for transparency
of underlying assumptions and the use of mul-
tiple approaches to justifying requirements and
solutions.

2 Requirements

To develop a foundation for more sophisticated
presentation development and management tools
we distinguish a macro and a micro view on cre-
ating and using presentations. The macro view
focuses on the creation entire presentations. It
should not only promote reuse, but also foster
integrity. Different from creating isolated presen-
tations, it should be possible to store and access
the parts of a presentation such as slides and
content of slides. The micro view – which is of
higher relevance for the objective of the paper –
focuses on the creation of graphical representa-
tions that are supposed to guide the analysis of
complex subjects. For example: a presentation
that aims at assessing a firm’s current IT strategy

and showing options for shaping the future IT
strategy. Accomplishing this task requires know-
ledge to structure the domain in a purposeful
way. In addition to that it requires knowledge
about the process of developing and structuring
a business presentation. Since graphical visual-
isation can promote comprehensibility, it needs
to be decided how a graphical representation
should look like. This recommends accounting
for the expectations and skills of the prospect-
ive audience. Since business analysis is often
not restricted to concepts but also includes con-
sidering instance-level data, the required data
need to be integrated somehow from the respec-
tive sources. For instance: After associating an
ERP system with the business process types it
supports, one could include the total annual reve-
nues generated through the corresponding proc-
ess instances.

Today, successful action in both, the macro and
the micro view, is substantially determined by
the limitations of prevalent technologies, such as
file systems and presentation tools. The follow-
ing requirements for presentation development
and management systems (PDMS) that support
the creation and use of presentations more ef-
fectively than current tools respond to the macro
and the micro view. Note that the requirements
are not meant to be complete. Instead they are
intended to focus on essential aspects.

Requirement 1: A PDMS should include a con-
ceptual foundation that provides developers
and users of business presentations with con-
cepts to structure and analyse the domain
of interest (focus on micro view). Rationale:
Structuring a domain appropriately is of pivo-
tal relevance for professional analysis. At the
same time, it is a demanding task that over-
burdens many users. For instance: concepts
such as ‘strategy’, ‘IT resource’, ‘IT architec-
ture’, ‘IT costs’, ‘business process’ would help
with preparing for analysing and redesigning
an IT strategy. Note that this means to specify
the semantics of these concepts.

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

50 Ulrich Frank

Requirement 2: For various reasons, graphical
representations are of pivotal relevance for
presentations. Hence, users of a PDMS should
be supported with the creation of diagrams
that are consistent with respect to a common
terminology and the graphical notation. For
this purpose, users should be provided with
some sort of reusable concepts and related
graphical symbols (micro view). Rationale:
For creating meaningful diagrams that corres-
pond to organisational standards, it is import-
ant to provide users with effective guidance.
Reusable concepts and graphical symbols do
not only promote productivity, but contribute
to quality and integrity, too.

Requirement 3: A PDMS should support inter-
active views (micro view). Rationale: For a
graphical representation to serve as a power-
ful instrument for analysis, a corresponding
tool should provide meaningful operations,
e.g., to perform calculations, to change the
level of detail or to navigate to associated rep-
resentations.

Requirement 4: It should be possible to integrate
data from other systems (macro and micro
view). Rationale: If operational level data
are required for presentations, they are usu-
ally copied to a slide which results in the loss
of the original semantics. To support timeli-
ness and integrity, it would be better, if the
semantics of data was preserved, i.e., if the
presentation software was integrated with the
systems that provide the data.

Requirement 5: A presentation should allow for
including any kind of content – not only
graphical diagrams. This includes text, tables,
graphics, etc. (macro view). Rationale: The
wide range of purposes and constraints to be
accounted for with the creation and use of
presentations demands for a versatile, flexible
approach that should not restrict content to a
specific type.

Requirement 6: It should be possible to create a
presentation by reusing composable elements
that are stored and maintained in a common

repository. In order to promote reuse the com-
posable elements should cover various levels
of detail. They should be directly accessible in
the repository (macro view). Rationale: Only
if a presentation is decomposed in (widely)
self-contained elements, its content can be re-
used in a consistent way – in an ideal case
by defining references to the elements in the
repository only. Otherwise there is need for
synchronisation mechanisms.

Requirement 7: Content should be widely inde-
pendent of its presentation (macro and micro
view). Rationale: The adequate presentation
of content depends on the specific context,
which is, among other things, characterised
by the targeted audience and corporate stand-
ards. Separating content and presentation
allows for (re-)using content in different con-
texts.

Requirement 8: The system should provide for
sophisticated retrieval (macro and micro view).
Rationale: A presentation repository can be
expected to grow to a remarkable size. There-
fore, finding adequate elements can be a chal-
lenge that threatens the utility of the entire
approach.

Requirement 9: It should be possible to extend/
specialise the conceptual foundation of graph-
ical representations. Hence, there should be
mechanisms that allow for convenient and
safe adaptations (micro view). Rationale: With
respect to the huge variety of domains and
topics, it would not be reasonable to expect
the conceptual foundation of a system to be
complete.

Requirement 10: A PDMS should guide users
with the creation of a business presentation.
This includes the creation process as well as
the overall structure of a presentation (macro
view). Rationale: Developing a business pres-
entation can be a demanding task. Therefore,
providing guidelines for organising the proc-
ess, e.g., through a process model, and for
structuring a presentation, e.g., through pro-

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 51

totypical patterns, promises to promote pro-
ductivity and quality.

3 Conceptual Foundation

At its core, the proposed solution is based on
the idea to replace certain drawings in presen-
tations with conceptual diagrams that are cre-
ated with domain-specific modelling languages.
Usually, a conceptual diagram is a view of a cor-
responding conceptual model. Different from a
model, it is characterised by a specific layout.
A conceptual diagram may also integrate views
on more than one model. For instance: A dia-
gram may represent a business process model
and parts of an associated model of IT resources.
For creating conceptual models and related dia-
grams, the use of domain-specific modelling lan-
guages (DSML) is suggested. Conceptual dia-
grams allow for enriching graphical representa-
tions with formal semantics, to foster integrity
and to provide a foundation for meaningful user
interactions.
Therefore, we refer to slides that contain con-
ceptual diagrams as ‘smart slides’ and call a pres-
entation that includes smart slides ‘smart pres-
entation’. Hence, the main focus of this paper
is on a conception of conceptual diagrams with
respect to requirements 1 to 4, 7 and 9. How-
ever, a conception of conceptual diagrams is not
sufficient. Instead, there is need for integrating
conceptual diagrams with presentations that may
also include other types of content (requirement
5) and that satisfy the demand for reuse (require-
ments 6, 7). Therefore, the illustration of the
targeted solution starts with an outline of a com-
pound architecture that provides the context for
using interactive conceptual diagrams within a
presentation.

3.1 Compound Architecture

The object model depicted in Fig. 1 illustrates the
proposed compound architecture. A presentation
consists of an ordered collection of references to
slides – which in turn refer to the frames they

include. There are master frames, such as head-
lines, footlines or logos as well as regular frames.
A regular frame is an instance of a frame class,
such as Text, Graphics or – more specific –
Question, Assignment, Citation etc. It
is represented as a rectangular area on a slide.
Frames may overlap. Its default relative size is
defined by respective attributes in the class Ab-
stractFrame. The attributes in the class FramePo-
sition serve to define its concrete position and
its possible enlargement within a particular slide.
Frames may overlap. The layout of slides is de-
fined in separate objects. On the highest level, an
object of the class PresentationStyle can
be used to specify the layout style – such as de-
fault font, background colour etc. – for an entire
presentation. The styles of chapters or slides and
of particular frame classes can be defined in fur-
ther objects. This is indicated through the classes
ChapterStyle, SlideStyle, Question-
FrameStyle and AssignmentFrame-
Style. In case, there is no particular style for a
chapter, the corresponding values are obtained
from the associated object of the class Presen-
tationStyle. The same pattern applies to
objects that serve to define the style of slides.
They obtain the corresponding values from an
object of the class ChapterStyle, if they are
not used to define a deviating style. Note that
the relative position of head- and footlines will
usually be defined in respective style objects. Ob-
jects of the class FramePositionmay be used
to override the default in exceptional cases.

The object model shown in Fig. 1 illustrates how
a presentation can be constructed through refer-
ences to elements in the repository and how the
style of a presentation can be defined on various
levels of detail. To include data from other sys-
tems, access to these data can be specified in an
instance of the class Interface. The integra-
tion of conceptual diagrams is indicated by the
highlighted classes at bottom right of the class
diagram. A diagram is assigned to one slide, i.e.,
it cannot be distributed over various slides. In
case, it is too large for fitting one slide, it would

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

52 Ulrich Frank

be required to split the diagram into several dia-
grams, each of which could be assigned to a slide.
If the modelling language provides for decom-
position, the corresponding concepts could be
used to decompose a large diagram into a set
of smaller ones. Alternatively, a large diagram
could be assigned to a single slide, if the cor-
responding tool provided a zooming function –
which is the case for the tool presented in Sect. 4.

Composing presentations as ordered collections
of references to slides will clearly help to avoid re-
dundancy, since a set of presentations may share
slides that reside in the repository. As a con-
sequence, changing a slide in the repository will
result in a simultaneous and consistent update
of all involved presentations. This is a clear ad-
vantage especially in those cases, when obvious
errors were found in slides. However, the issue
of modifying slides in the repository needs to be
considered in more detail.

First, a presentation may be regarded as a docu-
ment that should preserve its state. In this case,
keeping references to slides in the repository that
might be subject of change would be harmful.
To cope with this requirement, a ‘deep’ copy
of a presentation – in the sense of a snapshot
(value semantics) that preserves all values (slides
and frames) – could be stored in an additional
database that would mainly serve documenta-
tion purposes. Second, there is the case of par-
tially modifying a slide in the repository. This
would be handled by copying the slide together
with its references to the included frames. Sub-
sequently, the references of those frames that
were to be changed would be replaced by refer-
ences to modified or newly created frames. If
only minor changes are applied to a slide, e.g.,
one out of several frames get replaced, the re-
maining commonalities will be redundant and
may thus threaten the integrity of the reposi-
tory. The proposed architecture accounts for this
problem with a simple conception of variant: It
allows for defining a slide as a variant of an ex-
isting slide, which in turn may be a variant of a
further slide. In the object model in Fig. 1 this

is indicated through the association ‘variant of’
with RegularSlide. It is supplemented by a
constraint to prevent cyclic associations, which is
not shown in Fig. 5. Note that such a simple con-
cept of variant does not allow for automatic up-
dating of variants. Instead, it supports detecting
variants that may be affected when a particular
slide has been changed. The actual modification
of the variants would then require human action.
Defining a more elaborate semantics of slide vari-
ant would require referring to the set of included
frames and the respective content. While this is
not at the focus of the paper, we will get back to
this issue in Sect. 5 with respect to the modifica-
tion of models and diagrams.

In the ideal case, the elements a presentation
is comprised of are loaded from the repository
during the execution of a presentation. If the re-
quired connection is not available, the elements
can be copied to the machine that runs the pres-
entation. If they are modified, they may be
checked in to the repository later – which re-
quires an appropriate synchronisation protocol.
Note that the object model in Fig. 1 is not in-
tended to be comprehensive. It is restricted to
those classes that are required for representing
compound presentations. Further classes (e.g., for
animation purposes), methods and constraints
have been widely omitted. Also, it does not in-
clude management classes for, e.g., inserting or
deleting slides, printing slides, editing text and
graphics etc. While the remarkable complexity
of the architecture needs to be hidden from users,
the features it enables should be made available
to users nevertheless. This requires putting spe-
cial emphasis on the design of the user interface.
The screenshot in Fig. 5 gives an idea of how this
could be accomplished.

3.2 Language Architecture

Different from current presentation tools, a graph-
ical representation would not be restricted to
drawings or imported graphics in various formats,

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 53

Slide
title : String
created : Date
sideRatio: Ratio

getContent()

Text
content: XMLString

Graphics
caption : String

getArray()

Table
numberOfRows : Integer
numberOfCols : Integer

getVideo()

Video
video: Video
description

Question

OpenQuestion

Choice

Citation
Publication

title : String
...

Assignment
groupWork : Boolean
timeFrame : Integer

Advice
warning : Boolean
emphasis : Integer

Formula

Headline Footline Logo

getGraphics()

Graphics
figure: Graphics

Diagram

getDiagram()

DataDiagram
visualisationType: Diagram

ConceptualDiagram
staticRepresentation: Graphics
type: Diagram

ModellingLanguage
name : String

MasterFrame

Animation
effect: AnimationType
onEvent: EventType

0..*

0..1

1..*

1..1

GraphicsObject
lineColour: Colour

ComposedFigure

Circle Rectangle

Region
fillColour: Colour
relWidth: Percentage
relHeight: Percentage
relPosition: Coordinate

Line
startPosition: Coordinate
endPosition: Coordinate

Interface
description: String
sourceID: String
protocol: String
inputParamList: XMLString
result: XMLString

obtains data from

includes

includes

in
cl

ud
es

in
cl

ud
es

0..*

0..1

0..1 0..1

0..* 0..*

0..1

0..*

update()

Frame

getTitle() : String

ChapterSlide

getTitle() : String

TitleSlide

RegularSlide
title : String

Presentation
description : String
created : Date
title : String
subTitle : String

getChapterNo() : Integer

Chapter
title : String

StructuredPresentation SimplePresentation

getSlideNo() : Integer

ProxySlide

successor of

0..1

0..1

1..10..*
starts with

starts w
ith

0..*

1..1

Author
lastName : String
firstName : String 1..*0..*

created

starts w
ith

0..*

1..1

0..1

0..1

represents

1..1

0..*

1..1

1..1

represents title of

represents title of

1..1

1..1

PresentationStyle
titleBackground: Colour
chapterBackgound: Colour
titleFont: Font
regularFont: Font
headlineFont: Font
footlineFont: Font
...

SlideStyle
headlineFont: Font
footlineFont: Font
...

inherits from

0..*

0..* 0..1

0..*

defines layout of

0..*

0..1

FrameStyle
icon: Graphics
...

Style
created : Date
regularBackground: Colour
font: Font
fontColour: Colour

QuestionFrameStyle
...

0..*

inherits from

Inherits from

0..*

0..1

0..1defines layout of

defines layout of

defines layout of
0..1

0..*

0..1

0..*

successor of

AssignmentFrameStyle
...

0..1

0..*

defines layout of

AbstractFrame
relWidth: Percentag
relHeight: Percentage

variant of

0..1

0..*

variant of

0..1

0..*

variant of

0..1

0..*

view on

in
st

an
ce

 o
f

Model
name : String

1..1

0..*

1..*0..*

ChapterStyle
created : Date
chapterFont: Font
headlineFont: Font
footlineFont: Font
...

FramePosition
relX: Integer
relY: Integer
sizeFactor: Percentage

0.*

0..*

ap
pl

ie
d

to

Figure 1: Object Model of Component Architecture

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

54 Ulrich Frank

but would also allow for creating conceptual dia-
grams. To foster productivity, the presented ap-
proach emphasises reuse on two different levels.
At first, it proposes to use domain-specific mod-
elling languages (DSML) for creating conceptual
models. A DSML provides users with model-
ling concepts that represent a technical terminol-
ogy. Therefore, the user does not have to (re-)
construct domain level concepts, e.g., ‘business
process’, ‘task’, ‘role’, ‘objective’ etc. on his own
by using generic concepts such as ‘class’, ‘attrib-
ute’ etc. Second, models that reside in the reposi-
tory as a reference, can be reused – and adapted
using the respective DSML. The use of a DSML
also fosters comprehensibility by featuring a spe-
cific graphical notation. Last but not least, a
DSML promotes integrity, since its syntax and
semantics prevent inappropriate models more
effectively than a general purpose modelling lan-
guage (GPML) like the UML. Figure 2 illustrates
the advantages of DSML: The class diagram on
the right side is perfectly valid, both with respect
to its syntax and semantics, because within the
GPML there is no differentiation between classes.
Different from that, the DSML provides concepts
that represent the domain-level terms ‘Server’
and ‘ERP’. Therefore, it does not allow for ex-
pressing that a server runs on an ERP system.
Note that the excerpts both of models and meta-
models are substantially simplified. Also, the
levels of abstraction do not exactly correspond.

With one or more built-in DSML editors, a PDMS
features functions that are similar to those of a
modelling tool. It allows for creating and modi-
fying conceptual diagrams that can be interacted
with during a presentation: to apply changes,
to decompose elements of a model, to perform
calculations or to access related data.

The conception of smart slides that is proposed
here was inspired by a method for multi-perspec-
tive enterprise modelling (MEMO) (Frank 2002;
Frank and Lange 2007). Enterprise models are
models that integrate models of the information
system, such as object models, component mod-
els etc., with models of the organisational action

Server
name: String
os: String
memory: Integer
...

ERP System
name: String
version: String
...

runs on

Class
name: String
isAbstract: Boolean

Attribute
name: String1,1 0,* 0,*

1,1
specified by

part of

Server
name: String
os: String
...

ERP
name: String
version: String
...

0,* 0,*
runs on M2

M1

DSML GPML

runs on

Figure 2: Illustration of integrity gain through DSML

system, e.g., business process models, strategy
models etc. Enterprise models are usually spec-
ified with DSML. The semantics of DSML al-
lows for various forms of machine analysis and
provides a foundation for systems design. At
the same time, an enterprise model serves as a
medium to foster communication between stake-
holders with different perspectives.

Often, DSML are specified by metamodels. Meta-
models are especially suited for this purpose for
two reasons. First, they provide an advanta-
geous foundation for developing corresponding
model editors because they can be transformed
to object models in a straightforward manner.
Second, they enable language specifications that
are easier to comprehend for many than gram-
mars.

In order to foster integration and extensibility of
languages, the above-mentioned method features
a language architecture. It is based on a com-
mon meta metamodel (Frank 2011) that specifies
the abstract syntax and semantics of the MEMO
metamodelling language. The metamodelling lan-
guage allows for including OCL statements to
refine language semantics. The meta metamodel
is instantiated into the metamodels which spec-
ify the abstract syntax and semantics of various
DSML. The conceptual foundation of smart slides
is built on a corresponding language architecture

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 55

Meta Meta Model

Meta Models

Integrated
Object Model
integrated with
Object Model of
Compound
Architecture

instance of

conceptual
foundation of

MML

ITML OrgML

Compound Architecture Integrated Object Model

Object Models

reconstruction of

integrates

PDSM
multi-language Editor

SML

Figure 3: Language architecture and conceptual found-
ation of PDMS

– and makes use of existing languages for enter-
prise modelling. Currently, these DSML reflect
the requirements of enterprise modelling. They
include a language for modelling organisations,
both organisational structures and business proc-
esses, OrgML, a language for representing stra-
tegic aspects such as goal systems or value chains,
SML (Frank and Lange 2007), and a language for
modelling IT resources on various levels of de-
tail, ITML (Kirchner 2008). Further languages tar-
get modelling of resources (Jung 2007) or vari-
ous aspects of corporate knowledge management
(Schauer 2008). Distinguishing these languages
is mainly motivated by the need for reducing
complexity: While it is conceivable to define one
multi-purpose language that allows for creating
all intended diagram types, such an approach

would result in a level of complexity that could
hardly be managed anymore. To provide for the
development of model editors, the various meta-
models are reconstructed as object models. The
object models represent the language specifica-
tion and cover further aspects that are required
for the implementation of a modelling tool such
as time stamps, access rights etc. As will be out-
lined in Sect. 5, the object models are generated to
a large extent by a metamodel editor that serves
to specify the metamodels. In order to support
the integration of modelling languages, the ob-
ject models are integrated to a common object
model which serves as the conceptual founda-
tion of a multi-language model editor (see Fig 3).
It is integrated with the object model that rep-
resents the component architecture (Fig. 1) to
form the conceptual foundation of the PDMS
(Fig 3). Whenever a user adds a frame of the class
ConceptualDiagram, a set of model editors
will be provided that serve to create an instance
of the frame class which is part of the overall
presentation (illustrated in Fig. 6).

The integration of models is accomplished by in-
tegrating the respective metamodels, i.e., through
common concepts shared by the corresponding
modelling languages. For instance: To integrate
the IT resource model depicted in the screen-
shot in Fig. 5 with a business process modelling
language both languages need to share concepts
such as ‘business process’ and ‘IT resource’. The
architecture allows for adding further languages
by including respective metamodels. The cre-
ation of corresponding model editors is suppor-
ted by the tool environment (see Sect. 5).

3.3 Exemplary DSML

Currently, the method includes modelling lan-
guages which were designed for creating enter-
prise models. While some of these, e.g., lan-
guages to create object or component models,
are suited for very specific technical presenta-
tions only, others, such as organisation, resource
or strategy modelling languages offer concepts
and graphical notations that seem appropriate

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

56 Ulrich Frank

for a wide range of applications. A diagram can
integrate views on models specified in different
modelling languages. For instance: the business
process types represented in a business process
map can be associated with corresponding goals
represented in a strategy net (Frank and Lange
2007), or with classes in a class diagram or arte-
facts in an IT resource diagram (Frank et al. 2009).
The excerpt shown in Fig. 4 illustrates how the
integration of modelling languages provides the
foundation for multi-language diagrams as the
one shown in Fig. 5. It is specified with the
MEMO MML, which features a specific graph-
ical notation to promote a clear distinction of
object models and metamodels. Note that the
shown metamodel is a substantial simplification
of the actual metamodels. It includes only a small
subset of meta types – especially the concepts
for modelling business processes are reduced to
a minimum – and omits multiplicities as well as
OCL constraints.

The excerpt includes concepts needed for repre-
senting abstractions that are prevalent in consult-
ing firms such as the balanced scorecard or value
chains on the strategy level. These concepts
are associated with further concepts provided
by other modelling languages, e.g., Business-
Process, OrganisationalUnit or Soft-
wareService. Note that the example diagram
types referred to in Fig. 4 name only a few. Also,
since the concepts included in the given set of
modelling languages can be combined to serve
more specific purposes. Nevertheless, further
modelling languages are required to cover the
range of topics and purposes addressed by pres-
entations in the realm of business and informa-
tion systems. The graphical notations of the
present DSML were created by a graphic artist.

Conceptual models focus on type-level data. This
is for a good reason: Analysis should emphasise
essential aspects and should not be distracted by
instance-level peculiarities. However, sometimes
there is demand for including data that refer to
instance states. This is especially the case, if a
type includes features that reflect an aggregation

of corresponding instance values. For example:
A business process type may be characterised
by the average execution time of its instances
during a certain time frame. An organisational
unit may have a feature that represents the av-
erage salary of all included positions, etc. To
promote timeliness, integrity and productivity,
instance level data should be obtained from those
systems that manage them. The metamodelling
language accounts for this aspect by providing
two specific concepts (see Frank 2011): ‘Intrinsic’
features allow for specifying features of a meta
type that are supposed to be initialised on the in-
stance level only (and not on the type level). For
example: The meta type Indicator includes
the attribute value, which is not a feature of an
indicator type, but is only to be initialised for a
particular instance. Features may also be marked
as ‘obtainable’ (see, e.g., averageCost within
BusinessProcess in Fig. 4) to indicate that
the corresponding values might be obtained from
other applications. This could be accomplished
through an interface class like the one depicted in
Fig 1. However, a more sophisticated integration
would require a different approach (see Sect. 7).

4 Tool Environment

The proposed architecture and prototypical im-
plementation of a PDMS is based on an existing
modelling environment1. It was developed with
the Eclipse Modelling Framework (EMF) and the
Eclipse Graphical Modelling Framework (GMF).
The implementation of the component architec-
ture and the corresponding editing features is
only prototypical. With respect to the standard
set by current presentation tools, implementing
these features would require an enormous effort
– at the same time there is hardly need for a proof
of concept. The main purpose of the prototype
is to demonstrate two features: the integration
of a multi-language diagram editor with a pres-
entation tool and the support for adding further
model editors.

1available for download at http://www.wi-inf.
uni-duisburg-essen.de/FGFrank/download/
memo/

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 57

composed_of

implemented by

part of

OrganisationalUnit

staffUnit: Boolean
corporateRelevance: Affirmation
subjectOfOutsourcing: Affirmation
subjectOfReorganisation: Affirmation

name: String
description: String

ProfessionalPerspective

name: String
description: String

PrimaryActivity

name: String
description: String

OS

challenge: String

OfficeApplication

productivity: Level
usability: Level

SupportActivity

name: String
description: String

Stakeholder

name: String
description: String

Indicator

name: String
description: String
definition: String
reliability: Level
validity: Level
potentialBias:String
 value: Floati

Initiative

name: String
description: String
effort: String
minDur: Time
maxDur: Time
internal: Boolean

Target

name: String
description: String
rationale: String
 value: Float
 dur: Time
i
i

Opportunity

name: String
description: String
external: Boolean
chance: Level

Thread

name: String
description: String
external: Boolean
chance: Level

TopManagement

networks: Level

LineManagement

acceptance: Level

Platform

number: Integer
dependency: Level

name: String
description: String
strategicRelevance: Level
competitiveness: Level
qualityVariance: Level
cost: Level

ResAllocation

reqVolume: Level
reqQuality: Level
reqAvailability: Level
risk: Level

SoftwareService

subsitutability: Level

Component

challenge: String

ProductionTechnology

flexibility: Level
levelOfAutomation: Level
replacementCost: Level

IT

protectionOfInvest: Level
vendorDependance: Level

Interface

specification: XMLString

SalesForce

softSkills: SkillLevel
productSkills:SkillLevel

RD-Expertise

analyticalSkills: SkillLevel
productSkills: SkillLevel
creativity: Level

IT-Expertise

technicalSkills: SkillLevel
SDSkills: SkillLevel
businessSkills: SkillLevel
academicSkills: SkillLevel

softSkills: SkillLevel
strategicSkills: SkillLevel
creativity: Level
productSkills: SkillLevel
academicSkill: SkillLevel

HumanResource

number: Integer
demand: Level
availability: Level
performance: Level
averageAge: Integer
motivation: Level

ProcessorClass

number: Integer
performance: Level
protOfInvestment: Level

Software

implLanguage: String
numOfLicenses: Integer
maturity: Level
dependency: Level
flexibility: Level
businessBenefit: Level

Middleware

standard: String
persistency: Boolean

EnterpriseApplication

coverage: String
usability: Level
decisionSupport: Level

name: String
description: String
internal: Boolean
quality: Level
availability: Level
cost: Level
relevance: Level

SupportService

remote: Boolean

SoftwareServiceContract

availabilityLevel: AvailLevel
protectionLevel: SecLevel
maintenance: String

SupportServiceContract

availabilityLevel: AvailLevel
maxRespondTime: Time

BusinessProcess

name: String
description: String
 averageDuration: Time
 averageCost: Float
isCore: Boolean
 performance: Performance

o
o

o

Strategy

description: String
priority: Level
established: Boolean

ValueChain

description: String
strength: String
weakness: String

IT-Architecture

integration: Level
reuse: Level

Position

averageSpan: Float
staff: Boolean

Process

name: String
description: String
 averageDuration: Time
 minDuration: Time
 maxDuration: Time

o
o
oprecision: Level

adaptability: Level

focus on

part of

part of

com
prises

com
prises

supports

takes

Goal

name: String
description: String
priority: Priority

concerns

directed towards

concretion of aimed at

generates

generates

supports competes with

uses

part of

concretion of

provides

uses

in charge of

implemented by

relates to

relates to

depends on

runs on

part of

part of

part of

requires

requires

aim
ed at

provided by

measures

serves to asses

part of responsible for

re
sp

on
si

bl
e

fo
r

part of

Strategy

Organisation

Information System

uses

Attribute

name: String

Operation

code: String

Class

name: String
isAbstract: Boolean

Param

name: String

part of

part of

Signature

name: String

represents

class of

includes

class of

returns object of

foundation of

Balanced Scorecard
Value Chain

Diagram

Business Process Map
Business Process

Diagram

Component Diagram

Organisational Chart

Strategy Net

IT Infrastructure
Diagram

Class Diagram

uses

o

i

obtainable feature
intrinsic feature

Figure 4: Excerpt of integrated metamodels

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

58 Ulrich Frank

Is there a chance for outsourcing services?

Figure 5: Screenshot of PDMS editor

Using a PDMS is similar to using a traditional
presentation tool. This is mainly for the reason
that a presentation is still regarded as a series of
slides. However, the use of a PDMS is different in
two respects: It puts emphasis on typed content
and it promotes integrity and reuse by using a
common repository. The latter aspect demands
for establishing a corresponding work practice –
in other words: for reorganising the preparation,
creation and maintenance of presentations. Re-
spective guidelines will be presented in Sect. 5.
A presentation is built from scratch by defining
one slide after the other. Defining a slide means
either reusing an existing one or creating a new
one. If the user finds an appropriate slide in the
repository, he will establish a reference to this
slide. If he wants to modify this slide, he can
replace the included frames by new or modified

ones. If the modified slide has a common core
with the original one, he can define it as a variant
(see Sect. 3.1). If there is no slide in the repository
to start with, a new slide would be created. Each
new slide can be regarded as an empty canvas.
It is filled by dragging a typed frame from the
tool palette (e.g., text frame, a question frame, a
conceptual diagram frame etc.).

Each frame type is associated with a correspond-
ing editor. The tool palette is shown on the left
side of the screenshot in Fig. 5. If a conceptual
diagram frame was selected, a context-specific
tool palette will pop up that provides the user
with a set of modelling languages to choose from
(right side of the screenshot in Fig. 5). Select-
ing a model editor provides the user with vari-
ous choices. He can select an existing diagram –
which provides a view on an existing model. Al-

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 59

ternatively, he may copy and modify an existing
diagram. He also may create a new diagram of an
existing model. It is also possible to create a new
model and a corresponding diagram. Finally, he
may want to change the models a diagram corre-
sponds to. This would constitute a problem only,
if model elements represented in a diagram were
deleted. In this case, the tool allows for creating
a new version of a model, while the old version
together with the related diagrams remains in
the repository. In its current version, the tool
environment does not provide support for defin-
ing and managing variants of models, since the
specification of a sophisticated concept of model
variant with all variants sharing a common core
is subject of ongoing research. The only option
is to explicitly define a model as a variant of an
existing one. Third, modelling languages may
be modified, too. Currently, there is no mechan-
ism implemented in the tool that would support
merging a model and its diagrams to a newer
version of the corresponding languages. Hence,
the modification of languages recommends keep-
ing older versions and their models. Currently,
the repository manager is realised through per-
sistency services provided by the EMF. Models
are stored as XML files in a structure that is de-
fined by the so called ‘notation meta-model’ of
the GMF.

Note that the tool allows for creating multi-lan-
guage diagrams by combining multiple DSML.
Also, traditional frame types – such as text or
drawings – can be combined with conceptual dia-
grams on one slide. In the example shown in
Fig. 5, a business process modelling language is
supplemented by a language for modelling IT re-
sources. The frame that contains the conceptual
diagram is supplemented by an instance of the
frame type OpenQuestion. Also, model ele-
ments are associated with corresponding data on
the instance level, in this case data from account-
ing, which may e.g., originate in an ERP system.
In addition to creating and editing diagrams, the
model editors allow for running analyses – e.g.,
detecting the number of business process types

that are supported by a certain IT resource, or
calculating the average span of control of an or-
ganisational structure.

The elements of a diagram may be associated
with model elements that are not part of the dia-
gram. For instance: The business process types
shown in the example in Fig. 6 might be specified
in corresponding business process models. The
organisational role ‘DB Admin’ may be specified
in an accompanying elaborate model of the or-
ganisation structure. With respect to including a
diagram into a presentation, this implies a num-
ber of challenges. First, data that is referred to
in a diagram, e.g., the average cost of a business
process of a certain type, may change over time.
To cope with this problem, the user could decide
whether to copy obtained references or values
into a diagram. Second, the layout of a diagram
that is referenced by many presentations may be
changed. In the easiest case all references are
kept as they are, resulting in a modified diagram
layout within all affected presentation. If it is
required for some presentations to preserve the
layout of the diagram, a variant of the respective
slide (see Sect. 3.1) could be created that would
contain the original state of the diagram – which
would still refer to the same model.

A DSML may require modifications over time.
Also, there may be need to add further DSML. To
cope with this demand, the tool environment also
includes a component that supports the develop-
ment of model editors. It reflects the language ar-
chitecture shown in Fig. 3. The metamodel editor
uses the metamodelling language specified by
the meta-metamodel for creating and modifying
metamodels. As soon as a modelling language is
created or modified, the editor transforms it into
a corresponding Ecore instance, which serves
to represent metamodels within the GMF. This
includes the transformation of OCL statements.
Subsequently, further specifications, such as the
concrete syntax, have to be added. This still re-
quires remarkable expertise and effort. However,
the MEMO metamodel editor and the GMF, it

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

60 Ulrich Frank

is built on, facilitate the construction of addi-
tional model editors to a large extent. After a
new model editor has been completed, it is inte-
grated with existing editors, mainly be integrat-
ing the object model, it is based on, with those
of other modelling language editors. Thereby,
single language editors become part of a multi-
language editor that allows for creating diagrams
that represent models specified by different lan-
guages. Figure 6 illustrates this process. For
more details see Frank et al. (2009). Nevertheless,
code generation implies a well-known problem:
Whenever a metamodel is modified, generating
code threatens to destroy manual enhancements
of existing code. To counter this problem, the
generated code is separated by clear rules from
code that is added later on. However, this meas-
ure does not cover all possible modifications.

The integration of additional model editors with
existing ones requires language concepts that are
already part of existing languages. For instance:
A new DSML that serves to model human re-
sources is specified in the metamodel editor. To
allow for associating a business process model
with a model of human resources, the language
specification needs to include an adequate con-
cept of the business process modelling language
– et vice versa. This will require recompiling the
respective editors.

The larger a repository of smart slides, the more
important it becomes to provide for retrieval.
Retrieval of diagrams can be based on the in-
cluded concepts, e.g., ‘indicator’, ‘primary activ-
ity’, or designators, e.g., ‘order management’,
‘sales’ etc. Furthermore, retrieval is supported by
a faceted classification that is based on the high-
level framework of the underlying method for
enterprise modelling. It structures an enterprise
into three generic perspectives – strategy, organ-
isation and information system, each of which
can be further differentiated into four aspects –
resources, process, structure and goals.

Each of the resulting 12 foci can be further di-
vided into a set of customisable professional per-
spectives, e.g., financial, sales etc. This high-level

Single Language
Editor

generate

compile

Ecore
instance

create m
eta m

odel
specify concrete

syntax
m

odify/add code

Meta Modelling Environment

integrate

Multi-Language
Editor

PDMS

„plug in“

Is there a chance for outsourcing services?

Figure 6: Workflow for developing and integrating ad-
ditional model editors

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 61

scheme – called ‘topic map’ (see Fig. 7) – serves
to classify more specific topics, e.g., ‘process im-
provement’, ‘assessment of IT architecture’ etc.
Each presentation or slide can be assigned any
number of topics.

Select topics
Select m

odelling
languages

Organisation ML

Strategy ML

IT ML

Resource ML

Select from

presentation repository
Create sm

art
representation

Review
, assign

topics &
 store

�epo�itor�

�rgani�ation

Pro�e��

�n�or�ation
S��te�

�e�our�e�

Stru�ture

Pro�e��
��pro�e�ent

Ser�i�e

�� �r��ite�ture

�ppli�ation

Pro�e��
�o�t�

Figure 7: Process model for creating smart presentations

5 Organisational Guidelines

The conception of slides as conceptual models re-
valuates business presentations and makes them
a core repository and medium of organisational
knowledge. DSML promote reuse and foster in-
tegrity and coherence of the represented know-
ledge. They also reduce complexity by providing
proven concepts for purposefully structuring a
domain. However, often, the reduction of com-
plexity implies increasing it at first – in terms
of acquiring new concepts, tools and procedures.

This is the case with sophisticated presentations,
too. First, the specification of a DSML is a re-
markable challenge caused by the specific com-
plexity that rises from the construction of power-
ful abstractions. Second, the use of a DSML and
the reuse of existing models demand for specific
skills and for professional training. Prospective
users need to understand the core ideas and bene-
fits of using a DSML instead of merely drawing
graphical representations. Finally, it is required
to reorganise the construction, use and mainten-
ance of presentations. This includes the process
of creating and (re-)using business presentations
as well as the professional roles that are required
for exploiting the potential offered by PDMS.

Creating a smart presentation is mainly a con-
ceptual challenge. We call the corresponding
role scriptwriter. It requires creating and struc-
turing arguments for the targeted audience with
respect to a certain objective. At the same time,
the required skills in graphical design are less
demanding, because a DSML includes a graph-
ical notation already. A scriptwriter can either
create a presentation from scratch or modify an
existing one. Moderator is a further role that is
responsible for mediating a business presenta-
tion and for involving the audience in the inter-
action with smart slides. To support the idea
of a steadily growing knowledge base of smart
business presentations, the role of a reviewer is
required to care for quality assurance. This does
not only include the quality of presentations per
se, but also the overall consistency and coherence.
Ideally, it requires an outstanding qualification
with respect to the entire scope of the represen-
ted knowledge and the DSML in use. Depending
on the size of the knowledge base and the quality
produced by the scriptwriters it may also require
a substantial effort. How much an organisation
is willing to spend for reviewing and revising
smart presentations depends on the benefit to be
expected from an elaborate knowledge base. For
those organisations that regard the creation of
business presentations as a core competence, e.g.,
large consultancy firms, the roles of a language

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

62 Ulrich Frank

designer, a graphical notation designer and a tool
administrator may be required. A language de-
signer creates the conception or modification of
DSML. For this purpose, he specifies or changes
metamodels using the metamodel editor. In co-
operation with the graphical notation designer
he is in charge of the graphical notation. In ad-
dition to that, his obligations include the speci-
fication of particular requirements for the corre-
sponding model editor. The tool developer ex-
tends the basic model editor that is generated by
the tool environment according to the specific
requirements. Language design and tool develop-
ment require highly specialised skills. Therefore,
it will often be appropriate to locate these roles
with specialised service providers. Those could
not only develop and maintain DSML for cre-
ating business presentations, but also provide
reference presentations that can be adapted to
specific needs.

The process model that is depicted in Fig. 7 il-
lustrates the design, reuse and management of
smart presentations in an organisational setting.
At first, a scriptwriter, who wants to create a
new presentation would start with searching the
library of existing presentations. For this pur-
pose, he checks the available topic map for topics
that fit the intended presentation. These topics
refer to available presentations, slides, frames
and modelling languages. He would then either
reuse existing slides or create new ones from
scratch (see Sect. 4).

After a presentation is completed, it is stored in
the repository. This can either happen directly
or after it had been approved by the reviewer.
Any task within this process may produce re-
quirements for the development of DSML and
tools. They should be gathered and revised by
the reviewer. If a modification of an existing
modelling language is regarded as necessary or
even a new modelling language is required, a lan-
guage designer would use the metamodel-editor
to modify/create the corresponding metamodel,
which would then – according to the workflow
shown in Fig. 6 – be transformed step by step to

a new instance of a corresponding model editor
that finally would be integrated with the PDMS.
If during the creation of a presentation new top-
ics occur, the reviewer is supposed to update the
topic map.

6 Related Work

To the best of our knowledge, there is no work
that is directly related to the presented approach.
However, there are various streams of research
that address certain aspects. In Tantau (2007) a
LATEX class is presented that is based on a concep-
tion of presentation which shows similarities to
the approach suggested here. It defines a struc-
ture of presentations that includes concepts to
differentiate content, such as graphics, quota-
tions or questions. Despite the power of LATEX,
it is not intended for creating interactive pres-
entations, but documents. Among others, this is
illustrated through a concept called ‘frame’ that
is clearly different from the one proposed for
smart slides: A frame in the corresponding LATEX
class consists of a sequence of slides. It serves
to ‘simulate’ animations within the limitations of
PDF viewers. With respect to the support for ana-
lysis, PDMS resemble decision support systems
(DSS). DSS are sometimes accompanied by the
demand to account for different ‘cognitive styles’
of prospective users with particular emphasis
on graphical representations. Smart presenta-
tions can serve different cognitive styles, since
the use of DSML allows for stressing different
perspectives on a subject, e.g., a business process
perspective or a resource perspective. Different
from DSS, the current prototypical implementa-
tion does not include specific decision models.
Those could, however, be added. A more detailed
comparison with DSS is problematic, since DSS
represent a class of systems that is rather char-
acterised by its purpose than by its conceptual
foundation. This is slightly different with expert
systems (XPS) which usually, but not necessarily,
are characterised by a declarative representation
of knowledge. While graphical representations

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 63

are not at the core of XPS, they allow for mono-
tonic extensions and deduction. These are both
valuable features with respect to maintaining and
evaluating knowledge. Unfortunately, modifica-
tions of conceptual models are not guaranteed to
be monotonic. Also, the MEMO metamodelling
language does not, apart from the use of special-
isation, support deduction. Certain aspects of
PDMS relate to various kinds of further know-
ledge management systems (for an overview see
Maier 2004), such as integration with operational
level systems (through language concepts that
correspond to implementation level concepts),
collaboration (smart slides as a medium to foster
communication in heterogeneous groups) and
support for cognitive processes (since a DSML
is supposed to represent carefully designed and
well suited linguistic structures).

‘Business Intelligence’ (BI) systems provide fea-
tures that allow for extracting data from various
sources and for visualizing them through graph-
ical representations. In recent years, so called
management dashboards have gained remark-
able attention (Eckerson 2005; Few 2006). They
are supposed to provide versatile graphical front-
ends to enterprise software such as ERP systems
or data warehouse systems. Their purpose is sim-
ilar to that of smart slides in two respects. First,
they are supposed to reduce complexity by fo-
cusing on essential aspects of a subject. Second,
they emphasise a graphical representation. How-
ever, dashboards – or graphical representations
generated by BI systems in general – usually lack
a conceptual foundation that accounts for the
semantics of the represented knowledge. Also,
their focus is more on (aggregated) data – some-
times real-time. Note, however, that DSML are
well suited to develop dashboards that go beyond
mere visualisation tools (Frank et al. 2009). For
instance: A graphical representation of the IT
infrastructure may be supplemented with data
on costs, availability etc. If the representation
is realised by using a DSML, the corresponding
diagram can be modified, e.g., by adding further
resources, and the effect of a modification can

possibly be analysed by the corresponding soft-
ware.

Research on domain-specific ontologies is sim-
ilar to the development of DSML in the sense
that a domain-specific ontology is focusing on
reconstructing technical languages, too. How-
ever, there are a few clear differences. Usually,
ontologies are not embedded in a language archi-
tecture. There is usually no clear differentiation
of language and language application. While this
promotes flexibility, it poses a problem with re-
spect to building model editors, since they re-
quire a separation of meta language and lan-
guage. Second, ontologies typically do not ac-
count for a graphical representation. Also, busi-
ness ontologies such as Andersson et al. (2006),
Andersson et al. (2009), Gordijn (2004), Oster-
walder (2004) usually focus on a more abstract
level, stressing basic terms of the targeted do-
main – such as ‘event’, ‘feature’, ‘resource’ (see,
for instance, Andersson et al. 2009). While this
extends the range of possible (re-)use, it implies
a higher effort for modelling a particular domain,
since many terms still need to be reconstructed
from the basic concepts of the ontology. The
logic-based languages, ontologies are usually de-
fined with, have the advantage that they allow
for deduction. Unfortunately, their semantics –
e.g., of generalisation/specialisation – is differ-
ent from that of prevalent implementation lan-
guages. Nevertheless, a domain-specific ontology
can support the construction of a corresponding
DSML.

Authoring tools that support the creation of multi-
media presentations can serve a similar purpose
as PDMS. However, the variety of authoring tools
is too large to allow for a meaningful compar-
ison. Tools that support the creation and man-
agement of learning material also exist in a large
variety. But some of them follow an approach
that is similar to that of the proposed PDMS,
since they feature languages to model learning
content. The Instructional Management System

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

64 Ulrich Frank

(IMS) initiative has produced a number of spe-
cifications for creating models of learning con-
tent2. However, they mainly serve to promote
the realisation of interoperable learning tools.
Therefore, the focus is on the specification of ex-
changeable content and the process of creating
learning material. This includes the specifica-
tion of learning scenarios. The ‘languages’ are
specified using XML schema and lack a graphical
notation. IMS does not account for specific learn-
ing subjects. Instead it stresses a more abstract
level that provides concepts to describe any kind
of content. The Educational Modelling Language
(EML)3 which is specified as an XML-DTD does
not include concepts that relate to specific learn-
ing subjects. Instead, its focus is on concepts
to describe learning material in general, such as
‘learning activity’, ‘activity selection’, ‘answer-
choice’, ‘answer-property’ etc. While the EML
does not account for a graphical notation, there
are tools (‘players’) that allow for executing mod-
els of learning scenarios. There are approaches
that augment IMS with a graphical notation (La-
forcade 2007; Paquette et al. 2006; Sampson et al.
2006). While they foster a more convenient use
of the respective concepts, they are restricted by
the limits of the IMS languages.

7 Evaluation

Proposing a solution that is supposed to qualify
as a research contribution requires an adequate
justification. This includes both the justification
of the underlying requirements and of its suit-
ability to satisfy the requirements. The original
idea was inspired by an analogy. The require-
ments were also influenced by this analogy and
furthermore developed by analysing potential
use scenarios. This is not necessarily compliant
with the frequently cited principle that design
science should be relevant in the sense that it
addresses an actually existing problem that is
given a high priority by practitioners (Hevner et

2http://www.imsglobal.org/
specifications.html

3http://eml.ou.nl

al. 2004, guideline #2). While we believe that one
should not ignore the manifold – and contingent
– aspects of social reality, we also think that it is
not a good idea to restrict scientific curiosity by
the lack of problem awareness – and imagination
– in practice. Hence, justifying the key elements
of the proposed design is restricted to analysing
their contribution to satisfy the requirements. An
empirical analysis – independent of inherent epi-
stemological problems (Frank 2006b, pp. 23f.) – is
no option because the implementation and rep-
resentative dissemination of a robust system is
beyond the capabilities of a single research insti-
tution. Against this background, evaluating the
proposed artefact is done in two steps. First, the
key elements of the artefacts are compared – on
a pure analytical base – against the requirements.
Second, the evaluation is further differentiated
with respect to contingent aspects that may influ-
ence the benefit of the proposed solution in prac-
tice. Table 1 summarises how well the presented
system addresses the requirements.

The demand for integrating data from external
systems (req. 4) deserves special attention, since
it points at the limits of PDMS as self-contained
systems. Only if PDMS are designed as inte-
grated parts of (enterprise) information systems,
they could access data of these systems without
any loss of semantics. The metamodel layer
provides for integrating conceptual models with
data that originates in information systems: Mod-
elling concepts can be associated with concepts
to describe object models. The excerpt of the in-
tegrated metamodel shown in Fig. 4 includes one
corresponding example: The meta type Proc-
ess is associated (‘uses’) with the meta type
Operation. On the model level, this would
allow for associating a particular process type
(e.g., ‘check availability’ with an operation of a
certain class, e.g., ‘Product.amountInStock’). In
this respect, the proposed conception of a PDMS
represents only an intermediate step towards a
more ambitious vision: ‘self-referential’ informa-
tion systems that are integrated with conceptual
models of their own and of the context they are

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 65

Table 1: Summary of evaluation

Req. Comment

No. 1 + The conceptual foundation is supported by the DMSL and – if available – by existing
reference models.

No. 2 + The construction of graphical representations is effectively supported by DSML that
include a graphical notation. Corresponding editors guide the appropriate use of the
notation elements.

No. 3 + The integrated modelling editors allow for interaction, e.g., for navigation, composition
and decomposition of model elements and for performing analyses.

No. 4 o The metamodelling language includes concepts to prepare for integrating instance-level
data from external sources. However, a tight semantic integration would require the
integration of the PDMS with a corresponding (enterprise) information system.

No. 5 + The proposed compound architecture allows for representing a wide range of content
types. If required, it further concepts could be added conveniently.

No. 6 o The conceptual foundation enables presentations that are composed as ordered collec-
tions of references to elements in a common repository. The reusable elements exist
on various levels of detail. The current implementation of the repository relies on the
persistency services provided by the Eclipse framework, which are not an ideal solution,
since they rely on XML files.

No. 7 + With respect to traditional content, the differentiation of frames and a corresponding
presentation style – which can be defined for various scopes – enables the comprehens-
ive separation of content and presentation. The DSML conceptual diagrams are based
on a clear separation of semantics and abstract syntax on the one hand and concrete
syntax (notation) on the other hand. The tool allows for conveniently changing the
concrete syntax of a diagram.

No. 8 o Retrieval of presentations and slides is supported by faceted classification based on a
framework for enterprise modelling.

No. 9 o Normally, the conceptual foundation of the compound architecture should not be subject
of frequent changes. Modifying and enhancing the existing set of modelling languages
is supported by a metamodel editor. However, there is need for manual interventions
which challenge the integrity of maintenance activities.

No. 10 + The use and further development of a PDMS are guided by process models that include
models of respective roles.

+ satisfactory o some restrictions apply

deployed in – enabling advanced users to nav-

igate from data and processes to graphical rep-

resentations of their conceptual foundation – et

vice versa (for an elaborate description of this

vision see Frank and Strecker 2009). Advanced

information systems of this kind could take ad-

vantage of their sophisticated conceptual found-

ation to provide various groups of stakeholders
with diagrams – both on the conceptual and on
the instance level.

Note that the evaluation omits one factor that is
of pivotal importance: the quality of the DSML
that are used within a PDMS. On the one hand,
this requires the evaluation of the abstract syn-

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

66 Ulrich Frank

tax and semantics, which faces – for serious epi-
stemological reasons – a remarkable challenge
(Frank 2006a). It also includes the assessment of
the graphical notation (for a set of high-level
guidelines see Moody 2009). While there has
been an intensive discursive evaluation of the
present DSML within the group of involved re-
searchers, there has been only selective feedback
from prospective users so far. Also, the evalu-
ation of a DSML needs to account for its level
of domain-specific semantics. The contribution
of a DSML to model integrity depends on how
specific it is to the targeted domain. In other
words: The more domain-specific semantics is
represented within a DSML, the better the chance
to prevent inappropriate models. Unfortunately,
this comes with a trade-off: The more specific a
DSML the less is its range of reuse and, hence, its
economies of scale.

So far, the evaluation was based on analytical
considerations only. That is not sufficient for
judging the suitability and acceptance of PDMS
in practice. There are good reasons to assume
that the approach will not be embraced by every
user of current presentation tools. While a de-
tailed and representative empirical investigation
to address this question is – for reasons outlined
above – no option at present time, a more dif-
ferentiated evaluation which could also serve
as a foundation for future empirical studies can
be performed nevertheless. It needs to account
for the contingency of economic preconditions,
organisational settings and individual disposi-
tions that influence the benefit of PDMS. From
an economic point of view, the investments into
a PDMS make sense only, if the benefits to be
expected from increased reuse and improved in-
tegrity are sufficient to overcompensate the costs
of introducing and maintaining a PDMS. This
is the case for creating a common repository of
slides in general (macro view), and the use of a
DSML in particular (micro view). The benefit en-
abled by reusing existing slides and frames trends
to grow with the amount of slides produced in an

organisation (economies of scale) and the similar-
ity of topics and purposes to be addressed with
the corresponding presentations (prerequisite of
reuse). On the other hand, the additional effort
it takes to prepare a graphical representation or
any other part of a presentation for reuse, will
pay off the more with the amount of expected
future reuse. The higher the demand for content
to be correct and topical, e.g., if it is related to
mission critical technical or economic aspects,
the higher is the economic benefit of integrity.
Also, the more integrity is regarded as a key ex-
pression of corporate performance in the sense
of a value statement towards prospective custom-
ers, e.g., in the ‘knowledge worker’ business, the
higher the economic benefit generated by con-
sistent presentations.

The economic benefit of using a DSML does not
only depend on presentations that share similar
subjects. Instead, it also allows for taking advant-
age of similarity on a higher level of abstraction:
The more subjects can be represented with the
same modelling language, the higher the reach
of reuse of a corresponding DSML. In addition
to that, the use of a DSML will be the more valu-
able, the higher the demand for graphical repres-
entations that are consistent with respect to the
represented content and to the graphical nota-
tion. Again, this will be especially the case in set-
tings, where integrity and coherence of particular
graphical representations are regarded as part of
the value expected by the targeted audience of
presentations. Furthermore, the analytical power
offered by DSML is the more valuable, the more
gainful corresponding analyses are – especially
those that are supported by tools. This can be
expected to be the case whenever problems are
targeted that are characterised by a high degree
of complexity which can be effectively reduced
by models created through a DSML. Note that
there are scenarios that hardly justify the use of
a PDMS, e.g., the quick creation of drafts that
serve one particular occasion only.

For prospective users the effort to get productive
with a PDMS is remarkable, which is especially

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 67

the case for using a DSML. Therefore, PDMS will
be appreciated by prospective users only, if their
use offers convincing incentives. The more of-
ten a user creates presentations that are similar
to existing ones, the more likely it is that he ac-
knowledges the benefits of reusing existing work,
which in turn also depends on the size and qual-
ity of the available repository. Furthermore a
user’s appreciation of a more sophisticated tool
will trend to increase with his level of profes-
sional education. To exploit the potential enabled
by a PDMS, there is also need for a supportive or-
ganisational context. The more an organisation –
or its specific culture – puts emphasis on quality
and coherence of knowledge and its presentation,
the more likely it should support the introduc-
tion and use of a PDMS. In addition to that, the
acceptance of a PDMS will also be fostered by an
organisational culture that appreciates sharing
of knowledge and the use of methods.

8 Conclusion and Future Work

The work presented in this paper did not result
from a dedicated research project. Instead, it was
rather a side product from our research on en-
terprise modelling. While it promises to enrich
business presentations and make them clearly
more than today a source and medium for organ-
isational knowledge management, its realisation
faces remarkable challenges. Only partially, these
are related to the realisation of a PDMS itself: a
(pragmatic) conception of model variants and a
more sophisticated repository management are
demanding, but feasible. The DSML that cur-
rently exist are related to enterprise modelling.
Further topics and DSML accounting more spe-
cifically for markets and products are required.
To get a systematic overview of topics that may
be suited for a PDMS, studies of existing busi-
ness presentations, e.g., within large consultancy
firms, should be helpful. The presented tool en-
vironment served to demonstrate a prototypical
approach to implementation that makes use of
an existing framework. Other approaches are
feasible as well. For instance, ‘in place editing’

as it is featured by various compound document
architectures could be used to include diagrams
in a presentation. Whenever a diagram would
require editing, a corresponding editor would be
launched.

While modifying and enhancing the set of DSML
is supported by the metamodelling environment,
the current solution remains unsatisfactory be-
cause generating code from a metamodel jeopard-
ises the existing code base. The respective chal-
lenge is targeted by various approaches. Some
are aimed at representing conceptual models in
code, e.g., Balz and Goedicke (2009), Wada and
Suzuki (2005). However, they are limited by the
semantics of the corresponding programming
languages. For our purpose, approaches that are
aimed at programming languages that provide a
distinct meta layer are more promising (Bettin
and Clark 2010; Ducasse and Gîrba 2006). The
meta layer allows for adapting a progrmaming
language to a corresponding modelling language.
Especially the approach in Bettin and Clark (2010)
might be an interesting foundation for revising
the tool because it can be integrated with Eclipse.
We are currently investigating this option.

The main challenge, however, is not related to
technology or research: Only if the evolution of
the knowledge base – both within one organisa-
tion and in a market of specialised providers –
succeeds, the full benefit of PDMS, including eco-
nomies of scale, can be accomplished. One ap-
proach to this challenge could be the establish-
ment of ‘open presentation’ initiatives. Various
platforms for sharing presentation files indicate
that many professionals are motivated to parti-
cipate in such initiatives. Furthermore, the suc-
cess of the proposed solution will chiefly depend
on user acceptance. As we outlined above, ac-
ceptance can be expected to depend on various
factors. To develop a more thorough understand-
ing of these factors, empirical studies with pro-
spective users and corresponding organisations
are required. However, they need to account for
the specific epistemological challenges that relate

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

68 Ulrich Frank

to investigating linguistic preferences mentioned
above already.

Independent from the domain of business pres-
entations, there is a further domain that could
benefit from smart slides. A plethora of slides is
produced for teaching purposes. Using DSML for
this purpose would not only foster reuse and pro-
ductivity, it would also provide IS students with
an interactive learning environment in a twofold
sense. On the one hand, it would serve to present
learning material. On the other hand, the un-
derlying conceptual foundation could serve as a
showcase for system design.

References

Andersson B., Bergholtz M., Edirisuriya A.,
Ilayperuma T., Johannesson P., Gordijn J.,
Schmitt M., Abels S., Hahn A., Wangler B.,
Weig H. (2006) Towards a Reference Ontol-
ogy for Business Models. In: Proceedings of
the 25th International Conference on Con-
ceptual Modeling (ER), pp. 482–496

Andersson B., Johannesson P., Zdravkovic J.
(2009) Aligning goals and services through
goal and business modelling. In: Information
Systems and E-Business Management (ISeB)
7(2), pp. 143–169

Balz M., Goedicke M. (2009) Embedding Process
Models in Object-Oriented Program Code. In:
Proceedings of the 1st Workshop on Beha-
viour Modelling in Model-Driven Architec-
ture (BM-MDA). Enschede

Bettin J., Clark T. (2010) Advanced Modelling
Made Simple with the Gmodel Metalanguage.
In: Proceedings of the First International
Workshop on Model-Driven Interoperability
(MDI). Oslo

Ducasse S., Gîrba T. (2006) Using Smalltalk as
a Reflective Executable Meta-language. In:
Nierstrasz O., Whittle J., Harel D., Reggio
D (eds.) Proceedings of Model Driven Engi-
neering Languages and Systems, 9th Interna-
tional Conference, MoDELS. LNCS Vol. 4199.
Springer, Genova, Italy, pp. 604–618

Eckerson W. (2005) Performance Dashboards:
Measuring, Monitoring, and Managing Your
Business. Wiley & Sons, Hoboken, NJ

Few S. (2006) Information Dashboard Design:
The Effective Visual Communication of Data.
O’Reilly, Beijing

Frank U. (2002) Multi-Perspective Enterprise
Modeling (MEMO) – Conceptual Framework
and Modeling Languages. In: Proceedings
of the Hawaii International Conference on
System Sciences (HICSS-35). (digital edition).
Honolulu

Frank U. (2006a) Evaluation of Reference Models.
In: Fettke P., Loos P. (eds.) Reference Mod-
eling for Business Systems Analysis. Idea
Group, Hershey, pp. 118–140

Frank U. (2006b) Towards a Pluralistic Concep-
tion of Research Methods in Information Sys-
tems Research. ICB Research Report 7. In-
stitute for Computer Science and Business
Information Systems (ICB), University of
Duisburg-Essen. Essen

Frank U. (2011) The MEMO Meta Modelling
Language (MML) and Language Architecture.
2nd Edition. ICB Research Report 43. Institute
for Computer Science and Business Informa-
tion Systems (ICB), University of Duisburg-
Essen. Essen

Frank U., Lange C. (2007) E-MEMO: A Method
to support the Development of customized
Electronic Com-merce Systems. In: Informa-
tion Systems and E-Business Management
(ISeB) 5(2), pp. 93–116

Frank U., Strecker S. (2009) Beyond ERP Systems:
An Outline of Self-Referential Enterprise Sys-
tems. ICB Research Report 31. Institute for
Computer Science and Business Information
Systems (ICB), University of Duisburg-Essen.
Essen

Frank U., Heise D., Kattenstroth H. (2009) Use
of a Domain Specific Modeling Language for
Realizing Versatile Dashboards. In: Tolvanen
J.-P., Rossi M., Gray J., Sprinkle J. (eds.)
Proceedings of the 9th OOPSLA workshop
on domain-specific modeling (DSM). Hel-
sinki Business School, Helsinki http://www.

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

A Conception of a Presentation Development and Management System Featuring ‘Smart Slides’ 69

dsmforum.org/events/DSM09/Papers/Frank.

pdf

Gordijn J. (2004) E-business value modelling us-
ing the e3-value ontology. In: Curry W. L.
(ed.) Value creation form e-business mod-
els. Elsevier Butterworth-Heinemann, Ox-
ford, UK, chap. 5, pp. 98–127

Hevner A. R., March S. T., Park J., Ram S. (2004)
Design Science in Information Systems Re-
search. In: MIS Quarterly 28(1), pp. 75–105

Jung J. (2007) Entwurf einer Sprache für die
Modellierung von Ressourcen im Kontext der
Geschäftsprozessmodellierung. Dissertation.
Logos, Berlin

Kirchner L. (2008) Eine Methode zur Unter-
stützung des IT-Managements im Rahmen
der Unternehmensmodellierung. Logos, Ber-
lin

Laforcade P. (2007) Graphical representation of
abstract learning scenarios: the UML4LD ex-
perimentation. In: Spector J. M., Sampson D.
G., Okamoto T., Kinshuk, Cerri S. A., Ueno M.,
Kashihara A. (eds.) Proceedings of IEEE Inter-
national Conference on Advanced Learning
Technologies (ICALT 2007). IEEE Computer
Society, Niigata, Japan, pp. 477–479

Maier R. (2004) Knowledge Management Sys-
tems. Information and Communication Tech-
nologies for Knowledge Management, 2nd ed.
Springer, Berlin, Heidelberg, New York

Moody D. (2009) The ‘Physics’ of Notations:
Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. In:
IEEE Transactions on Software Engineering
35(6), pp. 756–779

Osterwalder A. (2004) The Business Model On-
tology. A Proposition in a Design Science Ap-
proach. PhD thesis, University of Lausanne

Paquette G., Léonard M., Lundgren-Cayrol K.,
Stefan Mihaila S., Gareau D. (2006) Learn-
ing Design based on Graphical Knowledge-
Modeling. In: Educational Technolog & Soci-
ety 9(1), pp. 97–112

Sampson D., Karampiperis P., P. Z. (2006) Au-
thoring Web-Based Learning Scenarios Based
on the IMS Learning Design: Preliminary

Evaluation of the Ask Learning Designer
Toolkit. In: International Conference on Com-
puter Systems and Applications (AICCSA).
IEEE Computer Society, Dubai, pp. 1003–1010

Schauer H. (2008) Unternehmensmodellierung
für das Wissensmanagement. Eine multiper-
spektivische Methode zur ganzheitlichen An-
alyse und Planung. Dissertation, University
Duisburg-Essen

Tantau T. (2007) User Guide to the Beamer Class,
Version 3.07 http://latex-beamer.sourceforge.

net

Tufte E. (2006) The Cognitive Style of Power-
Point: Picking Out Corrupts Within, 2nd ed.
Graphics Press: Chesire/CT

Wada H., Suzuki J. (2005) Modeling Turnpike
Frontend System: A Model-Driven Develop-
ment Framework Leveraging UML Metamod-
eling and Attribute-Oriented Programming.
In: Briand L., Williams C. (eds.) Proceedings
of Model Driven Engineering Languages and
Systems, 8th International Conference, MoD-
ELS. Springer, Montego Bay, pp. 584–600

Ulrich Frank

Research Group Information Systems and
Enterprise Modelling
University Duisburg-Essen
Germany
ulrich.frank@uni-due.de

