
UML Profile Generation for Annotation-based Modeling∗

Alexander Bergmayr1, Michael Grossniklaus2, Manuel Wimmer1, and Gerti Kappel1

1Vienna University of Technology, Austria

[bergmayr|wimmer|kappel]@big.tuwien.ac.at
2University of Konstanz, Germany

michael.grossniklaus@uni-konstanz.de

Abstract: The capability of UML profiles to serve as annotation mechanism has been
recognized in both industry and research. With JUMP, we have presented a fully
automatic approach to generate profiles from annotation-based Java libraries. We
have demonstrated the practical value of JUMP by contributing profiles that facili-
tate reverse-engineering and forward-engineering scenarios for the Java platform. Its
evaluation shows that automatically generated profiles are equal or even improved in
quality compared to profiles currently used in practice.

Since the introduction of the UML profile mechanism, numerous profiles have been de-

veloped, many of which are available by the OMG standardization body. Even in industry,

their practical value has been recognized as today’s modeling tools offer predefined pro-

files. They are considered as a major ingredient for model-based software engineering

approaches by providing features supplementary to the standard UML metamodel. This

powerful capability of profiles can also be exploited in terms of an annotation mechanism.

As a result, such profiles leverage annotation-based modeling, where defined stereotypes

show similar capabilities as annotations in programming languages such as Java.

Deriving stereotypes from available programming libraries to produce corresponding pro-

files at the modeling level seems desirable. They enable high-level platform-independent

models (PIMs) to be refined into models specific to a platform (PSMs), where the plat-

form refers to the library from which the profile was derived. Turning this forward engi-

neering (FE) perspective into a reverse engineering (RE) one, existing programs can be

represented as UML models that capture annotations by applying the corresponding pro-

files. Therefore, platform-specific profiles and their application are beneficial from both

perspectives. In the RE step, model analyzers can exploit captured stereotypes to facilitate

comprehension, whereas profiled UML models, i.e., models to which profiles are applied,

pave the way for model transformers to generate richer program code in the FE step.

For that reason, we have presented JUMP [BGWK14b] that enables UML profiles to be

generated automatically from Java libraries, which use annotations. We have discussed

three significantly different representations of profiles in current modeling tools and high-

lighted the benefits of the mapping realized by JUMP. It allows annotations to be applied in

∗This work is co-funded by the European Commission, grant no. 317859.

101

a controlled UML standard-compliant way as the generated stereotypes extend exactly the

required UML metaclasses. From a language engineering perspective, stereotypes facili-

tate defining constraints and model operations because they can directly be used as explicit

types similar to a metaclass in UML. JUMP realizes a mapping between Java’s annotation

language and UML’s profile language. It enables the generation of specific stereotypes for

corresponding annotations, which in turn leverage platform-specific profiles.

We have implemented tool support3 for JUMP [BGWK14a] based on Eclipse. Its eval-

uation shows that automatically generated profiles are equal or even improved in quality,

e.g., completeness and correctness, compared to profiles used in practice. Currently, we

provide in total over 700 stereotypes comprised by 20 profiles that complement OMG’s

collection of standardized profiles with supplementary profiles for the Java platform.

To show the feasibility of JUMP, we have extensively applied it as enabling technology in

the ARTIST project [BBC+13], where we work towards a cloud-oriented software mod-

ernization approach, which involves representing PSMs that refer to the platform of ex-

isting applications, e.g., the Java Persistence API (JPA), and the platform of “cloudified”

applications, e.g., Objectify4, when considering cloud datastores. For instance, JPA anno-

tations facilitate distinguishing between plain associations and compositions and determin-

ing precise multiplicities. Moreover, annotations of Objectify enable method bodies to be

generated even from a structural viewpoint and non-functional properties to be improved.

These examples highlight the practical value of JUMP for RE and FE tools.

Ongoing work includes (i) the contribution of JUMP to the Eclipse-based UML Profile

Repository (UPR)5, (ii) the consideration of Java 8 features, such as repeating annotations,

(iii) the generalization of generated profiles based on EMF Profiles [LWWC12] to allow

their application to a wider range of modeling languages, and (iv) the extension of JUMP’s

scope to profiles that capture annotations independent of platforms, thereby shifting such

annotations to a more conceptual level.

References

[BBC+13] Alexander Bergmayr, Hugo Bruneliere, Javier Cánovas, Jesús Gorroñogoitia, George
Kousiouris, Dimosthenis Kyriazis, Philip Langer, Andreas Menychtas, Leire Orue-
Echevarria, Clara Pezuela, and Manuel Wimmer. Migrating Legacy Software to the
Cloud with ARTIST. In CSMR, pages 465–468, 2013.

[BGWK14a] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel.
Bridging Java Annotations and UML Profiles with JUMP. In Demonstration @ MoD-
ELS, pages 1–5, 2014.

[BGWK14b] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel.
JUMP - From Java Annotations to UML Profiles. In MoDELS, pages 552–568, 2014.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF Profiles: A
Lightweight Extension Approach for EMF Models. JOT, 11(1):1–29, 2012.

3https://code.google.com/a/eclipselabs.org/p/uml-profile-store
4https://code.google.com/p/objectify-appengine
5https://projects.eclipse.org/projects/modeling.upr

102

