Pattern-Based Detection and Utilization of
Potential Parallelism in Software Systems

Christian Wulf

Department of Computer Science
Kiel University
D-24118 Kiel
chw@informatik.uni-kiel.de

Abstract: Due to the paradigm shift from single-core to multi-core pro-
cessors within the last ten years, software engineers not only need to have
technical and domain-specific knowledge to add new features and solve any
bugs. They also need to have knowledge about concurrency issues, e.g., to
meet performance requirements.

Since introducing concurrency in existing software systems is often error-
prone and difficult, we propose a semi-automatic, pattern-based approach
to support the software engineer in the parallelization process and related
concurrency tasks. We propose the use of patterns for both the detection
of code regions with high potential of parallelism and for the corresponding
parallel version utilizing information gathered by static and dynamic analysis.
Besides describing the approach itself, we focus on our goals and research
questions, and illustrate ideas on how to conduct a meaningful evaluation.

1 Introduction

Since processor performance cannot be improved anymore by increasing the clock
frequency, many parallelization approaches have been proposed. For instace, par-
allel compilers [HAMT05, e.g.] or recommendation systems [MCGPO07, e.g.] use
the given structure of a software system either to detect parallelization potential
or even to utilize such potential resulting in a parallel execution.

However, they often do not restructure the original source code by breaking de-
pendencies to exploit further parallelization potential [URT11]. Moreover, fully
automatic approaches need to over-approximate dependencies that are unknown
or indeterminable at compile-time. Although semi-automatic approaches overcome
this drawback with the help of dynamic analysis, all existing approaches require an
parallelization expert instead of a general software engineer.

We present a semi-automatic parallelization approach for non-expert software engi-
neers that provides solutions to the problems described above. Our approach allows
to iteratively introduce parallelization by applying a pattern-matching restructur-

229

ing technique on the system dependency graph! of the given software system. In
this paper, we focus on our goals, research questions, and the planned evaluation.

Structure of this paper: In Section 2, we describe the goals and research questions
of our approach. Afterwards in Section 3, we present our approach. Finally, we
present our planned evaluation in Section 4.

2 Goals and Research Questions

We envision a pattern-based, semi-automatic parallelization approach as solution
to systematically guide and support the non-expert software engineer (in the fol-
lowing called user) in the parallelization process? without sacrificing flexibility and
speedup for the sake of abstraction. This section provides an overview of the goals
and research questions of the planned PhD thesis.

G1l: Systematic Guidance and Support in the Parallelization Process
We see a need for a systematic parallelization approach to guide and support the
user in all the five phases in the parallelization process?: discovery, planning, trans-
formation, code generation, and runtime management. Q1: To what extent can we
systematically guide and support the user in each of the five parallelization phases?

G2: Hide Concurrency-Specific Aspects from the User Optimally, the ap-
proach should be executed automatically. If this is not possible, it should hide most
of the concurrency-specific aspects from the user, e.g., the correct implementation
of synchronization, to focus on the issues that are not automatically decidable.?
Q2: To what extent can we hide concurrency-specific aspects from the user?

G3: Structure- and Language Independence Our approach should be able
to parallelize any software system that can be represented as a system depen-
dency graph, e.g., object-oriented software systems. In particular, it may not be
tailored to one specific control or data structure, but should be open for all possi-
ble constructs. Furthermore, it should provide support for fine-grained as well as
coarse-grained introduction of parallelism. Q3: How to encapsulate structure- and
language dependent information to provide a general parallelization concept?

G4: Extensibility Our approach should be extensible to improve and enrich
its parallelization phases with new insights from the research area. In particular,
it should support adding new patterns at arbitrary levels of granularity without
writing a single line of code. Q4: How to achieve extensibility in each step?

G5: Parallelism Finally, our approach should parallelize software systems to in-
crease their performance. @Q5: To what extent can our approach parallelize software
systems?

LA system dependency graph represents a software system by nodes and edges where nodes
are statements and edges are control or data dependencies between those statements.

2See [GIJLT11] for the taxonomy of the five parallelization phases

30ne example is when a code section is not parallelizable for all, but only for particular input
values that are in fact garantueed, but not directly encoded in the software system.

230

Legend:
51: SDG construction
52: Gathering
[—| 53: SDG Enrichment
j— | | S$4:Ranking
e % S5: Pattern detection
— S6: Transformation
Parallelism §7: Code Generation
plan

Static
l @ information
s3
% Runtime
information
Sequential program
System dependence
graph (SDG)

: : S5
Semi-automatic transformation
L]
T ?
f? 3 5
o $

Parallelization Candidate
pattern pattern

@

Parallel program

Figure 1: Overview of our semi-automatic parallelization approach

3 Approach

Our approach targets software engineers who need to parallelize existing software
systems. It serves as guidance in the parallelization process and provides support
for a pattern-based, iterative introduction of parallelism. Figure 1 gives an overview
of the approach using seven steps to reveal and exploit parallelization potential.

The first three steps S1-S3 build a system dependency graph (SDG) representing the
given software system using information gathered by static and dynamic analysis.
It stores the control flow and data flow as well as further information about the
structure and the runtime behavior.* In S4, a parallelism plan is constructed on
the basis of the SDG. After construction, the plan consists of an ordered list of
code sections that are most promising for a transformation to a parallel version.
For example, assuming that long running methods have a higher parallelization
potential, a simple plan would list all method declarations ordered by their average
execution times.

The software engineer may then successively process the plan by executing the steps
S5 and S6 on each code section. While S5 represents the pattern detection step to
find code regions that have a high potential for parallelization, S6 constitutes the
transformation from a matched instance of S5 to a semantically equivalent parallel
version. For these two steps, we will provide an extensible pool of so-called candi-
date and corresponding parallelization patterns each represented as a dependency
graph similar to the SDG. In this way, S5 and S6 can be executed automatically.
However, before applying S6, the software engineer has the possibility to validate
and adapt the proposed parallel version. The last step S7 is responsible for the
code generation and can be executed after each iteration.

4For example, the type hierarchy and method execution times

231

Besides parallelizing loop iterations and array accesses, this approach also allows
to parallelize, e.g., I/O accesses and to reveal further parallelization potential by
restructuring and resolving dependencies with the help of runtime information.

4 Planned Evaluations

This section describes our planned evaluations for the goals mentioned in Section 2.

We evaluate G1 and G2 by implementing a prototype and conducting a ques-
tionaire survey. Our prototype will contain patterns each encapsulates as much
concurrency-related knowledge as possible. We then let two professional software
engineers and 30 master students parallelize several example applications (including
a financial risk assessment application of a German bank). Finally, the subjects
fill in a questionnaire that consists of questions about the interaction with and
usability of our prototype.

We evaluate G3 by parallelizing loop control structures, method invocations, and
I/0 operations with our prototype. We also implement support for Java and C+#
to show that our approach is not targeted at one specific programming language.

We evaluate G4 by providing our prototype with at least two different ranking
strategies for S4. Moreover, we define several candidate patterns for S5 and corre-
sponding parallelization patterns for S6 with different levels of granularity.

We evaluate G5 by conducting a performance evaluation of our prototype. We use
several input programs from different application domains for which a manually
parallelized and an unparallelized version exist. We then execute our prototype
for each of the unparallelized version and measure their resulting speedups. After-
wards, we compare our performance results with those of the parallelized versions.

References

[GIJLT11] S. Garcia, D. Jeon, C.M. Louie, and M.B. Taylor. Kremlin: Rethinking
and Rebooting gprof for the Multicore Age. In Proc. of the 32nd ACM
SIGPLAN Conference on Programming Lang. Design and Impl., 2011.

[HAMT05] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei
Liao, and Monica S. Lam. Interprocedural Parallelization Analysis in
SUIF. ACM Trans. Program. Lang. Syst., 27, 2005.

[MCGPO7] T. Moseley, D.A. Connors, D. Grunwald, and R. Peri. Identifying
Potential Parallelism via Loop-Centric Profiling. In Proc. of the 4th
Int. Conf. on Comp. Frontiers, CF ’07, pages 143-152. ACM, 2007.

[URT11] A. Udupa, K. Rajan, and W. Thies. ALTER: Exploiting Breakable
Dependences for Parallelization. SIGPLAN Notices, 46, 2011.

232

