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Non-Intrusive Load Monitoring: A Review and Outlook

Christoph Klemenjak1 und Peter Goldsborough2

Abstract: With the roll-out of smart meters the importance of effective non-intrusive load moni-
toring (NILM) techniques has risen rapidly. NILM estimates the power consumption of individual
devices given their aggregate consumption. In this way, the combined consumption must only be
monitored at a single, central point in the household, providing various advantages such as reduced
cost for metering equipment. In this paper we discuss the fundamental building-blocks of NILM,
®rst giving a taxonomy of appliance models and device signatures and then explaining common su-
pervised and unsupervised learning methods. Furthermore, we outline a fundamental algorithm that
tackles the task of NILM. Subsequently, this paper reviews recent research that has brought novel
insight to the ®eld and more effective techniques. Finally, we formulate future challenges in the
domain of NILM and smart meters.
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1 Introduction

Non-Intrusive Load Monitoring (NILM) techniques extract the power consumption of sin-

gle appliances out of aggregated power data. Given that a measurement device employing

NILM must only installed at a single point, none of the individual appliances have to be

equipped with metering devices. In Carinthia, Austria, ®eld trials using such technology

are currently being implemented 3. These smart measurement devices, installed by en-

ergy suppliers, pave the way for sophisticated disaggregation algorithms and possibly also

recommender-systems. Such a system would be able to detect devices that have a need

for maintenance and give appliance-speci®c feedback to the consumer. Especially older

household devices consume a lot more energy than new ones. In [BKB10] measurements

of an aged household refrigerator are reported that consumed three times more energy than

a new refrigerator. This is a very speci®c example of a problem that could be solved by

load-disaggregation systems. Moreover, research has shown that appliance-speci®c feed-

back can save up to 12 % of annual power consumption [Ar13]. Data acquisition units such

as smart meters operate at a central point in the household’s power distribution network,

generating measurement data of the total power consumption. Currently available com-

mercial smart meters were shown to have a measurement deviation of 10-20 % [ZR11].

This shows clearly that actions have to be taken to improve future metering units. [KEE15]

states that the recent trend of metering units to make use of more sophisticated energy

monitoring ICs, providing more precise measurements, has improved the effectiveness of

NILM.
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This paper is further structured as follows: Before discussing NILM algorithms, the rudi-

mentary concepts and fundamental vocabulary of the ®eld will be introduced. To inves-

tigate appliances, we must ®rst classify them according to their particular features and

behaviour. This step is examined in Section 2. Once measurement data is available, it must

be analysed to extract relevant appliance signatures, allowing tracking of said appliances.

We examine this topic in Section 3. Naturally, a NILM system requires to be aware about

the circuits it is monitoring and thus to detect them. For this, a wide range of learning

approaches are applied, which we discuss in Section 4. After touching upon these intro-

ductory concepts, we describe a fundamental NILM algorithm published by Hart [Ha92].

Since the publication of this algorithm in 1992, the ®eld of load-disaggregation has seen

a tremendous amount of further research and novel approaches. We present a selection of

these ideas in Section 6. Lastly, in Section 7, we discuss future challenges faced by the

NILM community.

2 Appliance types

Appliances differ in the number of operational states and their power consumption be-

haviour. For the purpose of further discussion and analysis, we therefore present three

abstract models that are commonly used in research to represent and characterise appli-

ances. In detail, we will examine models for on/off appliances, multi-state appliances and

in®nite-state appliances.

2.1 On/Off appliances

The ®rst type of device is the so-called on/off appliance. This class includes common

household appliances such as a toaster or a light bulb. Such appliances consume only one

speci®c amount of power when active. For the large part, on/off appliances are purely

resistive. Appliances with a small reactive part are assumed to be linear. A well-known

fact is that electric power is additive. This fact is exploited when describing a set of on/off

appliances. The total power consumed at time-instant t is the sum of all power signals Pi(t).
To modulate the power signal a switch process ai(t) ∈ {0,1} is introduced. The product

of the switch processes and the power signals models the power consumption of a given

appliance. The total power Ptotal(t) can therefore be estimated by:

Ptotal(t) =
N

∑
i=1

ai(t)Pi(t)+ e(t) (1)

The additive term e(t) describes the deviation between the actual sum of the modulated

power signals and the measured total power. To estimate the state of the appliances, the

deviation e(t) has to be minimised. In general, the problem with this is that the complete

set of power signals P1(t) . . .PN(t) is not known. A second issue is that from a high mea-

surement uncertainty in estimating the total power Ptotal(t), a bad interpretation of the

switching process may follow. Many appliances may be estimated to be turning on and off
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at the same time. As a solution the Switch Continuity Principle was introduced in [Ha92].

It states that in a small time interval the number of appliances changing their state is also

small. Consequently, we assume that in a small enough time window the number of state

transitions is zero. The sampling frequency of the acquisition unit has thus to be high

enough to detect such time windows. Between two such intervals, in which the total power

consumption is steady, appliances which change their state can be identi®ed.

2.2 Multi-state appliances

The second type of appliances are multi-state appliances, which have more than one state

of operation. Each of these states has a speci®c power consumption. A common way to

represent this class of devices is the ®nite state machine (FSM) model. The graphic ren-

dition of such a FSM consists of several circles, each corresponding to a speci®c state of

operation with a well-de®ned power consumption. At the transition from one state to the

other, visualised by an edge, the power draw increases or decreases by the difference in

consumption between the two states of operation. As an example, let there be a ®nite state

machine model with two states of operation, as illustrated in Figure 1. State A represents a

power consumption of 500W and state B a consumption level of 750W. At the transition

from state A to state B the power consumption of the appliance rises with an amount of

250W. In contrast to that the power consumption decreases by 250W from state B to state

A. This is analogous to Kirchhoffs law, as the sum of the power changes is zero.

B

A

OFF
+250W

−250W

−750W

+750W

−500W

+500W

Fig. 1: Finite state machine for an electric heater

2.3 Infinite-state appliances

Lastly, there exist also appliances whose observable set of states is not ®nite. For example,

the power consumption of light-dimmers changes continuously with no consistent step

change. Such in®nite-state appliances represent a challenge to model and identify. Figure 2

shows the power consumption of such a continuously-varying power consumption. While
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on/off appliances as well as multi-state appliances change their power consumption in one

clear and observable step, in®nite-state appliance’s power draw shows a smooth pattern.

One subclass of in®nite-state appliances are those continuously consuming energy, even

when set in standby. Examples of such devices include ®re detectors or TVs.

Time

Power

single multi in®nite

Fig. 2: Power consumption of different appliance types

3 Appliance signatures

Appliance signatures describe characteristics speci®c to certain devices, which can thus be

used to identify and classify them. The importance of such signatures was already pointed

out in [Ti05], where a taxonomy of voltage-current signatures was introduced to classify

appliances. In general, appliance signatures can be seen as measurable parameters, which

provide device-speci®c information extracted from physical quantities. Another taxonomy

was introduced in [Ha92], where two classes of non-intrusive appliance signatures are

described: steady-state signatures and transient-state signatures.

3.1 Steady-state signatures

Steady-state signatures comprise features extracted from appliances when they are not

currently transitioning between two states but are operating at a steady level of power con-

sumption. More speci®cally, a steady-state signature is the result of analysing the differ-

ence in certain characteristics between two steady states of operation. Such a characteristic

may be, but is not limited to, the change in power consumption as was depicted in Figure

1. In general such features can be categorised into the following groups:

• Power Change: Real and reactive power are the physical quantities of greatest in-

terest, since they provide very characteristic information about appliances. To detect

such features, the power consumption is estimated and plotted as shown in Figure
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3. One major dif®culty associated with this is the fact that certain power signatures

may overlap. This overlap results in a bad detection probability especially for ap-

pliances with low power consumption. Implementations such as [Hu11] implement

rely on these signatures.

• V-I Features: The problem with overlaps can be solved by adding additional infor-

mation about the appliances. By analysing the V-I characteristics, for instance the

root-mean-squared (RMS) values of voltage and current, appliances with a similar

power consumption may be further described and distinguished.

• V-I Trajectory: Another method, using current and voltage signals, is to classify

devices by extracting features out of the V-I trajectory. The shape of this trajec-

tory shows useful characteristic features such as asymmetry, looping direction, and

enclosed area. A recent application of analysing theses features can be found in

[HFA14].

• Harmonics: In [Ha92], Hart states that analysing the harmonics of a device’s cur-

rent waveform by means of a Fourier Analysis can provide additional information

about an appliance’s characteristics. In particular, it was found that some non-linear

appliances such as motors or light-dimmers produce current waveforms containing

a speci®c set of harmonics, which can further aid in classi®cation.
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Fig. 3: Distribution of appliances in a traditional P-Q plane

Extraction of such steady-state signatures does not necessarily demand for high-end me-

tering hardware. RMS values of current and voltage as well as frequent power readings

provide a good basis to extract steady-state signatures. Already low-cost hardware such as

introduced in [KEE15] can be used to identify steady-state signatures.
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3.2 Transient-state signatures

Situations exist where two different appliances may have very similar power consumption

pro®les, reducing chances of correct identi®cation of either device. In such cases, exam-

ining the transients, i.e. the consumption behaviour of an appliance when transitioning

between two steady states of operation, can provide vital information. The transient sig-

nature of an appliance is strongly in¯uenced by the physical task it performs [La03]. For

instance, the turn-on current of a computer system differs massively from a lighting sys-

tem due to charging capacitors. The shape, size, and duration of such a transient can thus

aid in distinguishing between two appliances when their steady-state signatures alone do

not provide a suf®cient basis for identi®cation. At the same time, as noted in [Ha92], it

must be considered that such momentary transition events are less easily detectable than

steady-state operation and may require a higher sampling frequency. Another approach

takes emitted voltage noise into account. Each appliance in state operation transmits noise

back to the power line. This noise can be measured and categorised into on/off transient

noise, steady-state line voltage noise and steady-state continuous noise [Zo12].

3.3 Ambient Appliance Features

Both steady-state and transient characteristics are extracted from what are arguably the

most obvious sources: the power, voltage or current draw of an appliance. However, in

recent research, appliance-speci®c patterns have also been extracted from environmental,

ambient or behavioural sources. Such techniques exploit the external impact of appliances,

such as their heat-dissipation or light-emission. For this purpose, [BSM10] advocates the

collection of data from environmental sensors. An implementation of this idea was pro-

posed in [BR11], where the deployment of electromagnetic ®eld detectors (EMF) to com-

bine information about energy wastage and power-consumption pro®les was examined.

In the same spirit, [GTM13] discusses the fact that home appliances emit sound waves

(noise). A system is suggested that correlates information about energy consumption with

sound recordings of the respective appliance. In contrast to information provided by sen-

sors about appliances directly, there exists also the paradigm of Context-Aware Power

Management (CAPM) [DAS01]. CAPM techniques typically examine signatures not nec-

essarily extracted from appliances themselves, but from their environment, users or usage

behaviour. For instance, [KJ12] explores behavioural patterns including duration of use

and time of day. In [KJ12] and [Ar13] it is stated that such contextual information may

also include location or even weather patterns. Furthermore, [Pr08] studies appliance-user

interaction to facilitate load-disaggregation. The behaviour and presence of human beings

is traced by a set of motion sensors in the building and combined with other NILM tech-

niques. To gather such ambient data, a wireless sensor network was proposed by [DAS01].

3.4 Optimal Sampling Frequency for Signature Detection

The number and kinds of steady-state and transient appliance features recognisable from

an aggregated consumption sample is strongly connected to the frequency of measurement
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in the earliest stages of disaggregation. As noted in [KJ11], a wide range of utilised sam-

pling frequencies is reported in past literature. Many of the steady-state appliance features

described above, such as current harmonics or V-I trajectories and especially transient

features are more realistically attainable at higher sampling frequencies. With high fre-

quencies we usually mean several kHz, although select approaches have even employed

MHz readings [GRP10]. High-frequency sampling rates not only allow more ®ne-grained

and detailed analysis of device-signatures, but are also more ¯exible. The obvious bene®t

of having more samples available than too few, is that when high-resolution data is not

required or too bulky to store, it can always be down-sampled to lower frequencies. On the

¯ip side, metering hardware for high sampling rates is practically non-existent in house-

holds today, making NILM techniques requiring sampling rates in the region of 1Hz more

practical and immediately applicable. 1Hz readings as used by Hart’s algorithm [Ha92] al-

low for reasonably effective examination of active and reactive power measurement. More

recently, attempts have been made to better adjust NILM algorithms to the low-frequency

sampling of conventional smart meters. For example, [KBN10] makes attempts to per-

form load disaggregation using discriminative sparse coding techniques on power samples

provided only on an hourly basis.

4 Learning Approaches

Learning approaches for NILM can fundamentally be divided into supervised and unsu-

pervised techniques. The distinction between a supervised and an unsupervised algorithm

is whether or not ground-truth data about individual appliance features is available to train

the algorithm. If such device-speci®c information is present, meaning that the algorithm

knows a priori about the appliances it is monitoring, the learning approach is limited to

disaggregation only. On the other hand, an unsupervised algorithm need not only perform

load-disaggregation, but additionally detect which appliances exist in the circuit it is mon-

itoring.

4.1 Supervised Learning Approaches

Supervised approaches feed the system with existing device-speci®c information, such as

its power consumption pro®le. This data may either already exist, such as in the case of

the REDD dataset [KJ11], or is the result of an initial training phase, in which a database

of appliances and their signatures is collected [AL16]. The actual load-disaggregation is

commonly performed by one of two techniques: Optimisation or pattern recognition. We

will elaborate on either approach in the following paragraphs.
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• Optimisation: A straightforward method to solve the load disaggregation task is

to model it as optimisation problem. Obtaining the solution for such problems is

well-researched and builds on a simple concept. The extracted appliance features

are compared to an existing database consisting of appliance features. When the

deviation between the database’s entry and the extracted feature can be minimised,

the best match is obtained [AL16]. For a small number of appliances, this approach

may very well be feasible. However, as discussed in [EBE15], the performance of

this method deteriorates with an increasing number of loads, while the complex-

ity increases. Another weak point of this approach is that it may have signi®cant

dif®culties in distinguishing between loads with overlapping signatures.

• Pattern Recognition: This approach detects appliances by means of clustering and

mapping state-changes to a feature space [Zo12]. An example of such clustering is

given in Figure 3. As outlined by Hart in [Ha92], the identi®ed appliance features in

the PQ plane are divided into clusters. Given this initial separation, the clusters are

compared to those already known to the supervised system. In further detail, [Zo12]

identi®es two main approaches: Bayesian classi®ers and heuristic methods. For the

former, it is assumed that two operating states of an appliance are independent of

each other. While research has shown promising results for the Bayesian approach,

the independence of states is clearly an ideal but not practical model. For example,

the power state of a computer monitor usually depends directly on the power state

of the connected computer.

4.2 Unsupervised Learning Approaches

Supervised learning approaches require an initial training phase and input of external,

labeled data. Practically speaking, for the average household, such data does not exist.

Therefore, unsupervised learning approaches, which are able to operate without a pri-

ori information, are a promising alternative. Unsupervised disaggregation techniques are

required not only to perform load-disaggregation, but must further train themselves on-

line. This means that appliances need to be identi®ed and extracted from the aggregate

power signal and their models added to the database of existing devices. The quality of the

load-disaggregation is thus additionally dependent on the ability of the system to correctly

identify existing devices. Methods of probabilistic analysis such as Hidden Markov Mod-

els (HMMs) and extensions thereof are especially suited to this task [AL16]. An HMM

is a probabilistic graphical model that differs from standard Markov models in that the

states are not directly observable, but can only be estimated probabilistically given cer-

tain observations. For NILM purposes, an appliance can be described as an HMM with

n hidden states S = {s1, ...,sn} representing the appliance’s states of operation. Also, we

de®ne an observation or emission matrix describing the probability for the appliance to be

in a certain state s at time slice t given the observation (emission) of an aggregate power

consumption signal. Lastly, there exists a transition matrix T = (ai, j) ∈ R
n×n where ai, j

represents the likelihood for a transition of the appliance from state si to state s j between

two time slices t and t +1. More speci®cally, ai, j = P(xt+1 = s j|xt = si) with ai, j > 0 and

∑
n
j=0 ai, j = 1. Factorial Hidden Markov Models (FHMM) are an extension of the basic
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HMM. An FHMM models not only a single but many independent hidden state chains in

parallel, with the emission (the aggregate power consumption) being thus a function of all

states combined. In [EBE15] it is stated that this can help reduce the number of parameters

maintained by the system.

5 Hart’s NILM algorithm

The algorithm introduced by Hart in [Ha92] is considered fundamental in the NILM com-

munity and is the basis of many of today’s load-disaggregation techniques. For this reason,

we will outline its basic operation brie¯y. The general concept of Hart’s algorithm is to me-

ter a household’s aggregate power consumption, identify appliances and then track their

behaviour. The algorithm executes the following tasks:

1. Measure Power and Voltage: Measurements of the aggregate power and RMS volt-

age signal are recorded at a sampling frequency of 1 Hz.

2. Calculate Normalised Power: The estimated power signals are normalised (smoothed)

depending on the power line voltage. This allows for immediate comparison of

power levels.

3. Edge Detection: An edge-detection algorithm is applied to the normalized power

signals. This algorithm extracts steps in power consumption and labels the time

instants.

4. Cluster Analysis: The output of the edge detection algorithm is used to create points

in the PQ-plane. Points nearby are clustered.

5. Build Appliance Models: From the clusters obtained ®nite state machine (FSM)

models are created. The simplest state machine is an on/off appliance consisting of

two symmetrical events at the PQ-plane.

6. Track Behaviour: The estimated appliance models are tracked. Whenever a mod-

elled appliance performs a state transition, the algorithm recognises this behaviour.

7. Tabulate Statistics: Statistics and characteristics of the models obtained so far are

calculated and tabulated. These statistics may also be used to predict the future be-

haviour of the monitored state machines.

8. Appliance Naming: In the ®nal step, the algorithm attempts to assign each observed

FSM to an actual appliance in the system. For this, Hart recommends Bayesian,

maximum-likelihood-multiple-hypothesis or other methods from detection theory.
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6 Recent approaches

A more recent approach suggests a rethinking of NILM itself and introduces a new way of

implementing the algorithm. The authors of [Ba14] introduce a new modelling of NILM in

a application-centric way. The approach demands for real-time processing right after me-

tering, which is termed online NILM. Basically it is suggested to divide NILM into three

steps: device detection, modelling, and device-tracking. The novelty of this approach is

that device detection and modelling are usually said to be of¯ine tasks as part of algorithm-

training. For the method proposed, device recognition and monitoring is implemented on-

line and in real-time. Smart meters would thus transmit the measurement data immediately

to the cloud or server. For example, the online service could be hosted by the power utility

itself, improving its immediate ability to forecast future power consumption. The crux of

this idea lies in computation. Such a system would have to perform NILM across hundreds

of households in real-time. We identify this in particular as a challenge.

The most common learning algorithms used for load-disaggregation today rely on optimi-

sation or Factorial Hidden Markov Models (FHMM). In [KK15], Kelly et al. very recently

employed a novel learning approach based on arti®cial neural networks (ANN). For this,

the authors implemented three separate ANN architectures. The ®rst is a recurrent neural

network, which learns appliance features on a training dataset to then estimate the ap-

pliance consumption level given an aggregate sample. The second architecture utilises a

denoising autoencoder (dAE), often used for signal reconstruction and denoising, such as

for removing grain from an old image or reverberation from an audio track. For the dAE,

the learning task is to extract a device’s load from an aggregate sample, by viewing the

consumption of other appliances as the signal’s unwanted noise component. Lastly, a stan-

dard neural network was used to regress start and end time as well as power consumption

for each activation of a device. We note that little research has been done on the appli-

cation of these modern machine learning techniques to NILM. Yet, [KK15] shows that

neural networks beat conventional load-disaggregation algorithms in almost every metric,

inviting further investigation into these promising new learning approaches.

7 Conclusion

In this paper we discussed the concept of NILM, appliance models, appliance signatures

and learning methods as well as recent improvements and trends in the ®eld of load-

disaggregation. We are certain further research is necessary. One fundamental question

posed is where and on what platforms data processing and NILM algorithms are per-

formed. The ®rst and simplest option is the measurement device itself, meaning the smart

meter or metering units installed in the household. This would require sophisticated hard-

ware that is capable of performing NILM in real-time. In general, such hardware is more

expensive and energy-consuming than conventional measurement devices. Therefore an-

other approach is to perform data processing on a device in the home network. Single-

board computing devices such the Raspberry Pi4 or BeagleBoard5 could be well suited

4 https://www.raspberrypi.org
5 https://beagleboard.org
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to such a task. With the surge of cloud-computing services in recent years, the employ-

ment of such an online service becomes a possibility as well. However, along with data-

transmission across networks, away from the home and into the cloud, security concerns

will and must be raised. We estimate that the majority of the population would feel unease

in sending their private household data to external servers.

In conclusion, we would like to re-emphasise our belief in the very certain potential of

load-disaggregation techniques to improve the consumption patterns of individuals and

reduce energy wastage in the grid. At the same time, we acknowledge that non-intrusive

load-monitoring is still a very open and ongoing ®eld of research and that no current ap-

proach is perfect. We express our hope that this will change in the near future.
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