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Circuits

Benjamin Pfundt!, Marc Reichenbach!, Christopher S611%, Dietmar Fey'

! Chair of Computer Architecture
Department of Computer Science
2Institute for Electronics Engineering
Department of Electrical, Electronic and Communication Engineering
Friedrich-Alexander-University Erlangen-Niirnberg (FAU), Germany
{benjamin.pfundt, marc.reichenbach, christopher.soell, dietmar.fey } @fau.de

Abstract: Utilizing highly parallel processors for high speed embedded image pro-
cessing is a well known approach. However, the question of how to provide a suf-
ficiently fast data rate from image sensor to processing unit is still not solved. As
Trough-Silicon-Vias (TSV), a new technology for chip stacking, become available,
parallel image transmission from the image sensor to processing unit is enabled. Nev-
ertheless, the usage of a new technology requires architectural changes in the pro-
cessing units. With this technology at hand, we present a novel image preprocessing
architecture suitable for image processing in 3D chips stacks. The architecture was de-
veloped in parallel with a customized image sensor to make a real assembly possible.
It is fully functionally verified and layouted for a 150 nm process. Our performance
estimation shows a processing speed of 770 up to 14.400 fps (frames per second) for
5 x 5 filters.

1 Introduction

Due to the continuously rising performance requirements in image processing systems,
novel approaches in architecture design are desperately needed. One solution to fulfill
these requirements is the processing or at least preprocessing of the captured image near
to the sensor. For that reason, image sensor and processing unit will be connected together,
which is the idea behind smart cameras. Due to the fact that image processing algorithms
are generally easily parallelizable, a high performance can be achieved in the domain
of smart cameras with a well designed parallel processing architecture. Nevertheless, a
common problem with high speed data acquisition frequently occurs: while capturing and
processing of the image can be executed in parallel, the data link in between is mostly
designed using serial links. This slows down the processing and limits the possible degree
of parallelism and therefore performance in the processing architecture.

To overcome this issue, a paradigm shift from smart cameras to smart sensors is needed.
This can be achieved by integrating processing structures in or very close to the sensor.
A straightforward implementation is to construct a SIMD array of processing elements



(PEs) and assign it to one or more pixel cells. Especially local processing algorithms
profit from these fine grained processor arrays because data exchange to and from neigh-
boring elements only requires additional wires in the simplest case. Also, specialized high
speed and resource consuming transmission logic for high volume raw sensor data can be
dropped. Still, a low latency is achieved as sensor data is directly read by the process-
ing elements. Due to the massively parallel transmission, a high bandwidth is possible if
all processing elements are considered while the elements themselves could have a low
processing frequency. Furthermore, a large on-chip storage can be omitted as processing
elements only operate on few pixels.

Though these apparent advantages, major drawbacks arise at the IC design level. If an
array of elements consisting of photo diodes and processing logic is created, only a very
low fill factor can be achieved. Due to the extra size of the processing logic and analog to
digital converter, the pixel size strongly increases. This results in a low sensor resolution
and limits the practical use. Solving this problem by splitting pixel and processing leads
to other drawbacks, e.g. a massive increase in wiring complexity or a large footprint.

A promising approach to bypass planar layout problems is vertical chip stacking. Several
chips with different functions are stacked upon each other and are connected by a multi-
tude of through silicon vias (TSVs). Figure 1 illustrates an example stack: photo diodes,
ADC:s, processing logic and memory could be placed on separate layers. The result is
a smart image sensor chip stack with a much smaller footprint compared to a planar de-
sign, yet offering the possibility to increase the bandwidth between pixel and processing
array. The interconnect length decreases while a large number of connections can be im-
plemented as the diameter of TSVs can be as small as 1um [Torl13]. Furthermore, chips
from heterogeneous technologies can be stacked and troublesome mixed signal designs
can be avoided. The possibilities of 3D chip stacking were recognized early on. First con-
crete ideas for processing schemes [Tan85] and also simple stacked IC designs [NIS*87]
are nearly as old as monolithic chip designs of sensor and processing logic.
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Figure 1: Heterogenous Chip Stack with Massive Parallel Transmission

Although, the benefits of 3D ICs for processing raw image data close to the sensor are at
hand, a digital image processing architecture which harnesses this potential is not straight-



forward. We therefore propose a parallel image preprocessing architecture in this paper
which can be connected via TSVs to an image sensor. This image sensor is currently
developed in close cooperation with our partners at LTE [SSB™15]. The architecture is
functionally verified and completely layouted for productive use.

Over the years, different architectures have been proposed. Hence, we will first provide
a short overview about recent designs in the next section. Based on the shortcomings,
we will then develop a novel processing scheme for image preprocessing in Section 3.
Our goal is to outweigh performance and resource usage to design an efficient low power
smart sensor for embedded purposes. The actual realization as ASIC is presented in Sec-
tion 4 and the results are discussed afterwards. Finally, Section 6 offers a conclusion and
addresses further enhancements.

2 Related Work

The topic of integrating photo sensor and processing capabilities into a single chip has
been investigated for decades and many designs have been proposed. Among the early
monolithic chips are designs based on cellular automata. In [GZD85] an 8 x 8 array
of elementary processors easily extendable to 256 x 256 elements was proposed. Each
elementary processor was assigned to one photodiode and could perform combinatorial
operations on its and the neighboring pixel’s values. Also in optoelectronic processing
close to the sensor has been put forward. In this domain the term smart pixel was coined
to describe a hybrid design of optical devices, e.g. photo diodes, and electronics for pro-
cessing [Hin88].

The designs of image processors for vertical integration generally split into three cate-
gories. One approach is similar to earlier smart pixels or cellular automata designs and
uses pixel parallel processing arrays [RVCGFBT 14, LD11]. In addition to this, there exist
designs with larger processing units. These units are assigned to a large portion of pixels
or can even work on the whole image [DFJAM14, CHF'12]. Additionally, a combination
of both approaches has been suggested in [SBP*12].

With respect to architectural complexity, the easiest way to design 3D image processors
is to use a SIMD array with a processing element for each pixel. In-pixel ADCs on a
different layer than the photo diodes have been successfully manufactured in [GHIT14],
however the resolution of 64 x 64 was rather low. A multiple layer chip stack is proposed
in [LD11] offering cellular automata operation for 128 x 96 pixels. Although the digital
processing part has been split on two layers of 25mm? each, the achievable fill factor is
still low.

If a large portion of pixels is to be processed by a single or a couple of processing units,
one main advantage of processing close to the photo diodes diminishes: the exchange
of values between neighboring pixel areas cannot be achieved without storing the whole
or portions of the image. In [DFJAMI14] a 48 x 32 sensor array is introduced where
a column-wise computation takes place. No data exchange between array elements is
possible and the operations are very limited. A much more complex design has been



proposed in [CHF'12] where a large multi-core chip of 63mm? accommodates eight

RISC processors. The digital layer should be connected to a partitioned layer of ADCs
which in turn should be connected to a tiled image sensor with a resolution of 2048 x 1536.
The introduced digital layer has two SDRAM controllers for external memory. A large
memory is needed to calculate even simple neighborhood operations like 2D filters or
stencil codes. Most probably, only a fraction of the actual computational power can be
obtained for bandwidth bound problems.

Both extremes, pixel-parallel and large scale computation, have their disadvantages. There-
fore, we pursue an image preprocessing architecture for 3D stacking which provides a bal-
anced mixture of parallel computation and chip utilization as well as resource utilization.

3 Architectural Conception

In this section we introduce a fine grained parallel architecture which provides data ex-
change between sensor elements at a minimum of additional resources in form of special-
ized buffer structures.

3.1 Opverall Layout

Vertical interconnections between different IC layers influence the coupling and also the
architectural layout of each layer. The smart pixel and pixel parallel approaches had one
ADC per photo diode. If more photo diodes shared one ADC, a homogeneous distribution
would not be possible. For the application domain of cellular automata and image filters,
a one-to-one ratio between ADCs and PEs leads to a simple logic layer. For every pixel
and its neighbors the respective operation has to be carried out. If more pixel are feed
into one PE, the exchange and storage becomes more complex. Although a one-to-one
ratio is straightforward, the main drawback is the space consuming ADC which eventually
causes low fill factors. Therefore, the goal has to be to reduce the number of ADCs and
use a more traditional approach where photo cells are read out row by row and column
by column. The number of ADCs can be increased if a couple of pixels per row are read
out simultaneously. This can be achieved if the output of the column multiplexer of an
off-the-shelf CMOS image sensor is enlarged as Figure 2 illustrates. The fill factor is not
changed, as the ADCs are not located inside the pixel cells.

3.2 Partitioning

High sensor resolutions require many ADCs to achieve decent frame rates. For parallel
mask operations, pixels of coherent image regions have to be converted. This has two
main disadvantages for high resolutions. First of all, neighboring pixel cells have to be
converted simultaneously and therefore connected to different ADCs. This increases the
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Figure 2: Image Sensor with Parallel ADCs

wiring complexity dramatically for a large number of ADCs. Secondly, the number of PEs
has to be adjusted to the number of ADCs. This leads to many stores and loads as previous
pixel cells have to be temporarily stored if they should be reused again. To cope with
this problem, we propose a partitioning scheme where the sensor is split into rectangular
tiles. Each tile has its ADCs and is connected to an array of PEs. The number of ADCs
and PEs is decreased with the lower resolution per partition. This greatly relieves the
wiring complexity and limits the local memory traffic, while the overall frame rate remains
constant.

As 2D filter operations also include neighboring pixels, communication has to take place
across partition borders. Due to local masks requiring only a small image region, just
a portion of the partition’s pixel data has to be held in memory. Therefore, we propose
a partitioning sequence which is depicted in Figure 3. The pixel cell read out starts in
the middle of the image sensor and proceeds to the opposite end of the partition either
meandering or line by line. The starting point could also be at the corners of the image
sensor as long as the read out proceeds similarly in each partition. The current pixel
values are held inside local buffers. Due to the processing order, it is ensured that PEs at
partition border can access data elements from other partition as they are currently held in
the buffers of an other PE array. All PE arrays can be directly exchange the appropriate
data.

A further advantage results from the partitioning scheme. Besides the configuration possi-
bilities, the partitions can be reused. The system becomes easily scalable if the constraints
for a new design are changed. Thus, our architecture is highly configurable and can be
exactly adjusted to application and image sensor constraints. The result is a light-weight
and balanced system which efficiently employs the resources used.
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3.3 Processing Scheme

As the rows of the sensor are read out successively, pixel values have to be stored to
allow operations which need the neighboring pixel values. If only a CPU is available, the
whole image is commonly stored in a RAM utilizing double buffering. This results in a
high power consumption due to a large RAM and access is slowed down by additional
latencies. A more resource efficient approach is to process the image data on the fly while
it is streamed out of the image sensor. With a CPU this could be achieved utilizing circular
buffer structures. For our target applications, e.g. 2D filters, an even more light-weight
custom implementation is possible which will be presented in the next paragraphs.

On-the-fly processing of 2D filters and other mask operators can be efficiently realized
utilizing line buffers in a full buffering scheme. A scalable full buffering architecture for
FPGAs was presented in [SRF12]. A processing scheme for 3D chip stacking can be
devised similarly. The basic structure for 3 X 3 masks is illustrated in Figure 4. Pixel
value transmission from the ADCs goes directly into registers. The array of registers holds
all data elements which are needed to carry out the operations by PEs in parallel. Larger
storage elements, e.2. SRAM blocks, are used as line buffers to store exactly the number
of previous pixel values which are needed for further calculations. After the PEs have
finished their calculation, a line buffer behaves like a FIFO. Newly received pixel values
will replace older elements which are in turn feed into the PE registers.

Parallelism for full buffering structures can be increased in two ways. On the one hand, the
number of PEs can be increased which is is limited by the number of possible ADCs. As
solution a demultiplexer could be introduced after the ADCs to serve more PEs. Then, the
one-to-one relation between ADCs and PEs had to be modified according to the respective
operation frequencies. On the other hand, parallelism can be implemented by building
several stages of full buffering structures. The parallel output of one structure will then
be feed into the next one. Depending on the application, the number of PEs per stage can
vary as long as a synchronization mechanism between the stages is applied.

10
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4 Implementation

The architectural concept has been implemented in VHDL to produce a real chip stack.
In cooperation with our university partner, we developed the constraints for a two layered
smart sensor. The final sensor chip will consist of a partitioned photo sensor with a reso-
lution of 216 x 216. Nine pixels per partition can be accessed in parallel and are feed into
an analog processing unit for basic 3 x 3 filter masks [SSB*15]. The uneven sensor reso-
lution is a multiple of the parallel accessible pixels. In the final design either 9 parallel 16
bit ADCs will transform the raw pixel data or only one will convert the calculated value.

The transmission via TSVs to the digital processing part is done bit-parallel. As up to nine
pixel values can be transmitted, the same number of PEs has been implemented. For the
digital part a window size of 5 x 5 was implemented. This leads to a minimum of 144
bit of parallel in- and outputs per partition. If available, the output could be stored in a
DRAM layer. Otherwise a deserializer is placed at the outputs to limit the number of pins.

4.1 Layout

For VHDL synthesis we used Design Compiler® from Synopsys. The IC layout has been
generated with Encounter® from Cadence. As the design tool support for 3D ICs is still
not mature, the tool support for ball grid arrays (BGAs) is used as workaround [Tor13].
The BGAs is placed and assigned in at the place and route step. In a further layout step
the actual TSV cells are placed. We passed through the design flow with a 150 nm from
LFoundry. The diameter of the TSV cells used is 1.2 ym at a 10 ym pitch. The complete
design flow including the TSV assignment has been scripted and can therefore be easily
rerun with different parameters.

11



4.2 Structure

The implemented architectural structure can be seen in Figure 5. Besides the partition unit,
the architecture consists of five major building blocks which will be described in the next
paragraphs.

" Partition

PE Array

Storage Interface

output

Sequencer Register Set

XNN
{

Static

Adress Generator |— Border Values

{" Control

V| Config Interface [

SRAM Block

Communication Border Control |
Interface B

[y

3
suonued Jayjo o}

T Pixel [
Synchronizer |

R

sensor input pixel clock

to / from other
partitions

Figure 5: Final Architecture of Digital Processing Layer

Control The partitions have to be configured and controlled to work together, this is
done by the separate unit Control which is connected to each partition. The component
Config Interface includes the setting of the static border values needed for mask operations
at the image sensor edges. Another task is to configure operation modes for the PEs. The
second component Border Control uses an internal counter to indicate if a communication
with an other partitions has to take place or if the static border values have to be used.
Finally, the Pixel Synchronizer monitors the pixel clock from the sensor to indicate if new
pixel values have been converted by the ADCs.

Communication Interface One main unit which finally joins the partitions is the Com-
munication Interface. This interface picks up new sensor data as well as reroutes and

controls the data flow from and to other partitions.

PE Array The main work is done by an array of PEs. In the current design, a single
cycle mean filter is implemented for performance and comparability reasons. Thus, it

12



is possible to compare the analog and digital implementation in size, processing speed
and accuracy. Other filter or local operator can be implemented easily, as the PE Array
interface is rather generic and provides all inputs in parallel. Similar to the pixel clock, a
signal can be activated to indicate if a potential multi cycle PE calculation is finished.

SRAM Block For ASIC designs the line buffers have to be placed in SRAM blocks. To
save resources we placed all line buffers of a partition in one SRAM Block with a single
port interface. The storage requirement in bits resulting from the full buffering structure
of Figure 4 can be directly calculated with Equation 1. For our design, this results in a
minimum size of 6080 bits.

mem > (partitionwidth — #PE — mask_size + 1) ...

x (mask_size — 1) x resolution M
Storage Interface A more complex unit which controls the storage and provides the
appropriate data for partition exchange is the Storage Interface. The static border values
and the current registers are implemented and appropriately connected to the PE array.
Particular registers have to be substituted, if pixels at partition edges are processed and
the mask reaches across the border. A Sequencer and Adress Generator map the four line
buffers of the current design to the single ported SRAM.

5 Results

The final layout of the digital IC in 150 nm technology is displayed in Figure 6. The
SRAM cells were placed close to the power rings to provide sufficient power supply. The
possible positions of the TSVs can be recognized by the uniform grid, though not every
position is actually assigned. Approximately 2.5 % of the over 47000 positions were used
for data pins. Further chip characteristics are shown in Table 1. The rectangular chip
dimensions which does not perfectly fit to a rather quadratic image sensor is owed to the
SRAM blocks. As the layer dimensions of a 3D IC do not have to fit exactly, this is no real
problem. The size of the digital chip might be enlarged without affecting the functionality.

Figure 6: Layout of Chip Stacking Enabled Digital Processing ASIC

The IC runs at 40 M Hz which is nearly at the limit of the SRAM blocks. If the analog
part could operate at half the speed to respect an additional cycle for the Sequencer, a

13



frame rate of 9 pizels x 20 M Hz/(108 x 108 pizels/frame) ~ 15.430 fps would be
possible. This would result in an overall bandwidth of approximately 1.44 GByte/s. But
even for a very pessimistic pixel clock of 1 MHz, 770 fps without analog processing are
possible. These values clearly demonstrate the practical advantages of 3D ICs for smart
sensor application. With a low power consumption and moderate clock speeds, high frame
rates can be achieved.

Table 1: Digital IC Properties

Property ‘ Value
Chip Area 1.5 x 5.0 mm?
Density 61%
Voltage 18V
Estimated Core Power 60 mW

6 Conclusion and Outlook

Based on the technological possibilities of TSVs, chip stacking is at hand. Especially im-
age processing architectures can benefit from these new developments to overcome the
problem with serial transmissions between image sensor and processing unit. Therefore,
we presented in this paper a novel image processing architecture for 3D chip stacks. The
proposed design exhibits a high degree of parallelism. Firstly, subsequent pixels are pro-
cessed in parallel. Secondly, due to a distribution of ADCs at the image sensor, the image is
divided in four partitions for parallel processing. To avoid external memory, line buffering
is used. Data exchange between partitions is implemented which enables a high flexibility
for possible extensions to more partitions.

Although the chip is fully layouted and functionally verified, it still has to be manufactured
and field tested. Due to rare 3D design kits, we will create a 3D chip stack prototype
together with Lfoundry Srl. for a new generation of image acquisition and processing
systems. In the near future, we want to connect our processing chip with the image sensor,
which is developed by our colleagues.
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Abstract:

Recently Network-on-Chip based architectures become more and more important
due to their advantages in respect to design flexibility and systems bandwidth scalabil-
ity since nowadays systems consists typically of a huge number of processing elements
(e.g. heterogeneous multi processor systems). In contrast to typical shared memory
based systems, predicting and monitoring the runtime behaviour of the system e.g.
data throughput, link utilization and contention becomes more complex and requires
special architectural features. Besides the traditional approach of using simulation
based approaches at design time, runtime usable features promise to have a number of
advantages. In this paper we present a flexible, reusable and run-time reconfigurable
NoC monitoring system for performance analysis and debugging purposes. The eval-
uation of the monitoring data enables the system designer to achieve better resource
utilization by adjusting the system architecture and the programming model.

1 Introduction

Since traditional bus systems are the critical bottleneck if more than a few master mod-
ules are attached, Networks-on-Chip (NoC) are a promising approach to solve this issue
[BDMO2]. Its advantages are high scalability and massive parallel communication capa-
bilities. Even though NoCs as a communication infrastructure are well established their
usage implies a number of new problems which need to be addressed to gain their full
advantage. Simulations, especially HW/SW-Co-simulations, are very time consuming. A
more time efficient option is to run the complete system on a prototype and trace its ac-
tivity. Since NoCs do not have a central point of communication, monitoring mechanisms
have to be deployed across the system. The mechanisms can be utilized at design-time and
at run-time. During design-time they can be used for rapid prototyping. In case of mali-
cious system behaviour the monitoring data can be utilized for communication debugging.
Performance analyses can be executed to adjust the programming model and the system ar-
chitecture. Monitoring systems are also used at run-time to support resource management
functionalities of the operating system. The main components of the proposed monitoring
system are probes, that are attached to communication links, and a Central Monitoring
Unit (CMU). Different modes of abstraction are offered in order to collect as much data as
possible. Additionally a data compression scheme is introduced, that decreases the overall
amount of monitoring data without information loss.
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2 Related Work

NoC monitoring is recently getting more and more attention. The majority of the sys-
tems deal with system reliability as in [MVBTO09], [PVS*10] and [ZMV*11]. Sensors
are placed across the chip and measure different properties like power dissipation and
soft errors. Other systems focus on the communication. In [CBRT04], [CGBT06] and
[VGO9] the monitoring system is used to provide transaction data for debugging purposes.
In [DF14] a tree-based debugging infrastructure is introduced that debugs end-to-end-
transactions and recovers the system online in case of malicious behaviour.

Little effort has been done so far on run-time management and performance analysis. In
both cases similar information is required and the goal of both areas is to achieve a bet-
ter system performance and resource utilization. The main difference is that for run-time
management the evaluation of monitoring data is performed on chip and for performance
analysis on an external host. In [FPS09] and [FPS10] the monitoring data is evaluated to
adjust adaptable and reconfigurable systems. External performance analysis is executed in
[ASNH10] and [HAST08] to provide the system designer with appropriate run-time data.
The ESG (Embedded Systems Group) Monitoring System is primarily designed to deliver
information for performance analyses. In opposite to [CBR"04] and [CGBT06] the ESG
Monitoring System is non-intrusive and offers higher reusability. It is not utilizing the
monitored NoC itself for its internal communication and therefore just the front-end of the
probes are NoC specific. Furthermore it is run-time reconfigurable, which enables the sys-
tem designer to change the data granularity without resynthesizing the system. The probes
are monitoring one link exclusively. This property allows to monitor parallel communica-
tion on all links at the same time.

The probes in [ASNH10], [FPS09], [FPS10] and [HAS™08] mainly consist of counters,
which measure different events and qualities. Even this data might be sufficient for a lot
of analyses the ESG Monitoring System provides more information, which enables more
precise analyses like reconstructing the paths of packets and examining delays within the
system. Additionally it is the only approach that includes a data compression scheme to de-
crease the overall amount of monitoring data. Simulation-based approaches like [RCM14]
are not considered in this section since the focus lies on monitoring real-time behaviour
on-chip.

3 ESG Monitoring System

NoC traffic analyses require concurrent transaction tracing. In order to achieve concur-
rency, probes are attached to communication links. The probe placement is an important
design time choice. It determines both, the obtainable information and its granularity. The
scheme offers high flexibility and maximum design freedom. One option is to place the
probes at the links between the network interfaces (NI) and the routers. This option is only
capable of end-to-end analyses (total delay, communication between entities, etc.) but also
results in the lowest complexity. The internal run-time behaviour of the NoC (contention,
traversed paths, etc.) can be monitored, if the probes are placed at links between routers.
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Using exclusive probes for individual links enables concurrent monitoring. The applica-
tion of the ESG Monitoring System requires (1) packet based transactions, (2) flit based
packet composition and (3) wormhole switching.

|

a ‘ Central Monitoring Unit ‘

5 |
R R \ |

L) Q
NI NI
IPL IPL n R

Figure 1: In the ESG Monitoring System the probes are placed directly at the NoC links. The
communication infrastructure is organised in a tree topology where routers forward the monitoring
packets from the probes (P) to the CMU. The IP cores (IP), NoC routers (R) and network interfaces
(NI) are part of the monitored NoC and do not belong to the monitoring system.

Communication Infrastructure. A common approach is to use NoCs as the internal
communication medium of monitoring systems. The first option is to use the monitored
NoC itself. Since extra load would distort performance analyses it is not suitable for our
purposes. The second option is to use a dedicated NoC. Even though it is non-intrusive
it is questionable if NoCs are the best choice. The reason is that in monitoring systems
all communication is concentrated on a central module. Therefore the parallel commu-
nication abilities of NoCs are not required. If the mostly unidirectional communication
behaviour of monitoring systems is taken into account, a tree based topology (see Fig. 1)
appears to be a good option [PVS™10]. Packets are routed from the probes (leaves) to the
Central Monitoring Unit (the root) by routers. Functions like address translation, complex
routing algorithms or ID management are not required which means that low cost routers
are employed. The main advantage is high scalability. If the probe number increases, new
routers and levels in the tree architecture can be easily introduced. Another advantage is
that the buffers in the routers are logically shared between the probes.

Probe Architecture. The probes monitor the transactions on the NoC links, process the
information and send it to the Central Monitoring Unit (CMU). Additional statistics are
taken over a specified time window similar to [FPS09]. The monitored NoC (ESG NoC)
has a larger bus width (144 bit) than the ESG Monitoring System (32 bit). Additionally
extra information (header, timestamp) has to be attached to the raw data. This properties
make it impossible to process a link utilization of 100 %. Usually not all information of
a transaction are relevant for an analysis. Depending on the required information and to
provide as much data as possible different modes are available. The modes mainly differ
in their abstraction level similar to the modes presented in [CGB106]. The probe archi-
tecture is illustrated in Fig. 2. It consists of 4 main parts. The timer is used to generate
timestamps and to trigger time-outs whereas the configuration register stores configuration
bits that can be adapted during run-time. The configuration options are: (1) switching the
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probe on or off and (2) programming its mode. The FIFO is used to buffer the monitoring
packets until they are read by a router.

Router

B — Packeti ‘
v
Configuration
FIFQ Register
FIFO

Timer Counter
Trans.
Controller

TTTTT] |

Monitored Data from Channel Monitored Data from Channel

Figure 2: Probe Architecture Figure 3: Probe Controller

The controller consists of two modules (see Fig. 3). The Sniffer analyses the data streams
on the link utilizing a look-up-table (LUT). The Control-LUT is used to check if a packet
completely passed the link. If a header flit is monitored, the packet-ID and the packet
length are stored in the Control-LUT. For each subsequent payload flit the length will
be decreased by one. Once the packet length reached zero the packet fully passed the
link. The Transaction Buffer stores the characteristical parameters of the packet. If a
packet passed the link, the parameters are taken from it and saved together with the times-
tamps and delays in the Packetizer-FIFO. The Packetizer takes the transaction informa-
tion from the Packetizer-FIFO and stores it together with some static information (probe
number, transaction type, etc.) in the required packet format in the FIFO on Fig. 2.

In raw mode the monitored raw data will be forwarded to a host. No abstraction or
analysis is performed. The monitoring packets consist of 6 flits (32 bit each). The first flit
is the header, which contains general and routing information. Since one NoC flit contains
4 data words (32 bits), 4 payload flits are added. The packet is completed by a timestamp.
For each NoC flit a subsequent monitoring packet is sent. The header and the timestamp
cause additional 33% overhead to the monitored payload. Since 6 clock cycles are required
to send a monitoring packet it is not able to process a higher link utilization than 16.6 %.

The packet mode introduces the first abstraction level. Transactions are analysed from
the packet perspective. The monitoring packet in this mode consists of 4 to 5 flits (see
Fig. 5). The first flit is the header similar to the raw mode. The three subsequent flits
contain the source address of the monitored NoC packet, the destination address and a
timestamp. Depending on the burst length of the NoC packet, a fifth flit (the delay flit) will
be attached. The delay flit contains the delays of all NoC flits to their predecessor!. For
every NoC packet (not flit) a subsequent monitoring packet is sent. Compared to a NoC

'The ESG NoC operates with a guaranteed throughput and the maximal packet length is 8 flits. Therefore
one monitoring flit is able to carry all delays, which might not be sufficient for other NoCs or other routing
algorithms.

19



packet and depending on its burst length the data is comprised by 11 % to 86 % since the
payload is removed. In this mode the probes are able to process a link utilization between
25 % an 100 %. 25 % in case the monitored NoC operates with single flit packets only,
which can be theoretically monitored at each clock cycle. The subsequent monitoring
packet would would consist of four flits and require four clock cycles to be transferred.
Once the NoC packet consists at least of five flits the subsequent monitoring packet would
have the same or a lower number of flits and the processable link utilization would increase
to 100%.

The transaction mode provides the highest abstraction level. Instead of flit delays the
whole transaction is analysed from the channel view. The header flit has an additional
field. The field contains the delay between the header flit and the last payload flit (packet
delay) in clock cycles. The monitoring packet length is four flits. The subsequent three
flits (source address, destination address, timestamp) have the same function as in the
packet mode. Just as in the packet mode for each NoC packet a subsequent monitoring
packet is generated and the probe is able to process a link utilization of 25 % up to 100 %
without information loss. The difference is that the probe is already able to process a link
utilization of 100 % when the NoC packets consist at least of four flits. Table 1 presents
an overview of the characteristical values of the modes.

Table 1: Comparison of the available Modes
Raw Mode | Packet Mode Transaction Mode

Abstraction Level raw data flit delays packet delay
Monitored entities flits packets packets

Packet Length 6 flits 4-5 flits 4 flits

Data reduction +33.3 % -11 % t0-86 % | -11 % to -89 %
Max. link utilization | 16.6 % 25 % to 100 % | 25 % to 100 %

Central Monitoring Unit. The CMU collects the monitoring packets and manages the
communication with the host. Since the CMU needs to forward concurrently collected
data (monitoring packets) in a sequential manner it presents the critical bottleneck in the
ESG Monitoring System. In addition the on-chip data rate usually exceeds the exter-
nal data rate which worsens the problem. To reduce the overall amount of monitoring
data a compression scheme is introduced. Fig. 4 illustrates the CMU architecture. The
CMU consists of three main modules: the Packet Analyzer which analyses the incoming
stream of monitoring packets, the Packetizer which performs the data compression and
data packing and the Sender which transmits the packets to the host. The Packet Manage-
ment RAM (PM-RAM) saves the characteristics of a NoC transaction as a parameter set.
The parameters are static information of the monitoring packets that belong to the same
monitored NoC transaction. The Payload-RAM stores the non-redundant information.

CMU Work Flow. To manage incoming monitoring packets and to determine which mon-
itoring packets belong together the PM-RAM and Payload-RAM are used. The PM-RAM
is managed by the PM-LUT (Packet Management LUT). The PM-LUT is a register file
that keeps track about the status (occupied, available) of PM-RAM rows. Timers are used
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Figure 4: CMU Architecture

to determine if all monitoring packets of a particular NoC transaction are received. If for a
specific time window no monitoring packets belonging to a particular NoC transaction are
received, it is assumed that all information is received. With this scheme it is not neces-
sary that probes are placed over the entire path. The Packetizer takes the parameters of the
NoC transaction from the PM-RAM and the payload information from the Payload-RAM.
Afterwards the information is packed into flits and saved in the Transaction-FIFO. The
Sender takes the flits from the Transaction-FIFO and sends them to the host. The direct
FIFO is used for statistical packets.

Data Compression. As mentioned earlier one of the main tasks of the CMU is to reduce
the amount of monitoring data. With a close look on the monitoring packets in packet
mode and transaction mode it becomes obvious that the monitoring packets contain a lot
of redundant data. This redundancies are exploited in order to relax the time pressure
at the interface between CMU and external host. The redundant parts of the packets are
highlighted on Fig. 5.

Transaction Mode Packet Mode
Header Header
Source Address Source Address
Destination Address Destination Address
Transaction Mode Packet Mode e —— T ——
Sl By [z Timestamp 1 Timestamp 1
Source Address Source Address TR 2 TR 2
Destination Address Destination Address Timestamp e Timestamp B
Timestamp Timestamp e Delays 1
(s Delays 2
Delays 3
Figure 5: Redundancies within monitoring
packets that belong to the same NoC transac-
tion Figure 6: CMU Packet Structure

The header information, the source address and the destination address are directly taken
from the original NoC packet. The only non-redundant information within the monitoring
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packets (the parts which differ between the monitoring packets that belong to the same
NoC transaction) is the probe number, the timestamps and the delays. The probe num-
ber (a field in the header flit) identifies on which link the packet was monitored and the
timestamp shows the time the header flit passed the channel. The delay flit contains the
delays between the NoC flits (packet mode) or the delay field in the header flit the overall
packet delay (transaction mode). In order to save bandwidth the redundant information
is removed. The same principle is utilized by the Stream Analyzer. The redundant infor-
mation of monitoring packets is stored once in the PM-RAM and the variable information
in the Payload-RAM. In order to reduce the amount of data a new packet format for the
communication between the CMU and a host is defined (see Fig. 6). The first three flits
are similar to the monitoring packets and are only transmitted once. For both modes a new
flit type is introduced. The channel flit contains one to three probe numbers (depending
on the number of links the NoC packets passed), which were initially part of the variable
information of the monitoring packets. The next flits are one to three timestamps (depend-
ing on how many probe numbers the channel flit contains). The timestamps are followed
by delay flits. The number of delay flits differs between the modes. In the packet mode for
each channel in the channel flit a corresponding delay flit has to be sent. In the transaction
mode the delays for each channel in the channel flit can be sent within one flit (one delay
flit belongs to one channel flit). If a NoC packet passed more than 3 channels, channel
flits, timestamp flits and delay flits are added in the same order.

The number of required channel flits (cfn) for the number of received monitoring packets
(x) can be calculated as follows:

[ efn(z+1), ifxmod3 >0
cfn(z) = { x/3, ifxmod3=0 M

The CMU packet length (cpl) in the transaction mode:

cpl(z) =3+ 2*cfn(z) + = 2
and in the packet mode:

epl(x) =3+ cfn(z) + 2+ 3)
Example: To demonstrate the efficiency of the compression scheme we take an example
in which a NoC packet consisting of 8 flits passes 9 channels. The system is assumed to
run in the transaction mode. Initially: 9*4 = 36 flits are received. After data compression
3+ 2% (%) + 9 = 18 flits are left. In this small example the compression scheme reduces

the amount of data by 50%. The gain increases the more channels are passed and decreases
if the distances in the NoC are relatively small.
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4 Results

All modules were tested and evaluated individually to prove their functionality. Afterwards
a simulation of a 2x2 NoC, based on ESG NoC components, has been established to test the
ESG Monitoring System in a realistic configuration by connecting four processor models
with four memory instances. To evaluate the NoC functionality port models of processing
elements are used instead of full functional processor cores. To verify the functional and
non-functional parameters of the monitoring system the architecture has been implemented
on the basis of an FPGA validation system.

Resource Utilization. The whole design has been implemented in synthesiseable VHDL
code. The resource costs have been verified by synthesizing the modules individually with
corresponding EDA tools for the used FPGA technology. Results are shown in Tab 2. The
results for combinatorial ALUTS are given as absolute numbers. The numbers in brackets
show the size in relation to the monitored NoC.

Table 2: Resource utilization and clock frequency

Monitoring Probe CMU
Router
Combinatorial ALUTS 433 (<1%) 2515 (<4%) 4940(<8%)
Total registers 228 1433 2955
Total block memory bits 0 5632 92928
FMAX 330 MHz 254 MHz 159 MHz

Tracing Performance. The first investigation considers the ratio between the real and the
theoretical probe performance. A channel workload of 100 % with different NoC packet
lengths has been simulated. The results show a discrepancy between the simulation results
and the theoretical values described in Sec. 3. Table 3 shows the overview of the results.

Table 3: Probe Performance Analysis

Mode

\ Raw

\ Packet

\ Transaction

Required NoC packet length to

/

5 flits/ 7 flits

4 flits/ 5 flits

monitor 100% link utilization
(theo./real)
Max. monitorable channel load | 16.6%/ 14.3% | 25% to 100%/ | 25% to 100%/

(theo/real.)

20% to 100%

20% to 100%

The differences are based on delays, which are caused by implementation details. An
example is that the finite state machine (FSM) of the packetizer needs to reach its idle
state between the processing of subsequent monitoring packets. Therefore it takes 5 clock
cycles to send a transaction packet instead of 4. Also each router in the monitoring sys-
tem introduces an additional delay of one clock cycle. The simulated workload of 100 %
presents the worst case. For real applications and NoCs with smaller bus widths the probes
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would achieve better results. The analysis of the CMU shows that the compression scheme
introduces a noticeable delay. The data compression algorithm eliminates redundant in-
formation. Therefore the delay is balanced and a positive yield is achieved if a specific
amount of monitoring packets belonging to the same NoC transaction are received. The
following formula shows when the break even point is reached, considering the monitoring
packet length (mpl) and the number of received monitoring packets (x):

x * (mpl+1)

Break Even Point = 100 —
Txx

“
If we take the example from section 3 the break even point is reached if the external data
rate is (100 — %) = 28 % lower than the internal one. Since the CMU represents
the critical bottleneck in the monitoring system it is creating backpressure for the probes.
Based on simulations and calculations it is estimated that a monitoring system with 20
probes would be able to process 5.5% average link utilization. The assumptions that are
made are that the compression scheme is enabled and the NoC monitoring systems op-
erates with the same clock frequency as the monitored NoC. The external data rate is
neglected.

5 Conclusion and Future Work

In this paper we presented a universal and run-time reconfigurable monitoring system that
enables performance analysis and debugging support for SoCs. Probes are tracing com-
munication activities within the SoC and provide different abstraction modes to provide as
much and as accurate data as possible. The probes are placed at links that potentially carry
relevant information. The probe placement offers high flexibility which enables a good
trade off between resource cost and obtainable information. The probes send packets to
a central monitoring unit which is responsible for the communication to an external host.
Since it is not always known beforehand which information is required during an analysis,
all components within the ESG Monitoring System can be reconfigured at run-time. This
enables to regulate the amount of data and the data granularity without resynthesizing the
system. To offer high reusability and to not interfere the monitored system, a dedicated tree
based communication infrastructure is established. Also a compression scheme, which re-
moves redundant data, is presented. The evaluation showed that the system benefits from
the compression scheme in case the NoC packets pass a certain average number of links
and if the external bandwidth is slower than the internal one. The provided data can be
used by the system designer to align the SoC architecture or the programming model to
achieve a better system performance and resource utilization. Communication debugging
in case of malicious behaviour is also supported. The resource utilization of the monitor-
ing system shows reasonable costs in comparison to the cost of the monitored NoC itself.
The future work will include the adaptation and usage of the monitoring system for run-
time resource management. As mentioned earlier run-time management and performance
analysis require similar information. In this sense the CMU will be upgraded with run-time
management capabilities to adjust reconfigurable and adaptive parts of an SoC.
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Abstract: Recent research results show that there is a high degree of code sharing be-
tween cores in multi-core architectures. In this paper we propose a proximity scheme
for the instruction caches, a scheme in which the shared code blocks among the neigh-
bouring L2 caches in tiled multi-core architectures are exploited to reduce the average
cache miss penalty and the on-chip network traffic. We evaluate the proposed proxim-
ity scheme for instruction caches using a full-system simulator running an n-core tiled
CMP. The experimental results reveal a significant execution time improvement of up
to 91.4% for microbenchmarks whose instruction footprint does not fit in the private
L2 cache. For real applications from the PARSEC benchmarks suite, the proposed
scheme results in speedups of up to 8§%.

1 Introduction

Recently, Chip Multiprocessor (CMP) architectures have become very common. They
became the focus of the leading CPU manufacturers (Intel, AMD, and IBM). The power
wall and memory wall are the two main issues motivating the move from uniprocessor
to CMP architectures to achieve high performance. With the continuous increase in the
number of integrated processors (cores) on a single die and the size of the caches in CMP
architectures, the high access latency of the large cache available on the chip is becoming
critical part of future CMP architectures [ZA05]. Tiled CMP architectures are introduced
as an efficient solution for the future scalable CMPs. These architectures are designed as
arrays of identical tiles connected over a switched network on-chip (NoC). In tiled CMP
architectures that employ the directory-based protocol to maintain cache coherence, when
an instruction cache miss occurs in the Last Level Cache (LLC), a request is issued to
the directory to obtain the code block, although the desired code block may be present in
one of the neighbouring cores. Increasing the number of integrated cores in a single chip
will increase the average number of network hops traversed to satisfy the request. As a
result, the cache miss penalty and the on-chip network traffic will increase. In this paper,
we present a proximity scheme for instruction caches in tiled CMP architectures. When
an L1 instruction cache miss occurs, the desired code block is requested in parallel from
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the neighbouring cores L2 caches as well as the private L2 cache. This makes it possible
to resolve most L1 instruction misses in just few cycles by accessing the neighbouring L2
caches via dedicated paths instead of requesting the directory. This reduces the average
cache miss penalty in instruction cache. Moreover, the available on-chip cache capacity
is utilized effectively if the forwarded code blocks from the neighbouring cores are just
copied in the local L1 instruction cache. This also reduces the on-chip network traffic by
eliminating unnecessary message to the directory. The contributions of this paper can be
summarized in the following points:

o Introducing a proximity technique for the instruction caches in the tiled CMP archi-
tectures, a scheme in which the desired code blocks, when a miss occurs in the L1-1
cache, are serviced, in parallel, by the private L2 cache or the neighbouring caches
before contacting the directory structure. Therefore, our proposed scheme reduces
the cache latency, which in turn improves execution time.

e Furthermore, our proposed scheme reduces the on-chip network traffic as a result of
reducing the number of required hops to reach the requested code block.

o Finally, we show that our scheme scales extremely well with the number of cores.
In other words, it is particularly well-suited for large-scale CMP architectures.

2 Related Work

Several recent studies have proposed schemes to reduce the average cache miss penalty in
the tiled CMP architectures. Brown et al. [BKTO7] presented an algorithm which is prox-
imity aware. Their proposed algorithm is based on the following observation: although
the desired data is not present in the L2 cache of the home node, it might be still resided
in other nodes. Therefore, the home node can issue a message to the closest sharer, re-
questing it to forward the desired data. This reduces the number of requests to the off-chip
memory. Requests to the directory still introduce a major load on the on-chip network
traffic to locate a node in proximity of the home node.

Hossain et al. [BKTO8] introduced a scheme where a direct access is performed to the
predicted remote L1 cache, which is likely to contain the desired data before requesting
the directory. In their work, the desired data is requested from the close-by cache instead
of neighbouring caches. Furthermore, the forwarded data are not usable before receiving
an acknowledgement from the directory. Unlike our work, the provided code blocks from
the neighbouring caches are usable immediately by the requested tile upon receiving them.

Williams et al. [WFEMI10] presented a scheme, in which a request is sent to the neigh-
bouring caches before contacting the directory when a load miss occurs. Point-to-point
links are used to transfer cache block between neighbouring nodes. Directory is contacted
only when none of the neighbours have a copy of the requested data. This approach is
introduced only for data caches.

Previous studies focused on improving the performance of the data caches. In contrast, our
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work aims at improving the instruction caches with a proximity scheme. Investigating the
proximity scheme allows us to exploit the read-only property of instruction cache blocks
with a less hardware overhead.
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Figure 1: The detailed behaviour of proximity coherence for the instruction caches in tiled CMP architectures

3 The Proposed Proximity Scheme for Instruction Caches

In this paper we propose a proximity scheme for instruction cache. Dedicated links be-
tween each core and its four neighbouring cores are used to transfer the required code
block from the neighbours L2 cache in the case of an instruction cache miss. The state
machine of the conventional MOESI protocol is also modified to enable the use of these
dedicated link. Figure 1 shows the detailed behaviour of the proximity mechanism for the
instruction caches. When an instruction fetch operation results in an instruction miss (as
shown in Figure 1a), the L1 cache controller sends out parallel requests to the private and
neighbouring L2 caches (message 1 in Figure 1b) instead of sending a direct request to the
directory.
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Figure 2: The additional transient states in our proximity scheme for instruction caches when an L1 instruction cache miss occurs

In the meantime, the state of the missed code block is changed to a transient state. If the
private or neighbouring L2 caches have it, they reply with a hit, otherwise they return a
miss (message 2 in Figure 1c). Once the L1 cache controller receives a hit from the private
or the neighbouring L2 caches, the forwarded code block is copied in the private L1-1
cache and forwarded to the core simultaneously (message 3 in Figure 1d) and its state is
changed to the shared state. On the other hand, when the L1 controller receives all the
responses and all of them replay with a miss, a request message for the directory will be
issued (message 4 in Figure 1d).

Figure 2 shows the additional transient states that are added to the state machine of the
conventional MOESI protocol. When an L1 instruction cache miss occurs, messages are
issued to the private L2 and neighbouring caches at the same time. The code block state
is moved to the IS_a state, which indicates that a request message is issued, waiting the
responses from the private L2 cache and all neighbouring cores. If all of the them return
a NACK message, which means that none of them contains a valid copy of the required
code block, the code block state is moved to IS which indicates that a request message
is issued to the directory. On the other hand, if one of the requested caches responds by
sending a valid copy of the required code block, after forwarding the requested code block
to the core, the code block is directly copied in the L1-I cache and its state is changed to
the shared state (S).

4 Experimental Setup

By using full-system simulations based on the GEM5 [BBB™'11], we evaluate the perfor-
mance of our scheme against the baseline system which employs the MOESI directory-
based coherence protocol. To implement a detailed simulation model for the memory
subsystem, the Ruby memory model in GEMS is used. Using a higher-level language in
the GEMS (ak.a. SLICC), we specify our extension by modifying the state machine of
the conventional MOESI protocol with all new transient states. The existing Gem5 net-
work model is augmented with dedicated links between the neighbouring cores. Table 1
describes the values of the main parameters of the evaluated baseline system in this study.
We study the tiled CMP architecture which consists of n replicated tiles interconnected

29



Table 1: System parameters for full-system simulation

Tiled CMP size 4, 8,16, 32, 64 cores
L1-TI'and L1-D Cache Size | 32 KB per core
L1-I Cache Hit Latency 3 cycles
L1-D Cache Hit Latency | 3 cycles
Private L2 Cache Size 256 KB per core
L2 Cache Hit Latency 15 cycles
L1 and L2 Block Size 64 B
Network Configuration 2D Mesh Topology
Memory Size 8 GB
Memory Latency 250 cycles
Dedicated Links Latency | 1 cycle

with a 2D mesh switched network as shown in Figure 3. Each tile consists of a processor
core, a private split first-level instruction and data cache (L1-I/L1-D), a private second-
level cache (L2), a network interface or router for on-chip data transfers and a directory to
keep track of cores with copies for cached blocks.

For our evaluation, we first used microbenchmarks with the purpose of generating a high
L1-I miss rate. These microbenchmarks are composed of a mixture of jump (JMP) and no
operation (NOP) instructions. Each jump instruction is padded with NOP operations to fill
a complete cache block of 64 bytes. The JMP instruction in every code block jumps to the
JMP instruction in the next code block. In these microbenchmarks, the previous instruction
pattern is replicated to create the various program sizes (i.e. its instruction footprint) from
4kB to 2MB. The entire program code is looped over by a specific count in order to have
the same number of instruction cache block requests for all micro benchmarks (e.g., 8192
loops for 4 kB and 16 loops for 2MB). Each core executes the same microbenchmark. We
employ this microbenchmark because it allows to precisely identify when the proposed
technique is effective and when not.

Another set of experiments was performed to test the system with real applications. We
evaluate some applications from PARSEC [BKSLO08] parallel benchmark suite. Each run
consists of n-threads of the application running on the n-core tiled CMP. Table 2 lists the
applications which are simulated in this study. Due to the large number of benchmarks
and the relatively long simulation time, we selected seven workloads from the PARSEC
benchmark suite to cover the various application domains as shown in Table 2.

5 Evaluation Results and Analysis

In this section, we present the results and the analysis of the simulation results that have
been obtained when running the microbenchmarks and the PARSEC suite benchmarks
using our proposed proximity for the instruction caches compared to the baseline system
which employs the traditional MOESI directory-based protocol.
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Table 2: Simulated workloads

Benchmark Name | Application Domain
Blackscholes Financial Analysis
Swaptions Financial Analysis
X264 Media Processing
Dedup Enterprise Storage
Canneal Engineering
Fluidanimate Animation
Freqmine Data Mining

5.1 Evaluation using Micro-benchmark

Figure 4 depicts the actual Average Memory Access Time (AMAT) achieved by our prox-
imity scheme for different instruction footprints of the micro-benchmarks and for different
numbers of cores. It can be seen that when the instruction footprint is smaller than or equal
to 256KB, the improvements are small and in some cases even negative. The reason for
this is that these instruction footprints fit in the L2 cache (Table 1). Some microbench-
marks do not provide any improvement in the AMAT as might be expected (some of them
achieve a slight reduction in the AMAT due to the reduction in the cold misses). How-
ever, other microbenchmarks show an insignificant increase in the AMAT, less than 2%
compared to the baseline system. The latency to access the neighbour cache is few cy-
cles longer than that of the private L2, and combined with the fact that no local L2 copy
is created in case of a hit in a neighbouring cache, the average proximity hit latency is
higher than the average private L2 hit latency in the baseline approach. When the code
size is 512 KB, the proposed scheme provides huge benefits, ranging from 90.3% for 4
cores to 92.1% for 64 cores. In this case the instruction footprint does not fit in the private
L2 cache of a single core anymore, but a core and its neighbors together provide sufficient
cache capacity to hold the entire instruction footprint. When the code size is again doubled
to 1MB, interesting behavior can once more be observed. In that case significant benefits
are obtained for 16, 32, and 64 cores, but for 4 and 8 cores the improvements are rather
small. The reason is that when the number of cores increases, so does the average number
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Figure 4: The actual Average Memory Access Time (AMAT) in the baseline and our proposed scheme

of neighbors. For example, in a 4-core (2 x 2) CMP, each core has exactly 2 neighbors,
and so the aggregate L2 cache size of a core and its neighbors is 3 x 256 = 768KB, which
is smaller than the instruction footprint. Similarly, in a 8-core (4 x 2) CMP, each core has 2
or 3 neighbors, and so the aggregate L2 cache size of a core and its neighbors is 896KB on
average, which is still smaller than the instruction footprint. On the other hand, when the
number of cores is 64 (8 x 8), the average number of neighbors is almost 4 (3.5), meaning
that the instruction footprint fits in the aggregate L2 of a core and its immediate neigh-
borhood. When the code size of the micro-benchmarks is again doubled, however, the
instruction footprints no longer fits in the L2 caches of a core and its neighbors, which is
why the improvements decrease substantially. For 32 and 64 cores, the proximity scheme
still provides improvements, but for 16 and fewer cores, there is a small slowdown. In the
16 and fewer cores, the aggregate L2 cache size of a core and its neighbors is too small
to hold the microbenchmark’s footprint. Therefore, the proximity hit rate is low, which
in turn increases the AMAT. The latency to access the neighbouring caches is few cycles
higher than the access to the private L2 cache. Although, the aggregate L2 cache size of
a core and its neighbors in the 32 and 64 cores is still small to hold microbenchmark’s
full footprint. The reduction in the L2 cache miss penalty is higher than the proximity
overhead, which is why the proposed scheme still achieves improvements in the 32 and 64
cores.

Figure 5 shows the overall reduction in execution time presented by the proposed approach
compared to the baseline for the same set of microbenchmarks. Microbenchmarks with
small instruction footprints, as expected, do not provide any significant improvement in the
execution time. On the other hand, the aforementioned improvements in the AMAT trans-
lated into reduction on the overall execution time in microbenchmarks with a footprint that
does not fit in the private L2 cache (512KB and 1MB). Our proposal achieves execution
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time reduction of up to 91.4% compared to the the baseline. Similar behaviour can be
observed for the 2MB benchmark. The achieved reduction in execution time corresponds
to the reduction in the AMAT for the same benchmark.
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Figure 5: Runtime reduction in our proposed approach compared to the baseline system

Figure 6 shows the aggregate number of bytes transferred by the on-chip network. The
proposed approach introduces a significant reduction in the on-chip network traffic for all
microbenchmarks compared to the baseline system which employs the traditional MOESI
directory-based protocol. Contacting the neighbouring cores via the dedicated links to ob-
tain the required cache blocks significantly reduced the on-chip network traffic. The mi-
crobenchmarks with instruction footprints smaller than 32KB, provide on average 38.7%
reduction in the on-chip network traffic. For these benchmarks most of the traffic is due
to the cold misses and they are served mainly by the dedicated links from neighbouring
caches. As a result, the total on-chip network traffic is reduced. In all CMP configurations
based on Table 1, we can observe that the proposed scheme introduces more reduction
in the on-chip network traffic compared to the baseline system as the number of core
count grows. When the data and control messages travel using the on-chip network, they
may take several hops to reach the destination. The average number of hops increases as
the number of cores increases, which is significant for the baseline system. Larger mi-
crobenchmarks that do not fit in the L1 cache but still fit in the L2 cache present similar
reduction in the on-chip network traffic for the same aforementioned reasons. However,
microbenchmarks with foot-prints 512KB and 1MB benefit more because their foot-print
does not fit in the L2 cache. In the baseline system, misses to the L2 cache are serviced
by contacting the directory which increases the network traffic. In our approach these re-
quests are serviced by the neighbouring cores eliminating the network traffic. On average,
our proposed approach achieves a reduction in the network traffic by 45%.

5.2 Evaluation using Real Benchmarks

Evaluating the proposed scheme using the microbenchmarks shows that the proposed ap-
proach can be used to reduce the execution time of application by reducing the average
memory access time. This approach can be used to reduce the on-chip network traffic as
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Figure 6: Total number of bytes (in GB or MB) transferred by on-chip global network in our proposed approach compared to the
baseline system

well. In this section, we present the evaluation results using real applications from PAR-
SEC benchmark suite. All simulations are performed using GEMS as explained in Section
4. The benefit of our proposed proximity scheme for the instruction caches is limited by
the high L1-I cache hit rates which are observed in the simulated PARSEC workloads.
Therefore, we reduce the L1-I cache size to 4KB to show this benefit. Figure 7 shows the
execution time speedups that have been obtained for PARSEC benchmarks when shrinking
the L1-I cache to 4KB for 8 and 64 cores. The proposed approach achieved speedups for
all benchmarks up to 8% compared to the baseline system. The blackscholes has a small
workload that fits in the L1-I cache. Therefore, it achieves a slight speedup due to the
cold misses which are serviced by the neighbouring caches. On the contrary, the speedup
in the fluidanimate workload increases as the number of cores grows. This comes from
the increase in the average aggregated cache capacity of the neighbouring cores. The im-
provements in the other benchmarks are small and some cases even negative. The reason
for this is that their instruction footprints fit in the private L2 cache. The slight speedups,
which achieved in some benchmarks, result from the reduction in the cold misses. On the
other hand, the small slow down in other benchmarks comes from the low proximity hit
rate. Therefore, the AMAT increases due to the proximity overhead.

Figure 8 shows speedup for reduced L1-I cache size of 4KB and the L2 cache size of 64KB
for 8 and 32 cores. In the case of the canneal and x264 benchmarks, the proposed scheme
provides speedup up to 33% and 7.5% respectively. The instruction footprints of these
two benchmarks do not fit in the private L2 cache of a single core anymore, but a core
and its neighbors together provide sufficient cache capacity to hold the entire instruction
footprint. On the contrary, other benchmarks still fit in the L2 cache and provide slight
speedups due to the reduction in the cold misses.
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Figure 7: The achieved runtime speedup in our proposed approach compared to the baseline system. When L1-I cache size is
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Figure 9: Total number of bytes (in GB) transferred by on-chip global network in our proposed approach compared to the baseline
system. When L1-I cache size is 4KB, L1-D cache size is 32KB, and L2 cache size is 256KB
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Figure 9 shows the aggregate number of bytes transferred by the global on-chip network
when the L1-I cache size is 4KB. As shown in the Figures from 9a to 9e, the total bytes
transferred by the on-chip network in the blackscholes is negligible for both the traditional
and proposed systems, because most of the L1-I requests are serviced by the L1-I cache.
We can also observe that all the simulated PARSEC benchmarks achieve a reduction in the
on-chip network traffic (9.4% on average) when our proposed mechanism is employed.
This is due to requests which are serviced via the dedicated links, which in turn reduce the
number of the messages transferred by the on-chip network.

6 Conclusions and Future work

Tiled CMP architectures are introduced as the best choice for the future scalable CMPs.
As the number of the cores grows, the average cache miss penalty will have a significant
impact on the overall performance. Several approaches have been proposed to reduce the
average cache miss penalties in the tiled CMP architectures which employ a directory-
based coherence protocol. These approaches focused on improving the performance of
data caches. In this work, we propose a proximity scheme for the instruction caches to
provide execution time improvements as well as reduction in the on-chip network traffic.
Our results reveal a significant reduction in the overall execution time and global network
traffic of up to 91.4% and 99%, respectively, for the microbenchmarks whose instruction
footprint exceeding the private L2 cache size. Moreover, the proposed policy led to im-
provement in the PARSEC workloads execution time of up to 8% compared to the baseline
system.

Applications with large footprints that do not fit in the modern L1-I cache, such as On-
line Transaction Processing (OLTP) workloads [LBET98, ATAM12, HA04, KADS03,
IATAM13] are most likely to benefit from the proposed approach. They exhibit a high
degree of instruction reuse over multiple cores. Several prior studies observed this exten-
sive sharing of instruction blocks among the multiple processors in different workloads
[ATAM12, KADS03, CWS06, HA06]. While we do not simulate these workloads in this
study, they will be considered in future work. Moreover, a detailed analysis of the power
consumption for our proposed scheme is left to future work.
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Abstract: The DEEP (Dynamical Exascale Entry Platform) project aims to provide a
first implementation of a novel architecture for heterogeneous high-performance com-
puting. This architecture consists of a standard HPC Cluster and — tightly coupled —
a cluster of many-core processors called Booster. This concept offers application de-
velopers the opportunity to run different parts of their program on the best fitting part
of the machine striving for an optimal overall performance. In order to take advantage
of this architecture applications require some adaption. To provide optimal support
to the application developers the DEEP concept includes a high-level programming
model that helps to separate a given program to the Cluster and Booster parts of the
DEEP System. This paper presents the adaption work required for a Particle-in-Cell
space weather application developed by KULeuven (Katholieke Universiteit Leuven)
done in the course of the DEEP project. It discusses all crucial steps of the work start-
ing with a scalability analysis of the different parts of the program, their performance
projections for the Cluster and the Booster leading to the separation decisions for the
application and finally the actual implementation work. In addition to that some per-
formance results are presented.

1 Introduction

Even though today’s supercomputer systems reach multi-Petaflop compute power (exam-
ples are: Tianhe-2 at Guangzhou, Titan at Oak Ridge National Lab, IBM Sequoia at LLNL,
or JSC’s JUQUEEN) the HPC community prepares for the next step, i.e. having Exa-
scale systems (10'® floating-point operations per second) by the end of the decade. The
DEEP (Dynamical Exascale Entry Platform) project[1] aims to develop a novel, Exascale-
enabling supercomputing platform, the Cluster-Booster architecture. On this platform ap-
plication developers can map their code onto two diverse parts of the system supporting
the different demands of scalability of their programs in an optimized way. Those two
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parts are: (1) a Cluster of multi-core Xeon processors interconnected by an InfiniBand
network with a fat-tree topology; and (2) a second cluster of self-hosted Xeon Phi many-
core processors called Booster. The latter utilizes the EXTOLL network [2] supporting a
3D torus topology. A comprehensive software environment including low-level commu-
nication libraries, programming environments and run-time systems complete the system.

As an assessment of this novel supercomputer architecture six scientific pilot applications
were chosen within DEEP. In the course of the project these applications are ported to
the platform acting as the yard-stick to evaluate the software environment and to act as
benchmarks of the overall architecture. They have been selected with regard to their high
scientific, industrial and social relevance and the urgent need for Exascale compute power
in their research fields. Furthermore, the existence of highly scalable parts in their code
that shall profit from the Booster was crucial. This paper will focus on the iPiC3D applica-
tion from the Katholieke Universiteit Leuven. iPiC3D is a Particle-in-Cell space weather
simulation predicting conditions of the magnetized plasma that permeates the space be-
tween Sun and Earth as well as the whole solar system.

The actual steps performed in the first three years of the DEEP project are explained in
detail in the course of this paper. As a first step this includes a detailed analysis of the
application with different performance tools. Next a plan to separate the code in a Booster
and a Cluster part based on this analysis was created. It serves as a basis to finally im-
plement this separation. To help the application developers to perform the separation the
OmpSs runtime[3] — developed by BSC (Barcelona Supercomputing Center) and extended
in the DEEP project — was used.

The paper is organized as follows: As a first step we motivate the division of applications
by the description of the Cluster-Booster architecture in section 2. Next we give a short
overview of the iPiC3D application including the analysis results from the beginning of
the DEEP project in section 3. After a brief summary of Xeon Phi optimization strategies
in section 4 we focus on the actual work done for adapting the code to the DEEP system
and the resulting problems in section 5. Finally we present some performance results in
section 6. The last section gives a short conclusion and an outlook on the next steps.

2 Cluster-Booster architecture

On the way to an Exascale supercomputer the DEEP project pursues the strategy of a new
architecture consisting of a Cluster part and a Booster part. This architecture represents
an alternative approach to organize heterogeneity in high-performance computing. As
sketched in figure 1 the Cluster nodes utilize Intel Xeon multi-core processors and utilize
an InfiniBand fabric for communication. In contrast to that, the Booster is based on Xeon
Phi’s many-core processors interconnected by an EXTOLL fabric developed at University
of Heidelberg. A so called Booster Interface bridges between the two different intercon-
nects of Cluster and Booster and allows for a most efficient communication between the
two parts of the system.

The general idea of the Cluster-Booster concept is based on the observation that complex
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Figure 1: DEEP architecture scheme

applications in HPC often have code-parts with differing ability to scale on parallel ma-
chines. In order to utilize the DEEP system in a most efficient way, the less scalable code
parts and the I/O operations are run on the Cluster while highly scalable parts are offloaded
from the main application to the Booster. The DEEP system, in contrast to today’s GPU-
based heterogeneous systems, allows for communication between the processes offloaded
to the Booster Nodes. This gives the application developers the chance to offload more
complex kernels; code parts with intensive collective communications should be executed
on the Cluster instead of the Booster anyway.

In order to support application developers to port their applications to this unconven-
tional heterogeneous architecture the DEEP project develops a rich software infrastructure.
While its basic mechanisms rely on MPI and its MPI_Comm_spawn functionality to start
additional processes within the system, special emphasis was taken to relief the application
programmer from having to re-organize the code manually. For this OmpSs, an OpenMP
based data-flow programming model with directives to support asynchronous parallelism
and heterogeneity, is extended allowing the user to just annotate the code leaving the main
work to the Mercurium source-to-source compiler and the Nanos++ runtime system.

Of course, separating applications into two parts and distributing them to the Cluster and
Booster parts of the DEEP system might introduce new bottle-necks if the parts have to
exchange data. Therefore, it is crucial to split the application in a way that the amount
of data to be exchanged is minimized. In addition to that a highly optimized Cluster-
Booster protocol was introduced into the DEEP software stack reducing the overhead of
the necessary bridging between the two fabrics as much as possible.

Since this paper will not explain neither the overall concept nor the hardware or software
architecture in more detail, the interested reader is referred to [4] for more information.
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3 iPiC3D application

The iPiC3D application of KULeuven is a massively parallel code to simulate the evolution
of a magnetized plasma traveling from the Sun to the Earth. This topic is highly relevant
in order to forecast space weather related events which may lead to severe problems like
damage to spacecraft electronics, GPS signal scintillation or even disturbance of wide-area
power grids. There are different approaches to model the plasma evolution; the iPiC3D
application implements a kinetic approach wherein both ions and electrons are simulated
as particles. iPiC3D is written in C++ and was parallelized using MPI before the beginning
of the DEEP project. At the current state of work also OpenMP is used allowing for an
hybrid parallelization. An application run consists of multiple time steps. For each of
them particles are moved under the effect of the electric and magnetic fields defined on a
discrete mesh in physical space.

Particle information is deposited on this spatial grid through interpolation procedures in
the form of moments, i.e. densities, currents and pressures defined on the mesh, which
act as sources for the equation solved for obtaining the fields at the next time step. More
details on the actual algorithm are provided in [5].

The main part of iPiC3D is to calculate the evolution of the electric and magnetic fields and
the positions and velocities of the computational particles in time. The particle information
is averaged and collected as moments; these also have their part in evolving the electric
field. During the analysis phase at the beginning of the DEEP project figure 2 was created,
representing the logical structure of the application.

init ops

topology setup
field initialization
particle initialization

/ B5: moments calculation \

B4: particle mover, Bl: hatted moments
B3 - calculation of fields on particles included CﬂlCLIlB.tiOn

l\ B2: field solver, /
CG + GMRES

particle

result writing

field results
writing

Figure 2: Logical structure of iPiC3D
The different parts can be shortly explained as follows:

B5: moments calculation: density, currents and pressures are calculated starting from
particles.
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B1: hatted moments calculations: the hatted moments, i.e the effective moments of in-
teraction with the electric and magnetic fields, are calculated from the moments.

B2: field solver: the electric and magnetic fields are calculated for the new time step.

B4: particle mover: particles are moved under the influence of the newly calculated
fields.

The green boxes of figure 2 are related to the fields and therefor the grid, the blue ones
refer to the particles.

When describing the different phases we will concentrate on the moments calculation, the
field solver and the particle mover, as they are the most time consuming or communication
intensive parts of the application. This was shown by Scalasca profiling runs performed
on the JUDGE cluster and the BlueGene/Q system JUQUEEN at Jiilich Supercomputing
Centre; the results are presented in figure 3.
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Figure 3: Percentage of execution time (left) and communication time (right) of the rele-
vant phases for the JUDGE tests with 4 x 2 X 2,4 x 4 x 2 and 4 x 4 x 4 cores (small test
case) and the JUQUEEN test with 16 x 16 x 8 cores (big test case)

During the moments calculation, the particle information is gathered and accumulated in
grid moments. After the collection the total moments of quantities like density or pres-
sure are calculated. The nearest neighbors then exchange ghost node information using
MPI_Sendrecv_replace. This phase is the second most relevant phase with regard to
percentage of execution time, communication calls and bytes exchanged. Especially the
collective communication of the ghost node information should be noted here.

In the field solver phase a Poisson correction of the electric field is performed and both the
electric and the magnetic field are updated. This phase is not very time consuming, but is
the most important one related to communication. As in the moment calculation the ghost
node information is exchanged using point to point communication. Additional collective
communication is required during each iteration of the solver in order to determine the
stopping criterion.

Finally, the particle mover updates the particle positions and velocities. Since the particles
are moved independently, this phase is highly scalable. After the movement all particles
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that are now located on a part of the grid hosted by a different processor have to be iden-
tified and exchanged; this is done with a series of point to point communications between
nearest neighbors. In addition to that, the number of particles to be moved is assessed
grid-wide through an MPI_Allreduce. These are the only few collective communica-
tions not done in the solver phase. This phase is essentially compute intensive.

The decision on how to divide the application into a Cluster and a Booster part was made
on the basis of the following aspects:

e There are two different kind of phases, grid related (fields and moments) and particle
related ones. They operate mostly on different data, so they should be kept on one
part of the DEEP system each.

e The phases which have the most intensive collective communication should be kept
on the Cluster, as these are implemented more efficiently on this part of the sys-
tem. In the case of iPiC3D these are the grid related ones, i.e. moment and field
calculations.

e The particle related phases can be vectorized more easily and have better scalability,
as particles are processed independently; therefore, they fit better on the Booster
part.

4 Xeon Phi optimization

For a most beneficial use of the DEEP Booster the application parts that will be launched
there shall be optimized for the Xeon Phi processor. Different code changes were done to
achieve this goal. They will be briefly explained within this section.

The most important step in the course of the optimization process is the introduction of
OpenMP thread parallelization of the loops that process particles. Tests unveiled that
using one MPI process for each hardware thread — 240 in total on a 60 core MIC — would
introduce a significant communication overhead. On the other hand, with only 60 MPI
processes of 4 OpenMP threads each the performance was about 2 to 4 times better.

A second approach was to introduce an improved localization of field data by using an
array of structs (AoS) instead of a st ruct of arrays (SoA). Typically an SoA is pre-
ferred over an AoS when vectorizing code. Although, in this application using an AoS
has considerable advantages like a faster sorting of particles (needed to eliminate random
access) or a superior cache performance. As transpositions are rather cheap in this case it
was decided to use an AoS for the basic particle representation and convert it to an SoA in
blocks when it is beneficial for vectorization.

The next optimization step would be the vectorization of particle processing; for that step
a sorting of the particle is needed, which has not yet been implemented for the code.
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5 Offload adaption work

The application was logically divided into a part to run on the Booster and one to be
offloaded to the Cluster! as can be seen in figure 2. This section explains the necessary
steps performed to achieve a successful division.

5.1 Code division

The changes in the application workflow with the offload can be shown best along the flow
charts in figure 4.

BOOSTER CLUSTER

set up OmpSs

environment offload to Cluster

read input file
|startca|cu|ations |

move particles send electric field :
BB (LS send magnetic field n
compute moments compute moments send moments

il

(a) (b)

Figure 4: Workflow without (a) and with offload (b)

The original version of the application contains a single run function to start the whole
simulation. In the offload version two corresponding functions are called, run_Cluster
and run_Booster. For a clearer logical division the different calculation steps were di-
vided between host and offload part as sketched in figure 4b and separated into the two
functions. The necessary communication of the moments, the particles and the magnetic
field between Cluster and Booster were added after the corresponding calculations. For
the sending and receiving of data between host and offload the proper MPI communi-
cators have to be used. In the offload part the parent communicator can be fetched via
MPI_Comm_get_parent. This function returns an inter-communicator to the processes
on the host part. For sending to or receiving from the offload on the host part the inter-
communicator is used that was created and returned by the call of deep booster_alloc
(see section 5.2). To have access to this communicator in the relevant classes it is given as a
parameter to the run_Booster function and from there forwarded to the communication
functions.

UIn fact, this is contrary to the basic concept described in section 2. Nevertheless, DEEP’s software stack is
flexible enough to support the reverse offloading used in iPiC3D, too.
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5.2 OmpSs

As mentioned before iPiC3D was parallelized in a hybrid way using MPI and OpenMP.
Utilizing the OpenMP offload was no option in the case of the DEEP project for two rea-
sons: On the one hand this technology was not yet introduced in the OpenMP standard
until almost two years in the project. On the other hand the OpenMP offload assumes a
local target and does not allow for MPI-communication between offloaded processes. The
latter is crucial when the offloaded tasks are computationally heavy as in the DEEP exam-
ples. Although OmpSs and OpenMP are similar in many aspects OmpSs does not support
all OpenMP pragmas. All pragmas aside from #pragma omp task and #pragma
omp for were commented in the OmpSs version of the application.

For using OmpSs the application has to be compiled with the Mercurium compiler devel-
oped by BSC[6]. Some minor changes in the code were necessary for that but will not be
discussed further in this paper.

The next step was to integrate the call of the OmpSs function deep_booster_alloc
and the offload pragma into the code. We are implementing a reverse offload here where
we start the application on the Booster part and offload to the Cluster. This is due to the
fact, that logically the application is build around the particle calculation, offloading the
fields calculations fits better into the overall concept of the code (see figure 5).

MPI_Comm clustercomm;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &size) ;

deep_booster_alloc (MPI_COMM_WORLD, 1, size, &clustercomm);
//create offload task
#pragma omp task device (mpi) onto(clustercomm, rank) \

in([...]) copy_deps

solver.run_Cluster () ;

solver.run_Booster (clustercomm) ;

Figure 5: Integration of OmpSs in main part of the code

In the original code, the input parameters were read from the input file, the necessary
objects were created and the run function was called to start the calculations. It was
planned to give the objects essential for the calculations to the offload as input parameters,
but this was not feasible due to OmpSs not supporting the offload of C++ objects. A
serialization and deserialization of all necessary objects seemed to be a solution, but with
some testing this approach turned out to be way to complicated, as too many objects were
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needed.

Therefore it was decided to recreate the whole environment in the offload part. For this
approach, only argc and argv are crucial, as argv contains the name of the input
file, which is sufficient for establishing the whole setup in the offload part. argv is now
serialized and given as an input parameter to the offload pragma. Generally speaking, the
whole calculation is set up and started both on the host and in the offload part.

5.3 MPI_Comm_spawn

It has to be taken into account that the OmpSs runtime and the Mercurium compiler are still
under development as part of the DEEP project; during the months of work shown in this
paper they were constantly enhanced but issues like a significantly decrease of application
performance or compiling problems appeared from time to time that needed investigation
and hindered us to get detailed and meaningful performance results. To avoid these is-
sues for the moment and to have a possibility for later comparison (mostly to see if using
OmpSs creates overhead) yet another version of the application was implemented. This
variant uses MPI_Comm_spawn explicitly for offloading. In contrast to that OmpSs uses
this function, too; nevertheless the actual calls are hidden from the application develop-
ers. It required only minor changes in the code to create this version; mainly the OmpSs
offload pragma was replaced by the call of MPI_Comm_spawn. Additionally the applica-
tion was compiled directly with the Intel compiler without performing a source to source
compilation with Mercurium beforehand. The main benchmarks were performed with this
version of iPiC3D to analyze the general behavior of the application when offloading from
Xeon Phi to Xeon. Lately, some tests revealed that with the newest versions of OmpSs
the issues of a decrease of performance were solved and the overhead compared to the
MPI_Comm_spawn has mostly vanished; future experiments will give specific numbers.

6 First results

During the adaption work the application was mainly tested on a KNC system installed at
JSC with two compute nodes. This was done due to lack of the actual Booster hardware.
The node that was used consists of two Xeon ES-2670 processors with 8 cores clocked at
2.6 GHz and four Xeon Phis 7120 co-processors with 61 cores each running at 1.23 GHz.
Each Xeon Phi is equipped with 16 GB of memory. As it was decided to use a reverse
offload model, the application was started on the Xeon Phis and offloaded to the Xeons. In
addition to that tests were performed on the DEEP Cluster, offloading from Xeon to Xeon
(Intel Xeon E5-2680 at 2.70 GHz).

Two different test cases were simulated. The smaller one contains 460,800 particles and
was used for performance runs on the smaller KNC system. The larger test case of about
93 million particles was performed on the DEEP Cluster, taking advantage of the bigger
system. In both cases 30 cycles were simulated.
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Figure 6: Execution time on the KNC system with small test case (a) and on the DEEP
Cluster with larger test case (b)

Figure 6a shows the performance results generated on the KNC system with the small test
case, in figure 6b the execution times from the DEEP Cluster simulating the larger test
case are shown.

Especially for the larger test case the application scales quite well with an increasing num-
ber of MPI processes. For the smaller example, the gain of the faster calculation is likely
too small to hide the communication for more than 2 processes. A larger test case with
more intense calculations should lead to a better scalability but couldn’t be tested on the
KNC system due to memory restrictions. One should to take into account that these per-
formance numbers were created shortly after integrating the offload in iPiC3D; therefore
they should be seen as first evaluation of the application behavior.

7 Conclusion and outlook

At the current point of the project, both the OmpSs and the MPI_Comm_spawn reverse
offload are fully integrated in the iPiC3D application. The code was separated into differ-
ent functions for the Cluster and the Booster part. Starting on the Booster, the parts of the
code which operate on the moments or fields are offloaded to the Cluster. The minimal
required communication between Cluster and Booster to exchange the fields and moments
was set up.

Additional tests were performed on a bigger system, showing promising results. The next
step will be to run a large set of benchmarks on the whole DEEP system as soon as possi-
ble.

As illustrated in this paper, working on a highly experimental project can lead to unfore-
seen challenges that might influence the outcome of the whole project. E.g. due to the
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late availability of hardware the applications could not be tested on the full DEEP system
in time. Instead it had to be settled for a smaller test system for Xeon Phi performance
evaluations and the DEEP Cluster for larger tests on Xeon cards; but these systems are
able to give a prospect on what to expect from the final system and were used extensively
for optimizing the applications for the two different kinds of architectures.

With hindsight it probably would have been more efficient to implement the offload in
iPiC3D directly with MPI_Comm_spawn instead of trying OmpSs first, as the concept
of OmpSs to offload multiple tasks with input and output dependencies does not fit the
structure of the application in an optimal way. Nevertheless, it revealed some issues in
the OmpSs runtime which could be solved this way, leading to more efficient and better
performing versions in the course of the last months.
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Abstract: The usage of graphics processing units (GPUs) as computing architectures
for inherently data parallel signal processing applications in this computing era is very
popular. In principle, GPUs in comparison with central processing units (CPUs) could
achieve significant speed-up over the latter, especially considering data parallel ap-
plications which expect high throughput. The paper investigates the usage of GPUs
for running space borne image data compression algorithms, in particular the CCSDS
122.0-B-1 standard as a case study. The paper proposes an architecture to parallelize
the Bit-Plane Encoder (BPE) stage of the CCSDS 122.0-B-1 in lossless mode using
a GPU to achieve high throughput performance to facilitate real-time compression of
satellite image data streams. Experimental results are furnished by comparing the per-
formance in terms of compression time of the GPU implementation versus a state of
the art single threaded CPU and an field-programmable gate array (FPGA) implemen-
tation. The GPU implementation on a NVIDIA® GeForce® GTX 670 achieves a peak
throughput performance of 162.382 Mbytgs (932.288 Mbifs) and an average speed-up of at
least 15 compared to the software implementation running on a 3.47 GHz single core
Intel® Xeon™ processor. The high throughput CUDA implementation using GPUs
could potentially be suitable for air borne and space borne applications in the future,
if the GPU technology evolves to become radiation-tolerant and space-qualified.

1 Introduction

The spatial as well as the spectral resolution of air borne and space borne image data in-
creases steadily with new technologies and user requirements resulting in higher precision
and new application scenarios. On the technical side, there is a tremendous increase in
data rate that has to be handled by such remote sensing systems. While the memory ca-
pacity requirements can still be fulfilled, the transmission capability becomes increasingly
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Figure 1: General Schematic of the CCSDS 122.0-B-1 Encoder [Con07].

problematic. The communication bandwidth is always an expensive entity and is limited
by the radio channel and also the visibility of the ground control station (GCS) from the
orbit. Moreover, the key requirement is to compress huge amounts of data in real-time
and transmit them in as little time as possible to the GCS. These stringent requirements
mandate a high performance real-time on-board compressor to attain high compression
throughput of the orders of Mbytgs, The generic commercial off-the-shelf (COTS) CPU
technologies cannot be used for reliability reasons, space qualification criteria, and high
throughput requirements. GPUs, by virtue of thread level parallelism (TLP) easily cater
to the requirements of the massive data parallel image-processing applications. However,
GPUs haven’t yet been space-qualified as of now.

The Consultative Committee for Space Data Systems (CCSDS) compression standard ex-
hibits data parallelism inherently in its encoding stages. It comprises of 2 major stages
namely, discrete wavelet transform (DWT) and BPE as illustrated in the Fig. 1. The BPE
stage is as computationally demanding as the DWT or more depending on the input im-
ages. This paper focuses on parallelizing the BPE stage of the CCSDS 122.0-B-1 standard
using GPU. The CCSDS 122.0-B-1 compression standard operates in lossy/lossless modes
based on the quality parameters. The lossless mode is expected to run through the entirety
of the algorithm without exiting intermediately, to produce the worst case execution time
in comparison to the lossy mode which could be configured to exit at different stages based
on the quality parameters. This paper focuses on the lossless mode to analyze the worst
case execution time of the encoder. Also, it could also be safe enough to assume lossless
or near-lossless compression to be obligatory in several cutting-edge scientific missions
which refuse the ideology of abiding by lossy compression.

The paper is organized as follows. Chapter 2 describes related work concerned to the im-
age processing solutions for space applications, prior work pertaining to comparable com-
pression standards on General-Purpose Computation on Graphics Processing Units (GPG-
PUs) to understand upfront about the state of the art technologies and research. Chap-
ter 3 explains the fundamentals of CCSDS 122.0-B-1 image data compression standard.
Chapter 4 proposes the design and development of a GPGPU-based BPE stage of CCSDS
122.0-B-1 compressor. It explains the various design decisions; porting, parallelization,
thread mapping strategies and optimizations done for the GPGPU solution. Chapter 5
comprehensively analyzes the performance benchmarks of the GPGPU implementation
against the FPGA and host counterparts. Chapter 6 summarizes the results and discusses
about the pros and cons of the GPGPU solution. Finally, chapter 7 summarizes the findings
of the paper.
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2 Related work

Many image compression standards such as JPEG2000 [Kur12], SPIHT [SLH11, LBM11]
to name a few, have been tried on GPGPUs due to the presence of inherent data-parallelism.
The DWT is an integral part of most of the image compression standards and is completely
data parallel wherein every pixel could be independently processed. The following table
1 lists the prior DWT implementations on GPUs. Shifting focus to the CCSDS compres-

Speedup

Related works (X times wrt host) Reference CPU configuration GPU card
GPU-Based DWT Acceleration for JPEG2000[Mat09] 148 Intel Core i7, 3.2GHz, 3 x 2GB RAM NVIDIA Geforce GTX295
A novel parallel Tier-1 coder for JPEG2000 using GPUS[LBM11] 100 Intel Core i7, 2.8GHz, 12GB RAM NVIDIA Geforce GTX480
A GPU-Accelerated Wavelet D ion System with SPIHT[SLH11] 158 2 Intel quad-core Xeon E5520, 2.27 GHz, 16GB RAM  NVIDIA Tesla C1060

Table 1: Wavelet transform implementations using GPGPUs

sion standards, [KAH™ 12] proposes a GPGPU-based Fast Lossless hyper-spectral image
compressor which achieves a throughput of 583.08 Mbifs and a speed-up of 6 times in com-
parison with 3.47 GHz single core Intel® Xeon™ processor. Having seen significant re-
search in the DWT implementations on GPGPU, the paper focuses on parallelizing the
BPE stage of the CCSDS 122.0-B-1 standard in lossless mode. This paper also compar-
atively analyzes the GPGPU implementation with the hardware FPGA implementation
of the CCSDS 122.0-B-1 standard by [MKJ14]. The FPGA implementation achieves an
average throughput of 238.274 Mbyte/s,

3 CCSDS 122.0-B-1 image data compression

CCSDS 122.0-B-1 image data compression standard [Con05, YAKT05] is a single-band
compression technique and has been recently used for image data compression on-board
spacecraft. It can compress 16 bit signed and unsigned integer images in lossless as well
as in lossy mode. At first, the DWT module applies a 3-level 2D-DWT on the input image.
The lossless “Integer DWT” implementation is considered in this paper to ensure that the
original image is perfectly reconstructed. The DWT module forms a hierarchy of wavelet
coefficients as shown in Fig. 2a. A block is a group of one DC coefficient and the 63
corresponding AC coefficients (3 parents, 12 children, 48 grandchildren). A block loosely
represents a region in the input image. For the BPE, the blocks are further arranged into
groups: A segment is a group of S consecutive blocks, where 16 < S < 220, Segments
are encoded independently and are further partitioned into gaggles, which is a group of
G = 16 consecutive blocks. Once all the coefficients are grouped, the BPE starts to en-
code the image segment-wise (see Fig. 2b). Each segment starts with a segment header
containing information about the current segment. After the segment header is written,
the DC coefficients are quantized with a quantization factor g that depends on the wavelet
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Figure 2: Overview of the CCSDS 122.0-B-1 BPE

transform type and on the dynamic range of the wavelet coefficients. In a next step, dif-
ferential pulse code modulation (DPCM) is applied on the quantized DC coefficients and
is followed by Rice Coding. After all quantized DC coefficients are encoded, some addi-
tional DC bit-planes may be refined. The next step is to encode the bit-depth of the AC
coefficients in each block with the same DPCM method. The BPE encodes the wavelet co-
efficients bit-plane-wise and in decreasing order. For each bit-plane, the encoding process
is divided into stages 0—4. In stage 0, remaining bits of the DC coefficients are coded (DC
refinement). Stage 1-3 encode the AC coefficients’ sign and the position of the significant
bit, which is the highest non-zero bit. Stage 1 refers to the refinement of the parents co-
efficients. The same procedure is applied to the children coefficients at stage 2 and to the
grandchildren coefficients at stage 3. Stages 1-3 produce words which are first mapped to
symbols which are then encoded with variable-length code (VLC). Once an AC coefficient
is selected, Stage 4 encodes the AC coefficients’ refinement.

4 Design

The goal of this paper is to parallelize the segment-wise BPE stage of the CCSDS 122.0-
B-1 standard. Each segment could be executed mutually exclusive of the other. The
BPE loop nest could be visualized wherein the DWT processed pixels are partitioned into
NUM_SEGMENTS segments. The 1D loop is mapped onto a 1D thread grid. Each thread
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processes one segment of the encoder as illustrated in Fig. 3. Each segment comprises of
S blocks where S = 16 is chosen as a fixed parameter for this architecture. The reasons
for this configuration shall be explained subsequently.

4.1 Thread mapping

Compute Unified Device Architecture (CUDA) allows to split the work in terms of threads,
wherein a group of threads constitutes a thread block and further, a group of thread blocks
forms a thread grid. The choice for these thread configurations is directly dependent on
the loop index which is in this case the number of segments NUM_SEGMENTS. Also,
the NVDIA architecture influences the potential size of the thread block. The threads
within a thread block are further divided into groups of 32 threads called warps which are
eventually scheduled by the warp scheduler onto the streaming multiprocessors (SMX).
The NVIDIA GK104 SMX Kepler architecture has 4 warp schedulers to pick 4 active
warps per clock cycle and dispatches them to the execution units. Hence it is always
customary for each thread block to have at least 4 warps to ensure peak utilization of the
SMX. Hence the number of threads within a thread block is chosen to be 32 x 4 = 128.
Consequently, the number of thread blocks would be as follows.

int blocksPerGrid = (NUM_SEGMENTS/128) + 1;

4.2 Choice of encoder parameters

The CCSDS 122.0-B-1 standard is configured with quality parameters to operate in loss-
less mode in order to analyze worst case behavior and to facilitate perfect reconstruction
of the input images. Fig. 4 shows the impact of the segment size .S on the compression
efficiency in lossless mode. Lesser the bits per pixel consumed by the compressor, better
the compression efficiency. It can be noted that the value of .S has minimal or no impact
on the compression efficiency. Since the encoder is ported onto a GPGPU and the BPE

53



coastal_b4 ———

Compression Efficiency (bits/pixel)

0 20 40 60 80 100 120 140
Number of blocks within a segment (S)

Figure 4: Impact of the segment size S on the compression efficiency

inherently has a lot of loop nests with loop index .S, it is intuitive to reduce the value of
S in order to reduce the branch latency considering the fact that GPUs perform poorly
with branches due to branch divergence within the warps. Moreover, lesser the number
of blocks within a segment, greater will be the total number of segments to process in the
BPE stage. Therefore, minimizing the value of S results in achieving maximum possible
value for NUM_SEGMENTS and thereby increasing the degree of parallelism. Hence, the
segment size S is set to the least possible value of 16.

4.3 Concatenating the output bit-stream buffer

Since each segment is processed independently by different threads, the individual bit-
streams generated by each thread have to be combined to produce the final output bit-
stream buffer. Moreover, since dynamic allocation of the memory is impossible in GPU
address space unlike the reference CPU implementation, the buffers have to be statically
allocated up-front. In order to determine the size of the buffers, it is safe to assume that
the compressed output bit-stream size shall not exceed the input barring the exceptions
of high entropy images such as noise images. The input buffer size for each segment
is S x 64 x 4byte, as each segment contains S blocks and each block consists of 64
coefficients wherein the dynamic range of each wavelet coefficient does not exceed 20 bit.
Hence the output bit-stream buffer size for each segment is also assumed to not exceed this
limit for regular images. This concatenation process is performed on the host side after the
CUDA kernel has completed its execution. Fig. 5 illustrates the process of the generation
of the output bit-stream.

4.4 Optimizations

4.4.1 L1 Cache configuration

The NVIDIA GK104 SMX Kepler architecture offers a 64 kbyte unified memory sub-
system useable as shared memory and also as L1 cache. In general, shared memory is
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configured for 48 kbyte and the remaining 16 kbyte behaves as L1 cache. By virtue of a
lot of local variables in the BPE encoder, it is preferable to have a bigger L1 cache rather
than the shared memory. Also, due to the fact that the input data set could not fit onto the
shared memory, it was decided to use the bulk of the faster memory subsystem to act as
L1 cache. The following CUDA API allows the programmer to set the preference for a
48 kbyte L1 cache.

// Prefer L1 cache of 48 kbyte instead of 16 kbyte
cudaFuncSetCacheConfig(encode, cudaFuncCachePreferLl);

4.4.2 Reduced Global memory accesses
The accesses to the global memory of the GPU is always expensive and keeping this in

mind, repeated accesses to the same global memory variables were avoided by fetching
them only once and efficiently rearranging the dependent computations.

5 Analysis

This section provides the results of the GPGPU implementation of the CCSDS 122.0-B-1
BPE and also compares it with the state of the art reference and FPGA implementations.

5.1 Methodology

5.1.1 Experimental setup

The reference implementation of the encoder shall be run on the state of the art 3.47 GHz
single core Intel® Xeon™ for obtaining a host profile. The state of the art FPGA im-
plementation from [MKJ14] is used for comparative analysis. The GPU used shall be
NVIDIA® GeForce® GTX 670 launched in 2013 as a GPGPU platform to demonstrate
the prototype. In a nutshell, the GPU card contains 7 NVIDIA Kepler GK104 SMX, each
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with 192 CUDA cores to sum up to a total of 1344 cores. Also, the presence of 2048 Mbyte
of global GPU memory ensures a significant storage to fit the large input image data of the
orders of 16 k x 32k pixel words.

5.1.2 Scope

The conformance single spectrum image set specified by the CCSDS 122.0-B-1 standard
[Con07] is used to test the correctness of the encoder. Four images having different pixel
bit depths namely coastal_b4, ice_2kb4, foc and sar are chosen in this paper in order to
have an extensive coverage of the encoder behavior. The encoded bit-streams are validated
by decoding using a reference implementation of the CCSDS 122.0-B-1 decoder on the
host machine. The input raw image data to the encoder and the output bit-stream from the
decoder is checked for bit-wise match to ensure lossless reconstruction of the input image.

5.1.3 Profiling tools

The NVDIA command line profiler nvprof is used to measure the execution times of the
CUDA GPGPU implementation running on NVIDIA GTX 670 GPU. The total execution
time measured includes the CUDA kernel execution time as well as the host/GPU to/from
memory transfers. The Linux clock/time API is used for obtaining the host profile of the
CPU implementation. The FPGA profiling results are obtained using the cycle-accurate
ModelSim™ simulator.

5.2 Impact of image sizes on performance

As already described in subsection 4.2, the parallelism is directly dependent on the value
of the NUM_SEGMENTS. For normal sized images in the order 1024 x 1024 pixels,
the NUM_SEGMENTS is not significantly high to utilize the GPU cores to good effect.
Hence in order to improve the GPU utilization, the input image has to be big enough to
ensure high occupancy of the cores. Therefore, for benchmark purposes, bigger images
are generated by concatenating the entire original image as a linear buffer n times. Thus,
the resultant image obtained is n times the original image size, thereby increasing the
occupancy of the GPU cores by virtue of increased value of NUM_SEGMENTS. Four sets
of images are created for n = 1,4, 16,64 for the performance analysis. Here, n = 1
represents the original image as is. Fig 6 shows that greater the image size is, better is the
achieved throughput.

5.3 Performance Benchmarks

The throughput analysis is performed on the large sized images with n = 64 case on CPU,
GPGPU and FPGA platforms. It could be observed in Fig. 7, that the GPGPU imple-
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Figure 7: Throughput comparison between CPU, GPGPU and FPGA implementations

mentation achieves better throughput than the reference CPU implementation. However,
the FPGA hardware implementation [MKJ14] achieves the best throughput in comparison
with the CPU and GPGPU implementations.

6 Discussion

GPGPUs as the name suggests could be used for general purpose computation and isn’t
tightly bound to the application. GPUs could be used as a platform to run several different
applications at different instants of time. The software programmability of the GPUs of-
fers a high degree of flexibility in terms of application adaptation. GPUs also offer good
backward compatibility. If an algorithm changes, the new software could run on older chip
sets. The current GPU technologies have not proven to be space-qualified and radiation-
tolerant. But, GPUs could easily be used in low Earth orbits and aeronautics.
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7 Conclusion

The high-resolution satellite imaging systems require real-time image compressors on-
board due to limited storage to store uncompressed raw data and/or also to conserve com-
munication bandwidths. Hence it is mandatory for the image compressors to guarantee
high compression throughput in the order of several Mp¥s. GPUs owing to their massive
number of computing cores is investigated as a potential architecture platform to run the
CCSDS 122.0-B-1 image data compression standard in lossless mode. The BPE stage of
the standard was parallelized on GPU to satisfy the high compression throughput require-
ments. The parallelized BPE achieved an average speed-up of 16.718 times the host CPU
implementation. The GPGPU solution is approximately 2.59 times slower in comparison
to the state of the art hardware FPGA solution. This paper explores the possibilities of us-
age of GPU technologies for space applications provided they become radiation-tolerant
and space-qualified in the future.
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Abstract: The Particle-in-cell (PIC) code PATRIC (Particle Tracking Code) is used
at the GSI Helmholtz Center for Heavy Ion Reasearch to simulate particles in circular
particle accelerators. Parallelization of PIC codes is an open research field and solu-
tions depend very much on the specific problem. The possibilities and limits of GPU
integration are being evaluated. General GPU aspects and problems arising from col-
lective particle effects are put into focus with an emphasis on code maintainability and
reuse of existing modules. The studies have been performed using NVIDIA®’s Tesla
C2075 GPU. This contribution summarizes the findings.

1 Introduction

Computer simulations play an important role in physics research to complement or replace
experiments. This contribution focuses on simulations for circular particle accelerators
at the GSI Helmholtz Center for Heavy Ion Reasearch, Darmstadt, Germany. Particle
accelerators are used in physics to investigate the structure of matter. In this particular
application, simulations are used to study the impact of parameter variations on the particle
motion that are not easily measurable. The particle motion is defined by the accelerator
layout as well as interactions between the particles, and is evaluated over space and time.
The simulations are very computationally intensive. Message Passing Interface (MPI) has
been successfully used in parts since 2001, but still long running simulations take hours.

Graphics processing units (GPUs) allow for mass-execution of algorithms on large amounts
of data and are therefore more frequently used for parallelization. The beam physics de-
partment at GSI decided thus to evaluate the use of GPUs in their existing simulations.
The test system contains a 2.67 GHz Intel Xeon X5650 processor and NVIDIA’s Tesla
C2075 GPU that is programmed using CUDA C. The preference for NVIDIA is mainly
motivated by freely available libraries such as cuFFT and cuBLAS. In the studies, the pos-
sibilities and limits of the GPU integration are investigated. Several modifications to the
present algorithms are discussed and evaluated. The result are maintainable parallelized
algorithms that allow for up to six-times faster simulations and will be the basis for future
developments.
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The remainder of this article is structured as follows: Section 2 introduces the general
parallelization aspects of GPUs, Section 3 describes the simulation methods, Section 4
and 5 present the realized modifications and discuss the findings, Section 6 concludes.

2 Parallelization with GPUs

GPUs are massively parallel accelerators originally introduced for graphic processing, but
nowadays also used for general purpose computing. In contrast to CPUs, that execute
different programs sequentially, GPUs execute one program with hundreds of parallel ex-
ecution units. To the developer, the GPU is represented through a logical abstraction layer,
NVIDIA’s Compute Unified Device Architecture (CUDA). The PC is referred to as host,
the graphics card as device. A kernel describes the procedure for a single execution unit
on the GPU and is executed in many threads that each have their own index to access the
data. Threads grouped in blocks are executed together and have a shared memory. Blocks
are structured in grids.

The Tesla C2075 GPU consists of 14 multiprocessors with 32 cores each [NVI09, p. 7]. At
runtime, blocks get assigned to multiprocessors according to their resource usage [KH10,
p- 84]. Blocks are independent to ensure scalability [Farll, p. 86]. Out of one block,
warps of 32 threads get executed in parallel. Several warps are active in a time-sliced
way [KH10, p. 88]. The GPU has different memory types: slow global memory for data
exchange with the host system, fast shared memory for threads within a block, and very
fast registers per thread. Optimal memory usage is essential for improving the speedup.

GPU algorithms can be analyzed treating each thread as a logical processor in the shared
memory model [SK10, p. 66]. Threads in a warp act like a vector computer of the 1970s
and fit in the SIMD category [Farl1, p. 88] in the classification of Flynn [Fly72]. For the
whole GPU, the author follows the view of [KH10] who suggests SPMD (single program,
multiple data) known from MPI, where autonomous processors execute the same program
on different data, which fits to independent blocks on the GPU. Since the exact block
execution is not known here, only single warps are analyzed using the Parallel Random
Access Machine (PRAM) model [J4J92, p. 9 ff.] which is based on the well-known RAM
model [AHU74, p. 5 ff.]. Further statements regarding the whole GPU can be derived, but
must not resemble real measurements.

3 Simulation of the Particle Motion

The simulation model used is shortly described as basis. In accelerators, charged particles
are guided, accelerated and interact with each other through electromagnetic forces. This
Lorentz force can be written as F=q-(7 x B+E ), with ¢ being the charge and T the velocity
of the particle, and B and E the magnetic and electric fields surrounding the particle. The
magnetic field bends and focuses the particles transversally. The electric field accelerates
the particles longitudinally and bundles the beam into bunches [Wil05, pp. 3-4].
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In simulation, particles or larger macro particles are described relative to the synchronous
(ideal) particle sq (see Fig. 1) using a vector with z, =’ as horizontal, y, i/’ as vertical posi-
tional and directional deviation, z as longitudinal positional deviation and v als momentum
deviation [Wil035, p. 76 ff.]. x, y, v are measured in mm, 2, %’ in mrad, v in per-mil. While
particles move through the accelerator, elements like magnets act on them. To track the
particles in the simulation, their movement is realized as matrix-vector multiplication with
magnets being represented as transport matrices.
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Figure 1: Simulation of the particle motion

To simulate the particle interaction, the forces between the particles are discretized on a
grid and then the grid acts back on the particles. Doing so drastically reduces the complex-
ity compared to a full n-body simulation with O(n?). This technique is called Particle-in-
cell (PIC) method and is used since the 1950s for plasma simulations, see [BLOS, p. 3].
The calculation cycle for one discrete time step is shown in Fig. 2. It starts on the right
side with a given particle distribution. Based on the particle density, in the first step the
charge (p) and current distribution (.J) are interpolated on the grid. In the second step (field
solver) the electric and magnetic space charge field on the grid is calculated, which can
be done e. g. with a forward and backward FFT. The electromagnetic field gets integrated
and results in an electrostatic potential [Rei08, p. 173]. In the third step, forces are derived
from the potential, that diffract or accelerate the particles [Rei08, p. 164]. In the last step
(particle pusher) new particle coordinates are calculated based on these forces.
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Figure 2: PIC calculation cycle (see [BLOS])
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4 Particle Tracking and General GPU Aspects

The existing simulation code PATRIC (Particle TrackIng Code) [BFKO06] is a C++ program
developed by the beam physics department and is specific to the research emphasis at GSI.
Here, a simplified version was used that focuses on particle tracking. Since the particle
transport steps in PATRIC (matrix-vector multiplications) take 64% of the time, this step
was ported to the GPU. Particle tracking is memory bound: the compute to global memory
access (CGMA) ratio is only 3 instead of 30 for fully exploiting the GPU [KH10, p. 97].
Therefore memory usage was analyzed. For the up to a few hundred transport matrices, the
faster constant memory is too small, so global memory is used with the keyword const to
benefit from caching. In measurements, the difference to constant memory was negligible.
Particle data is also kept in global memory due to its size. To have neighboring threads
access neighboring data, the array of structures (AoS) was converted to a structure of
arrays (SoA) [Farll, p. 6], with e. g. all *z’ coordinates in one array.

The hypothesis, whether it is beneficial to calculate a single coordinate or a whole particle
per thread, was tested through measurements using a simplified linear optics with 16 trans-
port matrices and 128 turns with 100, 000 particles. One particle per thread with its more
favorable CGMA ratio was faster, resulting in a speedup of 1.18 compared to the CPU
version, see Tab. 1. The versions in brackets highlight noteworthy aspects: host-device
synchronization has hardly any impact, most of the GPU time is spent on calculations as
expected, but — most importantly — data copy takes about 27% of the execution time.

For the number of threads per block NVIDIAs optimal block size calculator [NVI13b]
suggests several possibilities. In measurements, 64 up to 256 threads showed marginal
differences below 1.5%, above 256 threads the execution time slightly went up. So the
number of 256 threads per block was chosen, following also a recommendation by [Far11].

The next goal was keeping particles between transport steps on the GPU to avoid data
transfer, as suggested by [NVI13a]. Methods were added for data copy and for dealing
with lost particles (additional boolean array). To investigate the behavior with varying
problem size, typical number of particles up to 1,000,000 were simulated. For the CPU
version, linear scaling is expected, since the central loops over all particles are of complex-
ity O(n). This is reflected well by the measurements, see Fig. 3. The complexity of the

Table 1: Single transport step on the GPU: speedup of 1.18 with one particle per thread

Version CPU time | GPU time Sum
CPU: Original version 19.04 s — 19.04 s
GPU: Transport step, Thread: Coordinate 1521 s 2.74 s 17.95 s
(Version w/o synchronization) 15.26 s 2.73 s 17.99 s
(Version w/o calculation) 15.16 s 0.43 s 15.59 s
GPU: Transport step, Thread: Particle 15.30 s 0.82 s 16.12 s
(Version w/o data copy) 10.83 s 0.99 s 11.82 s
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Figure 3: Particle tracking on the GPU, speedup of 6

GPU version is reduced to O(2), but data copy imposes additional costs. A positive linear
scaling can be also observed for the GPU version, which shows a six-times speedup and
is faster above 8, 150 particles. Concluding, using the GPU for particle tracking leads to a
good speedup, if the particles are kept on the GPU. However, a comparable measurement
with a GPU with 2 multiprocessors instead of 14 was even slower than the CPU version,
demonstrating that the number of parallel execution units is of course the main factor.

Several questions were addressed using the parallelized version. First, the impact of parti-
cle loss was analyzed. With a maximum thread divergence at 50% particle loss, the GPU
time only increased by 1.5%, because each second thread indeed does nothing instead of
calculations. Thus particle loss can be neglected and no re-sorting of particles is necessary.

Second, floating point arithmetic was examined. Double precision performance has been a
weak point of GPUs in the past. Single precision proved less than 5% faster. Thus double
precision can be kept, as it is necessary for long running simulations.

Lastly, the focus was put on output of intermediate results. While output every 5 turns
(90 transport steps) results in 10.6s for the CPU version and 2.6s for the GPU version,
output after each turn already takes 19s and 4s whereas output after each transport step
leads to 445s and 92s. Thus output should be limited. To reduce the time for data copy,
it was tested to overlap the transport step on the GPU with data copy to the host using
streams. Particle arrays were duplicated and pointer switching was used. Measurements
showed only 5% performance gain. Due to the dominating memory access, not much
can be overlapped and streams do not pay off here. Intermediate results contain calcu-
lated beam parameters, that are used to observe the beam quality and intensity. Instead
of transferring the full particle data back to the host, those calculations can be done di-
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Figure 4: Beam emittance: CUDA vs. Thrust vs. CPU, Thrust slightly faster

rectly on the GPU. As example, the beam emittance was chosen. The rms-emittance
(root mean square emittance, 1o-divergence) as a measure for beam quality describes the
(preferably small) geometric bundling of the beam around the optimal orbit, i.e. beam
width multiplied by divergence, in mm x mrad. For the horizontal plane it is defined as:
ex = /(22)(2'2) — (z2’)? [Rei08, p. 321]. The CPU version was compared to two GPU
versions using CUDA and Thrust. For the CUDA version, data was summed block-wise
using reverse binary reduction and sequential addressing with an atomic update at the end.
Although the complexity per block is reduced from O(n) to O(logn), it is slower, see
Fig. 4. The version using the Thrust library [NVI13c] with thrust : reduce is signifi-
cantly faster and comparable to the CPU version, since Thrust is highly optimzed. It allows
for quick GPU integration, but as the API is limited, the author would not recommend it
for realizing complex algorithms. A noteworthy result is that beam parameter calculations
are possible on the GPU and in the discussed case Thrust is preferable. But since reduction
operations are very expensive on the GPU with hardly any speedup, in general these calcu-
lations should be kept on the CPU despite the extra copy steps. This is also favorable with
respect to many CPU methods already being in existence that do not need to be ported.

5 Collective Effects

The existing simulation code LOBO (Longitudinal Beam Dynamics Simulations Code)
[BFHOO] is also developed by the beam physics department and focuses on longitudinal
effects which are realized as one dimensional simulation. The represented elements are
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the radio frequency cavities with their longitudinal forces. The program e. g. simulates the
particle capture into particle bunches. The simulation of collective effects between the par-
ticles allows to study if the beam becomes unstable. More about the simulations in LOBO
can be found in [ABF12]. Here, collective effects are put into focus for parallelization.

LOBO realizes the PIC algorithm described in Section 3. The particles are represented
as vector with z als longitudinal positional deviation and dp als momentum deviation, the
grids are one dimensional. Every step of the PIC cycle is implemented as separate method.
In the original program, 85% of the time is spent on interpolating the particles on the grids,
4% on moving the particles and only 1% on calculating the space charge fields. Since for
the latter efficient FFT algorithms exist both for the CPU and GPU, the focus was put on
the interpolation steps.

For parallelizing the PIC algorithm using a GPU, two main approaches exist (e. g. [AT12]).
In the first approach, the grid information is updated from each particle, thus as many
memory accesses are necessary as number of particles. Those memory accesses have to
be synchronized, which is the main effort of this approach. In the second approach, the
grid information is calculated per grid point using sorted particles. Here, only as many
memory accesses are necessary as number of grid points. In this approach the main effort
lies in sorting the particles. Both approaches were implemented and evaluated.

For the first approach, as many threads as particles were used. It is necessary to reset the
grid information and perform a global synchronization before updating the grid, which was
realized with a separate kernel. The concurrent memory accesses were done with atomic
updates. For the CPU version, again a linear behavior is expected. For the GPU version the
atomic updates of the grid data are expected to be resource-intense. As shown in Fig. 5 the
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Figure 5: Collective effects: Interpolation step with atomic updates, speedup of 1.19
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GPU version has a small speedup of 1.19 and is faster above 170, 000 particles. A more
detailed look at the runtime performed with 250, 000 particles shows, that nearly 70% of
the GPU time is spent for interpolating the particles on the grids. Compared to 12% for
the particle push it is obvious, that the concurrent write access is indeed the bottleneck.

To identify, how the grid size effects the runtime, different measurements with typical
grid sizes were performed. For the CPU version a linear correlation between grid sizes
and runtime can be observed. The same exists for larger grid sizes on the GPU. That
the runtime does not decrease any further below 256 grid points can be attributed to the
relatively high number of concurrent write accesses for smaller grids.

Table 2: Collective effects: Comparison of grid sizes

Version / Grid Size 256 512 1024
CPU version 13.49 s 27.44 s 56.74 s
GPU version 22.38 s 24.81 s 53.16 s

The implementation with atomic updates offers only a small benefit compared to the CPU
version and depends strongly on the particle numbers and grid sizes. The GPU version can
only be recommended beyond 170, 000 particles and 512 grid points.

The second version, where particles are sorted after each particle push according to their
mapping to grid points allows to treat the grid points separately. An additional array keeps
the necessary mapping information for each particle. As many threads as grid points are
needed. Each thread updates the left and right grid point and works with all particles in
between. Additional arrays keep the information per thread about the start index, stop
index and number of particles it has to interpolate. Update of grid points is done with 2 - k
atomic updates, where k is the number of grid points. Much less update operations are
needed, since the number of grid points is typically 1-2 orders of magnitude smaller than
the number of particles. Sorting of the particles is the major effort here and was done using
the Thrust functions thrust: :sort_by_key and thrust: :lower_bound.

Unfortunately this implementation proved to be eight-times slower than the CPU version.
This can be explained with several aspects: the number of total threads is quite low, and
also no measures were taken for load-balancing between the threads. This prevented an
optimal utilization of the GPU. It is no surprise that sorting is indeed very resource-intense.
Much more effort would be needed to optimize the sorting before further following this
approach. Additionally, measures should be taken to subdivide the particles and to use
more threads for a better GPU saturation, but this implies more synchronization points.

The implemented version for the GPU with pre-sorting was too slow and would need much
more adaptation to become more comparable with the CPU-based version. The version
with atomic updates already showed a slight benefit compared to the CPU version. Also
atomic updates are better supported with each graphics card generation, and it is expected,
that they will become faster in the future. Thus it is recommended to use this version as
basis for future developments.
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6 Summary and Outlook

The possibilities for parallelizing the existing particle simulations PATRIC and LOBO
with GPU programming have been studied. Based on a simplified version of PATRIC, a
six-times speedup could be achieved for the particle tracking with one particle per thread
and while keeping the particles as long as possible on the GPU. This good acceleration is
possible, since each particle can be treated independently.

The effect of outputting intermediate results was measured and it was found that it should
be limited to a minimum. Overlapping with streams showed no performance gain, since
the ratio of calculations to memory accesses is very small. Beam parameters were cal-
culated on the GPU for which the highly optimized Thrust library should be preferred
over self-written code. But since no performance gain was observed, the beam parameter
calculations can be kept on the CPU to benefit from the reuse of existing routines.

Thread divergence due to particle loss and single vs. double precision floating point per-
formance were evaluated and resulted in only 1.5% and 5% performance loss. Therefore,
no further measures have to be taken. Especially, the double precision code can be kept.

Based on a version of LOBO, possibilities for parallelizing collective effects have been
investigated. The step of the PIC calculation cycle that interpolates particles on the grid
is hard to parallelize with the competing write accesses on the grid as bottleneck. Two
approaches followed in other research have been implemented and compared. The version
with atomic updates showed a slight benefit compared to the CPU version and will be fol-
lowed further. The version with pre-sorting of particles was too slow, since the possibilities
of the GPU could not be exploited well.

Concluding, the usage of GPUs for particle simulations can be recommended. For well
parallelizable problems, a good performance gain can be expected. Tracking was realized
with a six-times speedup. For calculations over all particles or the synchronization of many
threads, the use of the GPU is limited. But with even a small speedup of 1.19 for collective
effects, simulations that combine both aspects can also profit from GPU integration.

While this study concentrated on the GPU, hybrid environments become popular also for
PIC algorithms [Dec15]. With the findings it can be suggested for mixed MPI/GPU code
that each node should at least calculate 10,000 particles for tracking and 200,000 for
collective effects. Since the typical number of particles here is up to 1 million, the effort of
developing and maintaining hybrid code has to be carefully weighted against any speedups.

In general, GPUs offer good opportunities for parallelization without the need for special
parallel computers. Since programming APIs are not yet unified, adaptation effort might
arise in the future. For smaller projects, the author suggests to develop not too specialized
but instead more algorithm-focused, maintainable code. The tendency of bigger projects to
develop specific libraries for GPU integration is no option here. However, libraries could
be used, if they were publicly available. Future generic APIs that hide even hybrid parallel
architectures and allow for less hardware-oriented programming would be most preferable,
as suggested in [B* 12]. For the GPU hardware, the trend towards further integration with
the CPU will remove the need for data copying. With data copy being a major bottleneck,
particle simulations can benefit from that in the future.
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Abstract: Rapid development of the Field Programmable Gate Array (FPGA) offers
an alternative way to provide acceleration for computationally intensive tasks such as
digital signal and image processing. Its ability to perform parallel processing shows the
potential in implementing a high speed vision system. Out of numerous applications
of computer vision, this paper focuses on the hardware implementation of one that is
commercially known as Automatic Number Plate Recognition (ANPR).Morphological
operations and Optical Character Recognition (OCR) algorithms have been imple-
mented on a Xilinx Zyng-7000 All-Programmable SoC to realize the functions of an
ANPR system. Test results have shown that the designed and implemented processing
pipeline that consumed 63 % of the logic resources is capable of delivering the results
with relatively low error rate. Most importantly, the computation time satisfies the
real-time requirement for many ANPR applications.

1 Introduction

In recent years, the significant evolution of computer vision can be seen as it is making
its way into an increasing number of application domains. The research and development
in the field of computer or machine vision has defined methods for processing and ana-
lyzing images from real world to provide human capabilities of understanding images to
machines and robots. There is a strong and growing demand for computer vision sys-
tems in the automotive domain. Intelligent cars that are available in the market nowadays
are equipped with various camera-based driver assistance systems such as lane detection,
night view assist, pedestrian detection and traffic sign recognition [Gr13].

These applications are required to work reliably in a b4

large range of lighting and climatic conditions and @
to process a very high frame rate video signal in
real-time. Besides those above-mentioned appli-
cations, the Automatic Number Plate Recognition
(ANPR) is also one of the computer vision appli-
cations that is widely used in the automotive do-
main. However, it is better known as a surveillance
technology rather than a driver assistance system.
Vehicles are usually identified by their registration
number which are easily readable by humans. But for machines, a plate number is a grey

Database

Figure 1: System Configuration for
ANPR on FPGA.
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image defined as a mathematical function that represents light intensity at a certain point
within an image [Ma07].

The main objective of this paper is to develop a framework of embedded components for
custom computer vision applications that run on a reconfigurable hardware and operate in
real-time. The proposed framework was customized for an application in the automotive
domain. The ANPR application is implemented on FPGA as illustrated in Figure 1 which
is suitable for a wide range of applications. The application is constructed using basic
computer vision and image processing algorithms. Various hardware cores are developed
for each algorithm that later can simply be reused by other vision applications.

The paper is organized as follows: Section 2 gives overview of the related work to this pa-
per. Section 3 describes the proposed methods for license plate detection and recognition.
Section 4 reveals the architecture of each processing block. Section 5 presents the testing
procedure and analysis of the implemented license plate detection and recognition system.
Finally, Section 6 summarizes the whole work that is done so far and concludes the work.

2 Related Work

In this paper we investigate employing FPGA to implement a framework for computer
vision and specifically for automatic license plate recognition. The most common ap-
proaches applied to detect the license plate within an image are the combination of edge
detection and binary morphology as explained in [SGDO06]. The detection rate with this
method is highly affected by the quality of the image. They are based on the assumption
that car plates have strong edges that will survive strong filtering. Unfortunately, this is not
very effective for urban environment. License plate detection and segmentation algorithm
with histogram projection as proposed in [As13] and [Hs09] is found to be challenging es-
pecially when the image contains a lot of details in the background. Defining the threshold
value require a few steps of mathematical calculation and the process of finding the peak
may introduce some delay in the processing. A simpler approach that produces satisfac-
tory result is by using greyscale morphology that is already used in [Iw] and [Od]. Optical
character recognition (OCR), that is normally used to translate images of handwritten text
into machine encoded text, is applicable for the recognition of license plate characters. The
work in [ZDF10] divides a handwritten character into several rectangular zones to obtain
a 13-element feature vector. Each element represents the number of foreground pixel in
each defined zone. In [SDR12] a similar method is used to divide a 32 x 32 pixel charac-
ter image into 16 zones. The authors have proposed eight directional distribution features
which are calculated for each zone. Three different classification methods, which are ar-
tificial neural networks (ANN), support vector machine (SVM) and k-nearest-neighbour
(KNN) are used to recognise the characters.

Some of the methods and algorithms described above can be combined and implemented
on embedded hardware platform. For example, license plate detection and recognition on
an embedded DSP platform was introduced in [ALBO7]. The total processing time, be-
ginning from image acquisition until character classification requires 41.35 ms. Another
implementation of plate localisation on Xilinx Virtex-4 was described in [ZBR11] and is
capable of processing one image in 3.8 ms and it consumes less than 30% of the on-chip
resources. No recognition stage was presented in that work. A complete ANPR system is
implemented on FPGA in [Je13]. The system utilizes 80 % of the Xilinx Virtex-4 LX40 re-
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sources and is capable of processing a standard definition image (640 x 480) in less than 10
ms. Algorithms for license plate detection are also developed in [TKAO7] using Handel-C
and then translated into Verilog HDL with Celoxca’s DK4 to implement on Virtex II Pro.
Performance comparison between the software and the hardware implementation is stated
at the end of the paper. The resource utilization for their hardware implementation is about
2 to 3 times more than the work in [ZBR11] and yet requires longer processing time for an
input image with a smaller resolution. However,their results show that the same algorithms
execute 4 times faster with the hardware than the software.

In this paper we adopted some of the listed methods and algorithms to design and im-
plement a pipelined processing system for computer vision on a reconfigurable hardware.
The proposed work presents hardware modules for various morphology based filters, along
with connected component analysis and k-means classifier. These components are ar-
ranged in a single pipeline for ANPR. These components are designed to be easily used in
various computer vision applications.

3 Proposed Algorithm

In this section we propose an algorithm for ANPR. The input to the algorithms is a frontal
image of the car as shown in Figure 2a.

(b) Grey-Scale (c) Morph. Closing

(e) Binary Output (f) Morph. Cleaning (g) Cleaned Output (h) Bounding Box

Figure 2: Output of Various Processing Stages (Actual Output of the Hardware System)

3.1 License Plate Detection
3.1.1 Top-Hat Filtering

The input image is converted to grey-scale (Figure 2b). Several stages of mathematical
morphology are chosen to locate the license plate of the vehicle in the image. Firstly,
the closing operation with a structuring element of 7 x 7 pixel is applied to erase the
characters of the license plate (Figure 2c). When image subtraction is performed between
the resulting image and the initial grey-scale image, an image as shown in Figure 2d is
obtained. This operation is known as black Top-Hat morphology. It returns an image
containing objects or elements that are smaller than the structuring element and darker than
their surroundings. Since European license plates mostly have white background and the
characters are black in colour, they will remain as foreground objects in the output image.
A binary image (Figure 2e) is obtained from the Top-Hat image by using thresholding.
3.1.2 Background Cleaning and Plate Segmentation

Grey-scale morphology is applied to the top-hat image to find the region that contains the
vehicle license plate. The license plate location can be detected roughly with a closing
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Figure 3: Bounding Box for Each Character. Figure 4: A letter "K” is di-
vided into 8 zones.

operation. The structuring element for this operation has a size of 1 x 45 pixel. The
length is chosen such that it has at least twice the length of a license plate character. After
that, unwanted elements that does not belong to the license plate area are removed by
using morphological opening with a rectangular structuring element 15 x 25 pixel (Figure
2f). The resulting image contains several light areas, and the area of the license plate
appears to be lighter than others. Thresholding is applied to produce a binary image that
maintains the license plate area and suppresses the darker regions (Figure 2g). Finally,
binary morphology dilation with a structuring element of 5 x 5 pixel is applied to enhance
the edges of the binary image. Plate segmentation is performed by applying the connected
component labelling algorithm to distinguish these regions. A bounding box algorithm is
applied to find the rectangular boundary that encloses each region.

3.2 License Plate Recognition
3.2.1 Character Segmentation

The process of finding characters on a license plate is actually the same as finding the
license plate in the input image. Connected component labelling is applied to give a label
for each character and a bounding box that encloses each character is defined so that it can
be segmented from the image and sent to the recognition (classifier) unit. The bounding
box that encloses a detected object must have a minimum width and height to distinguish
between characters and noise. The result of character segmentation is shown in Figure 3.

3.2.2 Feature extraction

An image of a license plate character is partitioned into 8 zones (Figure 4) and the num-
ber of foreground pixels in each zone (pixel density) is calculated. Thus, an image can
have a feature vector of at least 8 elements. Additionally, several types of edges of each
extracted character can also be determined to produce a feature vector of the character.
There are 14 different types of edges (Figure 5)

and the number of occurrences of each type is E E E w E E u
calculated for each zone. Combined with the
pixel density of each zone a total of 72 ele- Ei Eﬂ El m E ﬂ E

ments in the features vector of each character
is calculated.

3.2.3 Character Classification

The detected characters are classified using a

simplified k-means clustering algorithm. For each alphabetical character, at least 5 sample
images are taken and a feature vector is extracted from each image. A mean vector for
a character is determined by using the extracted feature vectors. Each mean vector is
stored in a database which is used for the classification task. There are 36 types or classes
of characters that the designed vision system must be able to recognize (26 alphabetical
characters + 10 numerical digits).

Figure 5: Edge Types in Feature Extrac-
tion
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4 Implementation

In this section we present the details of the proposed architecture. Each component is
modelled using VHDL and simulated using Xilinx ISE development tools from Xilinx.
The target device is Xilinx Artix-7 architecture. The design is assumed to stream the
image data pixel by pixel in every clock cycle which makes it suitable for streaming data
from various image sources such as cameras.

License Plate Detection and Recognition

Detection Unit Recognition Unit

Feature Character
Pre License Plate Character i Classification
Processin Segmentation ion|
g | ,[>ed Feature {\Cha_r.acte‘rm | ass

‘ lass
|
|

Input imag

Figure 6: The Architecture of the Processing Pipeline

4.1 Complete Processing Pipeline

The complete processing pipeline shown in Figure 6 is composed of two main parts. The
first part is the detection unit, which is composed of the pre-processing and the license
plate segmentation units. It receives a stream of input images in RGB format and produces
a binary image of a license plate. The second part is the recognition unit that receives
the binary image and performs character segmentation in its first processing stage. Two
license plate character images are segmented simultaneously. Therefore parallel execution
of character classification is possible.

4.2 License Plate Detection Unit

In this stage the position of the license plate is detected using a series of morphological
operations and connected component labelling as explained earlier. Two main units in this
stage: the pre-processing unit, and segmentation unit.

4.2.1 Image Pre-processing Unit

During the pre-processing stage (Figure 7), the grey converter unit prepares a grey-scale
image to the black Top-Hat unit by converting the colour space of the RGB image. The
background cleaning and thresholding of the resulting image of black Top-Hat morphology
are executed in parallel. This processing unit will produce two different output images
similar to that are shown in Figure 2e and Figure 2g.

Morphological Filter:The architecture for grey-scale morphology is based on the design
in [Ball]. For a rectangular structuring element, efficient separable implementations are
applicable as shown in Figure 8. The implementation of this architecture allows users
to select between various morphological operation and structuring elements sizes using
a configuration word. Additionally, the length of the row buffer, which is implemented
using block RAM can also be adjusted via the configuration word. To implement opening
and closing, the proposed architecture must be duplicated and ordered accordingly.

Top-Hat Filtering: The Top-Hat filter is performed by subtracting the grey-scale image
and morphological image . The architecture of a separable morphological filter with struc-
turing element 7 x 7, explained in the previous section, is instantiated twice here. One is
used as dilation and the other as erosion. The architecture for the FPGA implementation
of the Top-Hat transform is shown in Figure 9.
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Figure 10: Background Cleaning Unit

Background Cleaning: The background cleaning consists of two morphological opera-
tions, which are opening and closing. The morphological closing is done with a horizontal
filter, which has a structuring element of 1 x 45, whereas the opening is done with a normal
rectangular structuring element of 15 x 25. Additionally, it also contains a global thresh-
olding unit and a binary morphology, which is used to dilate the resulting binary image
from the previous processing stages. The processing pipeline for the background cleaning
is shown in Figure 10. The architecture shown in Figure 8 is employed in all stages.

Connected component labelling

Pixel label

Input
Pixel stream

r

Merger table
(Block RAM)

Labelling

Chain
H Merger control ‘4—»{ s

Figure 11: Connected Component Labelling Unit
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Figure 12: The Bounding Box Module

4.2.2 License Plate Segmentation Unit

Connected Component Labelling: Connected component labelling is a commonly used
algorithm segment images based on the neighbourhood of pixels. Connected component
labelling gives a label to every group of pixels that are neighbour to each other. The
algorithm requires at least two passes to process pixels. A modification for connected
component labelling is introduced in [MBJOS] that provides a single pass algorithm that
eliminates the need of frame buffering and significantly reducing the latency. A simpli-
fied block diagram of the developed unit based on the single pass connected component
labelling is shown in Figure 11. The neighbourhood context within a window of the size
2x2 provides the labels of the adjacent pixels to the current pixel. Unlike the architectures
proposed in [MBJ08] and [JBO8], the neighbourhood pixel labels are stored in registers
A, B and C. These are shifted with every clock cycle as the window is scanned across the
image. The merger control block updates the merger table when two objects are merged
and handles new labels.

Bounding Box:Figure 12 shows the implementation of the bounding box processor for a
binary image that contains multiple labels. Compared to other segmentation algorithms
such as watershed and Hough transform, it provides low processing and computation cost.
When the first pixel of an object is detected, the coordinates of that pixel is loaded into
Tmins Tmazs Ymin a0d Ymar. The y-coordinate of the following object pixel is stored into
the Y,qz- The current x-coordinate is compared with x,,;, and x,,4.. At the end of the
frame, the four registers indicate the extent of the object pixels within the image [Ball].

4.3 License Plate Recognition Unit

Characters in the license plate are segmented using the same method used in plate segmen-
tation. The image of each character is processed by several modules to extract features that
will be used for character classification.

4.3.1 Feature Extraction Unit

Zoning Unit: The character sub-image is divided into eight zones as shown in Figure 4.
Zoning of a character image is possible when its width and length are known. These
parameters are calculated during the segmentation of a character using bounding box. The
borders that define the zones can be calculated by dividing the width and height by 2 and
4 respectively.

75



f

Row buffer

Output
pixel stream

[i]

Input
pixel stream

Figure 13: Edge Matching Unit

Edge Matching Unit: As explained earlier, there are 14 types of edges that an image
can have. Each type is detected using the circuit shown in Figure 13. The coefficient of
each field is initialized in registers cl to c4 via a configuration word. The row buffer is
used to store the previous row of the image. The result of the comparison will switch the
multiplexer that selects the operand for the adder. If an edge match occurs, the register that
stores the number of detected edges will increment. It will be reset when a new character
image is received.

Feature Extraction Unit:As explained in section 4.3.1, a character image is divided into
eight zones. Therefore, feature extraction is done for each zone instead of the whole im-
age. The hardware architecture for feature extraction of a character image is implemented
according to Figure 14. The zone selector acts like a demultiplexer that receives a zone
number from the zoning unit and enables a corresponding zone. Each zone will produce
a feature vector that contains 9 elements. Therefore, the architecture will produce a total
number of 72 feature elements for a character.
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Figure 14: Feature Extraction Module.

4.3.2 Classification Unit

The classification algorithm requires a database that stores the mean vector for each license
plate character. Entries of this database are stored in array of registers. The classification
unit includes 36 arrays for each class. The absolute error between a feature vector and each
mean vector is determined by doing element-wise subtraction of the feature vectors. The
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sum of absolute error is calculated by simply adding up all the elements in the error vector.
Pairwise classification algorithm is used in this case, where two errors are compared at
the same time. The pairwise classification unit is implemented as shown in Figure 15.

f———>Error out
5 Results 1
The implemented processing pipeline is tested E —
with several images containing frontal view of Erorin
cars. A test-bench that is created that reads an hsein2 [ Gl

image and send it to the processing pipeline.
The test-bench simulates a video stream, with
standard video frame rate that can be adjusted
in the test-bench. The pipeline will process the video stream and produce the output image
of each processing stage. These images will be written as a bitmap file by the test bench
for debugging purposes. The license plate characters are given out at the other end of the
pipeline. Xilinx ISim simulator 14.5 was used to perform all types of simulations, both
behavioural and timing as well as synthesising the design.

Figure 15: Pairwise Classification Unit

Execution Time (ms) Accuracy
Processing stage Proposed Sys. | FPGA Sys.[Je13] | DSP Sys. [Je13] || Proposed Sys. | FPGA Sys.[Je13] | DSP Sys. [Jel3]
Platform- Resolution Zynq 7020 Virtex 4 LX 40 ARM-DSP-Soc 640 x 480 640 x 480 1920 x 1080
Pre-processing 6.012 4.7
License plate detection 0.12 0.11 90% 97% 97%
Character segmentation 0.0203 1.4
Character recognition 0.0204 0.7 83.3% 97% 97%
Total 6.1727 6.91 71.35

Table 1: Performance and accuracy results
5.1 Detection, Recognition, and Performance Results

If the FPGA is set to operate at maximum clock frequency to process an image with VGA
resolution, license plate detection can be accomplished in less than 10 ms. This should
satisfy real-time processing requirement of any ANPR application, especially for the de-
tection of fast moving cars on a highway. The processing pipeline manages to achieve
a plate detection rate of 90 % and recognition rate of 83 % as shown in Table 1. The
pre-processing stages (morphology operations plus the connected component analysis)
consumes 97% of the total time required by the system to process a single frame. The
proposed architecture outperform the FPGA architecture presented in [Je13] in terms of
processing time per-frame (Table 1). In addition, the architecture proposed in this paper
is fully pipelined. This means that we can achieve higher throughput for a video stream.
The DSP implementation presented in [Jel13] is operating on Full-HD resolution which
will require more time to process (71.35ms). However, the proposed architecture can be
simply modified for Full-HD resolution, with minimal effect on the performance. Another
advantage of the presented work is that it does not employ any off-chip resource which is
not the case in [Jel3]. The work presented in [Je13] presented a higher accuracy. This is
due to the fact that ANN is employed for the classification stage. The simplified K-means
algorithm employed in this paper requires larger training database which can be used to
increase the accuracy of the system.
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Device utilization y (xc7z020-1-clg484)
Number of Slice Registers: 8456  out of 106400 7%
Number of Slice LUTs: 33975 outof 53200 63%
Number used as Memory: 88 outof 17400 0%
Specific Feature Utilization

Number of Block RAM/FIFO: 127  outof 140 90%
Number of BUFG/BUFGCTRL/BUFHCEs 4  outof 104 3%
Number of DSP48E1s: 3 outof 220 1%

Table 2: Device utilization summary of the processing pipeline.
5.2 Resource Utilization and Implementation Results

A detailed logic utilization is listed in Table 2. The processing pipeline has a maximum
operating frequency of 57.823 MHz. Multipliers are only used for translating pixel co-
ordinate memory addresses. Block RAMs are mostly used as row and frame buffers for
morphological filtering, license plate and character image segmentation. Figure 16 sum-
marizes the resource allocation to every stage of the processing pipeline. The classifier
takes almost half of the on-chip resources due to the large adder trees used to calculate the
sum of absolute errors. Other components that mainly use block RAM for their task such
as plate detection and character segmentation requires only 2 %. Compared to the work
presented in [Je13], 80% of the Virtex-4LX 4M gate FPGA were consumed to build com-
plete ANPR system. The Zynq 7020 chip employed in this paper has smaller size and only
63% of the resources were consumed which allows more customization of the pipeline.

Classifier

6 Conclusions

In this paper, a processing pipeline for
the license plate detection and recogni-
tion system has been designed and imple- | G sgmenasn.
mented on an FPGA. It consists of two

main parts which are assigned for license
plate localization and license plate charac-
ter recognition respectively. Most of the
on-chip resources are allocated to the li-
cense plate recognition part to make it ca-
pable of processing multiple characters in parallel. The pipeline has been designed to be
highly reconfigurable so that it can be ported to another FPGA device that offers more
logic resource. According on the test results, the morphological approach is proven to be
very effective for the license plate detection task with accuracy up to 90%. The classifica-
tion with k-means clustering also proves to be reliable with accuracy up to 83%. Parallel
execution of the recognition unit reduces the computation time which allows the proposed
architecture to process a single frame in approximately 10 ms. The pipelined operation of
the system can be used to hide this latency and increase the frame rate. The processing
pipeline can be customized to improve the flexibility of the vision system and to support
other applications.

46%

Feature extraction

Pre-processing

Unused

Figure 16: Resource Allocation for Each pro-
cessing Stage.
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Abstract: The transformation of sequential legacy code to parallel applications is
hard, especially when timing requirements have to be met. There exists a systematic
parallelization approach dealing with this topic. Based on practical experience, we
extend it and present our modifications. Our extensions comprise an additional phase
dealing with implementation details and another one for quality assurance. Its results
may be used to further improve the parallel program. Moreover, we propose tool
support which further facilitates the parallelization process.

1 Introduction

It is hard to parallelize a sequential legacy program [MBCI11]], especially when it has to
meet hard real-time requirements. These programs have to finish their execution within
a specific time interval (deadline). This is assured by estimating the worst case execution
time (WCETf] [WEE™08].

The parallelization approach by Jahr et al. [JGU13b,JGU13a] was developed for the par-
allelization of legacy sequential hard real-time applications. It was applied on several
industrial applications in the parMERASA project [UBG™ 13, [UBG™ 15]. Following this
experience, we extend the approach. Our modifications are an additional phase for im-
plementation and another one for checking functional and timing constraints. Since Jahr
et al. do not describe any supporting tools and it seems that everything has to be done
manually, we give a brief overview on existing and planned tools we propose for assisting
the parallelization.

The structure of this paper is as follows: the next section presents related work and
the original approach. In section [3] we describe our extensions. Supporting tools are
characterized in section 4 Finally, the paper is concluded and an outlook is given in
section[3l

The execution time which might occur when running the longest possible path in the program. For applications
without real-time requirements, the execution time is also an applicable measure.
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2 Related Work and the Original Approach

Well-known parallelization approaches in high-performance computing are the parallel
pattern language by Mattson et al. [MSM04, MMSO99] and the PCAM approach by Fos-
ter [Fos95]]. Inspired by those, Jahr et al. introduced a pattern-supported parallelization
approach [JGU13b|, which we focus on. It is platform independent and applicable for hard
real-time systems [JGU13a]. In the remainder, we will refer to it as Jahr-approach.

This approach mainly consists of two phases which are called Reveal Parallelism and Opti-
mize Parallelism. In the first phase (Reveal Parallelism), the transition from the existing
source code to a model takes place, which is an extended UML2 activity diagram called
activity and pattern diagram (APD). The phase is characterized by extracting segments for
parallel execution and creating an APD with a high degree of parallelism. Thereby, the
usage of the operators fork and join is not allowed anymore. Instead, an additional type of
activity node is provided which represents parallel design patterns (PDPsﬂ These PDPs
are the only way to introduce parallelism to the program. They are taken from a pattern cat-
alogue. In the parMERASA project, a pattern catalogue containing only timing-analysable
PDPs was assembled [[GJU13|]. Thereby, if the sequential program is timing-analysable and
only these timing-analysable PDPs are utilized to introduce parallelism to the program, the
resulting parallel program will also be timing-analysableﬂ [JGU™14]. As a further basis for
the second phase, the WCETSs of the individual segments have to be determined and the
dependencies between them are collected.

The goal of the second phase (Optimize Parallelism) is to optimize the APD for the target
platform and implement the changes in the source code. At the optimization, several
optimized APDs form a Pareto front in terms of minimizing their overall WCET and
number of threads as well as the number of shared variables to be synchronized. Thereby,
the overall WCET estimation is composed of WCET estimations of the code segments
extracted in the first phase. These segments represent sequential sections in the input APD.
The optimized APDs are generated by re-arranging the segments. Synchronization between
the segments may only be estimated. One of the APDs from the Pareto front has to be
chosen and is basis for implementing the parallel code. An example of a generated Pareto
front can be seen in Figure|l} It shows the relation between several APDs in terms of their
overall WCET and the number of applied threads. While the Jahr-approach does not go
into detail at the implementation, we extended the approach with a third phase dealing with
the implementation, see details in section E}

In the parMERASA project [UBGT 13|, the Jahr-approach was applied successfully in
automotive, avionics [PQnZ™ 14| and construction machinery [JEG™ 14| JEGU14] domains.
Four legacy hard real-time applications were considered: motor injection, collision avoid-
ance, stereo navigation and the control program of a foundation crane. All of these appli-
cations were written in C. Parallelization results including WCET speedups are provided
in [UBG™15].

An alternative to our parallelization approach could be automatic parallelization. It is

2PDPs are a textual description of situations where parallelism could be applied.
3The targeted multi-core platform and its corresponding system software has to be timing-analysable, too.
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Figure 1: Optimization for minimal approximated WCET and minimal number of threads. Each x
represents an APD and o are optimal APDs belonging to the Pareto front.

researched e.g. by Cordes et al. [CMMI10] or Kempf et al. [KVP11]. However, these
approaches are limited to specific situations the tools are able to detect automatically.
Situations fitting only roughly will not be taken into account. Therefore, chances for
parallel execution may be missed. However, these tools may be utilized as assistance when
trying to find situations for parallelism in the first phase.

3 Extended Parallelization Approach

Following the practical experience made in the parMERASA project, we extended the
Jahr-approach. Thereby, our goal is to remain platform independent and our extended
approach may also be applied on industrial embedded real-time applications.

Figure|2]illustrates how the extended parallelization approach works: Phase I (Revealing
Parallelism) proceeds like described in the Jahr-approach, which exposes PDPs to facilitate
timing analysis. Therefore, the code has to be analysed according to its data dependencies
and control flow. Based on these analyses, parallel segments of code can be determined
and PDPs applied to build an APD. Furthermore, the parallel segments in code have to be
annotated to get a connection between code and model level.

In the Jahr-approach, the optimization as well as the implementation take place in phase
II (Optimizing Parallelism). For a clear separation of concerns, we split this phase into
optimization (phase II) and implementation (phase III) to focus on their specific issues.
Now, phase II represents the model level, taking the APD of phase I, the WCETsS of the
segments and the list of dependencies as input and computing a set of optimized APDs.
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Figure 2: The four phases of the extended parallelization approach are I. Revealing Parallelism,
II. Optimizing Parallelism, III. Implementation and I'V. Quality Assurance. There is also a refinement
loop with a feedback path from Quality Assurance to Optimizing Parallelism which is utilized to
perform further optimization. Existing tools are underlined and ideas for future tools appear in
parentheses.

Thereby, several variations of APDs are built. The basis for each of them is the input APD,
which obtains a high degree of parallelism. The generation of the models takes place by
turning on and off some of the PDPs of the basis APD. Afterwards, the generated APDs
are evaluated using the estimated WCETs. The results are compared to find an optimal
trade-off between minimizing the overall WCET, the synchronization effort and the applied
number of threads. Finally, one APD variation is chosen from the resulting Pareto front for
the implementation in phase III.

We share the opinion that the implementation is not trivial and should be considered as extra
phase requiring own tool-support. In concrete, this new phase III includes the integration of
synchronization and parallel execution in code. It takes the optimized APD of phase II and
modifies the sequential legacy code according to this model. Therefore, the location of each
PDP in the APD must be identified in the sequential code utilizing the annotations of phase
I. The corresponding code is replaced by an implementation for parallel execution of these
segments. Additionally, all synchronization points have to be identified and implemented
in code. The result is source code executable on a parallel platform. Phase III leads to a
clear separation of the model and code level.

In the original Jahr-approach, there is neither a check whether the deadlines hold in the
parallel program, nor one for the functional correctness. Thus, we see the need of an
additional phase IV called Quality Assurance considering these aspects and to adapt the
parallel program if neccessary. The validation of functional correctness takes place by
comparing the results and a defined set of variables of the sequential and parallel execution.
Thereby, the code coverage is observed to ensure sufficient testing. If functional failures
occur, one has to check phase I and phase III looking for possible mistake The evaluation

“4In phase I, it is only decided which program parts (defined by PDPs) will be executed in parallel. Therefore,
no functional failures may occur.
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of the parallel code’s timing behavior is done by an WCET analysis, which concretely
considers the overhead caused by the interaction of the parallel segments. The new results
can be compared to the timing requirements.

In addition to the four phases there is a refinement loop to enable the optimization of the
parallel code based on the results of phase IV. It enables the step back to model level
(phase II) if the numbers do not meet the expectations (e.g. the WCET is too high). This
loop involves the phases Optimize Parallelism, Implementation and Quality Assurance and
utilizes the quality assurance numbers (mainly the calculated WCET) to gain a more realistic
estimation of the overall WCETs in phase II. Therefore, the WCET and synchronization
estimations of phase II may be updated applying the results of phase I'V. This leads to a
closer estimation of the WCET and possibly some new variations of APDs are suitable for
parallelization. Thus, a new Pareto front can be calculated. Afterwards, an APD with more
realistic estimations can be chosen and implemented.

4 Tool Support

Jahr et al. neither describe any tools assisting the parallelization process, nor how the steps
may be done efficiently. Therefore, we give a brief overview on some tools that support
our extended parallelization approach in this section. The original Jahr-approach as well as
our approach are model-based and therefore platform and language independent. However,
in this section, we focus on tools for the programming language C. Other tools may be
utilized for other programming languages, but also for C. Most of the following proposals
were developed or extended during the parMERASA project [UBG™13]. In all phases,
standard UML tools may be used to handle the APD. Furthermore, the APD is additionally
represented in XML to facilitate the modification of a particular model.

4.1 Tools for Phase I

Several tools were developed by Rapita Systems in their Rapita Verification SuiteE] (RVS)
during parMERASA project, e.g. they provide a dependency tool. It utilizes a trace of a
program execution to show all accesses to shared variables and the order of these accesses.
Additionally, it supports a static mode to just make a list of all occurrences of shared
variables.

A measurement-based WCET tool like RapiTime or a static timing analysis tool like
OTAWA [BCRS11] has to be employed to determine the WCET of the different program
segments.

Unfortunately, until now the code has to be analyzed manually to find situations where PDPs
could be applied. We are currently discussing how this could work semi-automatically. A

SHomepage: |http: //www.rapitasystems.com/ Licence: proprietary; tools for parallel analysis may
not have been released yet. RVS includes e.g. RapiTime, RapiCheck, RapiTask and RapiCover.
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first step could be the segmentation of code into different pieces based on the obtained data
dependencies and existing control structures (conditional blocks, loops, etc.). The extracted
segments, combined with the data dependencies, can be applied to suggest parallel sections.

Furthermore, tools for automatic parallelization may be utilized in an assisting role to find
situations for parallel execution, see [KVP11,|[CMM10] for examples.

4.2 Tools for Phase I1

To facilitate phase II, a speedup approximation and APD optimization tool has been
developed, which is described in [JSK™14]. It is open source and can be downloaded on
GitHulfl The tool takes a XML file (representing an APD), a list of functions and all global
variables accessed by the passed functions. During execution, it applies a genetic algorithm
to find optimized APDs. Finally, we get the Pareto front (cf. section[2).

4.3 Tools for Phase II1

At the implementation, we see potential to generate code (semi-)automatically: First, for
the synchronization of shared variables, mutator methods (get -/ set—functions) may
be automatically generated including the necessary synchronization like e.g. locks or
non-blocking functions (see [Her91, HLMO3]).

Second, we developed a library composed of timing-analysable algorithmic skeletons
(TAS) [SEJU15], which implement PDPs applicable for hard real-time systems [GJU13]].
Thereby, these PDPs are the same as the ones usable in APDs. The library is open source{?]>
a detailed description how to use it can be found in [JSK™14].

Combining the APD (in XML format) with our timing-analysable algorithmic skeletons
(TAS), we have the idea that the skeletons could be automatically placed in code where
PDPs are applied. Therefore, we plan to use the annotations of phase I, which tag the
location of possible parallelisms. Applying the results of phase II, the PDPs may be
switched on or off and a tool replaces the corresponding source code with code calling our
library. Hence, the skeleton library can be seen as basis for a tool that provides support for
implementing parallelization.

4.4 Tools for Phase IV

In this new phase, the functional and timing correctness of the parallel program is analysed.
The static analysis tool OTAWA and the measurement-based tool RapiTime were extended

SHomepage: https://www.github.com/parmerasa-uau/parallelism-optimization/
Licence: GNU LGPL v3
"Homepage: https://www.github.com/parmerasa—-uau/tas/ Licence: GNU LGPL v3
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for the timing analysis of parallel code. These extensions are described in detail in [par14].
Here, we give a short overview on further extensions, which are described in the same
deliverable: RapiCheck allows to check the functional equivalency between the parallel
and sequential program and thus to verify if the parallelization was performed correctly. In
case of a discovered functional failure, the trace viewing tool RapiTask may help to locate
it and therefore to determine the step of the parallelization process where the failure occurs.
Finally, RapiCover provides code coverage functionality to expose how thoroughly the
code is tested. All these tools enable analysis of the resulting code of phase III and can be
applied for measuring the quality of the implemented parallelization (i.e. speedups, holding
the deadlines, constraint checking and code coverage).

The results determined with these tools show the real behaviour of the parallelized program
on the parallel platform. Therefore, they form a good basis for an improved optimization in
phase II.

5 Conclusion and Outlook

We presented an extension of the pattern-based parallelization approach which was origi-
nally introduced by Jahr et al. [JGU13bl, JGU13al]. With the introduction of phase III, more
attention is spent to the implementation. The additional phase for quality assurance checks
the functional and timing correctness. Its results may be employed to iteratively improve
the parallel program.

Although there is not yet a tool available to fully automate the parallelization process or the
revealing of potential parallelism, we gave an overview over several assisting tools:

For phase I, there is a tool finding dependencies and creating a XML file of them. Further
tools exist for timing analysis. We developed a tool for phase II which takes a highly
parallel APD together with the WCETs of the program segments and a list of dependencies
to find optimal APDs. At the implementation in phase III, we suggest using a code
generator for the synchronization functions. Additionally, our algorithmic skeleton library
eases the implementation of PDPs in the source code. We plan a tool to automate this
process. In phase IV, a timing analysis of the parallel program is done which may lead to
further improvements starting from phase II.

Altogether, we plan to further improve our tools and to develop some more tools to enable
a (semi-)automated parallelization with our extended parallelization approach.
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Abstract: Dieser Artikel extrahiert Erfahrungen aus einer Reihe erfolgreicher
sowie gescheiterter industrieller Parallelisierungsprojekte, bei denen Embedded
Realtime Systeme von Single-Core CPUs auf Multi-Core SMP-Plattformen
portiert wurden. Die Kernthese des Vortrages lautet, dass die Parallelisierung von
Embedded Realtime Systemen spezifischen Herausforderungen gegenibersteht,
die bei anderen System-Klassen, wie Server- oder Desktop-Software, nur eine
untergeordnete Relevanz haben. Der Artikel analysiert und kategorisiert diese
spezifischen Herausforderungen. Als Resultat werden allgemeingliltige
Herangehensweisen vorgeschlagen, die zu erfolgreicher Parallelisierung im
Embedded-Bereich fuhren.

1 Einleitung

Heutige Embedded Systeme sind uberwiegend als Multi-Thread Systeme auf einer
Single-Core CPU realisiert. Dies prégt die gesamte Software-Architektur und
insbesondere das Nebenldufigkeitskonzept, welches sich daher einer Migration auf eine
Multi-Core CPU mit einem SMP Betriebssystem widersetzt. Eine SMP-Parallelisierung
wird somit ein riskantes Unterfangen, bei dem das Systemverhalten komplett veradndert
wird. Aufgrund der begrenzten Taktratensteigerung aktueller CPUs und der
Allgegenwart von Multi-Core CPUs ist jedoch die Embedded-Welt gezwungen, diese
uber Jahre gewachsenen Systeme auf Multi-Core Plattformen zu portieren. Typische
Software-Architekturen von Embedded Realtime Systemen basieren auf Annahmen Uiber
das Scheduling-Verhalten auf einer Single-Core CPU und verwenden daher oftmals
Konzepte wie die implizite Synchronisation durch Interrupt-Locks oder die Steuerung
zeitlicher Ablaufe durch Realtime-Prioritdten. Diese Konzepte lassen sich jedoch auf
SMP Systemen nicht nutzen. Embedded Systeme stehen daher vor besonderen
Herausforderungen bei der Multi-Core Portierung. Dieser Artikel analysiert und
kategorisiert diese spezifischen Probleme und présentiert allgemeine Mafl3gaben fiir die
erfolgreiche SMP-Parallelisierung von Embedded Realtime Systemen.

Der Artikel basiert auf der Analyse beispielhafter erfolgreicher sowie gescheiterter
Projekte. Die Auswahl der Systeme spiegelt die typischen und verbreiteten Software-
Architekturen im Feld der Embedded Realtime Systeme wider.
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Die These Uber die spezifischen Schwierigkeiten der Parallelisierung von Embedded
Systemen wird in Kapitel 2 dargelegt. In Kapitel 3 werden drei Beispielprojekte
prasentiert: Die erfolgreiche Parallelisierung eines Systems aus der Energie-
Automatisierung, sowie als Gegenpol zwei teilweise gescheiterte Projekte aus dem
Energie- bzw. dem Telekommunikationsumfeld. An diesen Beispielen werden
Erfolgsrezepte sowie Fallstricke und Risiken solcher Parallelisierungen erkennbar. In
Kapitel 4 werden die spezifischen Probleme analysiert und kategorisiert und die
jeweiligen Ldsungsvorschlage erarbeitet. Kapitel 5 fasst die Losungsanséatze zusammen.

2 These: Probleme der Embedded Realtime Parallelisierung

Die Parallelisierung von Embedded Realtime Systemen im Zuge der Portierung von
Single-Core auf Multi-Core Hardware scheitert oftmals an den im Embedded-Bereich
etablierten  Software-Architekturen. Daher sind spezifische Herangehensweisen
erforderlich, um Embedded Systeme erfolgreich zu parallelisieren. Zwei
Problembereiche sind dabei ausschlaggebend:

1. Architekturen von Embedded Systemen, die uber Jahre auf Single-Core CPUs
entwickelt wurden, basieren oft auf Annahmen {iber das Scheduling-Verhalten, die
implizit voraussetzen, dass die Software sequentiell auf einer Single-Core CPU
abgearbeitet wird.

2. Im Embedded-Umfeld sind aggressive Optimierungen und eine hardwarenahe
Denkweise weit verbreitet. Abstraktionen von Betriebssystemen oder anderen
Laufzeitumgebungen werden oftmals aus Performance-Griinden umgangen.

Diese Problembereiche haben folgende technische und nicht-technische Aspekte:

. Embedded Systeme verwenden, anders als Desktop- oder Server-Software, in
hohem Male implizite Synchronisation durch Interrupt-Locks, diese l&sst sich
jedoch in einem SMP-System nicht nutzen (siehe 4.1).

. In Realtime Systemen wird Synchronisation oft durch Prioritdten von Threads
realisiert, dies lasst sich nicht auf SMP-Systeme (ibertragen (siehe 4.2).

. Ein typischer Embedded-Programmierer mdchte zeitliche Abldufe seines Systems
in allen Details kontrollieren, oft wird dafiir das prioritdtsbasierte Scheduling
missbraucht. Dies widerspricht jedoch der Philosophie eines SMP Betriebssystems
(siehe 4.3).

. Die Denkweise von Embedded-Programmierern ist oftmals sehr hardwarenah.
Dies fiihrt zu riskanten Optimierungen und somit zu schwer zu findenden Fehlern
bei der SMP-Portierung (siehe 4.4).
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3 Beispiel-Projekte

Hier flhre ich exemplarisch drei Beispiele erfolgreicher sowie gescheiterter Projekte an,
um meine These zu untermauern. Die unterschiedlichen Parallelitdtskonzepte, die in
diesen Projekten verfolgt wurden, werden jeweils in einem abstrakten Diagramm
dargestellt, um sie mit einer ,,idealen” SMP-Parallelisierung vergleichen zu kénnen.

3.1  Projekt 1: Hard-Realtime System zum Schutz von Stromverteilnetzen

Dieses auf dem RT-OS (Realtime-Betriebssystem) VVxWorks basierende System, das der
Kontrolle und dem Schutz von Stromnetzen dient, wurde von einem Single-Core PPC
auf einen ARM Dual-Core (Altera Cyclone V SoC) portiert. Ziel der Portierung war eine
signifikante Steigerung der Performance. Das System war schon vor der Portierung in
viele VxWorks Tasks (vergleichbar mit Threads) strukturiert, die nach strengen
Prioritatsvorgaben geschedult wurden. Zwei Herausforderungen standen bei der
Migration im Vordergrund:

1. Ein weitgehendes Erhalten des Laufzeitverhaltens des vorhandenen Systems, um
das Risiko der Migration zu begrenzen.

2. Das Ersetzen der impliziten Synchronisation durch explizite Synchronisation.

Konzept zu Anforderung 1:

Situation: Das System besteht aus einem 10-Thread (,,Input-Output®), der zyklisch
Daten aus der AuBenwelt abholt und im System verteilt, sowie einer Gruppe von BL-
Threads (,,Business-Logik®), in denen Algorithmen ablaufen, die diese Daten
verarbeiten. Die Kommunikation zwischen 10-Thread und BL-Threads erfolgt (ber
Ringbuffer. Das Nebenldufigkeitsmodell im Single-Core Fall stellt sicher, dass die
Algorithmen in den BL-Threads in einer fest vorgegebenen Reihenfolge nach jedem 10-
Zyklus ablaufen. Dieser Ablauf ist auf Basis der Prioritaten des Realtime-OS organisiert.

Problem: Auf einem SMP-System kann durch Prioritaten diese Ablaufreihenfolge nicht
mehr sicher gestellt werden, weil Threads unterschiedlicher Prioritat gleichzeitig auf
verschiedenen CPUs laufen koénnen (,,CPU* und ,Core* sind im Folgenden stets
gleichbedeutend).

Lésung: Die Anforderung, das Laufzeit- und Scheduling-Verhalten méglichst wenig zu
verdndern, hat zu einer Software-Architektur gefuihrt, die weite Teile des Systems quasi
wie auf einem Single-Core ablaufen lasst. Alle BL-Threads sind an Core-0 gebunden,
dadurch verhalten sich diese Threads untereinander so, als liefen sie auf einem Single-
Core. Das Laufzeitverhalten der Applikationslogik bleibt damit weitgehend unveréndert.
Nur der CPU-hungrige 10-Thread wird an den zweiten Core gebunden. Insgesamt fiihren
diese MaRnahmen zu einer ,sanften* Migration, mit relativ geringem Umbau im Code
sowie einer beschrankten Verdnderung des Laufzeit-Verhaltens, da lediglich der
Datenaustausch zwischen dem 10-Thread und den BL-Threads neu organisiert werden
muss.
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Konzept zu Anforderung 2:

Situation: In Embedded Systemen, die auf Single-Core CPUs laufen, ist das sogenannte
implizite Locking durch das Unterdriicken von Interrupts eine weit verbreitete, etablierte
und effiziente Synchronisationsstrategie (siehe 4.2). Im Ausgangsystem wurden Critical-
Sections an vielen Stellen durch die entsprechenden VxWorks APIs fiir Interrupt-Locks
oder Task-Locks synchronisiert.

Problem: Auf einem SMP-System erzwingen Interrupt-Sperren keinen gegenseitigen
Ausschluss (siehe 4.2).

Das Zielsystem verwendet VxWorks 6.9 in einer SMP-Ausprédgung. Hier sind diese
impliziten Synchronisationsmechanismen auch in der OS-API nicht mehr verfligbar. Die
Empfehlung des Betriebssystemherstellers lautet, Interrupt-Locks durch Spinlocks zu
ersetzen und Task-Locks durch Semaphore zu ersetzen. Eine durchgéngige Befolgung
dieser Vorgabe hétte jedoch folgende Konsequenzen: Der massive Einsatz von
Semaphoren hétte das System stark verlangsamt, da der Aufruf eines Semaphors ein
vergleichsweise teuer Betriebssystem-Aufruf ist. Der massenhafte Einsatz von Spinlocks
auf dem Dual-Core hétte das erreichbare MalR der Parallelisierung unnétig stark
begrenzt, da ein Spinlock im Wartezustand die CPU nicht freigibt.

Lésung: Es war somit keine schematische Ersetzung von impliziten durch explizite
Synchronisationsmechanismen maglich. In diesem Projekt wurde daher fiir jede einzelne
implizite Critical-Section untersucht, wie diese effizient und sicher auf das SMP-System
portiert werden kann. Dabei standen die folgenden Optionen zur Verfugung, fir die hier
jeweils ein Beispiel genannt wird:

1. Semaphor: Die Kommunikation zwischen Threads auf unterschiedlichen Cores ist
durch Semaphore synchronisiert.

2. Spinlock: Die Synchronisation zwischen Algorithmen der BL-Threads ist durch
Spinlocks realisiert. Dies kann als problematische Low-Level Optimierung
gesehen werden, weil hier die Eigenschaft der Spinlock-Implementierung
ausgenutzt wurde, sich Core-Lokal wie ein Interrupt-Lock zu verhalten.

3. Lockfreie Datenstruktur: Der Datenaustauch zwischen dem 10-Thread und den
BL-Threads wird Uber eine lockfreie Ringbuffer-Implementierung realisiert, da
dies der performancekritischte Teil des Systems ist. Bemerkenswert ist, dass aus
Performancegriinden selbst die vom CPU-Hersteller geforderten Memory-Barriers
teilweise nicht verwendet werden, weil in Tests kein Fehlverhalten nachgewiesen
werden konnte. Auch dies ist ein Beispiel fiir riskante Mikro-Optimierungen in
Embedded Systemen.

Bewertung: In einem idealen® SMP-Konzept verteilt der Scheduler des
Betriebssystems alle Threads frei tUber alle vorhandenen CPUs, um zu einer optimalen
Auslastung zu kommen. Im Vergleich dazu ist das Nebenldufigkeitskonzept dieses
Projektes mit wesentlichen Einschrankungen verbunden. Der OS-Scheduler ist beziiglich
der Zuteilung der verschiedenen CPUs auBer Kraft gesetzt. In der folgenden
schematischen Graphik werden die Abweichungen vom Ideal deutlich gemacht:
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Abb. 1: Projekt 1 (links) im Vergleich zum "idealen SMP" (rechts)

Das Projekt kann beziiglich des Parallelitditskonzeptes daher nur als ,teilweise
erfolgreich* bewertet werden. Die einfache Migration wurde mit folgenden gravierenden
Defiziten in den nichtfunktionalen Eigenschaften der Architektur erkauft:

1. Die starre Bindung von Threads an CPU-Cores fiihrt zu einer suboptimalen
Performance, da Idle-Zeiten auf einem Core nicht von beliebigen Threads genutzt
werden konnen.

2. Eine solche Software-Architektur skaliert nicht, da z.B. ein Vier-Kern Prozessor
damit nicht ausgenutzt werden kénnte.

3.2 Projekt 2: Parallelisierung einer Soft-Realtime Software fiir Power-Quality

Das hier geschilderte System dient der Qualitatskontrolle und Fehlererkennung in
Stromverteilnetzen.

Die Software dieses Systems lief urspringlich auf einem Blackfin Single-Core unter
dem Betriebssystem pC/OS. Die geplante Dual-Core Migration hatte eine bessere
Performance zum Ziel, die neue Features ermdglichen sollte. In diesem Projekt ist mit
zwei unterschiedlichen Ansétzen versucht worden, die Portierung auf eine Dual-Core
CPU zu realisieren. Der erste Ansatz ist gescheitert.

Im ersten Ansatz war eine Migration auf SMP-Linux und einen ARM Dual-Core mit
folgenden Konzepten geplant:

. Ersetzung der pC/OS Tasks durch Linux P-Threads.

. Restrukturierung des Nebenldufigkeitskonzeptes: Urspriinglich hat eine zentrale
»Schwergewichtige* Task an einem Synchronisationsprimitiv (,,Event”) gewartet,
das viele unterschiedliche Ereignisse signalisieren konnte (dhnlich einem select
Systemcall). Diese Task sollte in viele einzelne Threads aufgebrochen werden, die
jeweils eine spezifische Aufgabe haben.

. Ersetzung der uC/OS Events durch P-Thread Condition-Variable.
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Einsatz der Linux Realtime F&higkeiten, um dem urspriinglichen Realtime-
Scheduling in uC/OS nahe zu kommen.

Ersetzung impliziter ~ Synchronisation durch explizite Synchronisation:
Interrupt-Locks und  AuBerkraftsetzung des OS-Schedulers wurden im
Ursprungssystem fiir die Realisierung von gegenseitigem Ausschluss benutzt. Dies
ware im SMP-Fall nicht mehr mdglich gewesen (siehe 4.1).

Dieser Ansatz wurde nach einem Jahr Projektlaufzeit aus folgenden Grinden verworfen:

1.

Das Nebenlaufigkeitskonzept der urspriinglichen Software basierte wesentlich auf
Annahmen (ber die sequentielle Abarbeitung der Threads auf dem Single-Core,
die gewiinschte Abfolge wurde durch Prioritadten gewdahrleistet. Dies lie} sich
jedoch im SMP-Fall nur schwer nachbilden und hétte grundlegende
Restrukturierungen in der Software-Architektur erfordert.

Die urspriingliche Software war stark an den proprietdren Synchronisationsmitteln
von pC/OS orientiert (Events, Queues). Die Ersetzung dieser Mittel durch auf P-
Threads basierenden Ansétzen (Condition-Variablen, blockierende Queues),
verdnderte die Semantik des Systems und war daher schwieriger als erwartet.

Man hat sich dann in einem zweiten Migrationsversuch fiir eine Hardware- und
Software-Architektur entschieden, die auf den in der Vergangenheit des Produktes
bekannten und etablierten Technologien basierte, um das technische Risiko zu
minimieren. Das System wurde auf einen Blackfin Dual-Core Prozessor portiert, als
Betriebssystem wurde weiterhin pC/OS genutzt, obwohl es dort keine Unterstiitzung fur
SMP auf diesem Prozessor gibt. Daher wurden zwar bestimmte Aufgaben auf den
zweiten Core ausgelagert, sie laufen jedoch dort ohne ein Betriebssystem (,,Bare-
Metal®).

Die schematische Architektur zeigt die Abweichungen vom ,,Ideal* (vgl. Abb. 1):
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Abb. 2: Projekt 2, zweiter Core ohne OS

Bewertung: Dieses Projekt muss unter dem Gesichtspunkt der Parallelisierung als
teilweise gescheitert angesehen werden, weil die gewéhlte Architektur die Vorteile der
Multi-Core CPU nicht effizient ausnutzt. Es wurde weder ein klassischer SMP-Ansatz
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noch ein asymmetrischer aber zumindest betriebssystemunterstiitzter Ansatz realisiert.
Stattdessen wurde eine starre Aufgabenaufteilung vorgenommen, ohne OS-
Unterstltzung auf dem zweiten Core. Dies bringt Performance-Nachteile mit sich, da
auf dem zweiten Core keine weiteren Tasks geschedult werden kdnnen, und es impliziert
ein komplexes Programmiermodell, da die Kommunikation zwischen Software auf
unterschiedlichen Cores nicht durch Betriebssystemabstraktionen unterstiitzt wird.

3.3  Projekt 3: Multi-Core-Portierung einer Telekommunikationssoftware

Dieses Parallelisierungsprojekt bezog sich auf ein Embedded System, das von
Telekommunikationsprovidern genutzt wird, um DSL-Kommunikationsstrecken zu
Endanwendern zu realisieren. Die Software ist komplett innerhalb eines Linux-Kernels
realisiert. Der Grund, die Trennung von Kernel-Address-Space und User-Address-Space,
die Linux anbietet, nicht zu nutzen, sind die Performance-Kosten der Systemcalls, die
auf diese Weise vermieden werden sollen. Das System wurde von einem Single-Core
Power-PC auf eine ARM Dual-Core CPU portiert. Die tber Jahre gewachsene Software
nutzt viele der Nebenldufigkeitsfeatures und Synchronisationsprimitive, die im Linux-
Kernel existieren, was zu einem komplexen Design gefiihrt hat. Der Aufwand dafir,
dennoch bei SMP auf dem Dual-Core ein korrektes Verhalten der Anwendung zu
erzielen, hat sich im Verlauf der Portierung als so hoch herausgestellt, dass schlieflich
auf die Nutzung des zweiten Cores komplett verzichtet wurde. Somit 1auft die gesamte
Software nun trotz vieler Threads auf nur einem Core der Dual-Core CPU.

Schematische Architektur und Abweichung vom idealen SMP (vgl. Abb. 1):
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Abb. 3: Projekt 3, Dual-Core ohne Nutzung des zweiten Cores

Bewertung: Dieses Projekt ist aus Perspektive der Parallelisierung als komplett
gescheitert anzusehen. Grund fiir das Scheitern ist eine Software-Architektur, die die
Abstraktionen eines Betriebssystems nicht wie vorgesehen nutzt, nur um dadurch
kurzfristig einen Performance-Gewinn zu erzielen. Die Architektur war im Single-Core
Umfeld moglicherweise effizient, fir die Dual-Core Nutzung aber nicht mehr tragfahig,
weil sie aufgrund der mangelnden Abstraktion von Hardware und OS zu komplex
wurde. Wére von Anfang an das gesamte Multithreading auf der P-Thread Schnittstelle
des OS aufgebaut worden, ware eine Dual-Core Portierung aussichtsreicher gewesen.
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4 Probleme und Losungen bei der Embedded Parallelisierung

Ausgehend von den oben genannten Beispielen, die charakteristisch fiir die Situation in
der Entwicklung von Embedded Systemen sind, werden nun die wesentlichen
Herausforderungen bei der Parallelisierung im Zuge einer Portierung von Single-Core
Systemen auf SMP-Hardware im Embedded Systeme Bereich analysiert, und es werden
Losungsstrategien dafur vorgeschlagen. Die Probleme haben neben ihrem technischen
Aspekt, der sich mit konkreten Implementierungsstrategien ldsen lasst, oft auch einen
»~Mindset-Anteil”, der sich eher auf Denkweisen oder eine ,spezifische Kultur* im
Embedded Umfeld bezieht. Die folgende Tabelle gibt eine Ubersicht. Anschliefend wird

jedes Problem detailliert behandelt.

Ref | Situation Problem Lésung Beispiel

4.1 | Impl. Synch. Kein SMP Mutex | Nur Expl. Synch. Proj. 1: BL-Blocke
Interrupt-Lock in Anwend.-SW Synchronisation

4.2 | Impl. Synch. Kein SMP Mutex | Prioritéten nie fir Projekt 2: Startup-
Priorititen Mutex nutzen Thread

4.3 | Zeitl. Ablauf Nicht SMP-féhig | Kontrolle an Projekt 1: BL-
via Prioritaten Scheduler abgeben | Reihenfolge

4.4 | Real-Time Komplexitét Datenkapselung, Projekt 1: Linux-
Optimierungen | verhind. Portierg. | OS-Abstraktion Kernel Applikation

4.5 | Tools f. Server | Embedded: z.B. EMB?und Work-Stealing nicht
optimiert traditionelle Para. | MTAPI nutzen in Embedded OS

4.6 | Ausbildung Synchronisation | Gezielte Aus-und | Erfahrungswerte aus
Entwickler Memory-Modelle | Weiterbildung Trainertatigkeit

4.6 | Management: Falsche Planung | Bewusstsein fir Projekt 3: Komplett
Naive Sicht Komplexitat unterschétzt

Tab 1: Probleme der Embedded Parallelisierung
4.1  Implizite Synchronisation durch Abschalten von Interrupts

Situation: Implizite Synchronisation kann definiert werden, als der Schutz einer
Critical-Section auf  Basis von Annahmen (ber das Scheduling-Verhalten des
Betriebssystems. Durch das Abschalten von Interrupts lassen sich die beiden folgenden
Varianten herstellen:

1. Sowohl die Interrupt-Behandlung (ISRs) als auch der Betriebssystem-Scheduler
werden unterdriickt (,,Interrupt-Lock®).

2. Lediglich der Betriebssystem-Scheduler wird unterdriickt, aber die ISRs werden
zugelassen. Dies ist eine sanftere Variante des obigen Ansatzes (,, Task-Lock®).

Diese Art der impliziten Synchronisation ist auf einem Single-Core sehr effizient, weil
sie mit dem Abschalten von Interrupts im Wesentlichen auf Hardware-Ebene realisiert
werden kann. Weder sind teure System-Calls mit Kontext-Switch in den OS-Kernel
erforderlich noch Scheduling-Vorgange des OS, die beispielsweise beim Akquirieren

96




eines Semaphors nétig werden konnen. In Single-Core Embedded Realtime Systemen ist
dieses Vorgehen daher gangige und etablierte Praxis.

Problem: Interrupt-Locks lassen sich nicht in ein SMP-System ibertragen, da sie auf
der Annahme basieren, dass der exklusive Besitz eines CPU-Cores garantiert, dass kein
anderer Code gleichzeitig ausgefiihrt wird. Diese Annahme ist jedoch in einem Multi-
Core SMP-System nicht giltig, da zu dem Zeitpunkt an dem die Interrupts unterdriickt
werden, auf einem anderen CPU-Core bereits der konkurrierende Code ausgefihrt
werden kann.

Losung: Auf implizite Synchronisation durch Interrupt-Locks sollte im
Anwendungscode prinzipiell verzichtet werden. Es handelt sich hier um ein Low-Level
Synchronisationsmittel (z.B. fir Treiber), dessen Verwendung in Anwendungscode auf
mangelhaftes Design hindeutet. Da in Zukunft immer mehr Systeme auf Multi-Core-
Hardware portiert werden missen, sollte auch im Single-Core Fall auf Interrupt-Locks
verzichtet werden, da sie sich nur schwer wieder ausbauen lassen.

Beispiel: Im Projekt 1 waren weite Teile der Synchronisation durch Interrupt-Locks
realisiert. Es war kein schematisches Ersetzen mdglich, sondern jede solche Critical-
Section hat eine spezifische Umbaumalnahme erfordert (siehe 3.1).

4.2 Implizite Synchronisation durch prioritéatsbasiertes Realtime Scheduling

Situation: Prioritatsbasierte RT-OS stellen sicher, dass ein Thread nur von hoher
priorisieren Threads unterbrochen wird. Das wird oft dazu genutzt, eine Art
gegenseitigen Ausschluss durch Prioritaten zu realisieren, indem ein auszuschliefender
Thread gleich oder niedriger priorisiert wird.

Problem: Dieser Ansatz ist nicht auf SMP Ubertragbar, da verschiedene Threads
unabhéngig von ihrer Prioritat gleichzeitig auf unterschiedlichen CPUs laufen kdnnen.
Die Gefahr bei einer SMP-Portierung ist, dass zunéchst kein technisches Problem
sichtbar wird, aber das Systemverhalten trotzdem korrumpiert wird. Dadurch ist diese
Art der impliziten Synchronisation noch heimtiickischer als das Interrupt-Locking.

Lésung: Prioritten in RT-OS sollten prinzipiell nicht zur Synchronisation verwendet
werden. Es sollten immer explizite Synchronisationsmechanismen genutzt werden.

Beispiel: Der Startup-Thread in Projekt 2 startet niedriger priorisierte Threads, die erst
laufen durfen nachdem der Startup-Thread beendet ist. Dieser Ablauf ist im SMP-Fall
nicht gewéhrleistet.

4.3  Organisation zeitlicher Ablaufe durch Realtime-Prioritaten

Situation: Ein typischer Embedded Entwickler ist bestrebt, zeitliche Abldufe innerhalb
der Applikationslogik, wie Abarbeitungsreihenfolgen, Synchronisation und Datenfluss,
explizit zu kontrollieren und vorherzusehen, um so die begrenzten Ressourcen optimal
auszunutzen. Anders als beispielsweise ein typischer Programmierer eines Programmes,
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das in einem Java Application-Server lauft, vermeidet er es, Entscheidungen Uber
Ablaufreihenfolgen einem Scheduler zu Uberlassen. Oft wird das prioritatshasierte
Scheduling daftr missbraucht, diese zeitlichen Abldufe zu organisieren.

Problem: Dies widerspricht fundamental der Philosophie eines SMP-Betriebssystems
oder moderneren Ansatzen feingranularer Parallelisierung z.B. Work-Stealing, dort kann
schon aus technischen Grinden durch Prioritdten keine Ablaufreihenfolge gewéhrleistet
werden. Da zudem ein optimaler Scheduling-Algorithmus ein NP-hartes Problem
darstellt, ist es im Allgemeinen auch aus Perfomance-Griinden sinnvoller, Scheduling-
Entscheidungen einem Scheduler zu (iberlassen, als sie explizit zu manipulieren, zumal
Work-Stealing dem theoretischen Optimum relativ nahe kommt (vgl. [HER] S. 380).

Beispiel: In Projekt 1 realisieren Anwendungsthreads einen Graph von BL-Elementen,
durch den Daten in einer bestimmten Reihenfolge flieRen. Im Single-Core Fall ist diese
Reihenfolge durch Prioritaten garantiert. Im SMP-Fall mussten alle Anwendungsthreads
an einen Core gebunden werden, um den Singe-Core Ablauf zu imitieren.

Lésung: Die Embedded-Welt sollte lernen, mehr Kontrolle an Scheduler abzugeben.
Software-Architekturen sollten entweder mit unterschiedlichen Reihenfolgen umgehen
kénnen, wie z.B. bei einem Server, der eingehende Requests abarbeitet, oder falls
Reihenfolgen wichtig sind, diese explizit programmatisch realisieren und nicht auf Basis
impliziter (Scheduling-)Annahmen. Prioritdten sollten ausschlieRlich genutzt werden,
um zeitkritische Ereignisse vorrangig zu behandeln.

4.4  Riskante Mikro-Optimierungen zur Erfillung von Realtime-Anforderungen

Situation: Die Denkweise von Embedded-Programmierern ist oftmals sehr
hardwarenah. Dies fihrt zu Optimierungen, die sich auf eine bestimmte Hardware
beziehen und die aus Performancegriinden die Abstraktionen eines Betriebssystems
umgehen. Es kommt auch vor, dass bestimmte Synchronisationsmittel, die aus Griinden
der Datenkonsistenz sinnvoll waéren, nicht eingesetzt werden, um die damit verbundenen
Performance-Kosten zu vermeiden.

Problem: Diese Optimierungen basieren meist auf impliziten Annahmen tber HW oder
OS, die im SMP-Fall nicht immer gelten. Dies filhrt zu schwer zu findenden Problemen.

Beispiele: Die Vermeidung von System-Calls in Projekt 3 hat zu einer Linux-Kernel-
Anwendung gefiihrt. Dies hat aufgrund mangelnder Abstraktion die SMP-Portierung
verhindert. Im Projekt 1 wurde die im Ringbuffer beim Lesen formal erforderliche
Memory-Barrier weggelassen, da im Test kein Fehler nachweisbar war.

Loésung: Low-Level-Optimierungen sollten prinzipiell vermieden werden: OS-
Abstraktionen sollten konsequent genutzt werden. Saubere Synchronisation kostet einen
gewissen Teil der Performance, die ein SMP-System liefert. Dies muss bei der
Dimensionierung der HW beriicksichtigt werden. So sollten z.B. Memory-Barriers nicht
explizit im Anwendungscode stehen sondern durch Synchronisationsprimitive ersetzt
werden, denn die Barrier-Semantik ist sehr subtil und CPU-spezifisch und daher sind
Memory-Barriers nicht naiv einsetzbar und nicht risikolos portierbar (vgl. [ARM] A 3.8
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»Memory access order“ und [INT] 8.2 ,,Memory ordering*).

4.5  Tools und Paradigmen sind fur Server und Desktop optimiert

Situation: Moderne Paradigmen der Parallelisierung, wie z.B. Work-Stealing, sind nicht
im Embedded-Umfeld etabliert. Parallelisierungstools stammen oftmals aus dem
Desktop- und Server-Bereich und sind daher nicht direkt fur die Entwicklung von
Embedded Systemen optimiert.

Problem: Die Embedded-Welt setzt moderne Parallelisierungsparadigmen nur zaghaft
ein. Sie verharrt teilweise in traditionellen Denkmustern, dies fiihrt zu den oben
genannten Problemen der ,,schwergewichtigen* starren Parallelisierung (vgl. 3.1).

Beispiele: Viele Embedded-OS wie z.B. VxWorks liefern keinen Work-Stealing Task-
Scheduler mit (iOS hingegen schon, GCD). Es fehlen z.B. bei den general-purpose
Work-Stealing Task-Schedulern Prioritaten. Auch klassische Thread-Bibliotheken sind
nicht immer ideal fir Realtime-Anforderungen, da oftmals Datenstrukturen benutzt
werden, die implizit Semaphore verwenden und dynamisch Speicher allokieren (z.B.
blockierende Queues auf Basis von C++ STL-Containern). In Realtime-Applikation
sind jedoch unter Umstédnden Lock-Free und Wait-Free Datenstrukturen zu bevorzugen.

Losung: Spezialisierte Embedded-Parallelisierungsbibliotheken wie z.B. EMB? von
Siemens CT (vgl. [EMB]) schlieRen diese Licke: Keine dynamische Speicherallokation,
Embedded Work-Stealing Task-Scheduler, Lock-Free Datenstrukturen. EMB? entspricht
uberdies dem MTAPI-Standard fir Embedded Task-Scheduling (vgl. [MTA]).

4.6  Denkweise von Entwicklern und Management bzgl. Parallelisierung

Situation: Eine bei Managern und Projektleitern weit verbreitete Vorstellung ist, dass
eine Software, die mit vielen Threads auf einer Singe-Core CPU korrekt l4uft, ohne
wesentliche Umbauten auch auf einer Multi-Core CPU korrekt lauft. Dabei wird aufer
Acht gelassen, dass bestimmte Nebenldufigkeitsprobleme, die in einem Single-Core nur
selten wahrnehmbar sind, im Multi-Core-Fall jedoch leicht zu einem inkonsistenten
Systemzustand fiihren kdnnen (z.B. die Implikationen von Instruction-Reordering).

Auf Seiten der Entwickler gibt es oftmals ein Ausbildungsproblem. Aus meiner
Erfahrung als Trainer und Berater wei ich, dass die Bereiche Synchronisation und
Memory-Modell vielen Entwicklern nur oberflachlich bekannt sind. Nur wenige der
durchschnittlich ausgebildeten Entwickler koénnen das Monitor-Pattern oder die
Funktionsweise eines Spinlocks korrekt erklédren oder die Semantik eines Relaxed-
Consistent Memory-Modells erlautern.

Problem: Aus der vereinfachten Management-Sicht resultieren falsch geplante Projekte.
Aus der mangelhaften Entwicklerausbildung resultieren der unsachgemalie Einsatz von
Technologien und, was noch schwerer wiegt, nicht tragfahige Software-Architekturen.

Beispiele: Projekt 3 ist aufgrund falscher Technologie-Entscheidungen (Kernel-
Applikation) in eine Schieflage geraten. In Projekt 2 wurde der Parallelisierungsaufwand
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unterschétzt, was zu dem zweiten Anlauf gefiihrt hat.

Lésung: Die Entwickler-Ausbildung sollte Paradigmen und Theorie der Parallelitét
anhand moderner Technologien vermitteln. Manager und Entscheider sollten erkennen,
dass Parallelisierung ein komplexes Unterfangen ist, das Eingriffe auf allen Ebenen des

Techn

ologie-Stacks erfordert, und dass Multi-Core Hardware Herausforderungen an die

Software-Architektur stellt.

5 Fazit: Strategien fiir Parallelisierung von Embedded Systemen

Die fo

Igenden Regeln sind das Kondensat der hier analysierten Erfahrungen. Sie kénnen

als Richtschnur fir die erfolgreiche Parallelisierung von Embedded Systemen dienen.

1.

Performance-Optimierungen in der Mikro-Ebene vermeiden, OS-Abstraktionen
nutzen, Applikation von OS-Kernel trennen.

Explizite Synchronisation im Realtime-Embedded Bereich etablieren.

Parallelisierungsbibliotheken und Tools verwenden, die fir Embedded Systeme
optimiert sind, z.B. den EMB?2 Work-Stealing Task-Scheduler.

Schrittweise Migration von Single-Core auf SMP, Big-Bang Migration ist riskant.

Zeitliche Kontrolle an OS oder Scheduler abgeben, zeitliche Abl&ufe nicht (ber
Prioritaten sicherstellen.

Ausbildung verbessern bzgl. Synchronisation, Memory-Modell, Task-Scheduling.
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Abstract:

One of the most basic operations, transforming a relationship into a function that
gives the number of fulfilling elements, does not seem to be widely investigated. In
this article a new algorithm for this problem is proposed. This algorithm can be imple-
mented using Binary Decision Diagrams. The algorithm transforms a relation given
as symbolic expression into a symbolic function, which can be further used, e.g. for
finding maxima. The performance of an implementation based on JINC is given for a
scalable example problem.

1 Introduction

Next to sets, binary relations are one of the most basic mathematical objects. Given two
sets A and B, a relation ~ is defined by a subset R.. of A x B, such that

a~bacAbeB<s (a,b) € Re.

Given a relation on finite sets one of the most basic questions is how many elements are
related to each element of A. This can be represented as a function

C.:A—=N:aw— [{b:a~Db},

called ‘counting function’ for the relationship in the following. When viewing the relation-
ship as the edges of a directed graph, the function gives the out-degree of each node. When
the relationship defines a function from B to A, the transformation counts the pre-images
for each function image.

Of course, there is also a counting function with respect to elements of B. Without loss of
generality, in this paper only the first version is studied.

As a simple example consider the relation “less than” a < b on numbers 0...m. For
each given a there are m — a numbers greater than a from the given interval. Formally,
C<(a) = m — a. In this paper the more general relation (a%p) > (b%q) is used as
benchmark, which allows scaling the complexity of the function and the number of bits
for A={0...2Y —1} and B = {0...2M — 1}. % stands for the modulo operation. For
this relation

C(a) = max(0,2M /q * (¢ — a%p)) + maz(0,2M %q — (a%p)).
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The proposed algorithm can be implemented using Binary Decision Diagrams [MT98]. 1
am not aware whether there are other representations of Boolean (or more generally finite)
functions which allow the same set of operations, including testing for equality, indexing,
composition; if there are then the proposed algorithm can be implemented using those
representations as well.

The computer algebra system RELVIEW [BNOS5] is implemented on the basis of Binary
Decision Diagrams, but it does not contain the presented function. JINC [OBOS] is a
BDD library that supports multithreading on a shared-memory system. It was used for the
experimental implementation for this paper.

Algorithms to determine the number of fulfilling inputs for a given function are called
SAT-COUNT [Thul2]. This is a more restricted problem as it yields a constant for a given
function. This problem is equivalent with relationship counting when the set A has only a
single element. SAT-COUNT can handle functions in a more general representation, the
creation of a BDD for a given input function can be as complex as SAT-COUNT.

BDDs are used for circuit optimization, circuit verification, state space exploration and
similar tasks. The proposed algorithm allows more sophisticated tests, and analysis in
these domains. The parallel nature of the algorithm gives hope that it can be used also at a
large scale, where the representation of A and B requires 100 or more bits.

In the next section two algorithms for determining the counting function are presented.The
first version, a recursive algorithm, is simpler to implement and has weaker requirements to
the underlying function representation. The second algorithm is based on Binary Decision
Diagrams for the basic data type and exploits the representation structure.

In Section 3 some applications for the algorithm are proposed. One of them is the analysis
of network topologies [Dor10]. In Section 4 performance results for a C++ implementation
based on the BDD library JINC are given. In the outlook further plans for the refinement
of the algorithm are given.

2 Relationship-Counting

One basic idea of the algorithm is that counting the number of elements in a subset can be
done by summing the characteristic function over all elements of the underlying universe.
Consider for example the set of prime numbers, and assume we have given a function
isprime : N — {0,1}, then we can determine the number of primes up to a limit !
by 22:1 isprime(:). Therefore, given a relation ~ by its characteristic function r :
Ax B —{0,1},r(a,b) =1 < a ~ b, determining the counting function can be done by
summing over all elements of B:

Cu(a) =|{b:a~b} =3 cpr(a,b).

The summing operator can be considered a function of | B| inputs:

S {0, 1B S(2o, ..., zp1—-1) = 3 (@)
Hence C.(a) = S(r(a,bo),...,r(a,bp-1)).
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Note, that here functions are added, not numbers, i.e. (f +¢g) : a — f(a) + g(a).
To do this symbolically, a function representation is needed that allows concatenation of
two functions, applying partial fixed values to inputs (i.e. concatenation with constant
functions) and forming of elementary functions such as addition. The summing function
can thus be built from addition functions by concatenation.

For the remainder of the paper it is assumed that natural numbers, including interme-
diate sums and the result of the counting function are represented as bit vectors with
binary encoding (3_, d;2%). For the representation of elements from A and B, n, and
nyp respectively bits are used. The relation ~ can therefore be represented as a function
{0, 1}t — {0,1}. If not all the codes are used to represent elements of A or B, it is
assumed that the representation of ~ will always yield 0 when applied to unused codes.
Any given representation can be easily modified to fulfil this condition by AND-ing the
characteristic functions for the sets A and B to the relation. It is a particular advantage
of BDDs that they can handle sparsely represented sets well. For instance permutations,
routing structures, and similar objects can be represented with comparably long bit vectors
and one-hot encoding with good performance.

The first algorithm is presented for illustrative purposes. It recursively branches on the
individual bits bi of B. The recursion stops when a function is found that does not depend
on b anymore, including constant functions. All the functions found at the bottom of the
recursion are collected in a list. Such a recursion on the BDD-representation, limited
to certain layers is typical for many BDD algorithms. In particular, this recursion is a
part from the fulfilment set counting algorithm found in [MT98]. In a second step an
addition tree is built whose leaves are these collected functions. In the simplest form of
this algorithm, all functions are added with weight 1, hence the addition tree corresponds
to a population count function.

collect (f, 1)
{
if (f does not depend on bi)
return {f}
else
return append (collect (compose (bi, 0, f)),
collect (compose (bi,1,f)))

compose (v, e, £) replaces the input variable v of function f by the expression e. In
order to test whether f depends on b or not for a BDD representation the variable order
can be used. By arranging the variables for a at the bottom levels and the b-variables at
the top, testing the level of the root node of the function f is sufficient and requires only
constant time. Other representations, such as polynomials or conjunctive forms might
only have a semi-test. This would also be sufficient but could increase the run-time of
the algorithm. One improvement of the recursive algorithm is to test, whether the two
compositions (compose(bi,0,f) and compose(bi, 1,f)) for the recursion parameter represent
the same function. In that case the recursion needs to be calculated only once, and the
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result is returned with weight two, i.e. every list element is extended by a weight, a natural
number. This requires of course an equality test on functions, and, again, a semi-test, that
can confirm equality but not exclude it, could be applied as well.

The summation step calculates > w; f; as multi-bit BDD-function, with weights w; and
Boolean functions f;. The summing is done by constructing a tree from multi-bit adders,
where the width of adders grows as necessary from level to level upwards. The algorithm
that constructs the adder accounts the sum of weights in the subtrees and can thus de-
termine the required result width. To incorporate the weight w; for function f; into the
sum on the leaves of the adder tree, a vector of either the constant-zero function or the
function itself is formed. If for instance the weight is eleven, the formed vector would be
(fi,0, fi, fi). This is possible because the function is either O or 1, so multiplication is
identical with the expression:

if (fi) then
return wi

else

return O

This optimization already contains the idea of the second algorithm. The idea exploits
the observation that during the calculation of bitwise projections, frequently the same sub-
functions are reached. By collecting the information and refining the function level by
level, each sub-function needs to be handled only once. When using BDDs this approach
is already known with the only difference being, that BDDs typically do the weight ac-
cumulation down to the leaves and do not stop at an intermediate level as is needed here.
BDDs can be viewed as representing a dynamic program and the weight calculation cor-
responds to the well-known dynamic programming algorithm.

The second algorithm consists of two parts, the collection part and the summing part. Both
are similar to the recursive algorithm. In the collection part the variable order of the BDD
is modified such that variables for b are at the top and the variables for a at the bottom,
if needed. Then, the BDD-graph representing the relation is traversed starting from the
root level by level and the weights per node are computed. In some BDD libraries the
weight can be stored in the graph nodes itself, otherwise a hash table can be used. The
root node is assigned weight one. A child node’s weight is incremented by weight of
the parent multiplied with the power of two of the number of skipped levels, i.e. by
the difference of the variable levels of parent and child minus 1. This is because each
skipped level corresponds to a input variable that is not relevant for the given situation, and
for that reason, every partial assignment for the inputs corresponding to b results in two
assignments including the next level variable, one where the variable is one, and another
where it is zero. In all well-known BDD implementations this update has constant effort.
The terms (the BDD nodes reached which do not depend on b variables) can also be stored
in a hash table.

The summing part is identical to the recursive algorithm.

This second algorithm requires the ability to index functions to store them for instance in
a hash table or tree.
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Both parts of the algorithm exhibit parallelism. Computing a sum of many terms with
complex addition steps can naturally be done in parallel by forming an addition tree. Also,
the additions itself can be done partially in parallel, for instance by using carry-inputs per
digit and composing the digits afterwards or by calculating the prefix sum for the carries
in parallel with known methods.

The algorithm can be improved in several ways. One option relates to the addition of
weighted vectors on the lowest level of the addition tree. Assuming we add two vec-
tors for functions f and g with weights 5 and 13. This means that we add the vectors
(0,...,0,£,0,f)and (0,...0,9,9,0,g), forming

(0,...,0,g xor f&g, f xor g, f&g, f xor g).

As can be seen, two terms, f&g and f xor g can be reused. The caching and reuse of
previously computed expressions is part of most BDD implementations. JINC uses a per-
thread computed table, so, if the sum of the vector is computed in one thread, the reuse
might happen automatically in the BDD functions. Doing it explicitly guarantees the reuse,
in case the size of the computed table is not sufficient.

Another idea for improvement is using carry-save adders for the summation tree, as a
hardware implementation would do. BDDs are canonical and hence the resulting BDD is
determined only by the given relation and not by the algorithm computing it. However, by
using carry-save addition one can expect that the intermediate terms will be smaller.

When building the addition tree it is also not clear which sequence is better, first building
the weighted addition tree with abstract variables as inputs and then composing the tree
with collected functions or building the addition tree directly with the collected terms.
Because JINC does not contain a function for vector compose, only the second variant
was implemented.

Since addition is commutative and associative, the addition tree can be structured arbitrar-
ily. In order to reduce the complexity of the intermediate operations it might be advanta-
geous to compute more pairwise sums than needed, testing their size and choosing a set of
intermediate sums with the smallest size.

3 Applications

Since the described algorithm handles a basic problem, the range of applications is very
wide. One application described in [Dor10] is the counting of paths in a network, where
routing is constrained by methods for deadlock avoidance or the existence of faults. In this
case, one side of the relation covers the start and end points of the path while the other
side represents the path of the network as a vector of nodes. The relation is defined by
the properties of the network (adjacent nodes in the path have to be connected), and the
requirement that the first node of the path is the start and the last node is equivalent to the
end point. Further restrictions such as avoiding certain turns or faulty nodes can be added,
thereby refining the relation. The proposed algorithm allows finding the number of mini-
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mal paths under these restrictions as a function of the start-end node pair. Since the result
is a BDD-represented symbolic function, further transformations, such as finding extrema
or comparing to the path-counting function for the fault-free network can be carried out in
the same framework.

A second type of applications is the evaluation of approximation algorithms, for instance
for scheduling. In this case two relations are built, one that describes the set of solutions,
and the second representing the set of solutions that a given algorithm can find. BDDs are
traditionally used for state space exploration of digital circuits, the set of solutions of an
algorithm is a typical outcome of such a process. I am currently working on investigating
crossbar scheduling algorithms, such as iSLIP, with this method. It is yet to be seen what
size of problem can be covered on typical machines.

A third class of problems deals with configurable circuits. Figures of interest in this context
are the set of functions that can be implemented with a given configurable circuit or a
minimal configurable circuit that covers a given set of target functions. As an example,
consider a configurable random number generator. It consists of a combinational circuit
that implements a function with two sets of inputs, one for a uniform random number
source and one for the configuration bits. Several classes of circuits can be considered
individually, for instance all circuits consisting of three levels of NAND gates. A circuit
in such a class is defined by the wiring between the gates which can be represented as a
BDD. Doing so results in a relation that combines the wiring, the inputs and the result.
With the proposed algorithm the frequency for each output when the random input is
varied can be computed as a BDD function. Further processing, including sorting of result
vectors, is needed. First experiments have shown that this method works quite efficiently
for reasonable circuit sizes.

4 Results

The second algorithm was implemented using JINC on a 64-bit Linux system based on In-
tel core i5 processors (two cores, two threads each). The tests were repeated on a Freescale
T4240-based system called RDB which provides 24 processor cores, and the results were
comparable. Table 1 lists the run time of the two parts of the algorithm for several example
problems.

As can be seen, scalability works well, and is better for larger problems. Note, that JINC
needs internal locking for shared data structures, in particular the so called “unique” table,
with one table per variable. Scaling of part 1 is limited by the global lock for the hash table
that collects the individual functions. This can be improved by using a hash-map imple-
mentation that allows concurrent insertion, as is provided by Intel’s Threading Building
Blocks library. However, the thread management of the TBB is somewhat different than
that of the boost library. Since a concurrent hash table is in preparation for the boost
library, this improvement was postponed.
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Table 1: Results for some example runs, note that 1536=3*512 resulting in a particular simple BDD
for the modulo operation. pl and p2 are the runtimes of the two parts of the second algorithm in
seconds.

16 | 22 10697 1035641
22 | 16 | 1035641 10697

2.5 | 26.8 | 16383
04 | 303 | 16384

N | M p q threads | pl p2 | terms
16 | 16 1697 1879 1 0.05 | 33 2047
16 | 16 1536 1879 1 0.04 | 1.75 | 2047
16 | 16 1697 1536 1 0.03 | 7.3 | 2047
16 | 22 10697 1035641 1 0.96 | 42.5 | 16383
22 | 16 | 1035641 10697 1 0.15 | 42.5 | 16384
16 | 16 1697 1879 2 0.07 | 18 2047
16 | 16 1536 1879 2 0.1 1.0 | 2047
16 | 16 1697 1536 2 0.06 | 11.2 | 2047
16 | 22 10697 1035641 2 2.08 | 29.7 | 16383
22 | 16 | 1035641 10697 2 0.3 | 37.7 | 16384
16 | 16 1697 1879 3 0.09 | 15.7 | 2047
16 | 16 1536 1879 3 0.18 | 0.93 | 2047
16 | 16 1697 1536 3 0.08 | 11.5 | 2047

3

3

5 OQutlook

It has to be noted that the chosen example has some particular properties, as can be seen
from the number of terms. Another property that was observed is that there are few edges
that skip one or several levels. This is a property of the BDD representing the input rela-
tion. These level-skipping edges however contribute to the acceleration of the algorithm.
More level-skipping edges improve the parallel performance of the first step because the
locking for weight updates are better distributed; the current implementation uses one lock
per level.

Therefore, one of the most important next steps is the use of other examples, in the best
case by applying the algorithm to applications or by integration into a more general tool,
such as RELVIEW.

Furthermore, using a concurrent hash table once it is available in the boost library should
improve the scalability of the first step of the algorithm.
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Abstract: Data deduplication is a technique for detection and elimination of dupli-
cated data blocks in storage systems. It creates a set of unique data blocks and places
references accordingly, which allows to access the original data within a reduced
amount of data blocks. For deduplication, hashes of data blocks are calculated and
compared in order to detect and remove duplicates. It can be seen as an alternative to
data compression that allows to save storage capacity in large storage systems. A stor-
age capacity saving is reached at the cost of additional computational effort that orig-
inates when data blocks are written and updated. This computational effort increases
with the size of the storage system. On a single processor system, deduplication influ-
ences the performance in a negative way, particularly the write and update rates drop.
The utilization of parallelism is a rewarding task to compensate this performance drop,
particularly for hash value calculations and comparisons of hashes. In this paper we
explain in which parts of a deduplication system it is worth to parallelize and how. Ex-
emplarily, we show the performance results of two deduplication algorithms and their
parallel implementations, based on multithreading and on parallel GPU computations.

1 Introduction

In this paper, parallelism concepts for data deduplication algorithms are presented. Dedu-
plication first appeared in the field of backup systems and repositories for source code and
technical documents (such as git) that contain many versions of files with little alterations.
Meanwhile, general purpose file systems and database systems got equipped with dedupli-
cation. Examples for the use of deduplication are ZFS, lessfs [les15], opendedup [opel5]
and OracleDB for storage of large data objects in databases.

Deduplication improves the storage utilization and is capable to reduce the storage oper-
ation cost for large systems. This benefit comes with extra computational effort for write
and update operations. Deduplication gets more effective with increasing storage size. Un-
fortunately, the computational cost increases as well with the amount of stored data. This
computational cost indirectly reduces the storage access performance, but can be compen-
sated by parallel computing, particularly by using multiple cores or by utilizing the GPU
of a computer system.

Recently, research started to evaluate several possibilities of parallel computations for
deduplication, such as [XJF*12] for exploiting thread-level parallelism in multi core sys-
tems to reach acceptable high I/O throughput for data deduplication. Besides of parallelism
for the deduplication task, distributed storage systems are in the focus of research as well.
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In [KMBEI12] a cluster solution using data deduplication is presented.

The contribution of this paper is the description of two algorithms for deduplication.
These algorithms are called (i) Backward Referencing and (ii) Hashmap-based Referenc-
ing. These two algorithms reflect state-of-the-art principles that were found in existing
deduplication solutions. The description is followed by the identification of algorithm
phases for parallel execution and performance reports about two different approaches for
parallel processing. One approach is thread-level parallelism utilized by task-parallel pro-
gramming with the Intel TBB class library. Another approach consists in offloading of
the search for duplicates to the GPU. The GPU is capable to perform a huge number of
comparisons in parallel.

The remainder of the paper is organized as follows. The principle of data deduplication
and two algorithmic approaches are described in Section 2. In Section 3 the algorithms are
revisited with respect to parallelism. Last, in Section 4 we present the performance gain
of parallel execution for the two algorithms. A summary concludes the paper.

2 Data Deduplication
2.1 Original Data Layout

For the description of deduplication we start with a small example of 8 data blocks that
contain repetitions. The sequence of blocks is shown in Fig. 1 where equal letters represent
equal block content. These can be equal files, duplicates of emails or equal blocks in
different versions of files.

sequence of blocks

A B B C D A D C

Figure 1: Example of a sequence of blocks taken as original data layout.

The objective of deduplication is to remove double blocks from the storage and to represent
their existence by references to unique blocks.

In the following two different deduplication algorithms with different data structures are
compared. One algorithm we call Backward Referencing (see 2.2) and the other Hashmap-
based Referencing (see 2.3)

2.2 Backward Referencing

Fig. 2 illustrates one possible deduplicated data layout. Data blocks are indirectly refer-
enced via an index that contains pointers to data block descriptors. A data descriptor holds
a reference to the data block X and in addition the hash value i x and a reference counter.
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To store the hash value is optional, but beneficial for the integration of new blocks.
In file systems such index structures to blocks are already present. Thus, the integration of

deduplication does not cause noticeable extra access cost for read operations.

index representing the sequence of blocks by pointers to block descriptors
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Figure 2: Deduplicated data layout.

The transformation from the original to the deduplicated data layout is done stepwise as
described below. For each step we give the time complexity of the sequential algorithm
step, depending on the number of blocks in the system n.

1. Chunking and Hashing: Original data is divided into blocks (a so called chunking).
For each block a hash value is calculated. In order to keep the probability of hash
collisions considerably low, strong cryptographic hash functions are used, such as
MDS5. At the end of this step, a sequence of block references and corresponding
hash values is obtained. The computational complexity of this step is O(n).

2. Indexing: In a first walk through the sequence of hash values, multiple occurrences
of hash values are tagged. For every hash value at position ¢, all hashes from position
i + 1 to the end of the sequence are compared. In case of equal hash values, a
backward reference is added. At the end of this step, the sequence of hash values
got extended by duplicate identification tags and backward references. This step
involves n(n — 1) /2 comparisons for n blocks, and is characterized by O(n?).

3. Re-indexing: To obtain structures for fast access to data blocks, the references have
to reflect the concentration of data blocks to a sequence of unique blocks. Thus
the backward references have to be corrected to the block numbers in the sequence
of unique blocks. For all blocks references, all other references that possibly point
back to it have to be corrected. At the end of this step, a sequence of references to
unique blocks is obtained. Equally to the the Indexing step, n(n — 1)/2 references
must be visited and a complexity of O(n?) is present. This last step can include a
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reorganisation of data blocks to a set of unique blocks and references that correctly
address unique data blocks.

This last step can include a reorganisation of data blocks to a set of unique blocks and
references that correctly address unique data blocks.

Updates within a deduplication storage system work similar to block write operations.
An altered block is handled like a completely newly written one. In case that the new
block content is a new unique block, this block is stored and referenced via a new block
descriptor. Otherwise a reference to another already existing block is included and the
reference to the old block descriptor is removed. With the help of the reference counter,
the decision can be taken, whether a block can be finally deleted or not.

Reading blocks from a deduplicated storage layout is done by accessing the index, follow-
ing the link to a data block descriptor and finally fetching the entire data block. There is no
extra computational overhead apart from referencing blocks via an index which is already
present in most file systems.

2.3 Hashmap-based Referencing

Another algorithm for deduplication appeared that uses a hashmap data structure for the
detection of duplicated blocks. The first phase of hashing is similar to backward referenc-
ing and consumes a compute time according O(n). A difference compared to the backward
referencing algorithm is that a sequence of hash values is kept as initial reference to the
the blocks, and to represent the order of original blocks.

In a second step, tuples consisting of a reference counter and a block pointer are inserted
into a hashmap data structure that places entries with the key hx according to a hash
function h(h x) at a defined place. The hash values from the first phase are taken as keys
for the tuples.

In the case that the entry hx is a new one, it gets newly placed in the hashmap. The related
data block X is moved to the set of unique blocks and referenced from the hashmap entry.
The reference counter is set to 1. In case that the entry for hx already exists, solely the
reference counter is increased. The corresponding data block is a duplicate and can be
discarded. At the end of step 2, a data layout as depicted in Fig. 3 is obtained. The time of
hashmap insertion for n blocks corresponds to the complexity order of O(n), because of
O(1) for a single hashmap access operation.

Updates of blocks first cause a lookup of the old hashmap entry and its removal when
the reference counter is 1, otherwise the reference counter is decreased. For the new
content, an according hash value is inserted in the sequence of hash values. The rest is
done according to a write operation of the block.

The read operation first reads the hash from the sequence of hashes and then accesses the
corresponding data block through the hash map.
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Figure 3: Hashmap-based Referencing: Deduplicated data layout.

3 Parallelism Concepts

For both algorithms, the hashing phase can be executed independently on different blocks.
With p processor cores, a single core at most has to calculate [n/p] hash values. This
reduces the time consumption of this phase by the factor 1/p.

3.1 Parallelism of the Backward Referencing algorithm

The phases Indexing and Re-indexing offer room for parallel execution. Every phase
requires that for a sequence of entries, all entries must be selected sequentially, and all
entries positioned right of the selected one must be visited for hash comparison or for a
correction of the reference pointer. For a data set of n blocks, this requires n(n — 1)/2
steps. With p processors the number of steps can be obviously reduced to approximately
n([(n — 1)/p])/2 because of the independence of the operations that relate to the same
selected entry. Ideally, a speedup of p can be reached for a large n.
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3.2 Parallelism of the Hashmap-based Indexing algorithm

The hashmap-based algorithm works differently and delegates the duplicate detection to
the insert operation of the hashmap data structure. The insert operation signals a second
colliding entry with the same key. From this perspective, parallel tasks can only be utilized
in the way of concurrent insert operations.

It strongly depends on the implementation of the hashmap access operations whether par-
allel inserts are possible at all. Insert operations are allowed to run parallel in the case that
the insert positions do not collide. In the case of a collision, typically locking is applied.
In the case that the first write operation to a specific memory place wins, locking can be
mapped to the placement of an entry itself.

When the hashmap supports concurrent inserts, the workload can be distributed to p pro-
cessors. A number of n insert operations can be executed in [n/p] steps and a speedup of
approximately p can be reached.

3.3 Comparison

A comparison of the estimated number of steps of both algorithms is shown in Table 1.

Backward Referencing Hashmap-based Referencing
Hashing n n
Indexing n(n—1)/2 -
Re-indexing nin—1)/2 -
Hashmap insert - n
total steps / sequential n+2(n(n—1)/2) 2n
total steps / parallel [21+2(n([(n—1)/p])/2) 2[2]
memory low memory requirements highly memory intensive
our implementation @GPU, CUDA @CPU, Intel TBB

Table 1: Comparison of the algorithms regarding the number of computation steps and memory
consumption.

The comparison shows that both algorithms are well suited for parallel execution and ide-
ally utilize the processors or cores that are available. Another insight is that the Hashmap-
based Referencing algorithm generally is less costly in terms of computation steps. This
result is based on the assumption that the hashmap allows insert operations in O(1) which
is true for sparely filled hashmaps and a large memory that can be used potentially. The
benefit in terms of computation cost is combined with a higher memory consumption of
the hashmap.
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4 Performance Evaluation

In this section, we report first on the parallel implementation of the Backward Referencing
algorithm on a GPU using CUDA (4.1) and second on the parallel implementation of the
Hashmap-based Referencing algorithm using multithreading and Intel TBB data structures
4.2).

4.1 Backward Referencing using GPU computing

The CUDA version of the backward referencing algorithm searches a specific hash value
on different positions in parallel, utilizing a huge number of GPU threads. When a specific
hash value has to be compared with a number of x other hash values, the one hash is
transferred in the constant memory of the GPU, and the other x hash values for comparison
are copied to the GPU global memory. Values are compared by parallel threads. Identical
values are found faster compared to a sequential iterative execution. The GPU kernel
thread execute according actions in parallel (tagging of duplicates, setting or correction
of backward references). The implementation revealed performance results as depicted in
Fig. 4. The bars show the relative speedup compared to a sequential CPU implementation
on an AMD Phenom II, X4, 840, 3.2 GHz. The GPU used is a consumer model (Type
NVidia Quadro 600) with 96 CUDA cores and 1.28 GHz clock rate. The reached speedup
does not fully utilize the parallelism of the GPU, due to the interplay of the sequential
CPU execution and the parallel GPU execution.

¢ yor o
(f‘ v 0w o

CPU GPU

Figure 4: Deduplication throughput using a CPU and a GPU implementation using CUDA. The
numbers (e.g. 2x1024) identify the number of blocks and treads for the CUDA kernel invocation.
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4.2 Multithreaded Hashmap-based Referencing using Intel Task Building Blocks

A parallel implementation of the Hashmap-based Referencing algorithm was created us-
ing C++, a fast MD5-hash implementation[Thi91] and the Intel TBB library (TBB: task
building blocks) [Sof15]. This task-parallelism library does not only provide mechanisms
to manage several tasks on a multithreaded system, it also provides data structures that
can be accessed by parallel tasks. Specifically, the TBB concurrent hashmap [Guel2] was
used. This data structure implementation fulfills the above stated requirement of concur-
rent insert operations that do not block.

The experiments run on an Intel Core i5-750, 2.7 GHz system and a 64-Bit gcc compiler
was used. The measurements cover the deduplication of a 1.07 GByte ISO image. The
execution time for sequential execution and parallel execution with 2,3, and 4 tasks is
shown in Fig. 5.

m128k m64k 32k m16k m8k 4k m2k mik

execution time in seconds

5

1 2 3 4
number of tasks

Figure 5: Deduplication execution times, parallel Hashmap-based Referencing algorithm

The plots represent different runs of the deduplication algorithm with specific minimal
blocks sizes (128k to 1k). Actually, the implementation covers deduplication with adap-
tive block lengths and first tries to find equal blocks of a maximum length (128 kByte).
For all remaining differing blocks the blocksize for deduplication is divided by 2 until a
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Figure 6: Efficiency of the paralle]l Hashmap-based Referencing algorithm using Intel TBB

minimum block length is reached. A smaller minimum block size increases the computa-
tional cost, because more hash values are generated and have to be processed. These block
size variations confirm the general observation of efficient parallel execution.

In general the hashmap-based algorithm turned out as well suited for parallel execution,
provided the hashmap allows parallel insert operations. A notable performance could be
reached, e.g. roughly the deduplication of 1 GByte could be done in 30 seconds, down
to a small block size of 1 kByte. This is a data throughput of 33 MByte/s for a very
fine-granular deduplication. The efficiency of the parallel Hashmap-based Referencing
algorithm execution is shown in Fig 6.

5 Summary

It could be shown that deduplication is well suited for parallel execution. The two al-
gorithms are different regarding their strategy to compare blocks. Backward referencing
works iteratively, but independently on blocks. It compares a number of block pairs, which
is the source of parallelism. This can be seen as data parallelism generated from the con-
trol flow of a program.

Another approach is based on a hashmap data structure and maps the comparison to a
placement problem. Equal entries collide and different entries get placed at different posi-
tions. This saves one iteration stage of the sequential algorithm. Even this principle could
be modified for parallel execution, where the parallel non-blocking access to the data struc-
ture turned out to to be central point for the parallelisation. The Intel task building block
library provided the task management and the concurrent hashmap implementation.
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Abstract: Modern high-performance computing systems are often built as a cluster of intercon-
nected compute nodes, where each node is built upon a hybrid hardware stack of multi-core pro-
cessors and many-core accelerators. To efficiently use such systems, numerical methods must em-
brace the different levels of parallelism from the coarse-grained distributed memory cluster level to
the fine-grained shared memory node level parallelism. Synchronization requirements of numerical
methods may diminish parallel performance and result in increased energy consumption. We investi-
gate block-asynchronous iteration methods in combination with mixed precision iterative refinement
to address this issue. We depict our implementation for multi-node distributed systems using MPI
with a hybrid node level parallelization for multi-core CPUs using OpenMP and multiple CUDA-
capable accelerators. Our numerical experiments are based on a linear system arising from the finite
element discretization of the Poisson equation. We present energy and runtime measurements for
a quad-CPU and dual-GPU test system. We achieve runtime and energy savings of up to 70% for
block-asynchronous GPU-accelerated iteration using mixed precision compared to CPU-only com-
putation. We also encounter configurations where the CPU-only computation is advantageous over
the GPU-accelerated method.

Keywords: energy-aware numerics, high-performance computing, mixed precision, asynchronous
iteration, graphics processing units

1 Introduction

Numerical simulations play a key role for scientific discovery, complementing theoreti-
cal analyses and experiments. The computational power of high-performance computing
(HPC) systems in terms of peak floating point operations per second (flops) has increased
currently above the petaflops level [ww15]. Seeking to further increase the computational
power towards the exascale level, the HPC community is facing the power wall. Simply
upscaling current technology would result in a prohibitive power demand in the order of
several hundred Megawatts for one exascale system. The issue of energy consumption has
therefore become a major issue in the HPC field [ww14].

Many HPC systems are built as a cluster of interconnected compute nodes. Each node
usually comprises one or more multi-core processors, and may additionally include many-
core accelerators. Thus, HPC clusters often represent a hybrid form of distributed memory
interconnected nodes with shared memory multi-core CPUs and possibly many-core de-
vices on the node level. Such systems offer different levels of parallelism. In order to

119



leverage the computational power, numerical methods must exploit the parallelism pro-
vided on the different levels. However, synchronization requirements may diminish the
parallel performance and result in increased energy consumption. Asynchronous iteration
methods allow to circumvent typical synchronization requirements of classical iteration
methods. To address the issues of synchronization and energy consumption, we investigate
the block-asynchronous variant in combination with mixed precision iterative refinement
for the solution of linear systems of equations.

Related work and paper contribution

The idea of “chaotic relaxation” was proposed by Rosenfeld [Ro69], who used “parallel
processor computing systems” to simulate the distribution of current in an electrical net-
work. Chazan and Miranker in 1969 [CM69] were the first to study this type of methods
on a rigorous theoretical basis. They established a characterization of the chaotic relax-
ation schemes for the solution of symmetric positive definite linear problems and gave
conditions for convergence, as well as examples for divergence. Meanwhile, the denom-
ination “asynchronous iteration” has been established in the literature. An overview of
asynchronous schemes and convergence theory can be found in [FS00]. Asynchronous it-
eration has successfully been used in the context of HPC, see e.g. [EFS05] and references
therein.

Earlier works reported in [Anl1b] and [Anl3] investigate convergence properties and
performance of block-asynchronous iteration on GPU-accelerated systems, both as plain
solver and in combination with mixed precision iterative refinement. However, these works
are restricted to single node, single host process configurations, and the host CPUs are not
taken into account for computations. We extend this setup to the case of distributed mem-
ory machines with several host processes running on the same node and sharing devices.
Additionally, we compare with asynchronous CPU-only methods which also benefit from
relaxed synchronization requirements. Finally, we perform actual energy measurements to
investigate the energy consumption of the methods.

Paper organization

This paper is structured in the following way: We outline the mathematical background in
Section 2. In Section 3, we describe the setup of our experiments. In particular, we present
the main features of our hybrid implementation using MPI [Me12] for distributed systems
and OpenMP [Op13] on the shared memory local level, as well as CUDA [NV 14a] for
graphics processing units (GPU). Section 4 is devoted to the discussion of the results, and
Section 5 concludes the work.

2 Mathematical background

In this work, we investigate the performance and energy consumption of asynchronous
iteration schemes in the context of mixed precision iterative refinement. In this section, we
introduce the mathematical background of the methods we use.
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2.1 Mixed precision iterative refinement

The idea of iterative refinement for the solution of a system of linear equations comes
from Newton’s method for approximating the solution of f(x) = 0, where f is a smooth
function. Considering the special case of a linear function f(x) = b — Ax with a regular
matrix A € R"*" and a vector b € R", solving f(x) = 0 is equivalent to solving the linear
system Ax = b. For an approximate solution x¥, the residual is denoted r* = b — Ax* =
f(xk). Using Vf = —A leads to the following linear iterative refinement method

F=xpa ¥ (k=0,1,..).

In each iteration, the current approximation x* is improved by the correction ¢t = A=!/%,

which is the solution of the error correction equation Ack = X, If an exact correction could
be computed, the iterative refinement process would end after one iteration with the correct
result. However in practice, often only approximate error corrections & can be computed
by means of numerical solvers. Let g = r* — A¢* be the residual of the error correction
equation. After the correction, the updated solution x**!1 = x* + & yields the residual

A =p AT =p— AWK+ &) = —ad =4~

Thus, the accuracy of the error correction solver determines the accuracy of the solution
of the overall iterative refinement process.

Instead of solving the error correction equation in the working precision, one can transfer
the system to a lower precision. This approach amounts to the mixed precision iterative
refinement (MPIR) [Ba09], see Algorithm 1. For MPIR, we use an absolute stopping cri-
terion based on a given tolerance € > 0.

For computing the correction in step 6 of Algorithm 1, one may choose any appropriate
numerical solver. In this work, we focus on the asynchronous methods explained in the
next section.

Algorithm 1 Mixed precision iterative refinement (MPIR)

1: Typecast Al  Ahigh,

2: Set initial solution xhigh, tolerance € > 0.

3: Compute residual r"igh = phigh _ ghigh chigh

4: while |/Mgh|| > ¢ do

5: Typecast oW «— phigh,

6: Solve AloWlow — plow 4pproximately.

7: Typecast cigh  clow,

8: Correct xNigh  yhigh | chigh

9: Compute residual FMigh = phigh _ ghigh yhigh
10: end while

2.2 Block-asynchronous iteration

The asynchronous iteration methods under investigation in this work can be derived from
the classical Jacobi relaxation method [An13]. The Jacobi method relies on an additive

121



splitting of the system matrix A = L+ D+ U into a lower triangular matrix L, a diagonal
matrix D and an upper triangular matrix U. Assuming D to be regular, the Jacobi iteration
reads [Mel1]

K —ptfp (L+U)xk}

(k=0,1,...),
=BxXf+d

where B = —D~!(L+U) is the iteration matrix and d = D~'b. A necessary and sufficient
condition for the convergence of the Jacobi iteration is p(B) < 1, where p(B) denotes the
spectral radius of B. In terms of the system matrix A, a sufficient condition is strict diagonal
dominance of A, or diagonal dominance and irreducibility [Sa00].
The parallelization of this method is straightforward. Each compute unit may compute a
part of the new iteration vector x**1. Note that for computing its part of the new iterate
x**1 any compute unit potentially uses components of the preceding iterate x* which
belong to other compute units. This requires a synchronization of the compute units after
each iteration to make sure that all needed values are updated from the last iteration.
The idea of asynchronous iteration is to overcome the synchronization requirements. On
the theoretical level, this is accomplished by introducing a shift function s and an update
function u in the iteration:

e {1 e i S
' x if i # u(k)

The shift function allows to use not only values from the last iteration, but also older
or newer values. The update function chooses one component at a time to be updated,
leaving the other components unchanged [Anl1a]. A sufficient condition for convergence
is uniform boundedness of s, and u must take each value in {1,...,n} infinitely often, and
p(|B]) < 1 [CM69].

A natural modification of the basic asynchronous scheme is the aggregation of components
into blocks [Ba99]. Let L be the number of blocks, and I; C {1,...,n} be the index set of
all components belonging to block / € {1,...,L}. The block-asynchronous iteration reads

. 1 k—s(k,j
el s k! :;{bifZaijx_,- sy a,,jx';] (k=0,1,...).
AT/ jelriti

This scheme is synchronized only with respect to the vector components within each block.
The block scheme implies a decomposition of the systems matrix A into diagonal and off-
diagonal parts

diag offdiag
D= (aii). , A= (aij)“ L A= (a,j)_ 4
i€l i,JEl i#] i€l j¢l

and a decomposition of the vectors x and b into local parts

local local non-local
x50 = (x,-)_ , by = (b,-)' , X = (xj) o
i€l i€l j¢11

Such block decomposition is sketched for A and x in Figure 1. The update step for any
block / then reads

- di ffdi -
x}ocal «— Dl 1 {b}ocal _Al 1agx}ocal —A? lagx}lon local} )
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Fig. 1: Decomposition of the system matrix A and solution vector x into blocks.

Note that the actual block sizes in the decomposition depend on the number of compute
units, and on the load distribution among them. For balanced load distributions, the local
block sizes decrease with increasing number of compute units, while the non-local parts
grow.

The block-asynchronous scheme can be extended by performing multiple iterations on the
local block before updating the values in the non-local vector part. We denote the resulting
algorithm as async-(m) to indicate m local steps between non-local updates. Obviously,
each block can be mapped to one compute unit, resulting in Algorithm 2. We use async-
(m) with a relative stopping criterion based on a given tolerance 6 > 0.

Algorithm 2 async-(m)

1: Set initial solution x, tolerance & > 0.

2: Compute initial residual r® = r = b — Ax.
3: while ||| > §/°| do

4: for all blocks [ = 1,...,L in parallel do

5 for k=1,....m do

6: x}ocal — D;l [b}ocal _ A;liag x}ocal _ A?ffdiag x?on»local}

7: end for

8 end for

9: Update x}“’“'k’cal with corresponding values from other blocks.

10: Compute residual r = b — Ax.
11: end while

3 Experimental setup

3.1 Linear problem

In our experiments, we use the linear system of equations arising from a finite element
discretization of the two-dimensional Poisson equation [EG04]. This equation can be used
to model the equilibrium heat distribution in a physical domain with given environmental
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temperature and heat sources or sinks. The problem definition reads

“Au=f inQ,
u=g ondQp,
Vu-n=0 ondQn,

where Q € R is the physical domain, f represents any heat sources or sinks and g is the
environmental temperature given through the Dirichlet condition on the boundary part
dQp. Thermal insulation is modeled by the homogeneous Neumann boundary condition
on the boundary part dQy. For our experiments, we chose the domain Q to be the unit
square. Our finite element discretization with 262,144 mesh cells results in n = 263,169
unknowns and 2,362,369 non-zero elements for the system matrix A.

3.2 Implementation for GPU-accelerated multi-core shared and distributed mem-
ory HPC clusters

Our implementation spans three levels of parallelism. It supports multi-node distributed
memory systems where the nodes are connected by a network. Communication between
the nodes is done by data transfer over the network using MPI [Me12]. On the node level,
it supports both multi-core shared memory systems by means of OpenMP [Op13] as well
as CUDA-capable devices [NV 14a].

The implementation is integrated in the HiFlow? package [An12]. It uses the MPI-parallelized
matrix and vector data structures for input and for the MPI communication between nodes.
The matrix and the vectors are distributed among the MPI processes, thus defining the
block decomposition. The communication pattern is derived from the matrix structure and
avoids any unnecessary data transfer. Only vector components corresponding to non-zero
entries in the off-diagonal matrix parts of other MPI processes are transferred.

In Algorithm 2, the parallelism of the local block updates corresponding to steps 4-8 is
achieved by concurrency of the MPI processes. All computations of the error correction
solver are either executed on the host CPUs, or on the accelerator devices. Again, the CPU
implementation is parallelized with OpenMP on the node level, while the accelerator ver-
sion is implemented with CUDA. The update step 9 implies MPI communication and, if
the CUDA version is used, data transfer between host and devices.

network

MPI processes PIPIPIP
GPU

compute nodes

Fig. 2: Supported configurations of MPI process scheduling among compute nodes and GPU usage.
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One or multiple MPI processes may be scheduled onto each node. Within each node, the
MPI processes can use multiple GPUs. The actual utilization may be configured depend-
ing on the number of MPI processes and on the number of available devices. If only one
MPI process is scheduled onto a node, this process may use all available devices on that
node, as sketched in the two left configurations in Figure 2. In case of multi-GPU usage
of a single MPI process, the matrix and vector blocks of this process are further split into
sub-blocks as depicted in Figure 3. However, if multiple MPI processes are scheduled onto
the same node, GPU utilization must be split such that each process uses only one of the
available devices, see the two right configurations in Figure 2. This limitation is imposed
by a constraint of the GPU architecture, which we briefly explain in the following.

Each host process establishes its own CUDA context, but there can only be one CUDA
context active at a time on the device. If several host processes access the GPU, a time-
sliced scheduler switches between contexts to serve them, which implies a serialization. To
efficiently use the same device by several host processes, the multi-process service (MPS)
[NV 14b] can be used. With MPS, host processes connect to the MPS server instead of di-
rectly accessing the device. The MPS server maps the different host CUDA contexts into
one context on the GPU. This avoids the context switching and enables to benefit from the
Hyper-Q feature of devices based on the Kepler architecture [NV 12]. With Hyper-Q, up to
32 independent CUDA streams may be executed concurrently on the GPU. The drawback
of MPS is that the MPS server can only manage one device such that any process can only
use one GPU. If multiple devices are available on the node, one MPS server instance is
needed for each device, and host processes need to connect to exactly one of them. A prac-
tical way to meet these technical requirements can be found in [WSC14]. For Algorithm 1,
all steps except the solution of the error correction equation in step 6 are implemented in
C++ for execution on CPUs. In addition to the MPI parallelization for distributed systems,
all local computations are parallelized with OpenMP to exploit multi-core shared memory
nodes. The error correction solver itself uses Algorithm 2 and can be executed either on
CPUs or on accelerators.

sub-block 1 [
block [
sub-block 2 [

Fig. 3: Sub-block decomposition in case of multi-GPU usage by a single MPI process.

125



3.3 Solver parameters

As the working precision, denoted high precision in the context of MPIR, we chose IEEE
754 double precision floating point format, and as low precision we chose IEEE 754 single
precision floating point format [In85]. We set an absolute tolerance of € = 10~° as stopping
criterion for the iterative refinement method in Algorithm 1. This absolute tolerance is
achievable in both double and single precision. For the error correction solver, we chose
a relative tolerance of § = 10~! in Algorithm 2. This resulted in several error correction
loops, each improving the high precision residual by the factor 10~

3.4 Hardware and measurement system

Our test system consisted of one compute node equipped with 4 x Intel Xeon E-4650, 512
GByte DDR3 main memory and 2 x Nvidia Tesla K40. We used GCC compiler version
4.8.2, OpenMPI version 1.6.5, CUDA version 6.5.12, and NVIDIA device driver version
340.65.

For power measurement, we used the ZES Zimmer Electronic Systems LMG450 external
power meter. Our test system comprises two power supply units, each connected with one
line to the external power source. The LMG450 has four independent measurement chan-
nels. We used one channel for each of the two input lines, and the other two channels were
left unused. We attached the power sensors of the LMG450 to the input lines between the
external power source and the power supply units of the compute node. Thus, we measured
the total power consumption of the whole node. We used the maximum possible sampling
rate of 20 Hz of the LMG450 power meter. The measurement was controlled using the
pmlib tool [Bal3]. We instrumented the solver code using the pmlib client API to mea-
sure exactly that portion of the overall program which constitutes the solution process.
This excluded all initialization overhead from the measurements. The pm1ib server ran on

power tracing server compute node
external
measurement power
data meter
v power
source : mainboard
. H wer
pmlib server: @ o\ SS ? CPU
collect measurement sensor u’;’i)ty accelerator
data memory
’ L | etc.
]
pmlib client:
start / stop measurement

send pmlib commands over network

Fig. 4: Measurement setup using an external power meter controlled by the pmlib tool.
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a separate machine to avoid a perturbation of the system under investigation. The setup is
shown in Figure 4.

4 Results

Through empirical testing, we figured out a number of m = 20 local block updates to be a
reasonable choice for the linear system at hand. We carried out three series of tests:

1. MPIR async-(20) GPU
Mixed precision iterative refinement using block-asynchronous iteration as error
correction solver in single precision running on the GPUs.

2. dp IR async-(20) GPU
Iterative refinement using block-asynchronous iteration as error correction solver in
double precision running on the GPUs.

3. MPIR async-(20) CPU
Mixed precision iterative refinement using block-asynchronous iteration as error
correction solver in single precision running on the host CPUs.

We defined these test series to evaluate two effects. On the one hand, to evaluate the effect
of using single precision error correction in contrast to using double precision error cor-
rection. On the other hand, to evaluate the effect of using accelerators in contrast to using
only the host CPUs.

Figures 5 and 6 show plots of the performance related data of runtimes and total number
of iterations. The parallel configuration is denoted p X ¢, where p is the number of MPI
processes, and ¢ is the number of OpenMP threads per MPI process. We scheduled the
MPI processes to run on distinct CPUs when using p = 1,2,4, and to equally share CPUs
when using p = 8,16,32. The number of OpenMP threads was chosen to use all of the
eight cores of the CPU available for the corresponding MPI process.

The host-only test runs from MPIR async-(20) CPU showed a reduction of the runtime
for p ranging from 1 to 32. The fact that speedups were clearly inferior to the ideal linear
speedup can be explained by the increasing number of iterations and the increased com-
munication overhead. The phenomenon of increasing number of iterations for growing p

1,000.0 1,400,000
-* MPIR async-(20) CPU = MPIR async-(20) CPU
800.0 -+-dp IR async-(20) GPU 1,200,000 mdp IR async-(20) GPU
} = MPIR async-(20) GPU 1,000,000 ®MPIR async-(20) GPU

800,000
600,000

iterations

— 400,000

200.0"——— ——
200,000

time to solution [s]

1x8

0.0 0
1x8 2x8 4x8 8x4 16x 2 32x1 2x8 4x8 8x4 16x2 32x1
pxt pxt
Fig. 5: Time to solution plot. Fig. 6: Total number of iterations.
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‘ B |
00 [
1x8 2x8

4x8 8x4 16x2 32

400,000.0
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300,000.0
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100,000.0
-20.0
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Fig. 7: Energy to solution plot. Fig. 8: Energy savings of MPIR async-(20).

was similar for all methods we tested. The reason is the decomposition of the matrix and
vectors into smaller blocks, causing the local vector parts to shrink and the non-local parts
to grow. Thus, the local block updates include more potentially outdated information from
the non-local vector parts, and an increased number of overall iterations is necessary to
compensate this effect.

In contrast, the methods using the GPUs showed a different behavior. The runtimes were
nearly constant for p = 2,4, 8, 16 with slightly larger runtimes for p = 1 and p = 32. The
GPU methods perform almost the whole computations on the GPUs. Only the double pre-
cision residual computation in step 9 of Algorithm 1 is performed on the host CPUs, but
this computational effort is negligible. Instead, the nearly constant runtime reflects the fact
that the sum of the problem sizes of all processes using the same GPU is constant, namely
half of the total problem size.

Using single precision error correction instead of double precision gave approximately
20% improvement in the runtimes. The pure floating point arithmetic is twice as fast in
single precision than in double precision, but our algorithms require data transfer between
host and devices and across MPI processes for each update of the non-local vector parts.
Although we used the fast transfer between devices and page-locked host memory, these
memory copy operations required a substantial portion of the overall runtime. The high
precision residual computation on the CPUs and the typecasts in case of mixed precision
were negligible in this context, since they were not performed every 20 iterations, but only
once for each error correction solving loop. Altogether, the runtimes of GPU methods were
advantageous over the CPU method for p = 1,2,4,8. For p = 16, dp IR async-(20) GPU
and MPIR async-(20) CPU had nearly equal runtime, while MPIR async-(20) GPU was
still faster. Finally, for p = 32 the CPU method outperformed the GPU methods.

As Figure 7 shows, the energy consumption of the methods strongly correlated to the run-
times. Figure 8 shows the energy savings of MPIR async-(20) GPU compared to dp IR
async-(20) GPU and MPIR async-(20) CPU. We calculated the percentages relative to the
latter two methods. Using mixed precision instead of only double precision in the GPU
methods gave savings of about 20% with slight variances for p = 1 and p = 16. However,
performing the computations on the GPUs instead of CPUs gave massive savings of ~71%
for p =1 and ~=53% for p = 2. We observed still remarkable savings of ~37% for p = 4,
while the benefit lay around 20% for p = 8, 16. Only in the case p = 32, the CPU method
consumed ~24% less energy than the GPU method. We calculated this last percentage
relative to MPIR async-(20) GPU.
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5 Conclusion

We investigated block-asynchronous iteration methods for solving linear systems of equa-
tions with respect to performance and energy consumption. We introduced the mathe-
matical background of mixed precision iterative refinement and of block-asynchronous
iteration methods. We presented our implementation of these methods with support for
distributed memory systems be means of an MPI parallelization, as well as shared mem-
ory support using OpenMP, and support of CUDA-capable accelerator devices. We ran a
series of tests on a compute node equipped with four Intel Xeon E-4650 CPUs and two
Nvidia Tesla K40 GPUs. We varied the number of MPI processes and OpenMP threads
for the different test runs. All GPU tests used both devices. We designed the tests to assess
the effect of using mixed precision instead of plain double precision computations, and
to assess the effect of employing accelerator devices for the computations instead of only
using host CPUs. We measured performance in terms of runtime, and energy consumption
was measured with the help of an external high precision power meter.

We found that massive runtime and energy savings of more than 70% are possible on
GPU-accelerated systems compared to CPU-only platforms. However, the actual amount
of saved energy for a particular test run depends on the parallel configuration of MPI pro-
cesses and OpenMP threads. We also found that CPU-only computations may outperform
the GPU-accelerated methods if enough CPU resources are available. Also, we found that
using mixed precision instead of only double precision gives a benefit of roughly 20% for
runtime and energy consumption in the GPU tests. The frequent data transfer between host
and devices imposes a substantial overhead which diminishes the impact of the doubled
performance of the single precision floating point arithmetic.

Our results show that using accelerators for block-asynchronous iteration methods com-
bined with mixed precision can lead to tremendous benefits in terms of runtime and energy
consumption. The largest benefits can be expected for small host systems with only 16 or
even less cores. This fits many HPC systems where often not more than two CPUs are
available per node. On the other hand, large host systems or fat nodes” may provide su-
perior performance over the GPUs.
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Abstract: The generation and the execution of tests for complex software systems are
usually very time consuming tasks. With the help of model-based testing it is possible
to accelerate the process of generating test cases. Thus, it is possible to automatically
generate a large number of test cases in a small amount of time in order to achieve an
accurate test coverage. However, with an increasing number of test cases the problem
of the long execution time is intensified.

A possible solution can be the parallel execution of the tests on compute resources
of a public or private cloud. In the project Test@Cloud a service was developed that
enables the distributed execution of tests in cloud infrastructures. The present paper
describes this service and its operating principle. Additionally, the results of an evalu-
ation of the service with help of benchmark measurements are presented. The evalua-
tion shows that the service can yield notable Speed-Ups. By distributing the execution
of a test series over 19 virtual machines, it could be executed in 32 minutes, instead of
10.5 hours like it was the case when only one virtual machine was employed.

1 Introduction

Since the complexity of software systems is growing, two consequences are arising. First,
the number of test cases to achieve a specified test coverage grows exponentially and with
that the effort for the test design. And second, the time for test execution also explodes. An
appropriate way to decrease the design effort is the usage of model-based testing, where
the system under test (SUT) is described by one or more behavioral models. These models
can be easily processed by a machine to automatically generate independent test cases
according to a predefined test coverage strategy. Thus, a huge number of test cases can be
generated in a minimum of time.

Of course, it is worthless to be able to generate more test cases in a shorter time, if these
test cases cannot be executed in an acceptable time. Fortunately, the independence of
the test cases allows the parallel execution of them. Employing parallelism can shorten
the test execution times fundamentally. This makes cloud technology attractive for the
execution of tests. In a cloud a virtually arbitrary number of virtual machines (VMs) can
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be started and used for the processing of tests. This enables users to meet peak demands
in computational power without the need to acquire and maintain the necessary hardware
resources. The usage of virtualization makes it possible for the user to install a runtime
environment for his/her tests as required.

In the project Test@Cloud a platform was developed, which enables testing in the cloud.
With the help of a cloud service, it is possible to start, control, and monitor the execution
of test cases distributed over multiple VMs in a cloud.

The rest of the paper is organized as follows: In the next Section the platform underly-
ing the Test@Cloud service is described before the service itself is described in detail in
Section 3. Section 4 presents results of an experimental evaluation of the Test@Cloud
platform and finally, Section 5 closes the paper with a short conclusion and outlook.

2  Overview Test@ Cloud Platform

The execution of test cases in the cloud is done over a specific Test@Cloud service. This
service was implemented on the basis of a platform, which emerged from the project
Cloud4E [1]. Before the service is described in detail in the next section, this section
provides an overview over the underlying platform.

In order to avoid vendor lock-ins, OCCI (Open Cloud Computing Interface) [2] is used for
the remote control of services. OCCI is an open standard for a cloud interface developed
by the Open Grid Forum. In its current form, OCCI is mainly intended for the control of
Infrastructure as a Service (IaaS) — for example, starting, monitoring, and stopping VMs.
However, in Cloud4E the OCCI interface was extended to allow the control of Software
as a Service (SaaS). In order to enable the control of SaaS over OCCI, certain extensions
to the so called rOCCI server [3] were implemented.

The rOCCI server is a Ruby implementation of an OCCI server together with a corre-
sponding client library, which can be used for the provisioning of an OCCI interface to an
existing cloud infrastructure. An overview over the architecture of the rOCCI server can
be seen in Figure 1. The server consists of a frontend for the communication with clients
over OCCI and multiple backends for the control of different cloud middlewares over their
corresponding proprietary interfaces. Currently there are backends for OpenNebula and
OpenStack, an EC2 compatible backend for the control of the Amazon Web Services or
Eucalyptus and a dummy backend for testing purposes. Besides extensions that enable the
control of SaaS over OCCI, another extension was made to the rOCCI server that allows
the usage of the Advanced Message Queuing Protocols (AMQP) [4, 5] as transport proto-
col. The usual transport protocol for the OCCI communication is HTTP. AMQP provides
certain advantages compared to HTTP. For example, it supports asynchronous commu-
nication and the broadcast of messages to multiple communication partners. The most
important advantage is that all the communication is done over a central AMQP server.
Thus, only the AMQP server has to be publicly reachable and the communication part-
ners do not have to reach each other directly. This permits the communication between
resources of different cloud providers, which in turn enables the usage of a federated cloud.
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Figure 1: Overview over the architecture of the rOCCI server.
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Figure 2 gives an overview over the entire Test@Cloud platform. The central components
are a rOCCI and an AMQP server, which can run on a physical node or a VM in the
cloud. It is even possible to deploy them outside of the cloud at the client side. Over
the AMQP server all the OCCI communication is done. The rOCCI server is attached
to one (or if necessary to multiple) cloud middleware(s) for the [aaS management. In
the project Test@Cloud OpenNebula is employed as cloud middleware. With help of
the rOCCI client library a client can start VM instances over the rOCCI server in the
cloud. In OCCI VMs are represented in form of so-called OCCI compute resources. Such
OCCI compute resources provide attributes that can be used to obtain information about
the VM like the number of physical cores or the status of the VM. Additionally, OCCI
compute resources provide actions that allow to perform certain operations on a VM —
e.g. stopping or restarting the VM. Over these attributes and actions a running VM can be
controlled over OCCI. With help of the afore-mentioned extensions to the OCCI interface,
it is possible to control cloud services in a similar way. The services are executed in VMs
in the cloud and consist of three components.

One component is a test automation tool (like Ranorex or HP Unified Functional Testing).
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A second component is a so called OCCI Service Adapter (OSA). This is a daemon that
provides an OCCI interface for the test automation tool in form of actions and attributes.
After the start it registers the actions and attributes to the rOCCI server. This is done by
linking the actions and attributes in form of so-called OCCI mixins to the OCCI compute
resource of the VM in which the OSA is running. After the OSA has registered the in-
terface to the rOCCI server, it listens for incoming OCCI requests and handles them — for
example, when an action of the registered interface is triggered.

The declaration and implementation of the actions and attributes of the service interface
is done in a third component of the service: the so called Service Connector. This is a
Ruby class, which declares the available attributes and actions in a special syntax (domain
specific language) and which implements the actions in form of usual Ruby methods.
One can say that the OSA together with the Service Connector form some kind of OCCI
wrapper around an existing application (a test automation tool in our case), whereby the
OSA is application independent and everything application dependent is specified and
implemented in the Service Connector.

After the interface of a service is registered at the rOCCI server, a client can use it with
help of a library provided by the OSA. Over this library the client can query the available
actions and attributes of the service interface from the rOCCI server and use them in order
to control the service. For the control of a service, requests can be sent either directly to
the OSA of the service or to the rOCCI server, which redirects the requests to the OSA.
Since the OSA provides client-side functionality, it can be used for the communication be-
tween different Service Connectors. For example, it is possible that one Service Connector
queries the attributes of another Service Connector.

In order to get detailed information over the state of a service or to investigate failures
related to a service, it is important that the client can retrieve log messages from the ser-
vice. Since AMQP is already used for the control of the services, it is also employed for
the transfer of log messages. With help of library functions of the OSA, Service Connec-
tors can send log messages to the AMQP server. Afterwards the client can retrieve the
messages from the AMQP server. The AMQP protocol permits that the messages can be
retrieved simultaneously by other applications. Thus, it is possible to retrieve the messages
with the client and at the same time to use a tool like Logstash [6] for the advanced storage,
filtering, and post-processing of the messages.

The data management in the Test@Cloud project is done over Samba and SSHFS (Secure
Shell File System). Every cloud user is provided with a portion of a shared file system that
is located on a physical host of the cloud. The file system can be mounted via Samba or
via SSHFS on the local host of the user as well as in the VMs. That makes it possible to
provide input files for services and to retrieve output files from computations executed over
services. Furthermore, data can be shared among multiple service instances. However, the
Test@Cloud service is mostly independent from the concrete data management solution.
Thus, it is possible to replace the Samba and SSHFS based data management with another
solution without big effort.
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3 Test@Cloud Service Connector

Based on the platform described in the last section, a service — or more precisely a Ser-
vice Connector — was implemented that allows the execution of test cases over different
test automation tools in the cloud. So far, the service was tested with the two popular test
automation tools Ranorex and HP UFT. Both tools allow to create test cases in form of
so called test suites that can be executed over the test tool. Thus, the Test@Cloud ser-
vice has to be able to execute such test suites distributed in the cloud. In order to make it
able to distribute test suites over multiple VMs, the service works according to the master-
worker-scheme, like illustrated in Figure 3. The client controls a master service that in
turn controls multiple worker services over which the executions of the test cases are dis-
tributed. Over the Samba and SSHFS based cloud file system (cloud FS), the master and
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Figure 3: Operating principle of the Test@Cloud service according to the master-worker-scheme.

the workers have collective access to shared files. The Test@Cloud connector provides the
following four actions, which can be triggered by the client in order to control the execu-
tion of test series: start_workers, stop_workers, start_test_series, and abort_test_series.

The execution of a series of test suites with help of the Test@Cloud service is done in
the following way: First, the user copies all the test suites belonging to the test series
from his local host to the cloud FS. Additionally he creates a configuration file on the
cloud FS, which contains all the information about the test series that is relevant for the
master service. It specifies the files of the test suites to execute, the number of workers
that should be used for the execution of the test suites and from which VM templates'
the workers should be started. After the user has copied all input files to the cloud FS, he
starts the VM for the master service. Inside of the VM automatically the master service
is started after the VM is booted. Afterwards, the user triggers the action start_workers
of the master and passes the path to the configuration file on the cloud FS as argument to

A VM template is a configuration of a VM that can be used by the cloud middleware to start the VM
accordingly.
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the action. The configuration file is parsed by the master and thus it knows the test suites
to start and the desired number(s) and type(s) of workers. This information is used by the
master to start the requested workers.

When all workers are started, the actual test execution can be initiated. This is done by
triggering the action start_test_series of the master. That causes the master to start the
individual test suites on the workers and to ensure that thereby no test suite is started on
the wrong type of worker (according to the specifications in the configuration file passed
to the action start_workers). Initially, each worker is assigned with one test suite. When a
worker has finished the execution of its test suite, it contacts the master, which assigns the
worker with the next test suite (if there are unassigned test suites left).

After all test suites are processed or if necessary also during the execution, the user can
access the outputs of the tests over the cloud FS. When the workers are no longer required,
the master can be prompted to stop them over the action stop_workers. The last step of the
test execution in the cloud is the shutdown of the master VM.

During the execution of a test series the user is able to abort the test series at any time.
This is done by triggering the action abort_test_series.

In the project Test@Cloud a prototypical graphical client was implemented, which allows
the convenient control of the Test@Cloud service.

4 Experimental Evaluation

In order to evaluate the described cloud platform, a series of benchmark measurements
was performed. An OpenNebula based cloud infrastructure on the compute resources of
the Chair of Computer Architecture of the FAU served as testbed for the measurements.
On the head node (with two AMD Opteron 2435 hex-cores) of this infrastructure version
0.5 of the rOCCI server runs over Ruby 2.0.0 and OpenNebula 4.0.1 functions as cloud
middleware. Multiple compute nodes (with two 2.4 GHz AMD Opteron 2216HE dual-
cores, each) are connected to the middleware and can be used to host VMs, whereby
QEMU 1.6.1 is used as hypervisor for the VMs. The communication between physical
machines is done over 10 Gbit/s InfiniBand and VMs are connected to a Gigabit Ethernet
LAN. For the measurements VMs with Windows XP as operating system were used. For
the scheduling of VMs to physical hosts, a self-implemented scheduler i3sched [7] is used
instead of the OpenNebula scheduler. The i3sched delegates the scheduling decisions to a
batch system (Slurm) in order to better integrate the cloud platform in an existing cluster.
It has to be noted that i3sched is part of the cloud infrastructure and not of the Test@Cloud
platform, which is independent of the scheduler.

In a first step, we determined how much time it takes to start multiple workers (the worker
VMs together with the worker services inside them). For that purpose we measured the
timespan between triggering the start_workers action of the master and the moment, when
the master recognizes that all workers are started, for different numbers of workers to
start. The times averaged over 10 measurements can be seen as T in Figure 4. In order to
determine how much of these times are the pure start times of the VMs, we equipped the
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Figure 4: Time it takes to start and boot different numbers of worker VMs over OpenNebula (7p00t)
and time it takes to start the worker VMs and additionally the worker services inside the VMs (7%).

worker VMs with a simple client, which starts automatically after the boot and contacts a
server on the head node of the cloud. For different numbers of VMs we measured how long
it takes from the start of the VMs over command line tools of OpenNebula until all clients
inside the VMs have contacted the server. These times (averaged over 10 measurements)
are shown as Ty, in Figure 4. The scheduling interval of i3sched was set to 10 s, implying
that 10-20 s of Tj,,; and of T arise from the scheduling.

It can be seen that the start times T3, of the worker VMs stay nearly constant with an
increasing number of workers to start and that they lie in the range of about two minutes.
The times T, which include the start times of the worker services, grow with an increasing
number of workers to start. The reason is that the worker services have to register their
interface to the rOCCI server during their start and this takes more time, the more worker
services are started simultaneously. But nevertheless, the start times stay in an acceptable
range. The start of 40 workers can be done in approximately three minutes. A more
detailed investigation of the start times and a description of optimizations that were done
to keep the start times in an acceptable range can be found in [8].

In a next series of measurements we determined the overhead caused by the distribution of
test cases over multiple workers. When a test series is started, the master service contacts
the available worker services over AMQP and delegates test cases to them (one test case
per worker). The worker services start their test cases on the command line and when a
worker service has finished its test case it contacts the master, which delegates a next test
case to the worker. This requires a certain amount of time. In order to quantify this time,
we measured how long it takes to execute 2n test cases on n workers, whereby nothing
is calculated in the test cases. Thus, the measured times are the pure overhead associated
with the distribution of the test cases. They can be seen in Figure 5 for different numbers
of workers and averaged over 10 measurements.

The overhead lies in the range between one and two seconds. The execution of 60 “empty”
test cases on 30 workers causes an overhead of about 1.7 s. Thus, if the runtimes of the
test cases to execute are very short, this overhead has a noticeable impact on the overall
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Figure 5: Time to execute 2n “empty” test cases on n workers for different values of n.

runtime. But it can be assumed that in most practical cases the overhead is tolerable.

In order to evaluate the Test@Cloud platform regarding its suitability for the practical
usage and to investigate the scalability of test executions in the cloud, we executed a series
of 1296 test cases (or test suites, respectively) in the described testbed. The test cases
are provided in form of executable Ranorex (version 4.1) test suites. The SUT is the tool
MBTsuite (a tool to generate test cases from models). The test series covers all possible
combinations of inputs to a dialog GUI window of the MBTsuite. The GUI dialog contains
text/numerical input fields, combo, and check boxes. The test cases have been derived
automatically from a model of the SUT. Each test case consists of 15 to 17 test steps,
ranging from starting the SUT, the various steps of filling the dialog’s elements, checking
the response of the SUT, and the final cleaning of the SUT. Test cases with both, positive
and negative expected results are taken into account. Their generation is based on threshold
related test development methods, for instance the input of numerical values, which are
limited to a certain range or unexpected text inputs. Thus, the test series covers all possible
scenarios which are taken into account by the model, this is often referred to as a full-path-
coverage.

In order to get an impression of the execution times of the single test cases, we first exe-
cuted them on a local PC (with an 3.4 GHz Intel Core i7-3770 quad-core) outside of the
cloud. The shortest runtime of a test case was 15.6 s. Only one of the 1296 test cases had
with 41.89 s a runtime over 25 s. 1258 test cases had execution times between 15 s and
20 s and for 37 test cases the execution time lay between 20 s and 25 s. In average the test
cases took 17.69 s to execute and the total runtime of the complete test series was 6.4 h.
Thus, the test cases have relatively uniform and short runtimes.

The execution of the test series in the cloud was done distributed over 1, 2, 4, 8 and 19
workers with two cores (VCPUs) per worker VM. The runtimes averaged over 5 measure-
ments are shown in Figure 6. They do not contain the start times of the workers (Figure
4).

With one worker, the runtime is about 10.5 h and thus it is notably higher than on the
local PC outside of the cloud. But this comes as no surprise since the employed PC is
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Figure 6: Average time to execute a series of 1296 test cases on the Test@Cloud platform distributed
over different numbers of workers with two cores per worker VM.

significantly more performant than the physical hosts in our available cloud testbed.

With two workers the average execution time reduces to 5.06 h. With four workers it
is further reduced to 2.52 h. With eight workers the execution time is 1.28 h and with
nineteen workers it is 0.53 h. The standard deviation of the measured execution times
ranges from 0.44 min for nineteen workers to 8.96 min with one worker.

The average speed-up values with respect to the execution with one worker can be seen in
Figure 7. It is slightly super-linear. For nineteen workers the speed-up is around 19.89.
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Figure 7: Average speed-up of the execution of the test series distributed over multiple workers with
respect to the execution on one worker.

Although this might be the result of measurement deviations, it shows that no relevant
overhead is introduced by the distribution of the test cases over multiple worker VMs.
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5 Conclusion

In the present paper we proposed a platform, which allows the remote start and control
of the execution of test cases in cloud infrastructures independently of the employed test
automation tool. In an experimental evaluation its applicability for the practical usage is
shown.

In order to transfer the current prototypical implementation into a production-ready status,
we plan to deploy it on the resources of a commercial cloud provider and to start a piloting
phase with representative test users. For that reason, we are currently working on an OCCI
binding to the Windows Azure Pack cloud platform.

Furthermore, it is planned to perform more detailed measurements and to investigate the
validity of non-functional tests in virtual environments.
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Abstract: Job-centric monitoring allows to observe the execution of programs and
services (so called jobs) on remote and local computing resources. Especially large
installations like Grids, Clouds and HPC systems with many thousands of jobs can
have large benefits from intelligent visualisations of recorded monitoring data and
semi-automatic analyses. The latter can reveal misbehaving jobs or non-optimal job
execution and enables future optimisations to establish a more efficient use of the
allocated resources.

The challenge of job-centric monitoring infrastructures is to store, search and ac-
cess data collected on huge installations. We take this challenge with a distributed
layer-based architecture which provides a uniform view to all monitoring data. The
concept of this infrastructure called SLAte, a performance evaluation, and the conse-
quences for scalability are presented in this paper.

1 Introduction

Direct observability of computing tasks is more and more lost by using external and dis-
tributed resources for getting calculations done. Thus, misbehaving or obscure behaving
jobs are rarely found and the optimisation potential of job execution is not satisfied. Job-
centric monitoring is a service which takes the challenge to fill the gap between using
external resources and direct observability of jobs. Therefore monitoring data of each job
are recorded, giving detailed information about the used resources of running and com-
pleted jobs. Grid middlewares or batch systems usually just provide information about
the job status like running or finished. Using more detailed information allows a semi-
automatic analysis process to observe job execution with a minimal expenditure of time
for users and administrators. It also enables the analysis of job failure reasons which is not
possible by just checking the exit codes of jobs delivered by batch-systems.

Job-centric monitoring is most benefiting for environments with large numbers of jobs and
resources which are shared by various users. In these systems, users cannot easily observe
their jobs like on local resources by using desktop monitoring. Resource monitoring does
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not solve this problem because it does not provide job specific information. It observes
only the characteristics of resource usage, not the impact of single users or concrete jobs.

The architectures we have in focus for job-centric monitoring are Grids (offering huge
amounts of heterogeneous resources), Clouds (offering virtual resources on demand) and
HPC or cluster systems operated by computing centres. For the measurements and anal-
yses presented in this paper we focused on the D-Grid infrastructure! which is a research
network for scientists in Germany and the Globus Toolkit 4 (GT4) [Fos05] Middleware’s
web services which were common for many different Grid projects.

One of the challenges is the development of analysis strategies [HWT13] which handle
the huge quantities of job-centric monitoring data or measurement series in general. But
before we can analyse the data we have to handle them.

Our answer to the challenge of storing, accessing and searching huge amounts of job-
centric monitoring data is the infrastructure SLAte? [HMP10]. It is built on a concept
of distributed servers organised in three layers. These layers allow to distinguish between
different network capabilities (e.g. within a site® and between different sites), capacities of
various storage locations, and the localities of users or analysis services. The performance
of each of the three layers can be increased by installing additional servers and thus can be
adapted to needs.

This paper presents work related to job-centric monitoring, shortly describes the SLAte
architecture, gives a performance evaluation for the different server types of SLAte and
analyses the results in the context of the scalability concept of the job-centric monitoring
infrastructure. Closing, conclusions and future work are presented.

2 Related Work

Job or system observation is an already established concept used for different needs. So it
has been realised by different fields of research:

Monitoring of local computing resources: For local monitoring command line tools like
ps, top or free* and graphical ones like Gnome System Monitor® can be used. On
clusters Ganglia® gives information about the utilisation of resources. The impact
of a specific user or job cannot be identified directly by these tools.

Tracing and profiling: Profiling tools like GNU gprof’ give information which func-
tions of a program are used and how long they are used. This information is often
presented as statistical evaluation. Even more detailed information are given by

'http://www.dgrid.de/

2SLAte stands for Scalable Layered Architecture

3 A site is a set of resources of a resource provider (in the Grid context) at a single location.
4http://procps.sourceforge.net/index.html
Shttp://library.gnome.org/users/gnome-system-monitor/stable/index.html
Shttp://ganglia.info/

Thttp://sourceware.org/binutils/docs/gprof/
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tracing tools like Score-P [MBB ™ 12] and Vampir [BHJR10]. To record the data the
applications need to be instrumented, meaning adapted. Depending on the level of
detail of the tracing a significant overhead may be introduced. Moreover, profiling
or tracing infrastructures are usually designed to handle just one application/job and
only on local resources. Thus it can not be easily adapted for job-centric monitoring.

Accounting: Accounting is used to measure resource utilisation and as a base for the
billing of resources usage. An example is SGAS [EGMT]. Only basic and summary
information of a job are needed and thus the amount of data to be handled is low. As
a database is usually able to handle all accounting data, scalability is only a minor
issue.

Resource monitoring: The task of resource monitoring is to record information about
the (distributed) resources. Collected are information about e.g. hardware, of-
fered services, outages and utilisation. This allows to create statistics or to assign
jobs to resources. Examples are projects like D-Mon [BBK*T09] and CMS Dash-
board [ACC*10]. A lot of the information collected by these tools are static and
have no need for a high frequency of updates.

The specific needs for handling job-centric monitoring data are not properly considered by
any of these tools. Thus, we developed new concepts for job-centric monitoring which are
explained in the following sections.

3 Architecture of SLAte

SLAte is designed to increase the performance of handling monitoring data by deploying
additional servers. This is needed if more users access the monitoring or new computing
resources are added. The network capacity may be one limiting factor, the CPU capacity
to process the data or the storage capacity are other ones. When observing many jobs in
SLAte the overall performance can be adjusted by the number of deployed servers. For
easy access to the distributed monitoring data we provide a unified and global view to
easily access data. To this we created a concept based on three layers which is schemati-
cally shown in Fig. 1. We use the Short Time Storage (STS) layer to receive data from the
monitoring clients running on the compute nodes and to store the data temporarily. The
Long Time Storage (LTS) layer accumulates the data from the STS servers, stores them
persistently and distributed over multiple servers. The outer layer is the Meta Data Service
(MDS) which provides the global view on the data.

The STS servers are to be installed local at a site to be close to the computing nodes on
which the monitoring data are produced. To avoid that the monitoring data use too much
resources on the computing node (e.g. if stored in memory) and to avoid that the moni-
toring data are copied after the job is done (which might prevent the next job to start), the
monitoring information have to be moved to an STS server as early as possible [HMP10].
This results in a transfer for each single measurement and tends to many small packages
which are handled by the local network (within a site or a computing system).
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Figure 1: The layer-based SLAte infrastructure.

The monitoring data cached on the STS server have to be moved to the LTS server over
a network connection which can be used more efficient when transferring packages of
according size. To improve the performance of such a connection the monitoring data is
transferred in batches. In most cases the monitoring data of one job are moved at once®.

By repacking the monitoring data to large packages network congestion is avoided.

Like the STS layer, the LTS layer can consist of multiple servers to store the monitoring
data in a distributed way. In contrast to the STS the LTS servers store the data persistently.
The monitoring data of several individual STS servers can be merged (in Fig. 1 symbolised
by the sites A to C). Furthermore, an LTS server makes locally stored data accessible and
searchable to users and analysis systems.

To provide a unified view on the monitoring data distributed over the LTS servers the MDS
layer is used (see Fig. 1). This layer can consist of multiple servers too. Unlike the LTS
and STS servers an MDS server has a global view to all data. Via a single MDS server
monitoring data can be easily accessed, without knowing other MDS or any of the LTS
and STS servers.

In our architecture we distinguish between monitoring data and their meta data. The mon-
itoring data are (time) series of measurements (like used CPU-time, load average, used or
free memory) while the meta data hold information to search for jobs. Such informations
are for instance the job ID, the time frame the job was active in and the executive system.

8To realise online monitoring it is needed to get monitoring data of running jobs. In this case the data are
accessed on the STS server and the data recorded afterwards thus have to be transferred in an additional package.
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To look up or search for jobs only the meta data are considered. This search can be
performed by an LTS or an MDS server with the distinction that an LTS server holds only
the meta data of the locally stored data while an MDS server has the meta data of all LTS
servers but does not hold the job data. Thus an MDS server can search on all monitoring
data and the amount of data transferred to the MDS servers is dramatically reduced. In
concrete a search request is answered with a list of storage locations for the data on LTS
servers. With this list, a client can access the data directly and download it in parallel.

Not covered with this paper is the topic of protecting user-related data. Our first publication
which concerns security for SLAte was [HMP12b]. Later on a very detailed explanation
of the used protection concept was shows by [Hil14], which also covers an analysis of the
protection demand of the stored data.

4 Performance Evaluation
4.1 Hardware and Software Used

SLAte has been implemented as a demonstration of the layer-based concept in the context
of D-Grid. Thus we used software and hardware common for this research federation. The
STS, LTS, and MDS servers are based on GT4 web services and use the certificate-based
authentication and authorisation of GT4 with the public-key-infrastructure of D-Grid. This
is a proper usage scenario with the drawback of web services as performance bottleneck.

As test hardware (see Tab. 1) for the three types of servers we used systems which where
common for the D-Grid infrastructure and which could be allocated for exclusive use for
our experiments. These were Sun Fire X4100™ with dual core AMD®) Opteron™ 256
at a clock rate of 3.0 GHz equipped with 8 GB DDR main memory and Gigabit Ethernet
network connection. It is clear that a more recent system could lead to a higher perfor-
mance. To classify the results we give a short example of a system we used for production
in D-Grid. This is a Sun Fire X4600™ with 16 CPU-cores at a clock rate of 2.6 GHz
and 32 GB memory. This system was used as GT4 server at the Center for Information
Services and High Performance Computing. During the usage we could observe that a
submission of 500 to 1000 jobs could reproducibly overload the GT4 execution system.
Even a more powerful system, the frontend of a cluster with an eight core Intel®R) Xeon®)
X5365 at 3.0 GHz and 16 GB DDR2 main memory was overloaded with about 1000 jobs,
but the cluster offered enough nodes to generate load for our experiments without getting
a bottleneck.

4.2 Principles of the Measurement

We started with performance measurements of the STS server. One job with eight hours
runtime was excuted on the cluster with the job-centric monitoring enabled. We recorded
the sampled monitoring data and their transfer to the STS server including the exact tim-
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GT4 server load generation (clients)

CPU typ AMDQ®) Opteron™ 256 Intel® Xeon® X5365
CPU clock 3.0GHz 3.0GHz

cors per CPU 2 4

cors per node 2 8

RAM typ DDR DDR?2

RAM per node 8GB 16 GB

nodes per system 1 64

number of nodes used 1 up to 8 (only moderate load)
network Gigabit Ethernet 10 Gigabit Ethernet

Table 1: Hardware used for the test system (GT4 server) and the system used for load
generation.

ing. Based on the fact that the data volume is independent of the values of measurements
(it depends on the number of measurements or runtime) a replayed job causes the same
behaviour on the server like a real one. To test the load on the STS server, we needed
to increase the amount of monitoring data sets sent to the STS server. This was done by
replaying the previously recorded data simultaneously with the original clients and bash
scripts to coordinate the timing. In this way we could use one CPU-core (at moderate
load) of the cluster to simulate the sending of data of multiple jobs. This allows to sim-
ulate much larger systems than we used for our experiments. For the STS server (as like
for the other server types) we did multiple tests with different loads. In the following we
always refer to the run with the highest load without any overload or data lost.

To analyse the performance of a LTS server the output of STS servers is needed. To
avoid to operate multiple STS servers, we recorded the output of a STS server including
the timing. This was done by a separate run with lower number of jobs and debugging
enabled. This record can be replayed and duplicated to adjust to a predefined load as in
the case of the STS above. This was done by instrumenting the STS server’s source code
for recording and by implementing a client to replay the record.

Finally, to test the MDS server the LTS server was instrumented and recording was done
like for the STS server. Another client was implemented to replay the data.

4.3 STS Server

To test a STS server, the number of running jobs (jobs to handle in Fig. 2a) is increased
constantly over seven hours. After eight hours the first jobs finish and the number of
running jobs decreases until all jobs end after 15 hours. Thus the maximal load is reached
after seven hours and holds for one hour. During this experiment it was tested that the STS
server is not overloaded, which would result in a undefined state of the GT4 system and
data loss.

For a practice-oriented scenario we need an LTS server at high load because this slows
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down the data transfer from the STS server. In preexaminations we discovered that the
limitation for all our server types is the web server’s CPU-load, not the network connec-
tion. So we decided to run the LTS server on the same hardware as the STS server. Based
on the assumption, that the LTS can handle much more jobs than the STS server [HMP12a]
we can justify this to get more practical relevant results. This is verified later on.

In our experiments we could use up to 276 jobs on the limited hardware described above.
The result is shown in Fig. 2a. An increased job count leads to an overload of the STS
server with discontinued data transfers. Also shown is the number of jobs stored on the
LTS server. All job data were transferred and no data loss was seen during the experiments.
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Figure 2: Measurement results for the STS server

The transfer of the individual measurements (elements) to the STS server is shown in
Fig. 2b. Each measurement has a size of 0.4 kB. Based on the fact that multiple measure-
ments are done for each job, the number of measurements (22,131) is much higher then
the number of jobs (276). Figure 2d shows the number of transferred meta data packages
(2.4kB each). For each job, exactly one package is sent.

According to Fig. 2b (total number of elements) the data rate is not always constant which
meets the exception of the measurement . The data rate is constant in case the number of
jobs stays constant, so the number of elements sent per time is determined. According to
Fig. 2a this is the case from hour seven to eight. Figure 2b shows the expected constant
rate (lineare increase) for this time frame. From hour zero to seven the number of jobs
rises linear (see Fig. 2a). Thus the rate of transferred elements rises linear, resulting in an
quadratic increase of the number of elements in Fig. 2b. After eight hours, the number of
jobs decreases linear (see Fig. 2a). Thus the rate of elements is linear lowered, resulting
in an increase of the number of elements based on a square root function (the amount as
integral of the rate, the rate is a linear function with negativ sign). In short, an increase
of the number of jobs results in a more then linear increase of the number of elements
while a decrease results in a less than linear increase. In the time frame with the maximum
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number of jobs (hour seven to eight) the rate of newly sent elements has its maximum and
is constant.

The number of measurements/elements transferred to the STS server is also shown in
Fig. 2c. For this illustration, the number of elements was added up for each minute. It
shows the already mentioned global change of the data rate as a fine granular fluctuation
which is not obvious in the last diagrams. There are even minutes without any data transfer.
The reason for the high variance of the transfer rate is the absence of a coordination of the
data transfer.

4.4 LTS Server

The LTS server test is based on the outcomes of the analysis of the STS server. The
monitoring data is replayed by clients on nodes of the cluster to simulate the STS servers.
For each job, two communications are realised. The first one creates an object on the LTS
server to hold all data of one job and to transfer the meta data. This is done directly after
starting the job and enables users to find the job’s information. The second transmission
is done after the job has finished. It sends all monitoring data in one package and updates
the end time as well as the exit state of the job which is part of the meta data. During the
two communications the job is in state “to handle”.

The measurement of the jobs handled by the LTS server is shown in Fig. 3a. It shows a
behaviour similar to the STS server (Fig. 2a). During the first 7.5 hours the number of
handled jobs increases constantly. Afterwards the value is maximal for about one hour,
then it starts to decrease.
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Figure 3: Measurement results for the LTS server

The number of jobs which could be handled simultaneously by an LTS server at the test
conditions is 826. In Fig. 2a the maximum is slightly larger. This is based on the fact
that during the first minutes of the experiment (while the Java execution environment still
optimises the execution of the LTS server) some data transfers are aborted and redone later.
The jobs with the delayed transfer are not counted for the measurement but they show that
the server is under high load. A further increase of the number of jobs results in a crash of
the GT4 components and data loss.
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That the performance of an LTS exceeds the one of an STS server meets the expectations
from the previous section and the theoretical analyse of SLAte in [HMP12a]. Based
on the experiments we can also calculate the slow down factor’ for the usage scenario

kN _stow = % = (.33 caused by using small packages to transfer the monitoring data.

Similar to the STS server measurements we visualise the transfer of the single measure-
ments, even if they are sent as batches for each job of 112.5kB each. Figure 3b shows that
the data transfer starts after the first job has finished. A much higher transfer rate can be
reached in comparison to the STS, but the fluctuation of the transfer rate is similar.

4.5 MDS Server

The MDS server only receives the meta data which are transferred as packages of 2.4 kB
per job, monitoring data are not transferred. Thus a state like “to handle” is not present.

The number of jobs for which meta data are stored is shown by Fig. 4a. In the first eight
hours the number is rising up to 20,470. This is similar to the behaviour of the LTS and
STS server but the number of processed jobs is much higher. Afterwards the number of
jobs should be constant, but the measurement show a slight increase. This is caused by
transfers of meta data which got delayed based on the high load on the MDS server, but no
data loss is observed. Again, an overload which leads to data loss is achieved by a further
increase of the number of jobs.
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Figure 4: Measurement for the MDS server

Comparing the MDS server to the STS server, the number of handled jobs is much higher
with 20,470 compared to 276. The performance achieved for individual measurements
(Fig. 2b) for the STS server is very similar to the one of the meta data on the MDS server.
As seen at the other server types too, the transfer rate fluctuates quite strong (Fig. 4b) from
zero transmissions to high values.

9The slow down factor was introduced in [HMP12a] and can be calculated as kn_siow = xi;im , with
in

the realised network bandwidths Ng7g_;» for a STS server and Ny, g i, for the LTS server.
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5 Scalability Observations

Scalability for the SLAte architecture is provided by the separation of servers (storage lo-
cations), repacking of data and the separation of monitoring and meta data. The separation
allows to test individual servers of the STS and LTS layers, based on the fact that servers
of one layer do not communicate with each other. They are only connected to a dedicated
number of servers in the neighbouring layers. The repacking of the data of one job to
one package gives a performance increase by a factor of more than three according to our
measurements (276 jobs for a STS server to 826 jobs for a LTS server). This allows to
connect one LTS server with three STS servers (using the hard and software used for the
measurements).

As already shown in previous work [HMP12a] the MDS server is a bottleneck and defines
the maximal size of an installation. Based on the data reduction which transfers only the
meta data to the MDS server, the performance can be boosted to 20,470 jobs, which is a
suitable number for monitoring a D-Grid like computing environment. For such a SLAte
installation, an MDS server can be equipped with 25 LTS server and 75 STS servers. A
single STS or LTS server is clearly not able to manage the monitor data of such a Grid
infrastructure, this was already forecasted in [HMP10].

With a performance gain of a factor of 3 due to the repacking of the monitoring data and
of a factor of 25 due to the distinction of monitoring and meta data (which allows to use
multiple LTS servers for a installation), the overall performance increase is 75 compared
to a centralised implementation with a performance similar to a STS server.

6 Conclusion and Future Work

This paper presents measurements to confirm the theoretical predication of our architec-
tural concept described in [HMP12a]. We showed that the performance behaviour of the
different layers allows to build up of a distributed monitoring infrastructure with a uni-
fied view on the data. The performance will be much higher than using a single storage
location.

The presented experiments were not based on the most recent hardware. We even expect
a higher performance when switching to more recent and more powerful hardware.

An interesting observation is the high fluctuation of the transfer rates. We have to analyse
how to better coordinate the transfers to get a more constant and thus higher data rate. This
also includes a discussion about replacing the underlying GT4-based web service we used
for the current implementation for better performance.

We also observed the predicted bottleneck in the MDS server for storing data, which limits
the growth of the infrastructure. In future developments we will address this shortcoming
with respect to the scalable data access mechanism in a conceptional way. An additional
task is to transfer the Grid implementation we have tested to Cluster and Cloud environ-
ments.
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Automatic Sorting of Bulk Material
Georg Maier

Fraunhofer-Institut fir Optronik, Systemtechnik und Bildauswertung 10SB
Abteilung Sichtprufsysteme (SPR)
Fraunhoferstrae 1
76131 Karlsruhe, Germany

Das Geschaftsfeld Inspektion und Sichtpriifung des Fraunhofer I0SB beschéftigt sich
u.a. mit der Entwicklung optischer Prifsysteme fur die industrielle Verarbeitung von
Schittglitern. Haufig beinhaltet die Aufgabenstellung eines solchen Systems, dass nach
einem Sortiervorgang ein entsprechendes Produkt in moglichst reiner Form vorliegt, also
Fremdkorper und Schlechtmaterial aussortiert werden. Ein Systemaufbau besteht i.d.R.
aus einem Transportmedium, von welchem das entsprechende Produkt kurz vor der
Inspektionslinie abgeworfen wird. Spezielle Beleuchtungen erleichtern die spatere
Bildverarbeitung in Software. Ein PC empféngt die Bilddaten von einer Kamera. Durch
die Ansteuerung von Luftdruckdlsen wird das Material nach der Auswertung getrennt.
Durch die begrenzte Zeit, in welcher sich ein Objekt von der Inspektionslinie zur
Ausblaslinie bewegt, entsteht ein Echtzeitkriterium. Der Kundenanspruch besteht darin,
bei hohem Durchsatz prazise Objektklassifikationen durchzufiihren. Sequentielle
Bildverarbeitungsroutinen werden diesem Anspruch nicht mehr gerecht.

Die Abtastung des Bilds zur Erkennung von Objekten kann auch bei hohem Durchsatz
sequentiell durchgefiihrt werden. Dies ermdglicht im Weiteren die parallele
Verarbeitung einzelner Objekte. Zu den Berechnungen gehort beispielsweise die
Trennung sich berlihrender Objekte, die Berechnung diverser Deskriptoren, sowie die
Klassifikation. Obwohl auf diese Weise aufwendige Operationen parallel durchgefiihrt
werden konnen, generiert die nebenldufige Verarbeitung einzelner Objekte einen groRRen
Overhead, etwa durch das Starten von Threads. Durch das Erzeugen von Gruppen von
Objekten kann durch ein Kriterium, wie beispielsweise die Anzahl der gepufferten
Objekte, jedoch mehr Rechenaufwand auf einzelne Threads ausgelagert werden.

Dieser Ansatz bringt zwei Vorteile. Zum einen kénnen durch die parallele Verarbeitung
mehr Objekte verarbeitet werden. Zum anderen tragt der Ansatz auch zur Stabilitat des
Systems bei. Bei Verschmutzungen oder Fremdkdrpern, fur welche bestimmte
Operationen z.B. aufgrund der GroRe des vermeintlichen Objekts deutlich mehr
Rechenaufwand im Vergleich zu dem erwarteten Produkt mit sich bringen, werden
weniger andere Objekte ausgebremst, da nur jene Verarbeitungs-Threads betroffen sind,
in denen sich ein entsprechendes Objekt zur Verarbeitung befindet.

Bei den beschriebenen Sortiersystemen kommt komplexe Software zum Einsatz. Somit
ergibt sich die Herausforderung, bestehenden Code mdglichst einfach zu parallelisieren.
Durch den hier beschriebenen Ansatz konnte dies flr einen der rechenintensivsten
Prozesse der Software durchgefiihrt werden.
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GESELLSCHAFT FUR INFORMATIK E.V.

e] PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN PARS
UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

1. Aktuelle und zukiinftige Aktivitaten (Bericht des Sprechers)

Die 32. Ausgabe der PARS-Mitteilungen enthélt die Beitrdge des 26. PARS-Workshops, der die
wesentliche Aktivitat der Fachgruppe im Jahr 2015 darstellt.

Der 26. PARS-Workshop fand am 7. und 8. Mai 2015 in Potsdam statt. Der Workshop war mit 30
Teilnehmern gut besucht. Am Morgen des ersten Tages présentierte Professor Burkhart (Univ. Basel) ein
Tutorial zum Thema ,,Reproducability in High Performance Computing“. Bis zum Mittag des zweiten
Tages folgten 13 Vortrége, ein eingeladener Vortrag und eine Industrie-Session mit 3 weiteren
Vortrégen, die zusammen ein umfangreiches Themenspektrum abdeckten. Frau Professor Schnor (Univ.
Potsdam) und ihrer Gruppe sei fur die Organisation des Workshops gedankt.

Den zum zehnten Mal ausgeschriebenen und mit 500 € dotierten Nachwuchspreis erhielt in diesem Jahr
Frau Jutta Fitzek (GSI Darmstadt). Herr Sunil Ramanarayanan (TU Berlin) erhielt einen Buchpreis. Die
Ubergabe des Preises erfolgte im Rahmen der Abendveranstaltung wahrend einer Havel-Schiffsfahrt.

v.l.n.r.: Preistragerin J. Fitzek, W. Karl (stellv. FG-Sprecher). Bild: S. Christgau

Wahrend des PARS-Workshops fand auch eine Sitzung des PARS-Leitungsgremiums statt. Dort wurde
ein neues Leitungsgremium fir die Periode 2016 bis 2018 gewahlt. Drei langjahrige Mitglieder des
Leitungsgremiums, die Herren Prof. Dr. H. Burkhart, Prof. Dr. H. Schmeck, und Prof. Dr. H. Weberpals,
stellten sich nicht mehr zur Wahl. Der stellv. Fachgruppensprecher Prof. Karl dankte ihnen fur ihr

153



langjahriges Engagement. Neben den weiteren aktuellen Mitgliedern (s. Seite 2) stellten sich auch funf
,heue“ Personen zur Wahl: Herr Prof. Dr. Norbert Eicker (FZ Julich), Herr Prof. Dr. Thomas Fahringer
(U Innsbruck), Herr Prof. Dr. V. Heuveline (U Heidelberg), Herr Prof. Dr. Ben Juurlink (TU Berlin) und
Frau Prof. Dr. B. Schnor (U Potsdam). Alle Kandidaten wurden ins Leitungsgremium gewahlt. Herr
Professor Karl (KIT) und Herr Professor Keller (FU Hagen) wurden erneut zu stellv. Sprecher und
Sprecher der Fachgruppe gewahlt.

Unser nachster Workshop ist der
12. PASA-Workshop vorauss. am 4. und 5. April 2016 in NUrnberg.

Der Workshop wird wie in den vergangenen ,,geraden” Jahren gemeinsam mit der Fachgruppe ALGO im
Rahmen der Tagung ARCS 2016 durchgefuhrt.

Aktuelle Informationen finden Sie auch auf der PARS-Webpage
http://fg-pars.gi.de/

Anregungen und Beitrdge fur die Mitteilungen koénnen an den Sprecher (joerg.keller@FernUni-
Hagen.de) gesendet werden.

Ich wiinsche lhnen einen guten Start ins Wintersemester und schon jetzt ein gesundes und erfolgreiches
Jahr 2016.

Hagen, im September 2015
Jorg Keller
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2. Zur Historie von PARS

Bereits am Rande der Tagung CONPAR81 vom 10. bis 12. Juni 1981 in Nirnberg wurde von
Teilnehmern dieser ersten CONPAR-Veranstaltung die Grindung eines Arbeitskreises im Rahmen der
Gl: Parallel-Algorithmen und -Rechnerstrukturen angeregt. Daraufhin erfolgte im Heft 2, 1982 der GI-
Mitteilungen ein Aufruf zur Mitarbeit. Dort wurden auch die Themen und Schwerpunkte genannt:
1) Entwurf von Algorithmen fur
o verschiedene Strukturen (z. B. fur Vektorprozessoren, systolische Arrays oder
Zellprozessoren)
e Verifikation
o Komplexitatsfragen
2) Strukturen und Funktionen
Klassifikationen
dynamische/rekonfigurierbare Systeme
Vektor/Pipeline-Prozessoren und Multiprozessoren
Assoziative Prozessoren
Datenflussrechner
Reduktionsrechner (demand driven)
Zellulare und systolische Systeme
e Spezialrechner, z. B. Baumrechner und Datenbank-Prozessoren
3) Intra-Kommunikation
e Speicherorganisation
e Verbindungsnetzwerke
4) Wechselwirkung zwischen paralleler Struktur und Systemsoftware
e Betriebssysteme
e Compiler
5) Sprachen
Erweiterungen (z. B. fur Vektor/Pipeline-Prozessoren)
(automatische) Parallelisierung sequentieller Algorithmen
originér parallele Sprachen
Compiler
6) Modellierung, Leistungsanalyse und Bewertung
theoretische Basis (z. B. Q-Theorie)
Methodik
Kriterien (beziglich Strukturen)
Analytik

In der Sitzung des Fachbereichs 3 ,Architektur und Betrieb von Rechensystemen’ der Gesellschaft fiir
Informatik am 22. Februar 1983 wurde der Arbeitskreis offiziell gegriindet. Nachdem die Mitgliederzahl
schnell anwuchs, wurde in der Sitzung des Fachausschusses 3.1 ,Systemarchitektur’ am 20. September
1985 in Wien der urspringliche Arbeitskreis in die Fachgruppe FG 3.1.2 ,Parallel- Algorithmen und -
Rechnerstrukturen” umgewandelt.

Wahrend eines Workshops vom 12. bis 16. Juni 1989 in Rurberg (Aachen) - veranstaltet von den Herren
Ecker (TU Clausthal) und Lange (TU Hamburg-Harburg) - wurde vereinbart, Folgeveranstaltungen
hierzu kiinftig im Rahmen von PARS durchzufiihren.

Beim Workshop in Arnoldshain sprachen sich die PARS-Mitglieder und die ITG-Vertreter daftr aus, die
Zusammenarbeit fortzusetzen und zu verstarken. Am Dienstag, dem 20. Marz 1990 fand deshalb in
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Minchen eine Vorbesprechung zur Grindung einer gemeinsamen Fachgruppe PARS statt. Am 6. Mai
1991 wurde in einer weiteren Besprechung eine Vereinbarung zwischen Gl und ITG sowie eine
Vereinbarung und eine Ordnung fur die gemeinsame Fachgruppe PARS formuliert und den beiden
Gesellschaften zugeleitet. Die GI hat dem bereits 1991 und die ITG am 26. Februar 1992 zugestimmt.

3. Bisherige Aktivitaten

Die PARS-Gruppe hat in den vergangenen Jahren mehr als 20 Workshops durchgefiihrt mit Berichten
und Diskussionen zum genannten Themenkreis aus den Hochschulinstituten,
GroRforschungseinrichtungen und der einschldgigen Industrie. Die Industrie - sowohl die Anbieter von
Systemen wie auch die Anwender mit speziellen Problemen - in die wissenschaftliche Erdrterung
einzubeziehen war von Anfang an ein besonderes Anliegen. Durch die immer schneller wachsende Zahl
von Anbietern paralleler Systeme wird sich die Mitgliederzahl auch aus diesem Kreis weiter vergréfiern.

Neben diesen Workshops hat die PARS-Gruppe die ortlichen Tagungsleitungen der CONPAR-
Veranstaltungen:

CONPAR 86 in Aachen,

CONPAR 88 in Manchester,

CONPAR 90/ VAPP IV in Zirich und

CONPAR 92 / VAPP V in Lyon

CONPAR 94/VAPP VIl in Linz

wesentlich unterstitzt. In einer Sitzung am 15. Juni 1993 in Munchen wurde eine Zusammenlegung der
Parallelrechner-Tagungen von CONPAR/VAPP und PARLE zur neuen Tagungsserie EURO-PAR
vereinbart, die vom 29. bis 31. August 1995 erstmals stattfand:

Euro-Par’95 in Stockholm

Zu diesem Zweck wurde ein ,Steering Committee” ernannt, das europaweit in Koordination mit
ahnlichen Aktivitaten anderer Gruppierungen Parallelrechner-Tagungen planen und durchfiihren wird.
Dem Steering Committee steht ein ,,Advisory Board” mit Personen zur Seite, die sich in diesem Bereich
besonders engagieren. Die offizielle Homepage von Euro-Par ist http://www.europar.org/.

Weitere bisher durchgefiihrte Veranstaltungen:

Euro-Par’96 in Lyon
Euro-Par’97 in Passau
Euro-Par’98 in Southampton
Euro-Par’99 in Toulouse
Euro-Par 2000 in Miinchen
Euro-Par 2001 in Manchester
Euro-Par 2002 in Paderborn
Euro-Par 2003 in Klagenfurt
Euro-Par 2004 in Pisa
Euro-Par 2005 in Lissabon
Euro-Par 2006 in Dresden
Euro-Par 2007 in Rennes
Euro-Par 2008 in Gran Canaria
Euro-Par 2009 in Delft
Euro-Par 2010 in Ischia
Euro-Par 2011 in Bordeaux
Euro-Par 2012 in Rhodos
Euro-Par 2013 in Aachen
Euro-Par 2014 in Porto
Euro-Par 2015 in Wien
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AuRerdem war die Fachgruppe bemiht, mit anderen Fachgruppen der Gesellschaft fur Informatik
ubergreifende Themen gemeinsam zu behandeln: Workshops in Bad Honnef 1988, Dagstuhl 1992 und
Bad Honnef 1996 (je zusammen mit der FG 2.1.4 der GI), in Stuttgart (zusammen mit dem Institut fiir
Mikroelektronik) und die PASA-Workshop-Reihe 1991 in Paderborn, 1993 in Bonn, 1996 in Julich,
1999 in Jena, 2002 in Karlsruhe, 2004 in Augsburg, 2006 in Frankfurt a. Main und 2008 in Dresden
(jeweils gemeinsam mit der Gl-Fachgruppe 0.1.3 ,Parallele und verteilte Algorithmen (PARVA)’) sowie
2012 in Minchen und 2014 in Lubeck (gemeinsam mit der GI-Fachgruppe ALGO, die Nachfolgegruppe
von PARVA).
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PARS-Mitteilungen/Workshops:

Aufruf zur Mitarbeit, April 1983 (Mitteilungen Nr. 1)

Erlangen, 12./13. April 1984 (Mitteilungen Nr. 2)

Braunschweig, 21./22. Marz 1985 (Mitteilungen Nr. 3)

Julich, 2./3. April 1987 (Mitteilungen Nr. 4)

Bad Honnef, 16.-18. Mai 1988 (Mitteilungen Nr. 5, gemeinsam mit der Gl-Fachgruppe 2.1.4
‘Alternative Konzepte fiir Sprachen und Rechner”)

Minchen Neu-Perlach, 10.-12. April 1989 (Mitteilungen Nr. 6)

Arnoldshain (Taunus), 25./26. Januar 1990 (Mitteilungen Nr. 7)

Stuttgart, 23./24. September 1991, “Verbindungsnetzwerke fiir Parallelrechner und Breitband-
Ubermittlungssysteme” (Als Mitteilungen Nr. 8 geplant, gem. mit ITG-FA 4.1, 4.4 und GI/ITG FG
Rechnernetze, wg. Kosten nicht erschienen. siehe Tagungsband Inst. fur Mikroelektronik Stuttgart.)

Paderborn, 7./8. Oktober 1991, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 9, 2. PASA-
Workshop)

Dagstuhl, 26.-28. Februar 1992, “Parallelrechner und Programmiersprachen” (Mitteilungen Nr. 10,
gemeinsam mit der Gl-Fachgruppe 2.1.4 ‘Alternative Konzepte fiir Sprachen und Rechner’)

Bonn, 1./2. April 1993, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 11, 3. PASA-
Workshop)

Dresden, 6.-8. April 1993, “Feinkornige und Massive Parallelitdt” (Mitteilungen Nr. 12, zusammen mit
PARCELLA)

Potsdam, 19./20. September 1994 (Mitteilungen Nr. 13, Parcella fand dort anschlief3end statt)

Stuttgart, 9.-11. Oktober 1995 (Mitteilungen Nr. 14)

Julich, 10.-12. April 1996, “Parallel Systems and Algorithms” (4. PASA-Workshop), Tagungsband
erschienen bei World Scientific 1997)

Bad Honnef, 13.-15. Mai 1996, zusammen mit der Gl-Fachgruppe 2.1.4 ‘Alternative Konzepte fiir
Sprachen und Rechner’ (Mitteilungen Nr. 15)

Rostock, (Warnemiinde) 11. September 1997 (Mitteilungen Nr. 16, im Rahmen der ARCS’97 vom 8.-
11. September 1997)

Karlsruhe, 16.-17. September 1998 (Mitteilungen Nr. 17)

Jena, 7. September 1999, “Parallele Systeme und Algorithmen” (5. PASA-Workshop im Rahmen der
ARCS’99)

An Stelle eines Workshop-Bandes wurde den PARS-Mitgliedern im Januar 2000 das Buch ‘SCI:
Scalable Coherent Interface, Architecture and Software for High-Performance Compute Clusters®,
Hermann Hellwagner und Alexander Reinefeld (Eds.) zur Verfiigung gestellt.

Minchen, 8.-9. Oktober 2001 (Mitteilungen Nr. 18)

Karlsruhe, 11. April 2002, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 19, 6. PASA-
Workshop im Rahmen der ARCS 2002)

Travemdinde, 5./6. Juli 2002, Brainstorming Workshop “Future Trends” (Thesen in Mitteilungen Nr. 19)

Basel, 20./21. Mé&rz 2003 (Mitteilungen Nr. 20)

Augsburg, 26. Marz 2004 (Mitteilungen Nr. 21)

Libeck, 23./24. Juni 2005 (Mitteilungen Nr. 22)

Frankfurt/Main, 16. Mirz 2006 (Mitteilungen Nr. 23)

Hamburg, 31. Mai / 1. Juni 2007 (Mitteilungen Nr. 24)

Dresden, 26. Februar 2008 (Mitteilungen Nr. 25)

Parsberg, 4./5. Juni 2009 (Mitteilungen Nr. 26)

Hannover, 23. Februar 2010 (Mitteilungen Nr. 27)

Riischlikon, 26./27. Mai 2011 (Mitteilungen Nr. 28)

Miinchen, 29. Februar 2012 (Mitteilungen Nr. 29)

Erlangen, 11.+12. April 2013 (Mitteilungen Nr. 30)

Liibeck, 25. Februar 2014 (Mitteilungen Nr. 31)

Potsdam, 7.+8. Mai 2015 (Mitteilungen Nr. 32)
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4. Mitteilungen (ISSN 0177-0454)

Bisher sind 32 Mitteilungen zur Veroffentlichung der PARS-Aktivitaten und verschiedener Workshops
erschienen. Darlberhinaus enthalten die Mitteilungen Kurzberichte der Mitglieder und Hinweise von
allgemeinem Interesse, die dem Sprecher zugetragen werden.

Teilen Sie - soweit das nicht schon geschehen ist - Tel., Fax und E-Mail-Adresse der GI-Geschéftsstelle
mitgliederservice@gi-ev.de mit fiir die zentrale Datenerfassung und die regelmaiige Ubernahme in die
PARS-Mitgliederliste. Das verbessert unsere Kommunikationsmaoglichkeiten untereinander wesentlich.

5. Vereinbarung

Die Gesellschaft flr Informatik (GI) und die Informationstechnische Gesellschaft im VDE (ITG)
vereinbaren die Griindung einer gemeinsamen Fachgruppe

Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware,

die den Gl-Fachausschiissen bzw. Fachbereichen:

FA 0.1 Theorie der Parallelverarbeitung
FA3.1 Systemarchitektur
FB 4 Informationstechnik und technische Nutzung der Informatik

und den ITG-Fachausschiissen:

FA 4.1 Rechner- und Systemarchitektur
FA 4.2/3 System- und Anwendungssoftware

zugeordnet ist.

Die Grindung der gemeinsamen Fachgruppe hat das Ziel,

- die Kréfte beider Gesellschaften auf dem genannten Fachgebiet zusammenzulegen,

- interessierte Fachleute moglichst unmittelbar die Arbeit der Gesellschaften auf
diesem Gebiet gestalten zu lassen,

- fur die internationale Zusammenarbeit eine deutsche Partnergruppe zu haben.

Die fachliche Zielsetzung der Fachgruppe umfasst alle Formen der Parallelitat wie

- Nebenléaufigkeit
- Pipelining
- Assoziativitat
- Systolik
- Datenfluss
- Reduktion

etc.

und wird durch die untenstehenden Aspekte und deren vielschichtige Wechselwirkungen umrissen.
Dabei wird davon ausgegangen, dass in jedem der angegebenen Bereiche die theoretische Fundierung
und Betrachtung der Wechselwirkungen in der Systemarchitektur eingeschlossen ist, so dass ein
gesonderter Punkt ,,Theorie der Parallelverarbeitung* entfallt.
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1. Parallelrechner-Algorithmen und -Anwendungen

- architekturabhdngig, architekturunabhangig

- numerische und nichtnumerische Algorithmen
- Spezifikation

- Verifikation

- Komplexitat

- Implementierung

2. Parallelrechner-Software

- Programmiersprachen und ihre Compiler
- Programmierwerkzeuge
- Betriebssysteme

3. Parallelrechner-Architekturen

- Ausfiihrungsmodelle
- Verbindungsstrukturen
- Verarbeitungselemente
- Speicherstrukturen

- Peripheriestrukturen

4. Parallelrechner-Modellierung, -Leistungsanalyse und -Bewertung
5. Parallelrechner-Klassifikation, Taxonomien

Als Grindungsmitglieder werden bestellt:

von der GI: Prof. Dr. A. Bode, Prof. Dr. W. Gentzsch, R. Kober, Prof. Dr. E. Mayr, Dr. K. D.
Reinartz, Prof. Dr. P. P. Spies, Prof. Dr. W. Handler

von der ITG: Prof. Dr. R. Hoffmann, Prof. Dr. P. Miller-Stoy, Dr. T. Schwederski, Prof. Dr.
Swoboda, G. Valdorf
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Ordnung der Fachgruppe
Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware

1. Die Fachgruppe wird gemeinsam von den Fachausschiissen 0.1, 3.1 sowie dem Fachbereich 4 der
Gesellschaft fiur Informatik (GI) und von den Fachausschissen 4.1 und 4.2/3 der
Informationstechnischen Gesellschaft (ITG) gefuhrt.

2. Der Fachgruppe kann jedes interessierte Mitglied der beteiligten Gesellschaften beitreten. Die
Fachgruppe kann in Ausnahmeféllen auch fachlich Interessierte aufnehmen, die nicht Mitglied einer der
beteiligten Gesellschaften sind. Mitglieder der FG 3.1.2 der Gl und der ITG-Fachgruppe 6.1.2 werden
automatisch Mitglieder der gemeinsamen Fachgruppe PARS.

3. Die Fachgruppe wird von einem ca. zehnkdpfigen Leitungsgremium geleitet, das sich paritatisch aus
Mitgliedern der beteiligten Gesellschaften zusammensetzen soll. Fir jede Gesellschaft bestimmt deren
Fachbereich (FB 3 der Gl und FB 4 der ITG) drei Mitglieder des Leitungsgremiums: die tibrigen werden
durch die Mitglieder der Fachgruppe gewéhlt. Die Wahl- und die Berufungsvorschldge macht das
Leitungsgremium der Fachgruppe. Die Amtszeit der Mitglieder des Leitungsgremiums betragt vier Jahre.
Wiederwahl ist zul&ssig.

4. Das Leitungsgremium wahlt aus seiner Mitte einen Sprecher und dessen Stellvertreter fur die Dauer
von zwei Jahren; dabei sollen beide Gesellschaften vertreten sein. Wiederwahl ist zul&ssig. Der Sprecher
fuhrt die Geschafte der Fachgruppe, wobei er an Beschlisse des Leitungsgremiums gebunden ist. Der
Sprecher besorgt die erforderlichen Wahlen und amtiert bis zur Wahl eines neuen Sprechers.

5. Die Fachgruppe handelt im gegenseitigen Einvernehmen mit den genannten Fachausschissen. Die
Fachgruppe informiert die genannten Fachausschiisse rechtzeitig tber ihre geplanten Aktivitaten. Ebenso
informieren die Fachausschiisse die Fachgruppe und die anderen beteiligten Fachausschiisse uber
Planungen, die das genannte Fachgebiet betreffen. Die Fachausschiisse unterstiitzen die Fachgruppe
beim Aufbau einer internationalen Zusammenarbeit und stellen ihr in angemessenem Umfang ihre
Publikationsmdglichkeiten zur Verfligung. Die Fachgruppe kann keine die Tréagergesellschaften
verpflichtenden Erkl&rungen abgeben.

6. Veranstaltungen (Tagungen/Workshops usw.) sollten abwechselnd von den Gesellschaften organisiert
werden. Kostengesichtspunkte sind dabei zu berlicksichtigen.

7. Veroffentlichungen, die tber die Fachgruppenmitteilungen hinausgehen, z. B. Tagungsberichte,
sollten in Abstimmung mit den den Gesellschaften verbundenen Verlagen herausgegeben werden. Bei
den Veroffentlichungen soll ein durchgehend einheitliches Erscheinungsbild angestrebt werden.

8. Die gemeinsame Fachgruppe kann durch einseitige Erklarung einer der beteiligten Gesellschaften

aufgeldst werden. Die Ordnung tritt mit dem Datum der Unterschrift unter die Vereinbarung Uber die
gemeinsame Fachgruppe in Kraft.
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29" GI/ITG International Conference on
C] Architecture of Computing Systems

Nuremberg, Germany, April 4-7,2016

ARCS 2016

Heterogeneity in Architectures and Systems - From Embedded to HPC

Call for Papers

The ARCS series of conferences has along tradition reporting
top notch results in computer architecture and operating sys-
tems research. The focus of the 2016 conference will be on
Heterogeneity in Architectures and Systems - From Em-
bedded to HPC. Like the previous conferences in this series,
ARCS 2016 intends to be an important forum for computer
architectureresearch. In2016, ARCS will be organized by the
Department of Computer Science at the Friedrich-Alexander
University Erlangen-Nurnberg (FAU). ARCS was founded in
1970 by the German and European computer pioneer Prof.
Wolfgang Handler who founded also the Computer Science
Department at FAU in 1966. In 2016, the CS Department cel-
ebrates its 50th anniversary and it is a privilege to have ARCS
back to its roots. .
The ARCS 2016 proceedings will be published in the Springer Important Dates
Lecture Notgs.on Computer Science (LNCS) series. After the Paper submission deadline: Oct. 26,2015
conference, it is planned that the authors of selected papers .

will be invited to submit an extended version of their contri- Workshop & tutorial proposals: Nov. 30,2015
bution for publication in a special issue of Elsevier’s Journal Notification of acceptance: Dec. 21,2015
of Systems Architecture (JSA). In addition, the best paper and Camera-ready papers: Jan. 11,2016
the best presentation will be awarded during the conference.

Jn o tag
(© Museen der Stadt Niirnberg / Udo Bernstein

Authors are invited to submit original, unpublished research papers on one of the following topics:

e Architectures and design methods/tools for robust, fault-tolerant, real-time embedded systems
Generic and application-specific accelerators in heterogeneous architectures, heterogeneous image systems
Distributed computing architectures, high-performance computing (HPC), and cloud computing
Cyber-physical systems, internet of things (loT), Industrie 4.0, and their applications
Multi-/manycore architectures, memory systems, and interconnection networks
Programming models, runtime systems, middleware, verification, and tool support for manycore systems
Operating systems including but not limited to scheduling, memory management, power management, and RTOS
Adaptive system architectures such as reconfigurable systems in hardware and software
Organic and autonomic computing including both theoretical and practical results on Self-X techniques
Energy awareness and green computing
System aspects of ubiquitous and pervasive computing such as sensor nodes, novel input/output devices,
novel computing platforms, architecture modeling, and middleware
Architectures for robotics and automation systems
e Performance modeling and engineering
e Approximate computing

Submissions must be done through the link provided at the conference website. Papers have to be submitted in PDF
format. They must be formatted according to Springer LNCS style (see: http://www.springer.de/comp/Incs/authors.html)
and must not exceed 12 pages.

Workshop and Tutorial Proposals within the technical scope of the conference are solicited. Submissions should be
sent by email directly to the Workshop and Tutorial Chair.

http://www3.cs.fau.de/arcs2016/
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29" GI/ITG International Conference on
Architecture of Computing Systems

Nuremberg, Germany, April 4-7,2016

Organizing Committee

General Co-Chairs

e Dietmar Fey, Friedrich-Alexander University Erlangen-Nurnberg (FAU), Germany
e Wolfgang Schroder-Preikschat, Friedrich-Alexander University Erlangen-Nuirnberg (FAU), Germany
e JUrgen Teich, Friedrich-Alexander University Erlangen-Ntrnberg (FAU), Germany

Program Co-Chairs

e Frank Hannig, Friedrich-Alexander University Erlangen-Niirnberg (FAU), Germany

e Joao M. P. Cardoso, University of Porto, Portugal

Workshop and Tutorial Chair

e Ana Lucia Varbanescu, University of Amsterdam, The Netherlands

Publication Chair
e Thilo Pionteck, Universitdt zu Libeck, Germany

Program Committee

e Michael Beigl, Karlsruhe Institute of Technology, Germany
e Mladen Berekovic, TU Braunschweig, Germany

e Simon Bliudze, EPFL, Switzerland

e Florian Brandner, ENSTA ParisTech, France

e JUrgen Brehm, University of Hannover, Germany

e Uwe Brinkschulte, Goethe University Frankfurt, Germany
e Luigi Carro, UFRGS, Brasil

e Albert Cohen, INRIA, France

e Nikitas Dimopoulos, University of Victoria, Canada

e Ahmed EI-Mahdy, E-JUST, Egypt

e Fabrizio Ferrandi, Politecnico di Milano, Italy

e Dietmar Fey, FAU, Germany

e Bjorn Franke, University of Edinburgh, UK

e Roberto Giorgi, University of Siena, Italy

e Daniel Gracia Pérez, Thales Research & Technology, France
e Jan Haase, Helmut Schmidt University, Germany

e JOrg Hahner, Augsburg University, Germany

e JOrg Henkel, Karlsruhe Institute of Technology, Germany
e Andreas Herkersdorf, TU Mtinchen, Germany

e Christian Hochberger, TU Darmstadt, Germany

e Michael HUbner, Ruhr-Universitdt Bochum, Germany

e Gert Jervan, Tallinn University of Technology, Estonia

e Ben Juurlink, TU Berlin, Germany

e Wolfgang Karl, Karlsruhe Institute of Technology, Germany
e Christos Kartsaklis, Oak Ridge National Laboratory, USA
e JOrg Keller, Fernuniversitdt Hagen, Germany

e Raimund Kirner, University of Hertfordshire, UK

e Andreas Koch, TU Darmstadt, Germany

e Hana Kubatova, FIT CTU, Prague, Czech Republic

e Olaf Landsiedel, Chalmers Univ. of Technology, Sweden

e Paul Lukowicz, University of Passau, Germany

e Erik Maehle, Universitdt zu Liibeck, Germany

e Christian MUller-Schloer, University of Hannover, Germany
e Alex Orailoglu, UC San Diego, USA

e Carlos Eduardo Pereira, UFRGS, Brazil

e Luis Pinho, CISTER, ISEP, Portugal

e Thilo Pionteck, Universitdt zu Liibeck, Germany

e Pascal Sainrat, IRIT - Université de Toulouse, France

e Toshinori Sato, Fukuoka University, Japan

e Wolfgang Schroder-Preikschat, FAU, Germany

e Martin Schulz, Lawerence Livermore National Lab., USA

e Leonel Sousa, IST/INESC-ID, Portugal

e Rainer G. Spallek, TU Dresden, Germany

e Olaf Spinczyk, TU Dortmund, Germany

e Benno Stabernack, Fraunhofer HHI, Germany

e Walter Stechele, TU Miinchen, Germany

e Djamshid Tavangarian, Rostock University, Germany

e Jlrgen Teich, FAU, Germany

e Martin Torngren, KTH, Sweden

e Eduardo Tovar, ISEP-IPP, Portugal

e Pedro Trancoso, University of Cyprus, Cyprus

e Carsten Trinitis, TU Mtinchen, Germany

e Sascha Uhrig, Airbus, Germany

e Theo Ungerer, University of Augsburg, Germany

e Hans Vandierendonck, Queen’s University Belfast, UK

e Stephane Vialle, SUPELEC, France

e Lucian Vintan, “Lucian Blaga” University of Sibiu, Romania
e Klaus Waldschmidt, Goethe University Frankfurt, Germany

http://www3.cs.fau.de/arcs2016/
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Preliminary
CALL FOR PAPERS

12" Workshop on Parallel Systems and Algorithms
PASA 2016

in conjunction with

International Conference on Architecture of Computing Systems (ARCS 2016)
Nuremberg, Germany, April 4-5, 2016

c]

organized by
GI/ITG-Fachgruppe 'Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware' (PARS) and
Gl-Fachgruppe 'Algorithmen’ (ALGO)

The PASA workshop series has the goal to build a bridge between theory and practice in the area of parallel
systems and algorithms. In this context practical problems which require theoretical investigations as well as
the applicability of theoretical approaches and results to practice shall be discussed. An important aspect is
communication and exchange of experience between various groups working in the area of parallel computing,
e.g. in computer science, electrical engineering, physics or mathematics.

Topics of Interest include, but are not restricted to:
- parallel architectures & storage systems - parallel and distributed algorithms

- parallel embedded systems - models of parallel computation

- ubiquitous and pervasive systems - scheduling and load balancing

- reconfigurable parallel computing - parallel programming languages

- data stream-oriented computing - software engineering for parallel systems

- interconnection networks - parallel design patterns

- network and grid computing - performance evaluation of parallel systems

- distributed and parallel multimedia systems

The workshop will comprise invited talks on current topics by leading experts in the field as well as submitted
papers on original and previously unpublished research. Accepted papers will be published in the ARCS
Workshop Proceedings as well as in the PARS Newsletter (ISSN 0177-0454). The conference languages are
English (preferred) and German. Papers are required to be in English.

A prize of 500 € will be awarded to the best contribution presented personally based on a student's or
Ph.D. thesis or project. Co-authors are allowed, the PhD degree should not have been awarded at the
time of submission. Candidates apply for the prize by e-mail to the organizers when submitting the
contribution. We expect that candidates are or become members of one the groups ALGO or PARS.

Important Dates

5" January 2016: Deadline for submission of full papers of 10 pages (in English, as pdf, using Springer LNCS
style, see http://www.springer.de/comp/Incs/authors.html) under: http://www.easychair.org/pasa2016/

28" January 2016: Notification of the authors

10" February 2016: Final version for workshop proceedings

Program Committee

S. Albers (Munich), H. Burkhart (Basel), M. Dietzfelbinger (llmenau), A. Doering (Zurich), N. Eicker (Julich)
T. Fahringer (Innsbruck), D. Fey (Erlangen), T. Hagerup (Augsburg), V. Heuveline (Heidelberg)

R. Hoffmann (Darmstadt), K. Jansen (Kiel), B. Juurlink (Berlin), W. Karl (Karlsruhe), J. Keller (Hagen)

Ch. Lengauer (Passau), E. Maehle (Lubeck), E. W. Mayr (Munich), U. Meyer (Frankfurt)

F. Meyer auf der Heide (Paderborn), W. Nagel (Dresden), M. Philippsen (Erlangen), K. D. Reinartz (Hochstadt)
Ch. Scheideler (Paderborn), H. Schmeck (Karlsruhe), B. Schnor (Potsdam), U. Schwiegelshohn (Dortmund)

P. Sobe (Dresden), T. Ungerer (Augsburg), R. Wanka (Erlangen)

Organisation

Prof. Dr. J6érg Keller, FernUniversitat in Hagen, Fac. Math and Computer Science, 58084 Hagen, Germany,
Phone/Fax +49-2331-987-376/308, E-Mail joerg.keller at fernuni-hagen.de

Prof. Dr. Rolf Wanka, Univ. Erlangen-Nuremberg, Dept. of Computer Science, 91058 Erlangen, Germany,
Phone/Fax +49-9131-8525-152/149, E-Mail rwanka at cs.fau.de
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PARS-Beitrage

Studenten 5,00 €
GI-Mitglieder 7,50 €
studentische Nichtmitglieder 5,00 €
Nichtmitglieder 15,00 €

Nichtmitglieder mit Doppel-
Mitgliedschaften
(Beitrag wie GI-Mitglieder) ---€

Leitungsgremium von GI/ITG-PARS

Prof. Dr. Helmar Burkhart, Univ. Basel

Dr. Andreas Doring, IBM Zdrich

Prof. Dr. Dietmar Fey, Univ. Erlangen

Prof. Dr. Wolfgang Karl, stellv. Sprecher, KIT

Prof. Dr. Jorg Keller, Sprecher, FernUniversitat Hagen
Prof. Dr. Christian Lengauer, Univ. Passau

Prof. Dr.-Ing. Erik Maehle, Universitét zu Liibeck
Prof. Dr. Ernst W. Mayr, TU Minchen

Prof. Dr. Wolfgang E. Nagel, TU Dresden

Dr. Karl Dieter Reinartz, Ehrenvorsitzender, Univ. Erlangen
Prof. Dr. Hartmut Schmeck, KIT

Prof. Dr. Peter Sobe, HTW Dresden

Prof. Dr. Theo Ungerer, Univ. Augsburg

Prof. Dr. Rolf Wanka, Univ. Erlangen

Prof. Dr. Helmut Weberpals, TU Hamburg-Harburg

Sprecher

Prof. Dr. Jorg Keller

FernUniversitat in Hagen

Fakultat fur Mathematik und Informatik
Lehrgebiet Parallelitat und VLSI
Universitatsstralle 1

58084 Hagen

Tel.: (02331) 987-376

Fax: (02331) 987-308

E-Mail: joerg.keller@fernuni-hagen.de
URL.: http://fg-pars.gi.de/
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