
Enabling Social Network Analysis in Distributed
Collaborative Software Development

Tommi Kramer, Tobias Hildenbrand, Thomas Acker

{tkramer/thildenb/tacker}@rumms.uni-mannheim.de

Abstract: Social network analysis in software engineering attains an important role in
project support as more and more projects have to be conducted in globally-distributed
settings. Distributed project participants and software artifacts, such as requirements
specifications, architectural models, and source code, can seriously impede efficient
collaboration. However, collaborative software development platforms bear the po-
tential information for facilitating distributed projects through adequate information
supply. Hence, we developed a method and tool implementation for applying social
network analysis techniques in globally-distributed settings and thus provide superior
information on expertise location, co-worker activities, and personnel development.

1 Introduction

Social dependencies in globally distributed software development projects are critical, as
most projects nowadays involve distributed stakeholders and respective information re-
sources; moreover, the software under construction becomes more and more complex in
terms of functional and technological requirements. Hence, collaborative development
environments are utilized in order to provide one common information repository and
global view on the project. Social dependencies evolve around shared artifacts and work
processes and this information can be extracted and analyzed by different project stake-
holders. Existing methods of social network analysis (SNA) allow for locating expertise,
providing better co-worker awareness, and supporting personnel development in general,
for instance.

In order to make the required information available even in distributed settings, we have
developed an approach to extracting relevant project data from collaborative development
environments and providing flexible analysis functionality for different types of stake-
holder roles and software projects. Therefore, we aim at presenting a solution for enabling
SNA in distributed collaborative software projects and making use of this information to
support more efficient development processes through better information supply. Hence,
we extend existing collaboration platforms towards a social software for software engi-
neering (SE).

For achieving this objective, we present a brief introduction to SNA in software develop-
ment and related work in Section 2. Section 3 analyzes the most relevant use cases for our
SNA solution, whereas in Section 4 design and implementation of selected features are

255



described and Section 5 concludes with an evaluative discussion [HMPR04] of the current
use case implementations and future work.

2 Foundations and Related Work

This section describes the definition of Social Network Analysis (SNA) in practice as
well as in software development projects in particular. It gives a basic understanding of
what social networks are and how they are created and used in Collaborative Software
Development Platforms (CSDP).

2.1 Social Network Analysis

Having SNA on the one hand as a logical construct and on the other hand as the network
representation substitutional for visual aid, this kind of information is of great help in man-
aging projects, especially software engineering projects, in a better and more successful
way. Also the goals of SNA and the metrics for calculating that network are mentioned.

In order to communicate or to express themselves in daily private life, people create pro-
files in which they provide information about their current activities. Furthermore, they
join groups of shared interests or equal abilities, e.g. people of the same university, fam-
ily relations, or sports teams. This process of organizing and communicating via social
software is often also called social networking. As an example, there are platforms for re-
gional or scholar clustering called Facebook1 as well as for graduates and business people
the Linked-in2 website.

As one individual generally shares more than one interest or ability with others, many
different links are created. These altogether build a huge network among the participants,
the so called social network. This network with its various characteristics e.g. number
of activities and relations allows/facilitates an evaluation and analysis of the strength of
participant ties [WF94].

The importance of social capital has been subject to various studies of social sciences
[BRW04]. The forming and distribution of knowledge is seen as an integral part of it.
It should however be distinguished between explicit knowledge, that is written down ex-
plicitly and tacit knowledge, which can hardly be transfered or saved. Most social net-
work approaches cover the management of explicit knowledge, whereas the focus on the
identification and better usage of implicit knowledge can only be found in more recent
approaches.

With the importance of social capital recognized, social networks and social networking
have found their way into companies. One major motivation was to overcome the miss-
ing competence transparency among employees within large enterprises. Relationships of

1www.facebook.com (as of Dec. 3, 2008)
2www.linkedin.com (as of Dec. 3, 2008)

256



257



ference between strong and weak ties as well as the spread of new ideas and knowledge
can be explained by an SNA. That way the visual support of SNA provides a strong sense
of common understanding and better awareness within the team. [Gab90] and [McG84]
found out that a team is not understood as a composition of individuals and single work-
ers any more. SNA helps create a better working atmosphere, better collaboration, and a
higher satisfaction of the staff.

To analyze a social network in detail, metrics are of fundamental importance. Therefore,
[LFRGBH06] made some initial propositions for adequate metrics in SE, like Betweenness
and Diameter or Distance. Besides adapting these and other metrics, another approach for
the identification of expertise of a colleague in an SE environment is to extract information
from the documents the individual users have developed. These documents can provide
a heap of information about authorship, topic, involvement and so on. This approach is
further investigated in this paper.

3 Use Cases and Functional Requirements

As the importance of social networks was outlined both in daily life and in companies, the
following section focuses on the investigation of how this kind of awareness can improve
collaboration and coordination within software projects, in particular. Moreover, actual
requirements based on the user value for team members and management are deducted.

3.1 Use Case 1: Expertise Location [UC1]

The importance of expert location is confirmed in a field study by [KDV07]. In this study,
awareness about artifacts and co-workers was identified to be the most frequent informa-
tion need around developers. It was found that developers often had to defer tasks because
the only source of knowledge were unavailable coworkers.
In various other field studies, [dSHR07] found specific scenarios that identified major
problems during the development of software. These especially illustrated the impact of a
lack of awareness. The situation could be solved by the identification of developers who
worked on the same or at least similar artifacts within a project. In order to find an expert,
it is important to specify what is considered to be central in an organization. Communica-
tion habits as well as working habits of individual teams need to be regarded in order to
obtain the desired result.

3.2 Use Case 2: Co-worker Awareness [UC2]

As partly outlined in the previous section, co-worker awareness is generally of significant
importance. Not only the purposeful identification of an ascertained number of colleagues
but also the awareness of ”what my professional environment is doing and how this relates

258



to me” is a prerequisite for efficient development planning.
Especially in large distributed teams like open source development projects, the global
awareness of who is working on the same or related artifacts can save a lot of redundant
work. Moreover, as mentioned in section 2.2, this kind of awareness allows the project
members to identify colleagues working on related issues more efficiently or in the first
place. Knowing these colleagues can thus provide a means to exchange tacit knowledge
and even to enhance the affiliation within the team.

3.3 Use Case 3: Personnel Development [UC3]

By means of SNA, it is possible to analyze a project worker’s development from the man-
agement level. A new developer joining the team might only have a few ties to other
project members. SNA providing special functions as part of this work enables the man-
ager to track the development of the newcomer via SNA screenshots every once in a while.
The progress (or even regress) in his development can be traced by that functionality. In a
positive scenario the numbers of ties for example increase in every step.

3.4 Functional Requirements

Based on the use cases outlined above, functional requirements will be derived for our
SNA-enabled Trace Visualization (TraVis) solution [HGKA08] in order to provide an ef-
fective means to meet the mostly unresolved issues identified in the literature (cp. Section
2.2).
First of all, the novel version of TraVis must provide functionality to extract existing tra-
cability and rationale data from current data structures. With an adequate algorithm and
by implementing some of the metrics discussed in section 2.1, this data needs to be trans-
formed and prepared for visual output with users also grouped by their Edge Betweenness,
a measure to calculate the importance of a user in a network.
The tool shall be enhanced by role-based filtering in order to be able to distinguish be-
tween developers, project managers, etc. The possibility of a view that highlights only the
outgoing relationships of the user might also be a valuable addition. If he already has an
idea of whom to contact for expertise knowledge within the project, this view will support
him by proposing the shortest path regarding the strength of the ties to others.
To obtain a more specific view on the expertise that is searched for, a tracker item view
shall be implemented that displays only those relationships between users that were iden-
tified within a specific tracker item. As the standard SNA-view visualizes relationships of
projects based on their participation in all trackers, tracker items and artifacts, the social
network becomes very abstract. This problem is enhanced in large-scale projects where
many users participate. Where a holistic view on the social network is important to find
out the overall relationships within a project, a more detailed view can be used for the
location of expertise. The user shall therefore be able to choose a specific tracker item and
the social network of users related to that item will be displayed on the graph.

259



Finally, a further measure to locate the project’s experts shall be implemented: centrality.
Centrality measures the involvement of the actor in a network by the ties he is involved
in. More concrete, the tool shall use the betweenness centrality measure. Here, an actor is
central if he lies between many other actors in their geodesics, their shortest paths between
other users [WF94]. This measure shall locate individual experts in the project, where the
user can decide, e.g. by the ego-view, how and whom within the experts he will contact
[HGKA08]. Table 3.4 presents an overview of the functional requirements with respect to
the use cases outlined before.

Use Case 1 Use Case 2 Use Case 3
Different Node and Edge Sizes X X
Clustering X
Role Based Filtering X X
Shortest Paths X
Tracker Centralization X X
Betweenness Centrality X

Table 1: Functional Requirements with Respect to Use Cases

4 Solution Design and Implementation

The following chapter will provide the implementation details for the SNA-enabled ver-
sion of TraVis. In doing so, the approach for extracting social network information will
be explained against the background of existing approaches. After the description of other
major implementation details, the process of calibrating the SNA relationship computation
method is further elaborated.

4.1 Underlying Technology

We use codeBeamer, a collaborative software development platform developed by the
company Intland3, as the basis for creating the traceability and rationale network, we dis-
cussed in section 3.4. The platform is a solution especially suited for distributed collabo-
rative software development, as it is an Internet-based application and therefore accessible
all around the world [Rob05].
JUNG4 (Java Universal Network/Graph Framework) is an open source Java library that
provides an extendible language for the modeling, analysis, and visualization of data that
can be represented as a graph or network. The JUNG framework provides functional-
ity to visualize entities and their relations, represented as vertices (software artifacts) and
edges (relations). JUNG also provides numerous algorithms of the graph theory, including

3http://www.intland.com (in this paper, codeBeamer version 4.3.2 is used)
4http://www.jung.javaforge.net (the current version of JUNG is 1.7.6 which is also used for TraVis)

260



centrality, betweeness, HITS, etc. This framework is the basis for the implementation of
TraVis.

4.2 Trace Visualization and Social Network Analysis Method

In [Hil08] a tool, called TraVis, was developed for visualizing tracability and rationale
information. Technical details are also described in [HGKA07]. Based on that we are
complementing some classes and build new data structures to achieve social networking
functionality.

4.2.1 Algorithm

As mentioned before, there are two basic approaches for finding dependency information
in software development projects. Social dependencies can be obtained by collecting code
dependency information. Authorship information of the source code is retrieved in order to
associate users with code dependencies [dSHR07]. On the other hand, TraVis is based on
more general artifact-related dependencies. Software development platforms supporting
software projects with document management functionality, repositories, etc. (cp. section
4.1) contain valuable information on how individual teams collaborate that goes far beyond
source code. This information can be utilized in order to obtain authorship information and
analyze social dependencies throughout the project. By means of the JUNG framework,
dependencies are displayed in a graph: vertices represent users and edges their relation to
each other.

In order to identify these relationships, TraVis implements the following algorithm: For
all users of the project, relationships to artifacts are identified where the user has some
kind of active involvement (e.g. creator, modifier, etc.). For each of these artifacts in turn,
associations are extracted from the lists and their respective users are put into relation with
the current user to be analyzed in the loop. The overall procedure is illustrated in figure 2.
For every user (shown in the middle of the figure) an iteration is run. It should be noted
that within two iterations, relations to the depth of 3 can be obtained by the algorithm.
These relationships however have a decreased weighting as the social relationship is of
less direct nature. By that algorithm a foundation for extracting social data is set which
delivers the required information for the named use cases [UC1], [UC2] and [UC3].

These associations can include many types. As authorship information about users to de-
fine the type of linkages between them and therefore decides about the strength of the tie,
weightings need to be included. These weightings consist of the participation of the user
regarding the individual artifact and the weighting of the artifact itself. In the algorithm,
both values are multiplied and added to the SNA-value of the respective pair of users.
For that, TraVis regards the roles: Creator, Modifier, Submitter, Approver, Owner, Last
Modifier, Assigned Person, Locking Person. Moreover, various weightings can be distin-
guished:
TRACKER, TRACKER ITEM ATTACHMENT, TRACKER ITEM COMMENT, FORUM,

261



262



263



264



Concluding, every developed view helps to concentrate collaboration data for the different
use cases [UC1], [UC2] and [UC3] as discussed in section 3.

5 Evaluation and Discussion

As has been demonstrated in the preceding paragraphs, TraVis’ SNA-based views pro-
vide multiple functionalities for expertise location, co-worker awareness, and personnel
development (cp. section 3). The underlying SNA method is innovative in that a large
set of various relevant artifacts and user roles is included in the computation model and
that the model can be easily adjusted to different project types in terms of artifact and role
weighting.

Artifact and role weighting have been adapted by means of data from 17 replicated soft-
ware experiments, where 9 teams used a prior version of TraVis and the other 8 just a
state-of-the-art collaboration platform [Hil08]. In this sample, all teams developed an ap-
plication based on the same set of requirements and identical technology (Java Platform,
Standard Edition, including Java 3D). The experiment included 108 graduate students and
had an overall duration of 6 months.

Compared to existing approaches, novel views based on a broader range of project data can
be created and analyzed by different developer and management roles. Hence, superior
decision support, primarily regarding expertise knowledge and workplace awareness, is
provided. Further experiments and industrial case studies will be conducted in order to
gain evidence for TraVis’ effect on development efficiency and effectiveness (cp. [Hil08]).
Moreover, weighting, view design, and platform integration will be further improved as
more and more evaluation studies are conducted.

References

[BRW04] Andreas Becks, Tim Reichling, and Volker Wulf. Expertise Finding: Approaches to
Foster Social Capital. Social Capital and Information Technology, pages 333–354,
2004.

[CBP02] Rob Cross, Stephen Borgatti, and Andrew Parker. Making Invisible Work Visi-
ble: Using Social Network Analysis to Support Strategic Collaboration. Network
Roundtable at the University of Virginia, 2002.

[CH04] Kevin Crowston and James Howison. The Social Structure of Free and Open Source
Development. Syracuse Floss research working paper, 2004.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Clifford Stein. Algo-
rithmen - Eine Einfhrung. Oldenbourg Wissensverlag GmbH, 2001.

[dSHR07] Cleidson R. B. de Souza, Tobias Hildenbrand, and David Redmiles. Towards Vi-
sualization and Analysis of Traceability Relationships in Distributed and Offshore
Software Development Projects. In Proceedings of the 1st International Confer-

265



ence on Software Engineering Approaches for Offshore and Outsourced Develop-
ment (SEAFOOD’07). Springer, 2007.

[Gab90] J. Gabarro. The development of working relationships. Intellectual Teamwork: So-
cial and Technological Foundations of Cooperative Work, 1:79–110, 1990.

[GKSD05] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive software
evolution. Proceedings of the International Conference on Software Maintenance,
1:113–122, 2005.

[Gra83] M. Granovetter. The strength of weak ties. American Journal of Sociology, -:1360–
1380, 1983.

[HGKA07] Tobias Hildenbrand, Michael Geisser, Lars Klimpke, and Thomas Acker. Designing
and Implementing a Tool for Distributed Collaborative Traceability and Rationale
Management. Working Paper des Lehrstuhls fr ABWL und Wirtschaftsinformatik der
Universitt Mannheim, 2007.

[HGKA08] Tobias Hildenbrand, Michael Geisser, Lars Klimpke, and Thomas Acker. Design-
ing and Implementing a Tool for Distributed Collaborative Traceability and Ra-
tionale Management. In Proceedings of the Multikonferenz Wirtschaftsinformatik
(MKWI’08), Munich, Germany, 2008. accepted for publication.

[Hil08] Tobias Hildenbrand. Improving Traceability in Distributed Collaborative Soaftware
Development - A Design Science Approach. Dissertation, University of Mannheim,
Germany, Mannheim, Germany, 2008.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[KDV07] Andrew Ko, Robert DeLine, and Gina Venolia. Information Needs in Collocated
Software Development Teams. In 29th International Conference on Software Engi-
neering (ICSE ’07), 2007.

[LFRGBH06] Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona, and Israel
Herraiz. Applying Social Network Analysis Techniques to Community-Driven Libre
Software Projects. Int. J. of Information Technology and Web Engineering, Univer-
sidad Rey Juan Carlos, Spain, 2006-09:22, 2006.

[McG84] J. McGrath. Groups, interaction and performance. Prince-Hall, 1:–, 1984.

[NT95] I. Nonaka and H. Takeuchi. Knowledge Creating Company, volume 77. Harvard
Business Review, 1995.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Towards Reference Models for Re-
quirements Traceability. IEEE Transactions on Software Engineering, 27(1):58–93,
2001.

[Rob05] Jason Robbins. Adopting Open Source Software Engineering (OSSE) Practices by
Adopting OSSE Tools. In Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and
Karim R. Lakhani, editors, Free/Open Source Processes and Tools, pages 245–264.
MIT Press, Cambridge, USA, 2005.

[WF94] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and
Applications. Cambridge University Press, Cambridge, UK, 1994.

[XCM03] Jin Xu, Scott Christley, and Gregory Madey. Application of Social Network Analysis
to the Study of Open Source Software. 2003.

266


