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ABSTRACT

In the IoT, resilience capabilities increasingly gain traction for ap-
plications, as IoT systems tend to play a bigger role for both the
proper functioning of our society and the survivability of compa-
nies. However, hardening IoT service execution against a variety
of possible faults and attacks becomes increasingly difficult as the
complexity, size and heterogeneity of IoT infrastructures tend to
grow further and further. Moreover, many existing solutions only
regard either specific faults or security issues instead of following
a unifying approach.

In this position paper, we present our research project called SOR-
RIR, which essentially is an approach to develop a self-organizing
IoT platform for dependable and secure service execution. One
of our main ambitions is to support developers by separating ap-
plication development (app logic) from resilience properties, so
that developers can configure a desired resilience degree without
proper knowledge of underlying technical, implementation-level
details of employed resilience mechanisms. Further, we consider
security requirements and properties as an integral component of
our platform.
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1 INTRODUCTION

In recent years the deployment of Internet-of-Things (IoT) systems
not only gained in popularity within the general public by smart
homes and smart devices but became also part of critical infrastruc-
tures of the industrial sector. Thereby, all IoT installations feature
the same basic system architecture as shown in Figure 1. Appli-
cation specific sensors and actuators are attached to things and
living beings where sensors provide data about their environment
while actuators interact with their surrounding. Both are either con-
nected by wire or wireless with one or more gateway nodes located
in the edge of the Internet. Utilizing those gateways, sensors can
gather and distribute data while actuators can receive commands.
Gateways are connected to the core network, often referred to as
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Figure 1: Architecture of IoT infrastructures.

backend, via the Internet. The usually limited computational capac-
ity of those edge devices leads to computationally intensive tasks,
e.g., analysis of time series being offloaded to components within
the core network, often based on public cloud providers.

However, this described situation increasingly changes and be-
comes more complex due to a series of developments [2, 4, 10, 12]:
(i) IoT systems are not only becoming more and more widespread in
everyday life, but are also becoming part of critical infrastructures in
Industry 4.0, product service systems or distributed control systems
such as autonomous driving support. The spread of IoT systems also
increases in the eHealth sector. This creates an increasing social
dependence on the fail-safe operation of these systems. (ii) IoT sys-
tems are also becoming significantly larger and become especially
complex when part of a critical infrastructure. (iii) Latency-critical
applications increasingly require that parts of the functionality of
IoT systems are offloaded to edge devices. (iv) The development
cycle for software in general, but also for IoT software, is getting
shorter and shorter while we (v) experience a diversification of the
sensor and actuator landscape at the same time.

We believe that these developments can be addressed by employ-
ing a holistic approach: the complexity, magnitude and diversifica-
tion of the sensor landscape aggravates the programmability of an
IoT system. The distributed programming model of an IoT system
should allow a developer to focus on the application logic instead
of bothering with non-functional properties such as scalability or
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fault-tolerance. A suitable middleware that provides resilience ca-
pabilities against faults and attacks can reduce the complexity from
the developer’s perspective. Both the longevity of IoT systems and
faster development cycles require higher flexibility: it should be
possible to customize existing IoT installations to match current
needs and conditions, e.g., by adding, removing, moving or updat-
ing components. However, due to the size and complexity of the
systems, a manual design of a valid system is an immense challenge,
so that the developer must be supported by the use of tools.

We address the increasing need for reliability and automation
both during the development and operation of IoT systems, as well
as emerging development and deployment issues. We outline key
ideas of SORRIR which bundles mechanisms that support a self-
organizing, resilient planning and execution environment for IoT
services. It assists the design of intrusion-tolerant, reliable and
available IoT services, allowing the simple and flexible deployment
of these services through the composition of IoT components, and
ultimately ensuring their secure and reliable performance.

The remainder of this paper is structured as follows: Section 2
sketches the state-of-the-art for IoT architecture, fault-tolerance in
IoT and security in IoT and incorporates related work. In Section 3
the SORRIR system model, goals, and architecture are presented
before going into more detail on the resilience mechanisms, security
aspects and monitoring of our approach. Finally, we outline future
work and draw a conclusion in Section 4.

2 BACKGROUND AND RELATED WORK

This section captures the state-of-the-art in IoT architecture, fault-
tolerance and security as well as elaborating on related work in
these areas.

2.1 IoT architectures

IoT systems spread out over a large physical area and involve mul-
tiple different technologies starting from sensors and actors in the
field over network components used to transfer collected data and
control signals from one participant to another using various pro-
tocols such as MQTT and CoAP. Data are processed and stored,
mixed and aggregated on their way from the edges of the network
to the core.

The ISO/IEC 30141 standard defines an Internet-of-Things ref-
erence architecture [7] on a high level basis. According to this
standard, the distinctive features of IoT systems are the high de-
gree of distribution within the system, the physical separation and
remote connection of sub-systems (sites). Each site consists of a
heterogeneous network and can also incorporate proximity net-
works. It comprises the IoT devices, IoT gateways and services as
the core technical building blocks of an IoT landscape. Particularly,
an IoT device is defined as a digital entity that bridges real-world
[...] and digital [7]. Further, IoT gateways are entities that connect
[...] IoT devices to a wide-are network [7]. Applications are formed
from services with well-defined interfaces. Devices, services, and
gateways expose network-based endpoints to connect to other en-
tities in the system. The standard also introduces various domains
that encapsulate different aspects of an IoT system: The sensing
and controlling domain comprises devices and gateways; the appli-
cation service domain provides user access to the IoT system; the

operation and management domain provides the necessary means
to maintain the overall health of the system including monitoring,
system optimization, and deployment of application components.
Besides proximity networks and wide-area networks, the standard
defines intranets connecting parts of the service landscape.

Guth et al. compare different IoT platforms based on their ref-
erence architecture [5]. The used architecture comprises devices
hosting sensors and actuators; gateways connecting devices with
WAN, translating commands and data, as well as preliminary data
processing; and IoT middleware that forms an integration point for
different devices and applications. The IoT application represents
business logic on top of the IoT middleware. The paper also shows
that this architecture is mappable to many different real-world
systems including AWS IoT, OpenMTC, and FIWARE.

Carrez et al. [3] establish a reference architecture for federated
IoT platforms and introduce several additional entities that en-
sure privacy and data integrity between participants. They use
raw-data providers, service providers, knowledge producers and ex-
perimenters as roles in their framework. Those roles correlate to IoT
devices, IoT gateways, execution sites and applications respectively.

Regarding IoT devices, the NIST Network of Things [16] basi-
cally distinguishes between sensors and aggregators. Aggregators
have the task to transform raw data from multiple sensors to aggre-
gated data. Sensors can be grouped into movable clusters. Different
clusters can share sensors and the mapping from sensors to clus-
ters can change at run-time. Aggregators may communicate with
other aggregators and external utilities can consume data from the
aggregators. The paper stresses that reliability is important for all
layers of such a system including the communication channels.

Naik has identified MQTT, CoAP, AMQP, and HTTP as primary
IoT communication protocols outside proximity networks [11]. All
of them are located on top of IP.

2.2 Fault-Tolerance in the IoT

Contrary to the common approach of achieving fault-tolerance
by using triple modular redundancy and majority voting, in IoT
systems the implementation of a threefold hardware installation is
often neither practical nor (financially) feasible according to Terry
et al. [13]. As a solution the authors argue that, on the one hand,
active replication can be relinquished since IoT devices (sensors and
actuators) mostly fail-stop. As a consequence of that, the duplica-
tion of devices is sufficient for achieving a fault-tolerant operation.
On the other hand, devices capable of similar events or actions can
be used to fulfill the tasks of faulty ones, which obviates the need
for duplication of devices. This can be realized by enabling the IoT
platform to discover and select nearby devices with similar events
and actions such that a fault free operation of the IoT application
can be provided [13]. Zhou et al [18] follow a similar approach by
providing fault-tolerance in service-oriented IoT architectures by
utilizing the concept of virtual services. Here, the data from more
than one sensor device is incorporated into a virtual service, such
that an actual service on a faulty device [18] can be compensated.
Tsigkanos et al. [14] introduce a roadmap with state-of-the-art tech-
niques to establish resilience in the face of disruption as well as
future directions in that area, e.g., abstracting business logic man-
agement from infrastructure capabilities and autonomous control



and self-healing. Moreover, fault-tolerance on the communication
side can be achieved by constructing, recovering and selecting k-
disjoint routes that guarantee connectivity even after the failure of
up to k-1 paths [6].

However, there are also open challenges and issues which have to
be addressed in order for fault-tolerance in IoT to work. Tsigkanos
et al. [14] identify challenges for engineering resilience in IoT which
comprise e.g., the growing heterogeneity in software stacks and the
lack of mobility of software components between diverse admin-
istrative domains and locations. Other issues are concerning the
automation of switching devices in case of failures and how best to
incorporate application-specific requirements and user preferences
into an IoT fault-tolerance scheme [13].

2.3 Security in the IoT

Due to the growing size, raising complexity and implementation in
critical infrastructures of IoT systems the security aspect is gaining
more and more importance. Vashi et al. [15] introduce security chal-
lenges of IoT on three different layers (perception layer, network
layer and application layer) and describe countermeasures. The
layers correspond to IoT devices at the perception layer, IoT gate-
ways and execution sites at the network layer, and the application
itself at the application layer. Each layer faces different security
problems starting from physical attacks at the perception layer over
Denial-of-Service (DoS) attacks at the network layer to malicious
code injection at the application layer. According to the authors
the countermeasures to those problems comprise encryption, au-
thentication, authorization, confidentiality, certification and access
control.

Mahmoud et al. [9] extend those findings by introducing secu-
rity challenges for each layer and general properties of security
measures which are specific to an IoT system like Lightweight Solu-
tions and Heterogeneity relating to the fact that IoT devices have
limited computational capabilities hence require specialized algo-
rithms. The countermeasures listed in this paper relate to the ones
from [15].

3 SORRIR

This section focuses on our approach of realizing a robust and self-
organizing IoT execution platform by introducing the system model
and terminology followed by our five primary goals forming the
building blocks of SORRIR. Moreover, details are given regarding
the architecture, the resilience mechanisms, security measures, and
monitoring and self-organization of SORRIR.

3.1 System Model and Terminology

The system model and terminology of SORRIR are based on ISO/IEC
30141 [7], whereat the terminology is extended with terminology
of cloud and edge computing. Regarding the infrastructure, we
differentiate between IoT devices, IoT gateways, and execution
sites. The communication model allows for horizontally as well as
vertically message flow, e.g., from gateway to gateway and from
device to gateway respectively.

IoT devices comprise sensors and actuators which form the
perception layer, hence, reside in the field. Their computational
and power capabilities are typically low and they exist in a variety

of different hardware and software configurations. The communi-
cation to IoT gateways is usually performed via a direct WAN or
(W)LAN connection or via a mesh network to other IoT devices.

IoT gateways either distribute the messages received from the
IoT devices to the execution sites or, depending on the computa-
tional capabilities, preprocess and aggregate data and interact with
other gateways.

Execution sites provide computational resources for IoT gate-
ways and are accessible via network. Dependent on the platform
maintainers configuration those sites can comprise regions of pub-
lic cloud providers, private clouds and computing clusters. Their
higher computing capabilities allow gateways to outsource resource
intensive tasks to them and their usually well-defined APIs allow
for better roll-out of new functionality.

Applications and components are encapsulating the business
logic whereat an application is composed of a set of instantiable
components. Those can be directly instantiated on IoT gateways
and execution sites and may define communication dependencies
between each other.

3.2 Goals

SORRIR comprises the following set of ambitions, each correspond-
ing to a feature that acts as a building block within our platform
architecture.

3.2.1 Design of a New Programming Model for Distributed, Resilient
loT-Components. The programming model should decouple the
realization of the component logic from resilience properties and
thus enable the developer to focus on implementing the application
logic while utilizing SORRIR programming interfaces and design
patterns. Depending on which interfaces have been implemented
(at design-time), the platform can automatically identify which
selection of resilience techniques the application can be configured
to employ (at run-time).

3.2.2  Detection of Non-Defined, Non-Coherent and Faulty States.
Monitoring the infrastructure (edge, core, network) and compo-
nents should diagnose faulty, inconsistent and undefined states.
Information on this should be accessible and easy to understand for
both the infrastructure manager and the operator of the application.
In addition, it provides the decision-making basis for the SORRIR
execution environment to choose the right reaction in respect to
self-healing and optimization mechanisms.

3.2.3 Realization of a Configuration Environment. A configuration
environment should provide the capability of (i) executing compo-
nents developed with the given programming model and (ii) flexibly
combining them. Additional mechanisms provide the IoT applica-
tion operator with an easy configuration of the desired reliability,
both at the individual component level and at the level of the entire
IoT application.

3.2.4 Realization of a Resilient Execution Environment. The re-
silient execution environment provides resources to run the ap-
plication created with the configuration environment at the desired
resilience level. Depending on the configuration, the execution
environment might provide other services besides the specified



component application
model configurator

component

library

Figure 2: Overview of SORRIR components and their interplay.

components to ensure resilience. E.g., healing processes are ini-
tiated as a reaction to error diagnosis to ensure resilience in the
long term. Cloud solutions of already established, large providers as
well as private clouds with special properties can be flexibly used,
as long as they offer the mechanisms required by the execution
environment to implement the resilience properties. Our execution
environment also covers the edge layer, so that, e.g,. in case of
particularly sensitive data or especially time-critical applications,
the communication with the cloud is not a necessity.

3.2.5 Vertical Fault-Tolerance. We further want to explore the ben-
efits of novel resilience mechanisms, which leverage the full avail-
ability of the IoT platform across different levels - especially the
gateway and the cloud - compared to mechanisms that operate
within a single layer. For example, functionality could be dynami-
cally migrated between the cloud and gateways as needed, depend-
ing on the current state of the network or the available processing
power on the gateways.

3.3 SORRIR platform architecture

In order to achieve the goals listed in Section 3.2, the SORRIR
platform follows a holistic approach that combines a novel design
process with further building blocks such as library containing
resilience mechanisms (which allows components to compensate
for faults at run-time) or an orchestrator that associates design-time
aspects with run-time artifacts.

We distinguish between two roles called component developer
and application operator (or: user of the application configurator).
The component developer pursues the goal of implementing busi-
ness logic, and thus to create an IoT application that encapsulates
this logic in a simple and straightforward way. Further, this de-
veloper should not need to have a technical background on non-
functional properties of the system, e.g., fault-tolerance aspects.
Also, he should not be burdened with the task of implementing
a set of fault-tolerance or security mechanisms. However, he can
be obliged into implementing a set of interfaces of our IoT pro-
gramming model. The design-time encompasses the process of de-
veloping these components. The application operator deploys and
maintains the platform. He uses the application configurator tool
to select the desired resilience level. Moreover, he supervises and
controls the platform. Overall, our architecture comprises the fol-
lowing building blocks as shown in Figure 2:

e component model: we follow the idea of developing IoT
applications as components to foster maintainability and
re-usability aspects. Components are instantiable. IoT appli-
cations can be composed of a set of such components, and
developers can focus on developing specific IoT components,
hence decreasing complexity.

e component library: this library bundles the available com-
ponents. At execution sites, components will be instantiated
and at a specific site, the scale out factor of a component
defines the overall number of its instances.

o application configurator: a tool that is used by the appli-
cation operator to fine-granulary configure the resilience
degree of each component of the application. The tool out-
puts an application configuration that determines application
structure and communication topology.

e resilience library: a library that bundles a broad variety
of resilience mechanisms (they match resilience properties
which can be configured by the application configurator)
and are automatically interwoven into the application com-
ponents by the orchestrator.

o orchestrator: a tool that combines design-time and run-
time aspects of the platform. It uses the application configu-
ration to allocate resources on execution sites, incorporate
resilience mechanisms that match requirements specified by
the operator into the components, and deploys these com-
ponents on the IoT infrastructure.

Utilizing a new programming model, the SORRIR platforms aims
at a separation between the specification of resilience requirements
by the developer and the implementation of resilience mechanisms
in a distributed run-time platform. Depending on the developer’s
usage of interfaces and specific design patterns, base classes and
APIs provided by the SORRIR programming model, components
become capable of supporting distinct fault models. The support for
a selection of these models is automatically identified by the appli-
cation configurator and can be initally selected by the application
operator at design-time and later adjusted if needed at run-time.

In the remaining part of this section we want to briefly sum-
marize our ideas regarding resilience mechanisms that can be em-
ployed (§3.4), security mechanisms to pursue specific security goals
for our platform (§3.5) and a monitoring module that resports fail-
ures and security-related incidents within our infrastructure (§3.6).



3.4 Resilience Mechanisms

Resilience aims at providing a sufficient and comprehensive func-
tionality even in case of faulty system components. Techniques for
ensuring resilience are capable of not only tolerating the complete
failure of specific subsystems but can also compensate faulty and
purposely harmful behavior of components [1]. The SORRIR plat-
form is, as explained in 3.2.4, targeting resilience by incorporating
state-of-the-art safety and dependability techniques featuring en-
hanced fault-tolerance mechanisms, e.g., for tolerating Byzantine
faults.

In general those techniques can be categorized into static and
dynamic resilience mechanisms. Regarding static mechanisms com-
mon techniques are static replication e.g., on the basis of snapshots
and backups or redundant execution. However, preventing the im-
pairment of the overall system by the repetitive occurrence of faults,
dynamic replication mechanisms, recognizing inconsistencies at
run-time and restoring the degree of fault-tolerance on demand,
are required. For this purpose, SORRIR supports not only crash
fault tolerance (CFT) focusing on the outage of communication
channels and nodes but also Byzantine fault tolerance (BFT) known
as a practicable method for tolerating unexpected system behavior
and attacks. In conjunction with proactive recovery, which will
also be provided by SORRIR, this ensures state-of-the-art dynamic
replication.

3.5 Security Measures

IoT platforms offer a variety of different security challenges from
physical attacks on IoT devices to distributed Denial-of-Service
(DDoS) attacks against virtual machines in the cloud. The hetero-
geneity of IoT systems’ device types and software components,
their scale and dispersion across different layers tend to increase
the attack surface. To counteract on threats, we need to specify
security measures to be incorporated into the SORRIR platform.

3.5.1 Authentication. Authentication measures are an essential
part of securing IoT systems and are necessary for all participants,
e.g., IoT devices, IoT gateways and execution sites. However, the
realization can be rather challenging due to the heterogeneity of
IoT comprising multiple entities (e.g., devices, humans, services,
etc.). As a solution the SORRIR platform is, on the one hand, using
already established authentication measures like OpenID where
applicable. On the other hand, new authentication measures es-
pecially designed for the computationally limited nature of IoT
devices should be supported [8, 17].

3.5.2  Authorization. Authorization and authentication go hand in
hand in securing IoT since devices and services shall only access
certain data intended for them. Hence, SORRIR is incorporating
specialized IoT authorization techniques similar to OAuth but not
limited to certain communication protocols.

3.5.3 Confidentiality, Integrity and Availability (CIA). Encryption is
a fundamental security measure when confidentiality is to be main-
tained. However, IoT systems comprise multiple heterogeneous
devices with different computational resources leading to a het-
erogeneous set of possible cryptography algorithms, in particular,
lightweight primitives need to be considered for constrained IoT
device classes. SORRIR is taking those requirements into account

and aims to offer a variety of different cryptographic primitives
suited for a broad hardware spectrum.

Furthermore, we want to support industrial standards, e.g., to
ensure integrity as well as confidentiality our approach includes,
among others, using TLS since it provides end-to-end encryption
for confidential message exchange and message authentication
codes (MACs) for safeguarding the integrity of messages and origin
authentication.

Besides ensuring confidentiality and integrity, availability is also
a concern since the deployment of IoT systems in critical infrastruc-
tures requires IoT devices and services to deliver a certain quality
of service. Hence, the SORRIR platform aims to promote availabil-
ity by providing a set of mechanisms such as active replication
or traffic filtering. This way, we increase an attacker’s necessary
efforts (e.g., if the attacker carries out attacks like DDOS, which are
a common threat to availability) to harm the system.

3.6 Monitoring and Self-Organization

On top of resilience and security measures, a monitoring compo-
nent, providing information for self-organization, is incorporated
into the SORRIR approach. The main purpose of this component
is to monitor the overall IoT system for both security relevant in-
cidents and resilience related events. Here, we follow a holistic
approach which improves the monitoring capabilities in hetero-
geneous distributed IoT infrastructures (edge and cloud) by the
integration of a set of highly diverse possibilities for introspection
techniques for IoT systems. On top of that our components pro-
vide an evaluation of the monitoring data in order to recognize
unexpected and inconsistent states. Contrary to the common state-
of-the-art SORRIR is aiming at advanced techniques for adaption
and self-organization to enable a proper reaction to component-
and communication-loss as well as attacks.

4 CONCLUSIONS AND FUTURE WORK

IoT infrastructures tend to grow both in scale and complexity while
the heterogeneity of devices increases and software development
cycles are shrinking. As IoT systems become part of critical infras-
tructures such as factories of the future or eHealth applications,
requirements regarding the resilient and secure execution of ser-
vices on these platforms emerge.

In this position paper we outlined ideas to address this problem
and support the development and operation of secure and resilient
IoT services by providing a middleware tailored to separate the
fulfillment of resilience properties from the development of the
actual business logic. We outlined the goals of our project and
then sketched the architecture of our platform, SORRIR, which is
a self-organizing IoT platform for dependable and secure service
execution composed of several building blocks that capture the
relation between design-time and runtime.

We note, that there is still much work left until our approach
is completely realized. Starting with the elaboration of all details
regarding the different aspects of our platform over the realiza-
tion of the individual components to the finished implementation.
Thereby, special effort has to be invested into coping with chal-
lenges related to IoT especially regarding the heterogeneity and
hardware limitations of devices and gateways.
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