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Abstract: Derivative computation using Automatic Differentiation (AD) is often con-
sidered to operate purely serial. Performing the differentiation task in parallel may re-
quire the applied AD-tool to extract parallelization information from the user function,
transform it, and apply this new strategy in the differentiation process. Furthermore,
when using the reverse mode of AD, it must be ensured that no data races are intro-
duced due to the reversed data access scheme. Considering an operator overloading
based AD-tool, an additional challenge is to be met: Parallelization statements are typ-
ically not recognized. In this paper, we present and discuss the parallelization approach
that we have integrated into ADOL-C, an operator overloading based AD-tool for the
differentiation of C/C++ programs. The advantages of the approach are clarified by
means of the parallel differentiation of a function that handles the time evolution of a
1D-quantum plasma.

1 Introduction

Automatic differentiation (AD) is a technique that has been developed and improved in the
last decades. It allows to compute numerical derivative values within machine accuracy
for a given function of basically unlimited complexity. Thus, unlike finite differences, no
truncation errors must be taken into account. When calculating first order derivatives using
the forward mode of AD, i.e., determining Jacobian-vector products, the computational
effort is comparable to that of finite differences. This way, e.g., columns of the Jacobian
can be computed efficiently. However, if a vector-Jacobian product is to be computed, e.g.,
a specific row of the Jacobian, the computational effort is proportional to the number of
entries in the row when applying finite differences. The same task can be performed much
more efficiently by use of the reverse mode of automatic differentiation. In particular,
the computational effort is then independent of the rows dimension. A comprehensive
introduction to AD can be found in [Gri00].

To provide reverse mode differentiation, AD tools based on operator overloading need to
create an internal representation of the function F' : R™ — IR™, y = F(x), to be dif-
ferentiated, where z = X1 denotes the set of independent variables and y = Y D the
set of dependent variables. The internal representation can be based on graphs [BS96] or
sequential tapes. ADOL-C is an operator overloading based tool that provides automatic
differentiation for functions given as C/C++ source code [GJU96]. The internal repre-
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sentation of the considered function is created using a taping mechanism and a so-called
augmented data type adouble that replaces double variables. Such a mechanism can
be found in many AD-tools offering reverse mode differentiation based on operator over-
loading. Essentially, only the function value is computed within the overloaded operator or
intrinsic function, respectively. In addition, information exactly describing the operation
is recorded onto a tape. This information comprises the type of the operation/function,
e.g. MULT, SIN, etc., as well as representations of the involved result and arguments,
represented by so-called locations. After the evaluation of the function, the created tape
represents the computational graph of the function as the sequence of operations that have
been processed, in execution order. Based on this information, the program flow sequence
can be easily inverted by interpreting the tape in reverse order.

Taking into account the steadily increasing demand for parallel program execution, an ap-
proach has to be found that allows to utilize the parallelization strategy of the provided
user function for parallelizing the derivative computation. When ADOL-C is to be applied
in a parallel environment that is created using OpenMP, several challenges have to be met.
Firstly, the created tapes do not contain any information describing the parallel evalua-
tion of the considered function. This is due to the fact that OpenMP statements cannot be
overloaded. Furthermore, if all threads of the parallel environment would write onto the
same tape, the serialization of the program flow would be inevitable, and, moreover, write
conflicts would be very likely. Secondly, when computing derivative information applying
the reverse mode of AD, the data access behavior is also reversed, i.e., read accessed func-
tion variables turn into write accessed derivative variables and vice versa. This potentially
results in data access races.

In this paper, we present parallelization strategies that have been incorporated into the
AD-tool ADOL-C. We mainly concentrate on the parallel reverse mode of AD but also
give information on the new features that allow a parallel tape based forward mode. In
the following section, a short overview of the facilities for generating a parallel AD-
environment inside ADOL-C is given. Special issues for parallel reverse mode differ-
entiation are discussed in Section 3 whereas Section 4 is dedicated to a numerical example
which demonstrates the runtime advantages that can be achieved by applying the parallel
reverse mode. A short summary and an outlook complete this paper.

2 Extensions to the ADOL-C

ADOL-C has been developed over a long period of time under strict sequential aspects.
Although the generated tapes have been used for a more detailed analysis and the con-
struction of parallel derivative code, e.g., [Bis91], ADOL-C could hardly be applied out of
the box within a parallel environment, so far. The most convenient chance in this context
is given by the use of ADOL-C in a message passing system based on distinct processes
for all cooperators. This requirement is fulfilled by, e.g., MPI [HW99]. Due to separated
address space and the realization of cooperators as processes of the operating system, the
ADOL-C environment is multiplied. In particular, all control variables used in ADOL-C
are available within each process exclusively. From the users point of view, only two
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conditions must be met to allow a successful application of ADOL-C. First, the unique-
ness of the created tape name, also called tag, must be ensured. This can be achieved by
carefully choosing the tag, e.g., in dependence of the process’ rank. Second, it must be
considered that data transfer between the working processes is not reflected by the internal
representation created by ADOL-C. Then, ADOL-C may be applied as usual allowing
the computation of derivatives for functions that implement data partitioning techniques,
especially when only a limited degree of communication is necessary.

Many parallel applications rely on a high amount of synchronization to communicate
computed information at given points among involved cooperators. In a message pass-
ing environment this would also mean to invoke more or less expensive transfer routines.
Therefore, such applications are typically parallelized for a shared memory environment
using OpenMP [DM98]. Extensive enhancements have been added to ADOL-C to allow
the application in such cases. Originally, the location of an augmented variable is assigned
during its construction utilizing a specific counter. Creating several variables in parallel
results in the possibility to loose the correctness of the computed results due to a data race
in this counter. Initial tests based on the protection of the creation process by use of critical
sections showed unambiguous behavior. Even when using only two threads in the parallel
program, the runtime increased by a factor of roughly two rather than being decreased.
For this reason, a separate copy of the complete ADOL-C environment is provided for
every worker thread. The copy mechanism can be implemented using two different ways,
either based on the OpenMP threadprivate clause, or by utilizing the thread number.
Possible effects of the chosen strategy are discussed in Section 4.

Besides this decision, another issue had to be answered. As already identified by G. M. Am-
dahl [Amd67], every parallel program possesses a certain fraction that can only be handled
serially. In many situations not only the parallel part of the function is object to the deriva-
tion efforts but also the serial parts. This entails the question of how to transfer information
between the serial and parallel program segments and vice versa.

From serial to parallel
Data transfer is this direction can be performed quit easily. For all variables alive at
the moment when the parallel region starts, a copy may be created for each thread.

From parallel to serial
This is the more difficult direction as it requires to decide which values from which
thread should be copied to the serial part. Furthermore, the handling of variables
created within the parallel part must be solved.

For the current implementation, the following decisions have been made.

e The handling of parallel regions by ADOL-C comprises only augmented variables
but not user variables of standard data type.

e Control structures utilized by ADOL-C are duplicated for each thread, and are de-
fault initialized during the first creation of a parallel region. The values of these
control variables are then handed on from parallel region to parallel region.
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e For performance reasons, two possibilities of handling the tape information have
been implemented. In the first case, control information including the values of
augmented variables are transferred from the serial to the parallel variables every
time a parallel region is created. Otherwise, this process is invoked only during the
creation of the first parallel region. In either case, the master thread creates a parallel
copy of the variables for its own use.

e No variables are copied back from parallel to serial variables after completion of
a parallel region. This means, results to be preserved must be transferred using
variables of standard data type.

e The creation or destruction of a parallel region is not represented within the initiating
tape. Coupling of serial and parallel tapes must therefore be arranged explicitly by
using the construct of external differentiated functions, see [Kow08].

e Different tapes are used within serial and parallel regions. Tapes begun within a
specific region, no matter if serial or parallel, may be continued within the following
region of the same type.

e Tapes created during a serial region can only be evaluated within a serial region.
Accordingly, tapes written during a parallel region must be evaluated there.

e Nested parallel regions are not supported and remain object to later enhancements.

All in all, the described facts result in augmented variables with a special property that
depends on the specific handling of the tape information. With the start of a new parallel
region either a threadprivate or a firstprivate behavior, respectively, is simulated, [DM98].
This means that the value of the augmented variable is taken either from the previous
parallel region or from the serial region, respectively. In either case, the value used within
the parallel region is invisible from within the serial region.

Initializing the OpenMP-parallel regions for ADOL-C is only a matter of adding a macro
to the outermost OpenMP statement. Two versions of the macro are available, which are
only different in the way the tape information is handled. Using ADOLC_OPENMP, this
information including the values of the augmented variables is always transferred from
the serial to the parallel region. In the other case, i.e., using ADOLC_OPENMP_NC, this
transfer is performed only the first time a parallel region is entered. This reduces the copy
overhead for iterative processes. Due to the inserted macro, the OpenMP statement has
the following structure:

#pragma omp ... ADOLC_OPENMP
or
fpragma omp ... ADOLC_OPENMP_NC

Within a parallel region, different tapes are created by the threads. Succeeding the tap-
ing phase, derivatives are computed using the various tapes. This can be done either by
complete user steering, or semi-automatic by applying the concept of extern differentiated
functions.
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While forward mode differentiation is, in a way, straightforward, the computation of
derivatives utilizing the reverse mode of AD needs special attention.

3 Reverse mode for data parallelism

For parallel reverse mode differentiation, we focus on functions that feature a special type
of data parallelism. Basically, data parallelism describes the subdivision of the data do-
main of a given problem into several regions. These regions are then assigned to a given
number of processing elements, which apply the same tasks to each of them. Data paral-
lelism is commonly exploited in many scientific and industrial applications and exhibits a
“natural” form of scalability. Since the problem size for such applications is normally ex-
pressed by the size of the input data to be processed, an upscaled problem can typically be
solved using a correspondingly higher number of processing elements at only a modestly
higher runtime [DFF+03].

For our purpose, data parallelism is extended beyond the pure nature described above.
Accordingly, it shall be allowed that the complete set of independent variables X I of the
given function F' may be used by all p processing elements PE;, ¢ = 1,.. . p, for reading.
Denoting by X I,* ) and X Ly (") the read and write accessed subsets of X 1, respectively, for
the various processing elements, one has that

VPE;: XIY C XI, XI1®) =0, )

This allows for example parallel functions that handle the evolution of systems consisting
of many components. There, computations for the individual components can be per-
formed independently, provided that the interaction among them can be determined using
X 1. Derivative information for such applications can be provided using the scheme de-
picted in Figure 1. In contrast to the general read access in terms of the independents,
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Figure 1: Basic layout of data-parallel calculations in an AD-environment

write access may only be allowed for distinct subsets Y D) of the dependent variables.
For a given number p of processing elements it is required that

P
YD=JYD" and YDWNYDYW =0 with ijel0,p]i#j

i=1
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The set of intermediate variables IV (*) associated with the serial function evaluation is
considered to be reproduced for all processing elements yielding p sets of variables IV (9,
1 =1,...,p. Inthis way, intermediate values can be used at the certain processing element
without the potential of memory conflicts. Overall, considering the subset Y D) and the
set of intermediate variables 7V (*), which are used exclusively by the processing elements
PE;, it holds that

YDONYDW =¢ [vOnIvE =g for i+#j

YD =y DU Ve = v for i=j @

Any function exhibiting the properties (1) and (2) is considered correctly parallelized in
the sense that data races are debarred.

Obviously, equation (2) allows to compute derivatives for the given function as long as
only the sets IV () and Y D® are involved. Due to the distinct nature of the sets defined
for the processing elements, forward and reverse mode of AD can be applied safely. A less
obvious situation is given as soon as independent variables are involved in the computation.
As known from the theory of the reverse mode, read accessed function variables result in
write accessed derivative variables. More precisely, the following relation holds

Function Derivative (reverse mode)
. —0pi(v)) < . L
vi = i (v5)j<i Vj+=U; * %}J;“ Vie{j:j=<i}.

Therein, the term ¢;(v;);<; denotes an elemental operation or intrinsic function to com-
pute an intermediate value v;, and < refers to the dependency relation as defined in
[Gri00]. As can be seen, due to the required instructions in the reverse mode, the data
access layout of the function variables is reversed for the adjoint variables ; and v; asso-
ciated with each intermediate variable v; and v;, respectively. Hence, read accesses on the
independent variables z, k = 1,...,n, induce the potential of data races in the adjoint
computations.

However, similar to the handling of intermediate variables, different sets of adjoint vari-
ables X1 () can be provided for each processing element corresponding to the set X 1.
Adjoint values may then be updated locally by each processing element independently
and thus globally in parallel. Due to the additive nature of the derivative computations,
global adjoint values may later be assembled using the local information produced by the
various processing elements. As this assembling results in significant computational effort,
it should be executed for all relevant adjoints only once and in a single step. Thus, the as-
sembling step must be performed after the last update of an adjoint variable fg) eXI1®,
However, updates of adjoints :f,(;) are principally possible at any point of the reverse com-
putations. This results from the property of the function that independent variables may be
accessed at any given time of the function evaluation. Thus, a single adjoint assembling
(@)
k

step is only possible if no z; ’ is used as an argument of a derivative instruction before all

updates on the set X1 () have been performed. For the considered type of applications
that feature the properties (1) and (2), this potential conflict can never occur. Since the
individual independent variables are accessed for reading only, they cannot appear on the
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right-hand side of an derivative instruction. Hence the assembling phase that computes the
global derivative values can be safely moved to the end of the derivation process.

4 Numerical Example

The example that is used to demonstrate the parallel derivation of a given function is taken
from physics. Due to its complex structure it is also necessary to apply in addition to
the parallelization other techniques derived in [KowO08], in particular, nested taping, exter-
nal differentiated functions, and checkpointing facilities. Only the combination of these
techniques allows the derivation based on the reverse mode of AD for this example. The
implementation of the function was performed by N. Giirtler [Giir06], and the differentia-
tion was realized in a cooperation between the RWTH Aachen and the TU Dresden. To our
knowledge, the parallel derivation of the given function including the coping with the high
internal complexity and inherent challenges currently features uniqueness and establishes
a new level of the application of operator overloading based AD.

The example describes the time propagation of a 1D-quantum plasma. Therein, the plasma
particles can be represented by a N-particle wave function ¥(1, ..., N), and the system is
modeled by multi-particle Schroedinger equations. For reduction of the complexity, spin
effects are neglected. However, a direct solution is numerically highly expensive. Since
an approximation is often sufficient to describe the physical behavior, the simulation is
based on Quantum-Vlasov equations. Interchange and correlation effects are neglected.
As an entry point into quantum plasma simulations and for reasons of complexity only
the one-dimensional case is modeled. However, due to the necessary discretization in the
order of N dimensions, the direct solution is still very expensive. For the analysis of
expected values for many distributions, calculations based on a representative ensemble
of quantum states are sufficient. Prior to the numerical simulation, a discretization of the
resulting equation system is performed. Applying cyclic boundary conditions yields the
sparse cyclic tridiagonal system (3).

Uttt = ey 3)

For details on the discretization and the definition of the operator U, the reader is referred
to [Giir06, Giir07]. With a system like (3), a complete description of the time propaga-
tion of the discretized wave function ¥ is given. Therein, the term W denotes the wave
function of the ¢th particle at time n.

The final step, which succeeds the time propagation of the plasma is used to compute the
expected value < 1 > of the particle density. The discrete version of this target functions
is given by

N K
< >=3 0% () AT “
i=1 j=1

The reduction of the high amount of output information resulting from the time propaga-
tion to a single value allows an easier evaluation of the entire system.
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A code for simulating the time propagation of a one-dimensional ideal quantum plasma
has been developed [Giir06]. It creates the source of the differentiation efforts and features
the program layout that is depicted in Figure 2. There, all parallelization statements are al-

startup_calculation(..);
for (n = 0; n < T; ++n) {
fpragma omp parallel
{
#pragma omp for
for (i = 0; i1 < N; ++1)
partl(..);
#pragma omp for
for (i = 0; i < N; ++1)
part2(..);
}
¥

target_function(..);

Figure 2: Basic layout of the plasma code including parallelization statements

ready included. The representation is based on C++ notation, and the OpenMP statements
are adjusted accordingly. Due to the layout of the overall function, the reverse mode of
AD is to be preferred for the differentiation of the code.

For the proof of concept of the code as well as its derivation, we used the following pa-
rameters for all runtime measurements that are discussed in this section.

e number of wave functions N = 24, simulation time ¢ = 30, 7" = 40000 time steps
e length of the simulation interval L = 200, discretized with K = 10000 steps

e plasma frequency wp = 1.23

All units are transformed to the atomic scale, see [Giir06]. The most important runtime
reduction in the simulation results from computing only the first 50 of the 40000 time
steps. After this period, the correctness of the derivatives can already be validated and
the characteristics of the runtime behavior that are of special interest are already fully
visible. To preserve the numerical stability of the code, the time discretization is based on
T = 40000 steps nevertheless. All runtime measurements have been performed using the
SGI ALTIX 4700 system installed at the TU Dresden.

Two versions of parallel derivative computations are discussed in the remainder of this
section. They apply the same parallelization approach, i.e., every participating thread of
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the parallel environment performs all calculations for a specific number of the consid-
ered N wave functions. The main difference is to be found in the way the data access
in the parallel environment is performed. Figure 3 depicts the speedups measured for
the derivation of 24 wave functions. As can be seen, the code version that is based on

Spc‘cdup - perfect ‘
—————— Serial computation
—&— Function only
20 |- —>%— Function & derivatives - threadnumber |
Function & derivatives - threadprivate

Speedup

Number of processors

Figure 3: Speedups for the parallel differentiation of the plasma code for N = 24 wave functions

a threadprivate parallelized AD-environment achieves the highest speedups. Fur-
thermore, it performs much better than thread number based reverse version, and it even
outperforms the speedup of the original functions. This allows the conclusion that, care-
fully implemented, the derivative calculations can decrease the distracting effect of the
necessary synchronization within the parallel environment.

The results attained through the parallelization of the differentiation of the plasma code
clarify that operator overloading based AD is prepared to meet the challenges that are
brought up by the most complex codes applied in science and engineering. Thus, for the
parallelization of derivative calculations using operator overloading AD, an answer has
been found to a question that is still open for many other applications.

5 Summary & outlook

Automatic differentiation based on operator overloading features a long history and has
shown to be highly valuable for most derivation tasks. Especially for programming lan-
guages for which AD-enabled compilers are not available or miss a critical feature, the
operator overloading based approach often presents the only reasonable technique. The
increasing complexity of the investigated functions more and more requires the applica-
tion of parallelization techniques. It is obvious that automatic differentiation must face
this fact and provide adequate differentiation strategies. In this paper, we presented new
parallelization approaches that have been incorporated into the tool ADOL-C. By means
of the time propagation of a 1D quantum plasma we could show that parallel reverse mode
differentiation can be performed efficiently using operator overloading based AD.
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The main limitation of AD utilizing the overloading facilities of programming languages
is always to be found in the size of created internal function representation. Within this
context, the unrolling of loops presents a major drawback that may result in an unfavorable
runtime behavior. Hence, one of the main challenges to be answered in the future is the
development of techniques that allow a much more compact representation of loops. This
not only avoids the expensive storing of every loop iteration, but also presents a major step
towards an automatic parallel differentiation of parallelized user functions.
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