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Latent representations of transaction network graphs in
continuous vector spaces as features for money laundering
detection

Dominik Wagner1

Abstract: This paper explores the construction of network graphs from a large bank transaction dataset
and draws from findings in language modeling and unsupervised learning to transform these graphs
into multidimensional vector representations. Such latent representations encode relationships and
community structures within the transaction network. Three classifiers with varying complexity are
trained on these latent representations to detect suspicious behavior with respect to money laundering.
The specific challenges accompanying highly imbalanced classes are discussed as well and two
strategies to overcome these challenges are compared.
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1 Introduction

The process of money laundering can be divided into three stages: placement, layering and
integration [Su01, p. 145]. During the placement stage, illegally obtained funds (mostly cash)
are channeled into the financial system. The layering stage refers to the removal of traces
and the distribution of those illegally obtained funds. Numerous transactions are carried out
in this stage, often involving offshore-accounts and complex financial instruments. In the
integration stage, the funds re-enter the legitimate economy, e. g. through the purchase of
real estate or luxury assets. The three stages of the money laundering process show that a
typical money laundering operation includes multiple transactions, which are transferred by
a group of entities trough a multitude of channels. Thereby, secret collusion takes place
between the entities involved. The Financial Action Task Force (on Money Laundering)
also names networks as one of the key characteristics of professional money laundering
organizations. Networks are described as a collection of associates or contacts working
together to facilitate money laundering schemes [Fi18, p. 13]. As money laundering involves
groups of collaborating individuals, signs for money laundering may only be apparent when
the collective behavior of these groups is examined.
1 Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Informatik, Keßlerplatz 12, 90489 Nürnberg,

Deutschland wagnerdo49883@th-nuernberg.de

https://creativecommons.org/licenses/by-sa/4.0/
wagnerdo49883@th-nuernberg.de


2 Dominik Wagner

2 Related Work

Considering the behavior of communities in a network to facilitate money laundering and
fraud detection has produced promising results in several studies. Most of the related work,
however, focuses on feature extraction with graph mining methods and metrics from Social
Network Analysis (SNA). Furthermore, not all approaches are tested on real-world data.

For instance, Michalak and Korczak [MK11] propose a model for graph structure learning
that can be trained on a previously annotated transaction graph and can be matched against
a graph without annotated transactions. The model used in their method is parametrized
using fuzzy numbers, which represent parameters of transactions. The authors perform their
experiments with artificially-generated data.

Savage et al. [Sa17] generate network graphs from data provided by the Australian
Transaction Reports and Analysis Centre (AUSTRAC). The authors apply a combination of
network analysis and supervised learning (Support Vector Machine and Random Forest)
to identify suspicious behavior indicative of money laundering activity. The study focuses
on identifying small sets of interacting parties whose collective behavior is suspicious.
Their model considers a range of demographic, network specific, transaction specific and
time-dependent features derived from the extracted communities.

In [EH07], the authors develop three algorithms to uncover anomalies in graph structured
data, particularly for fraud. The algorithms focus on different types of changes in the graph
such as vertex or edge insertions. The algorithms are validated on both synthetic and
real-world data. In [DF15] methods from SNA, such as centrality measures are used to
investigate money laundering cases. Their algorithms are verified with random graph data.

However, to the author’s knowledge, no bank transaction network graphs have been
transformed with the DeepWalk algorithm [PAS14] so far. This work contributes by carrying
out such transformations (Sect. 5) and by testing the effectiveness of the approach with three
different supervised classification methods (Sect. 6). Most closely related is the work by
Weber et al. [We18] who apply scalable Graph Convolutional Networks (GCN) [CMX18]
to predict the degree of suspicion of a given target vertex in a transaction network and
to identify other potential bad actors in the network via direct or indirect connections to
vertices known to be suspicious. The graph structure is generated by a simulator based on
transaction distributions and dynamics observed in real data.

3 Problem Definition

The data used in this work is a subset of real account transactions at a German retail
bank. The majority of those entities are individual persons and a small portion are legal
persons. The dataset contains 241 exemplary entities, which have been flagged as suspicious
regarding money laundering. The suspicion refers to Suspicious Activity Reports (SARs)
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made by the bank. SARs are filed to the Financial Intelligence Unit after compliance officers
have confirmed the suspicion in a multi-step process.

The data can be represented as an undirected graph G(V, E) where V is a set of vertices and
E is a set of edges between the vertices with E ⊆ {{u, v} | u, v ∈ V}. A vertex vi constitutes
either a bank client or a country described by a two-letter country code, as defined in ISO
3166-1 alpha-2 [In19]. V is further divided into two sets of vertices. The vertices VM for
which the correct labels are known and the vertices VN whose labels have to be determined.
The task is to label the vertices Yi ∈ VN with one of the two labels L = {L0, L1} where L0
represents unsuspicious entities and L1 represents suspicious entities with respect to money
laundering. yi is the label of vertex Yi . The classification task is discussed in Sect. 6.

The information about the dependence of the examples embedded in the structure of G is
utilized to classify the vertices VN . The goal in that regard is to build multidimensional
representations XE ∈ R

|V |×k where k is the number of latent dimensions. The process of
creating these multidimensional representations is discussed in Sect. 5.

4 Graph Construction

Fig. 1: Transaction graph example

Fig. 1 shows an example of a partially labeled transaction network graph G(V, E) with
|V | = 8 and |E | = 10. The vertices v1 and v2 are labeled as unsuspicious (L0), while the
vertex v5 is labeled as suspicious (L1) regarding money laundering. The vertices DE , BS,
T N represent financial institutions in Germany (DE), The Bahamas (BS) and Tunisia (T N).
The vertices v3 and v4 are not labeled yet. The edge attributes represent the number of
transactions between the two vertices. The graph structure shows that the already suspicious
vertex v5 transacts with a country known to have strategic anti-money laundering deficiencies
(BS) [Fi19]. The unlabeled entities v3, v4 interact primarily with v5 and with each other.
The vertex v4 also transacts with a high risk country (T N). From these observations one
could conclude that the vertices v3 and v4 should also be labeled as suspicious (y3 = L1 and
y4 = L1).
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In order to establish a transaction network graph G(V, E) as illustrated in Fig. 1, the two
counterparts u and v of each transaction are examined. In case the account is an internal
account, i. e. it refers to an entity that is also available in the dataset, the unique client
identifier is added as a vertex to the network, provided that the identifier in question does
not already exist in the network. In case the account is an external account, the target
or origin country of the transaction is extracted from the SWIFT Code. SWIFT (Society
for Worldwide Interbank Financial Telecommunication) Codes are a standard format of
Business Identifier Codes defined in ISO 9362 [SW19]. In this way, external accounts
are aggregated based on the country they are located in. Each edge e ∈ E represents at
least one transaction between two connecting vertices u and v. The final graph contains
|V | = 1, 128, 921 vertices and |E | = 1, 489, 209 edges.

5 Latent Representations

The graph structure is transformed into latent multidimensional representations by means
of the DeepWalk algorithm [PAS14]. DeepWalk is an unsupervised learning algorithm
that learns a latent representation of each vertex in a graph with the Skip-gram language
model [Mi13a; Mi13b]. The graph is explored through a sequence of random walks. These
random walk sequences are equivalent to sentences in language modeling. The learned
vector representations encode relationships and community structures and can be used for
various purposes such as classification, clustering or similarity search.

The Skip-gram model is built from a neural network with one hidden layer. Applied within
the DeepWalk framework, the model receives a vertex vi and generates the probability for
all other vertices that a given vertex appears in the neighborhood or context of the input
vertex vi . The context is defined by the window c.

Learning a latent representation means learning a mapping function from vertex co-
occurrences: Φ : v ∈ V 7−→ R |V |×k . The mapping Φ is the latent representation of each
vertex v ∈ V . The mapping Φ is represented by a |V | × k matrix, which is the target matrix
XE . The objective of DeepWalk is to find latent representations that are useful for predicting
the surrounding vertices in a random walk sequence. The optimization problem is formalized
as follows:

min
Φ
−logPr({vi−c, . . . , vi+c} \ vi | Φ(vi)) (1)

The Skip-gram model is used to update the representations according to the objective
function Eq. (1). Skip-gram approximates the conditional probability in Eq. (1) by:

Pr({vi−c, . . . , vi+c} \ vi | Φ(vi)) =
i+c∏
j=i−c
j,i

Pr(vj | Φ(vi)) (2)
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5.1 Implementation

DeepWalk receives the following parameters: window size c, embedding size k, number of
random walks per vertex γ and walk length t. It returns a matrix of vertex representations
Φ ∈ R |V |×k . The algorithm iterates over all possible collocations of a given random walk
sequence Rvi that appear within the window c. Rvi is a random walk sequence rooted
at vertex vi with length t. A window of length 2c + 1 is slid over the random walk Rvi ,
mapping the central vertex in the window v f to its representation (Φ(v f ) ∈ Rk). Given
the representation of v f , the task is to maximize the probability of its neighbors in the
random walk sequence. Such a posterior distribution is approximated using hierarchical
softmax [MB05]. Hierarchical softmax is a computationally efficient approximation of the
full softmax, where the graph vertices are assigned to the leaves of a balanced binary tree,
turning the problem into maximizing the probability of a specific path in the tree hierarchy.
The path to a neighboring vertex vn of the central vertex v f is identified by a sequence of
tree nodes (a0, a1, . . . , a dlog |V | e where a0 is the root of the tree and a dlog |V | e = vn). The
conditional probability is then approximated by:

Pr(vn | Φ(v f )) =
dlog |V | e∏

j=1
Pr(aj | Φ(v f )) (3)

p(aj | Φ(v f )) is now calculated by a binary classifier assigned to the parent of the node aj :

Pr(aj | Φ(v f ) = 1/(1 + e−Φ(vf )·Ψ(a j )) (4)

Ψ(aj) ∈ R
k is the vertex representation at the parent node of aj . Stochastic gradient descent

(SGD) is used to optimize the model parameter set (θ = {Φ,Ψ}). DeepWalk learns a latent

Fig. 2: Latent representation of the example graph

representation of transactions in Rk . In Fig. 2 the method is used on the example graph from
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Fig. 1 to generate a latent representation in R2. The community structure in the input graph
corresponds well with the embedding. The unlabeled vertices v3 and v4 are located close
to v5, which has been already labeled as suspicious. The vertices labeled as unsuspicious
v1 and v2 are grouped close to financial institutions in Germany (DE) and are relatively
far away from v3, v4 and v5. With standard classification methods applied on the latent
representations, v3 and v4 would be more likely classified as suspicious (L1).

The DeepWalk algorithm is trained on the full bank transaction dataset with γ = 1000
walks per vertex, walk length t = 8, window size c = 2, learning rate of the neural network
α = 10−2 and k ∈ R20 hidden units (latent dimensions).

6 Classification

The learned representations are used to classify entities into the categories unsuspicious (L0)
and suspicious (L1). Under the assumption that “suspicious” representations are sufficiently
different from “unsuspicious” ones, supervised learning algorithms are used for this task.
The class L1 refers to Suspicious Activity Reports (SARs) made by the bank, while the class
L0 refers to hitherto inconspicuous parties.

The latent representations serve as inputs for three widely used classifiers with varying
complexity: Naive Bayes (NB), Support Vector Machine (SVM) and Multilayer Perceptron
(MLP). The standard variant of Naive Bayes, in which the likelihood of the features is
assumed to be Gaussian, is applied here. SVMs are trained with both a linear and a
Radial Basis Function (RBF) kernel. The optimal SVM hyperparameters are determined by
evaluating the area under the ROC curve [Fa06; Sw01] in a threefold cross-validation on the
training set, using the grid search technique. The kernel parameter γ for the RBF kernel is
selected from the set γ ∈ {10−4, 10−3, 10−2, 10−1} ⊂ R>0. The linear SVM employs, the `2

penalty on a squared hinge loss. The penalty parameter of the error term C is selected from
the set C ∈ {10k | k = −2,−1, . . . , 5} ⊂ R>0 for the linear and the RBF kernel. Several

Hyperparameter Value

Optimization Stochastic Gradient Descent
Learning Rate α = 10−4

Learning Rate Decay d = 10−6

Momentum Nesterov (m = 0.9)
Dropout p = 0.2

Activation Function leakyReLU f (x) =
{

x, if x > 0
0.3x, else

Tab. 1: MLP hyperparameters

architectures and hyperparameters have been considered to train the MLP. The best results
were achieved with three hidden layers and 150 hidden units in each layer combined with the
hyperparameters shown in Tab. 1. The output layer consists of a single neuron and employs
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a sigmoid activation function. The training samples are processed in mini-batches of 32
samples. The training procedure runs for 20 epochs, i. e. the number of complete passes
through the training dataset is 20.

6.1 Class Imbalances and Synthetic Over-sampling

The dataset at hand is highly imbalanced, i. e. the classification categories are not at all
equally represented. Vertex representations were obtainable for 223 of the 241 entities
flagged as suspicious. For the remaining 18 entities, the data provided in the subset was
insufficient to generate embeddings, i. e. no transactions were available for these entities.
On the other hand, more than one million vertex representations encoding regular client
behavior were generated.

To overcome this problem, two strategies are considered and compared afterwards. First,
the majority class instances (i. e. unsuspicious entities) are under-sampled and the minority
class instances are randomly duplicated until the desired share of suspicious samples to
total samples is reached. Second, the majority class instances (i. e. unsuspicious entities) are
under-sampled and the minority class instances are over-sampled with synthetic examples
by means of the SMOTE algorithm [Bo11]. Both strategies use subsets from the 1,128,921
available latent representations. The processed training data consist of 12,000 “unsuspicious”
records and 12,000 “suspicious” records. The test data consist of 3,000 “unsuspicious” and
45 “suspicious” records.

The second approach to overcome the class imbalance problem is inspired by the work of
Xu et al. [Xu15], who use the SMOTE algorithm as an over-sampling method to produce
balanced training sets from word embeddings. This work proceeds as follows: First, 12,000
samples are randomly drawn from the majority class (“unsuspicious”). Second, the SMOTE
algorithm is used, to generate samples for the minority class (“suspicious”), until the training
set is fully balanced. The algorithm attempts to over-sample the minority class by taking
each minority class sample and generates synthetic examples from the k minority class
nearest neighbors. The neighbor parameter is set to k = 5 here. The training pipeline has five

Fig. 3: Preprocessing and training pipeline with SMOTE

main steps, which are illustrated in Fig. 3. The first step constructs the transaction graph as
discussed in Sect. 4. The second step performs the DeepWalk algorithm according to Sect. 5
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and stores the latent representations in a database. The first two steps are preprocessing
components, which have to be executed at least once before the actual training procedure can
begin. The training procedure starts with the third step, which splits the vertex embeddings
retrieved from the database into a training set and a test set. The fourth step applies the
SMOTE algorithm on the minority class samples of the training data. The final step trains a
classifier on the data.

Principal component analysis (PCA) is applied for the purpose of visualizing the learned
20-dimensional embeddings in two-dimensional space [TB99]. Fig. 4 shows the PCA
projection of vertex representations from the majority class “unsuspicious” and the minority
class “suspicious” without over-sampling in the left diagram. In contrast, the PCA projection
of vertex representations from the majority class “unsuspicious” and the minority class
“suspicious” with synthetic over-sampling of the minority class is shown in the right diagram.
The newly generated samples are denoted by rhombuses. The right diagram shows better
formed clusters for the “suspicious” class compared to the left diagram. Furthermore, the
newly generated samples in the right diagram are usually close to the original samples,
indicating that over-sampling with the SMOTE algorithm generally maintains the same
distribution as the original samples.

Fig. 4: PCA projection with and without over-sampling

6.2 Results

Each classifier is trained ten times on different subsets of the data. The samples from the
majority class are randomly drawn prior to each new training procedure. The unprocessed
minority class samples are shuffled and split into training data and test data prior to each new
training procedure. Both over-sampling strategies are only applied on minority class samples
of the training data. Hence, the 45 minority class samples used for performance evaluation
are not synthetically generated or duplicated. Each input vector is scaled individually such
that the `2-norm equals one. The performance measures are averaged over all ten training
instances.

In the presence of imbalanced datasets, it is preferable to use Receiver Operating Character-
istic (ROC) curves or other similar techniques over traditional performance measures such as
accuracy [PF01]. ROC curves indicate the performance of binary classifiers at various false
positive rates [Fa06; Sw01]. Fig. 5 illustrates the average ROC curves for both sampling
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Fig. 5: Average ROC curves for different strategies and classifiers

strategies and the three classifiers. The dashed line f (x) = x represents the scenario of
randomly guessing the class. Despite the varying complexity of the three classifiers, the
performance difference between them is relatively small for both strategies. The best overall
results produces the MLP in combination with random duplication of the minority class.
The average Area under the ROC Curve (AUC) equals 0.789. All three classifiers achieve
better average performance, when majority under-sampling is applied in combination with
random duplication (left diagram). Naive Bayes achieves an average AUC = 0.781 with
random duplication of the minority class samples and an average AUC = 0.764 with
synthetic over-sampling. The SVM classifier delivers an average AUC = 0.785 with random
duplication and an average AUC = 0.767 with synthetic over-sampling.

However, the standard deviations of the AUC scores are lower for all three classifiers, when
majority under-sampling is applied in combination with the SMOTE algorithm, indicating
that this strategy produces more stable results compared to majority under-sampling
combined with random duplication. The largest difference in the standard deviation of the
AUC score shows the SVM classifier with σ = 0.044 for the strategy including random
duplication (left diagram) and σ = 0.035 for the strategy including the SMOTE algorithm
(right diagram). The shaded area in Fig. 5 illustrates the development of σ around the ROC
curve of the MLP.

7 Discussion and Future Work

The approach presented in this paper has only been tested on a simple edge creation strategy,
which was based on the existence of at least one transaction between two entities. Many
other strategies are imaginable here. For instance, edges could be created only for certain
types of transactions such as cash withdrawals, transactions to or from high risk countries
or transactions made by politically exposed persons (PEP). Another strategy would be to
create an edge only when certain transaction amount thresholds are exceeded.
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The DeepWalk algorithm lacks generalizability. Whenever a new vertex is added, the model
has to be re-trained in order to represent the new vertex as an embedding. The approach
is therefore not suitable for real-time transaction monitoring systems. DeepWalk is also
limited to the structure immediately around a vertex. This local focus implicitly ignores
long-distance relationships and the learned representations might not uncover important
global structural patterns. Furthermore, DeepWalk relies on stochastic gradient descent
optimization, which can become stuck in local minima and consequently lead to poor results.

A comprehensive empirical study conducted by Khosla et al. [KAS19] considers 9 popular
unsupervised network representation learning (UNRL) approaches including DeepWalk
and Graph Convolutional Networks (GCN). The authors perform vertex classification and
edge prediction tasks on 11 real-world datasets with varying structural properties. They find
that there is no single method superior to the others and that the choice of a suitable method
is determined by certain properties of the embedding methods, the task and structural
properties of the underlying graph. Given these findings, other UNRL techniques should be
applied to bank transaction network graphs in order to assess whether further improvements
in the quality of the vertex embeddings are possible.

8 Conclusion

This paper demonstrates the transformation of transaction network graphs into real-valued
latent representations with the DeepWalk algorithm. By doing so, an alternative way
of representing bank transactions and the relationships between the entities involved is
illustrated. Experiments on the latent representations generated from real bank transaction
data show the effectiveness of the approach on a binary classification task.

Strong class imbalances pose an extra challenge to machine learning systems. The small
number of “suspicious” records compared to the very large number of “unsuspicious”
records requires additional feature engineering efforts. This paper explores two different
strategies to cope with such imbalances. The more stable strategy for the data at hand is
a combination of majority under-sampling and minority over-sampling with the SMOTE
algorithm, while the combination of majority under-sampling and random duplication of
the minority class achieves better results in terms of the average AUC score.
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