
A Domain Specific Language for Uncovering Abstract
Protocols and Testing Message Scenarios

Tim Reichert1, Dominikus Herzberg2

1School of Computing, Engineering & Inf. Sciences, Northumbria University
Newcastle upon Tyne, NE2 1XE, United Kingdom

tim.reichert@unn.ac.uk

2Department of Software Engineering, Heilbronn University
74081 Heilbronn, Germany
herzberg@hs-heilbronn.de

Abstract: We present CFR, a language for the specification of protocols and commu-
nication scenarios and show how this language can be used for systematic testing of
distributed systems. Our language is based on three basic concepts, namely channels,
filters and rules. Using our current implementation, we can fully generate sophisti-
cated analyzers from CFR specifications.

1 Introduction

Many of the errors in today’s distributed systems occur in the context of complex com-
munication scenarios involving multiple distributed components. Such errors are intricate
and cannot be found by component testing alone. System testing complex scenarios is,
however, a difficult task, mainly because it is hard to specify correct behavior at the right
level of abstraction and in a way that can be used for automated testing.

Protocol analyzers can be used for monitoring and testing system communication on dif-
ferent layers of a protocol stack. However, the parts of the communication design that are
not specified as part of a protocol are invisible during analysis. Instead, only the effect a
design has on protocol layers can be traced. This has severe consequences, as test cases
have to be specified at an inappropriate level of abstraction, which makes them overly
complex and likely sources of errors. We provide an example of this in Section 3.

We developed a language called CFR (Channel Filter Rule) that allows comprehensive
specification of communication behavior and the full generation of specialized protocol
analyzers that can monitor and test this communication behavior. The main purpose of the
CFR approach is to uncover and document hidden design intentions in protocol use and to
enable specification of communication behavior at appropriate levels of abstraction.

427



2 The CFR Language

In this section, we introduce CFR, a domain specific language for the specification of
both protocols and message scenarios. CFR models can be interpreted in two ways: As
a specification of a protocol or as a specification of a protocol analyzer. In our current
implementation, we use them to generate analyzers that can monitor and automatically
test even complex scenarios.

A protocol layer can be described by relating its communication patterns to the commu-
nication patterns on the next lower layer. CFR models do this in a machine-processable
form by combining the following basic language constructs:

• A channel is a medium that transports messages. The messages obey a protocol.

• A filter is a passive and stateless unit that redirects messages from an incoming
channel to one of two outgoing channels. Depending on a given pattern, the filter
determines which message is to be delivered to which outgoing channel. Since both
the input and output of a filter are messages, the output of a filter can be used as
the input of another filter. Filters might be put in parallel or in sequence. Filters are
passive elements as they do not modify or create messages.

• A rule is an active and stateful message processing unit that consumes messages
from one or more incoming channels and returns messages to one or more outgoing
channels. In opposition to filters, a rule can modify incoming messages or create
new messages. To do that, a rule contains defined logic in form of a state machine
or a set of state machines with a selector function. Similar to filters, the output of
one rule might be the output of another rule.

We represent the inputs and outputs of rules by pins with connectors between them. The
message flow is from output to input pins. Channels and rules have an arbitrary number
of input and output pins, while filters have exactly one input and two output pins. We use
regular expressions to define the selection criteria in filters. State machines are used to
define the memory of rules. We provide an example of a CFR model in Section 4.

3 Uncovering Abstract Protocols

A concrete protocol is a specification of messages and a set of message sequences. An
abstract protocol constitutes its own communication architecture based on a concrete pro-
tocol. The communication architecture may be layered. At application level, however,
strict layering is often impractical and broken by tunneling. An example is due. HTTP
is a stateless and connectionless concrete protocol. It consists solely of request and reply
messages and only a client can initiate communication via a request message. An appli-
cation using HTTP may compensate for HTTP limitations and define its own interaction
scheme. For instance, it might be necessary for a web browser based application to receive

428



Crr (request/reply)rr

Fnot
RegExp = (notify?|notificationMsg)

+ ‐

Crrf
notify

request(notify?)

start
requested

reply(no)

start

Rnot

Cnot

Figure 1: CFR model for the notification example in visual notation

notifications of important events from a web server. As the server cannot contact the client
directly, an application programmer needs to design an abstract protocol to implement
event notifications based on HTTP.

One way to realize the “illusion” of a server-based notification service is to let the client
periodically send request messages to the server, asking whether there is a notification
available. Upon receiving a request, the server replies by either sending a negative in-
dication or it delivers the notification. This is exactly how the now popular AJAX web
technology works. Other parts of the application might use the notification service via the
abstract protocol – but they are not forced to do so. Application designers working with
such a notification service certainly think in terms of notifications and probably do not
even know about requests and replies. A conventional protocol analyzer on the other hand
would only analyze the HTTP protocol, not knowing anything about the abstract proto-
col and its communication architecture. With CFR, we can specify abstract protocols and
generate analyzers that understand these protocols.

Figure 1 shows a CFR model that defines the notification protocol just described. In our
visual notation, Channels are tubes, filters are triangles and rules are circles. Channel Crr

transports all request/reply messages. The Filter Fnot ensures that channel Crrf transports
only those requests and replies related to the notification service. The rule Rnot uses a state
machine to transform a request followed by a positive reply into a notification message and
puts it on channel Cnot.

4 Testing Scenarios with CFR Analyzers

Communication behavior in a distributed system can be described by a set of scenarios.
A scenario for the aforementioned example might, for instance, be an update occurring
on the server of which the client application needs to be notified. On the communication
level, this involves at least two messages: An update message to the server followed by
a notification message to the client. An effective method for testing the correctness of
such a scenario is to stimulate the server by sending an update message and to check if the

429



expected notification message is sent. Using a conventional protocol analyzer, the stimu-
lation and testing could in principle be done. However, the specification of the scenario
would be at an inappropriate level of abstraction, namely at the request/reply layer.

If we view scenarios as sequences of messages, we can use CFR models to specify them
as specialized high-level abstract protocols. By following a layered approach [HB05], we
ensure that these specifications are always at the appropriate level of abstraction. We can
specify even complex scenarios involving different protocols and subnetworks by com-
bining all relevant messages onto a single abstract protocol layer and by then using this
protocol layer for the definition of the scenario layer.

We require scenarios to be uniquely identifiable via their message sequences. Ambiguities
have to be resolved at the specification level. This ensures that the step from merely
monitoring a system to testing it is feasible. Based on a set of CFR models, we can use our
analyzers to identify unspecified - and thus potentially faulty - communication behavior.
In addition to that, we can use the analyzers to systematically stimulate components in
order to trigger scenarios that are then verified. Under real conditions, a large number
of different concurrent scenarios might be monitored simultaneously. We can refine our
analyzers by assigning time intervals to the transitions of state charts within rules. This
defines how long the monitor waits for the continuation of a scenario. If the expected
future is not confirmed within a given time frame, tracing of the scenario is canceled and
an error is reported.

5 Conclusions and Future Work

Our work is related to the large body of work done in forward engineering and analyzing
protocols. Using a formalism based on channels, filters and rules, augmented with state
charts and regular expressions, we are able to specify, monitor and test even very complex
scenarios in distributed systems. Our layered approach ensures that specification can al-
ways be performed at the right level of abstraction. We have developed both a textual and
visual notation for our language and extensively use code generation techniques to gen-
erate analyzers for different technology platforms. Currently, we are using our approach
for testing AJAX based web applications and automotive systems [MH07] in order to gain
more real-world experience. In future work, we will apply machine learning techniques
for the automated extraction of CFR models from communication data and we are working
on giving CFR a stronger formal basis by mapping CFR models to finite state processes.

References

[HB05] Dominikus Herzberg and Manfred Broy. Modeling layered distributed communication
systems. Formal Aspects of Computing, 28(4):751-763, May 2005.

[MH07] Ansgar Meroth and Dominikus Herzberg. An Open Approach to Protocol Analysis and
Simulation for Automotive Applications. In Embedded World Conference, 2007.

430


