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Abstract: Model-Driven Web Engineering (MDWE) methodologies enhance productivity and offer a
high level view on software artifacts. Coming from classical software development processes, many
existing approaches rather enforce a top-down structure instead of supporting a cyclic approach
that integrates smoother with modern agile development. State-of-the-art MDWE should integrate
established and emerging Web development features, such as (near real-time) collaborative modeling
and shared editing on the generated code. The challenge when covering these requirements lies
with synchronizing source code and models, an essential need to cope with regular changes in the
software architecture and provide the Ćexibility needed for agile MDWE. In this paper, we present an
approach that enables cyclic, collaborative development of Web applications by using traceability
in model-to-text transformations to deal with the synchronization. We adopt a trace-based solution
for collaborative live coding in order to merge manual code changes into Web application models
and ensure that the open-source code repositories reĆect both model and manual code reĄnements.
Our evaluation shows a reliable code to model synchronization and investigates the usability in
collaborative software development settings. With our approach we contribute to integrating agile
development practices into MDWE.

Keywords: Model-Driven Web Engineering; Traceability; Model to Text Transformations; Collabo-
rative Live Coding

1 Introduction

Mostly adopted in classical software development models, past MDWE research does not
cope with the paradigm shift towards agile development [MR03], inclusion of end-users
and various stakeholders into the development process and the increased communication
and collaboration in (remote) teams on the Web. To adapt to this new intensive information
exchange setting, a MDWE approach has to support development cycles with rapid changes
in the architecture and code being simultaneously edited, all in a multi-user collaborative and
Near Real-Time (NRT) scenario. Hence, traditional methods that enable the synchronization
between model and code need to be adapted to the collaborative setting. Furthermore, they
need to cope with powerful, collaborative frontend technologies and paradigms beyond
simple website and client-server models.

In this paper, we present a cyclic MDWE development process in which model updates
are synchronized with source code reĄnements. The authoring of models and code is
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performed collaboratively in NRT on the Web, bringing together teams composed of various
stakeholders. We apply related work on traceability [OO07] and synchronization [HLR08]
from the model-driven engineering domain to formalize an agile collaborative MDWE
method for the Web. In order to adapt the synchronization techniques to the NRT collaboration
setting, we developed a trace model that provides linking information between model
elements and source code artifacts. We apply this concept using a prototype that integrates
a live collaborative code editor into an existing MDWE framework. All source code and
traces are stored in a source code repository using the Git protocol.

In the following, we start with introducing the background and related work our paper is
based on in Section 2, before Section 3 introduces our MDWE process. Section 4 presents
the formalization of our traceability-based synchronization approach. Section 5 describes
the integration of our proof-of-concept prototype into the CAE [La17], a Web-based MDWE
framework. In Section 6, we describe and interpret the results of our user evaluation. Finally,
Section 7 concludes this paper and provides an outlook on future work.

2 Background and Related Work

In the scope of MDWE, Model to Text (M2T) transformations are a special form of Model

to Model (M2M) approaches, in which the target model consists of textual artifacts [Mv06],
in this case the source code of the generated Web application. The target model is generated
based on transformation rules, deĄned with respect to a modelsŠ metamodel [Me02].
Template-based approaches are (together with visitor-based approaches) the most prominent
solution for M2T transformations [CH06]. Here, text fragments consisting of static and
dynamic sections are used for code generation. While dynamic sections are replaced
by code depending on the parsed model, static sections represent code fragments not
being altered by the content of the parsed model [ORK14]. An important aspect of M2T
transformations is Model Synchronization. It deals with the problem that upon regeneration,
changes to the source model have to be integrated into the already generated (and possibly
manually modiĄed) source code. To achieve this, traces are used to identify manual source
code changes during a M2T (re)transformation. In MDWE, managing traceability has
evolved to one of the key challenges [ALC08]. Another challenge is the decision on the
appropriate granularity of traces, as the more detailed the links are, the more error-prone they
become [Go12, Va14]. In addition to model synchronization, Round-Trip Engineering (RTE)
also considers changes in the source code which are propagated back into the model. Among
others, formal deĄnitions of model synchronization and RTE for M2M transformations have
been proposed in [GW06] and [HLR08].

OOHDM was one of the Ąrst approaches towards the changing requirements in the
development of Web applications in comparison to traditional applications [SR98]. It
focuses on the hypertext structure of Web applications, as traditional software engineering
concepts do not offer appropriate abstractions for those structures. Following the separation

of concerns approach, OOHDM divides the development process into four tasks, i.e. the
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conceptual design, the navigation design, the abstract interface design and the implementation.
In UML-based Web Engineering (UWE), the modeling of Web applications integrates the
separation of concerns by separately modeling content, navigation, business processes and
presentation [KKK07]. While stereotypes are used to deĄne speciĄc semantics of model
elements, e.g. ŞnavigationLinkŤ for direct links, the Object Constraint Language (OCL) is
used to deĄne additional static semantics and constraints for a model element such as class
invariants. MagicUWE is a plugin for the commercial CASE tool MagicDraw that supports
the UWE notation [BK09]. Another prominent modeling language is WebML, in which Web
applications are deĄned by high-level and platform-independent speciĄcations [CFB00].
While a structural model describes the site content, a hypertext model is responsible for the
composition of contents and the navigation between pages. In a presentation model, the
layout and graphical representation of a page is deĄned independently of the displaying
device and the language used for the visual representation. In addition, a personalization
model is used to store user speciĄc content [CFB00]. In 2013, an extension of WebML
lead to the speciĄcation of the Interaction Flow Modeling Language (IFML), a language
that was adopted as a standard by the Object Management Group (OMG). While especially
UWE and WebML are the most prominent examples of recent developments in the domain
of MDWE research, none of them are based on a (formalized) RTE approach that allows for
an agile use of these approaches.

Medini QVT, developed by IKV++, is a commercial tool that implements the declarative part
of the QVT speciĄcation, i.e. the QVT Relations. Thus, it supports incremental bidirectional
M2M transformations and the generation of trace models during the transformation process.
UML Lab, developed by Yatta, is a commercial modeling suite which is integrated into the
Eclipse platform. It provides a graphical UML modeling editor and template-based M2T
transformations, supporting reverse engineering and RTE. However, NRT collaboration
facilities are not provided. Finally, MOFScript is a M2T transformation tool developed as
an Eclipse plugin. As the MOFScript language does not depend on any actual metamodel, it
can be used for code generation of arbitrary metamodels and their instances. In addition, it
supports the generation of traces as well as the synchronization between models and source
code. However, it does not provide any RTE facilities. Besides, the tool does neither offer
NRT collaborative modeling nor coding functionalities. To our knowledge, there currently
exists no agile NRT MDWE framework, that allows for a cyclic, collaborative development
process with modeling phases followed by (live) coding phases and vice-versa.

3 Agile Collaborative MDWE

Our approach introduces an agile life-cycle for MDWE. From a general perspective on
the modeling-coding cycle, changes in the architecture (i.e. changes happening in NRT
as a team work result of multiple stakeholders with and without technical knowledge)
are performed in the collaborative modeling phase. Detailed behavior is reĄned in the
collaborative coding phase, using the automatically generated code from the model artifacts.
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The cycle is achieved by synchronizing collaborative modeling phases and live source code
editing. At any point in time, stakeholders can switch between one of the two phases. All
changes of the model are immediately reĆected in the generated source code. Changes to
the source code are taken into account upon model-to-code regeneration, integrating them
accordingly into the regenerated source code. Both modeling and coding is done on the
Web in a NRT collaborative manner, meaning that changes in model and source code are
directly visible to all stakeholders at all time.

Although our approach can be used for arbitrary MDWE frameworks and Web applications,
in the scope of this work we consider Web applications composed of HTML5 and JavaScript
frontends and RESTful microservice backends. Since especially frontend architectures can
be highly unstructured, we propose to unify the architecture of applications developed
with our approach through the usage of protected segments, that enforce a certain base
architecture, facilitating both future service and frontend orchestration, maintenance and
training efforts for new developers. Protected segments in the source code describe a
functionality that is reĆected by a modeling element. In order to encourage the reuse of
software components, we allow changes which modify the architecture only in modeling
phases. Since our approach offers a cyclic development process, this can be done instantly by
switching to modeling, changing the corresponding element and returning to a new coding
phase. To further enforce this methodology, before source code changes are persisted, a
model violation detection is performed. This informs the user about source code violating
its corresponding model, e.g. architecture elements manually added to the source code
instead of being modeled. Concerning the synchronization between the code and the model,
our collaborative MDWE process uses a trace-based approach. Changes in the code produce
traces, which are used in the model-to-code (re)generation in order to keep the corresponding
code synchronized to the model elements. This way, the process can be reĆected without
the need to implement a full RTE approach.

4 Model Synchronization Strategy

Although the conceptual idea of our model synchronization strategy can be applied to
arbitrary Web application metamodels, for a better understanding we give simple examples of
the appliance of our concept to the metamodel we use in our implementation at certain points
in this section. Therefore, in Fig. 1 we illustrate an excerpt of our Frontend Component

metamodel. It contains the three elements HTML Element, Event and Function, their
attributes and their connections between each other.

Our general concept of model synchronization is depicted in Fig. 2. It is divided into
two separate synchronizations: a synchronization between the source code and its trace
model and a second synchronization between the source model and the source code. In the
following, we explain our synchronization concept by using a simple formalization. We
denote the source models by Si , source code models by Ti and trace models by tri . The
source- and source code-metamodels are denoted by MS and MT . We use the deĄnition of
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Fig. 1: Example model

synchronization expressed in [HLR08] as follows: two models A and B with corresponding
metamodels MA and MB are synchronized, if

trans(A) = strip(B, trans) (1)

holds for the transformation trans : MA → MB and a function strip : M × (MA → MB) →

M that reduces a model of M with either M = MA or M = MB to only its elements relevant
for the transformation. This deĄnition uses the trans and strip functions [HLR08]. Intuitively,
the trans function expresses that applying a transformation to the source model yields the
target model. The function strip is used to remove any additional elements and map models
to only the relevant source/target model. As an example, consider the height attribute of an
HTML img tag. As it can be seen in Fig. 1, the HTML Element of our metamodel does not
contain a height attribute, so this manually added attribute would not be part of the stripped
model according to our transformation.

4.1 Synchronization of Source Code and Trace Model

Based on a Ąrst model S1, an initial generation of the source code T1 and its trace model
tr1 is performed. As depicted in Fig. 2, the trace model tri is updated, once the source
code changes. ∆T2i−1 are applied to the source code T2i−1 in the i-th code reĄnement
phase. Formally, a single source code change can be denoted by one of the two functions
δ+
MT

: MT × C × N → MT and δ−
MT

: MT × C × N → MT . While the former inserts a
character c ∈ C at position n ∈ N, the latter deletes a character c from position n in the
source code. Then, the result of applying the source code changes ∆T2i−1 on T2i−1 is deĄned
by:

T2i−1∆T2i−1 := δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk) =: T2i (2)

for nk, ∈ N, ck ∈ C and k ∈ N.
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Fig. 2: Model synchronization

Considering Eq. 1, the condition trans(T2i) = strip(tri, trans) must hold for the synchroni-
zation between the updated source code T2i and trace model tri:

trans(T2i) = strip(tri, trans) (3)

⇐⇒ trans(T2i−1∆T2i−1) = strip(tri, trans) (4)

⇐⇒ trans(δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk))

= strip(tri, trans)
(5)

For the synchronization between source code and trace model, we only need to update the
lengths of the segments of the trace model. Therefore, we assume strip(tri, trans) = len(tri),

204 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma



where len(tri) is a tuple containing the segmentsŠ lengths. This leads to the following
equation that must hold after the source code was updated:

trans(δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk)) = len(tri) (6)

To satisfy this condition, each source code change needs to update the length of the segment
that is affected by the deletion or insertion. Therefore, each δ±

MT
is transformed to an update

of the trace model tri:

δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk) →

δ±len(δ
±
len(· · · δ

±
len(len(tri), n1) · · · , nk−1), nk)

(7)

with δ+len((l1, · · · , lm), n) := (l1, · · · , lj + 1, · · · , lenm) (8)

δ−len((l1, · · · , lm), n) := (l1, · · · , lj − 1, · · · , lenm) (9)

where li ∈ N for i,m ∈ N, 1 ≤ i ≤ m is the length of the i-th segment and lj, j ∈ N for
1 ≤ j ≤ m is the length of the segment that is affected by an insertion or deletion in the
source code at position n.

4.2 Synchronization of Model and Source Code

In the model synchronization process, the last synchronized model Si , the updated model
Si+1, the current trace model and the last synchronized source code T2i are involved. By
using the trace model of Si , the applied model changes ∆Si can be merged into the last
synchronized source code T2i without overwriting already implemented code reĄnements.
As a result of the model synchronization, the updated source code T2i+1 and its trace model
are obtained.

In general, model changes can be deĄned as functions of the form δ : MS → MS . More
speciĄcally, the model changes can be denoted by the following Ąve functions, adapted
from [HLR08]: δ+t , δ−t : creating/deleting element of type t; δ+

e,s1,s2, δ−
e,s1,s2: adding/deleting

edge from element s1 to s2; and δattr
a,s1,v: setting attribute a of element s1 to value v. As such,

applying ∆Si to Si can be deĄned as a sequence of these changes:

Si∆Si := δ1 ◦ · · · ◦ δn(Si) =: Si+1 (10)

According to Eq. 1, the following equation must hold for the synchronization between model
and source code:

trans(Si+1) = strip(T2i+1, trans) (11)

⇐⇒ trans(Si∆Si) = strip(T2i+1, trans) (12)

⇐⇒ trans(δ1 ◦ · · · ◦ δn(Si)) = strip(T2i+1, trans) (13)
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Furthermore, as all parts of the source code that directly correspond to model elements
are contained in protected segments, we assume strip(T2i+1, trans) = prot(T2i+1), where
prot(T2i+1) represents the source code that is reduced to the content of its protected segments.
Finally, this leads to the following equation that must hold after the synchronization process:

trans(δ1 ◦ · · · ◦ δn(Si)) = prot(T2i+1) (14)

To satisfy this equation, each individual model change δi, i ∈ N, 1 ≤ i ≤ n is transformed to
its corresponding source code changes. Next, we Ąrst introduce formulas that are needed for
the later transformations.
Attribute value: the value of the attribute labeled name of a model element elm is denoted
by attrname(elm) := (c1, · · · , ck) with ci ∈ C for i, k ∈ N, 1 ≤ i ≤ k.
Position and length of an element: the position of the Ąrst character of a model element
elm within a Ąle is deĄned by posseg(elm). The length of elm is deĄned by lenseg(elm).
Position and length of an attribute: the position of the Ąrst character of an attribute
a of a model element elm is deĄned by posattr (a, elm). The length of a is deĄned by
lenattr (a, elm).
Template: a template for an element elm of type t is denoted by

tempt (attrname1 (elm), · · · , attrnamen (elm)) := (c1, · · · , ck)

with ci ∈ C for k, i ∈ N, 1 ≤ i ≤ k. The attributes are used for the instantiation of the
variables occurring in the template. We further deĄne two functions that ease the formulas
for deleting and inserting multiple characters:

δ∗+(T, (c1, · · · , ck), n) := δ+MT
(· · · δ+MT (T, ck, n + k) · · · , c1, n) (15)

δ∗−(T, n, k) := δ−MT
(· · · δ−MT

(T, cn+k, n + k) · · · , cn, n) (16)

While the former inserts a tuple of characters starting from position n into a Ąle, the later
deletes the characters cn, ..., cn+k at the positions n, ..., n + k from a Ąle.

As the transformation of model to source code changes is highly dependent on the type of
the updated model elements, the concept for synchronization is shown exemplary for Events

of the example model described in Fig 1. A valid Event element has two edges e and e′

that connect it to an HTML Element h and to a Function element f , respectively. Then, a
newly created Event element is transformed to source code changes by

δ+t (Si) → δ
∗+(T2i, tevent, posevents) (17)

where posevents references the position in the source code that contains all events and tevent
is the following template:

tevent := tempt (attrŚnameŚ(event), attrŚcauseŚ(event), attrŚnameŚ( f ), attrŚidŚ(h)) (18)

Thereby, a new source code artifact representing the Event element is inserted into the
source code. The deletion of an Event element is transformed as follows:

δ−t (Si) → δ
∗−(T2i, posseg(event), lenseg(event)) (19)
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The code artifact of the deleted Event element is removed from the source code. Finally a
value of an attribute a is transformed to source code changes:

δattra,event,v(Si) → δ
∗+(δ∗−(T2i, posattr (a, event), lenattr (a, event)), v, posattr (a, event))

(20)

Thus, the old value of the attribute is Ąrst deleted from the source code and its new value is
inserted at the same position. As we are only considering valid models and according to our
model, an Event element needs two edges, we can assume that for each deletion of an edge
there is also an insertion of a new edge. Therefore, we only transform edge updates. Since
an Event element has two edges, we need to differentiate:

1. If the current HTML Element h connected to an Event is changed to another HTML
Element h′, the transformation from model to source code is:

δ+
e,event,h′

(δ−
e,event,h

(Si)) → δ
∗+(δ∗−(T2i, posattr (ŚidŚ, h), lenattr (ŚidŚ, h)),

attrŚidŚ(h
′), posattr (ŚidŚ, h))

2. If the current Function element f of an Event is changed to another Function element
f ′, the source code is modiĄed according to:

δ+
e,event, f ′

(δ−
e,event, f

(Si)) → δ
∗+(δ∗−(T2i, posattr (ŚnameŚ, f ), lenattr (ŚnameŚ, f )),

attrŚnameŚ( f ′), posattr (ŚnameŚ, f ))

5 Realization

We integrated our model synchronization strategy into a Web-based collaborative modeling
environment called Community Application Editor (CAE) [La16]. CAE uses a template-
based MDWE approach to support NRT collaboration between developers and other
involved stakeholders. In the scope of this paperŠs contribution, we extended the frontend
with a Live Code Editor widget based on the ACE editor2, which realizes the collaborative
NRT editing of (generated) source code directly in the browser. The NRT collaboration and
shared editing features are realized using the Yjs [Ni16] framework. Available as an open
source Javascript library, Yjs enables shared editing for arbitrary data types and formats
(e.g. lists, maps, objects, text, JSON) on the Web. It uses protocols such as WebRTC and
WebSockets for message propagation in NRT. Integrated with the live code editor widget,
our framework only needs to manage the Yjs Collaboration Spaces (similar to a chat room,
with all involved users being able to collaborate on one application model and code). We
integrated the model synchronization and trace generation functionality into the Java-based
backend of the CAE and extended it with means to manage local Git repositories used by
the live code editor widget to update the source code.

2 https://ace.c9.io
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Trace Generation and Model Synchronization The template engine, implemen-
ted in the backend of the CAE, forms the main component for trace generation and model
synchronization. It is used for both the initial code generation, as well as for further model
synchronization processes. Except for some special cases, like renaming or deleting Ąles,
applying the strategy design pattern allows us to use the same methods for both the initial
code generation and model synchronization.

Fig. 3: Trace model

Fig. 3 depicts our trace model, adapted from the metamodel of traces presented in [OO07].
For each FileTraceModel, and thus for each Ąle, we instantiate a template engine class,
which can hold several template objects. A template object is a composition of Segments,
generated by parsing a template Ąle. A template Ąle contains the basic structure of an
element of the Web applicationŠs metamodel. In such a Ąle, variables are deĄned to be used
as placeholders, which are later replaced with their Ąnal values from the model. Additionally,
the template Ąle contains information about which part of the generated source code is
protected or unprotected. Based on the template syntax for variables and unprotected parts,
a template Ąle is parsed and transformed into a composition of segments of the trace
model. For each variable a protected segment is added, and for each unprotected part, an
unprotected segment is added to the composition. The parts of a template Ąle that are neither
variables nor unprotected parts are also added to the composition as protected segments.
According to the deĄnition of model synchronization for M2T transformations, Eq. 1 must
hold for the model synchronization. Thus, we need to update the content of each variable
for all templates of all model elements. However, maintaining a trace and a model element

208 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma



reference for all of these variables is not feasible due to the large size of such a Ąle trace
model. Instead, traces are only explicitly maintained for the composition of segments of a
template. Linking a segment of a variable to its model element is done implicitly by using
the elementŠs id as a preĄx for its segment id. When templates are appended to a variable,
the type of its linked segment is changed to a composition.

Following the strategy design pattern, we implemented an Initial Generation Strategy and a
Synchronization Strategy, which are used by our template engine. Each synchronization
strategy instance holds a reference to the Ąle trace model of the last synchronized source
code to detect new model elements as well as to Ąnd source code artifacts of updated model
elements. As in some cases source code artifacts of model elements can be located in
different Ąles, a synchronization strategy can also hold multiple Ąle trace models in order
to Ąnd code artifacts across Ąles. After a template engine and its template strategy were
properly initiated, the template engine is passed as an argument to the code generators.
These create template instances for the model elements based on the template engine. The
engine checks if a segment of the model element is contained in the trace models Ąle
by recursively traversing its segments. If a corresponding segment for the model element
was found, a template reusing this segment is returned. Otherwise, a new composition
of segments, obtained by parsing the template Ąle of the model element, is used for the
returned template. For new model elements, new source code artifacts are generated. For
updated elements, their corresponding artifacts are reused and updated. As templates can
contain other templates in their variables, these nested templates need to be synchronized as
well. In the generated Ąnal Ąles, source code artifacts of model elements that were deleted in
the updated model must be removed from the source code. Therefore, the nested templates,
more speciĄcally their segment compositions, are replaced with special segments by the
synchronization strategy. By following the proxy design pattern, these special segments are
used as proxies for the original compositions and ensure that templates of deleted model
elements are removed from the Ąnal source code.

To ensure that source code artifacts that directly correspond to a model element are not
manually added by users (and thus hold no corresponding modeling element, making the
model an inaccurate representation of the source code), we implemented a model violation
detection. For each detected violation a feedback note containing the position of the violation,
as well as a message describing it, is provided to the user. Model violations are deĄned
in terms of violation rules. A violation rule consists of a model element type, a regular
expression that is used to Ąnd the violation, a group number that can be used to reference a
speciĄc group of the regular expression and a message that describes the violation.

Live Code Editor The live code editor allows multiple users to collaboratively work on
the same Ąle at the same time. As it can be seen in Fig. 4, the live code editor widget is
divided into three parts. On the left side of the widget, a list of currently active users as
well as a Ąle list is displayed. The actual editor is located in the center of the code editor
widget. The cursors of remote users are displayed in different colors to all users participating
in this live coding phase. For highlighting protected segments in the viewport of the Ace
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Fig. 4: Screenshot of the live code editor widget

editor, we use a gray background color. The depicted screenshot shows the development
of a frontend component. Here, a tree containing the widgetŠs HTML elements is shown
on the right side of the editor. The synchronization of the Ąle content among all users, the
synchronization between the source code and its traces and the concept of (un)protected
segments are integrated into the code editor. While the content of an unprotected segment
can be edited, a protected segment is immutable. In order to synchronize the Ąle content
among all users, each unprotected segment is individually synchronized on the frontend,
using the previously mentioned Yjs library. As protected segments are not editable, they
are not synchronized. Because every unprotected segment is synchronized individually, the
length of each segment is also synchronized. Thereby, the transformation of source code
changes to updates of the trace model deĄned in Eq. 7 is implicitly performed for all users.
Thus, the trace model and source code are implicitly synchronized for all users. The concept
of (un)protected segments is implemented by replacing the default command handler of the
Ace editor with a CommandDecorator component. This decorator handles code changes
of the local user and is called before the command is actually executed by the Ace editor
and the corresponding Yjs instance of the edited segment is updated. Based on the type of
command, it is decided which actual decorator will be executed. We distinguish between
navigation, deletion, insertion and other allowed operations. In order to decide to which
segment a source code change belongs, a reference to the current active segment is updated
in a navigation decorator, every time the local userŠs text cursor changes. Based on the active
segment, it is decided if a source code change is allowed or forbidden, i.e. the operation is
performed in an unprotected or protected segment. A deletion operation is performed if the
current active segment is not protected and the dimension of the selected text that should be
deleted is not out of the bounds of the active segment. Similar checks are performed for
insertion operations. The last group of operations consists of commands that do not change
the source code and that can be executed without side effects towards the trace model.

On the backend, we extended the CAEŠs REST API with means for maintaining local Git
repositories. When a request for storing a Ąle is received, its content and its Ąle traces are
stored and committed to a local repository. Before that, a check is performed to determine
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if storing the Ąle is allowed. To prevent conĆicts with Ąles that are artifacts of an earlier
model synchronization process, the id of the trace model that is updated in each model
synchronization process is also included in each Ąle trace model. Thus, each Ąle is assigned
to the id of the model synchronization process in which it was created. Even if our frontend
is designed to reload Ąles after a model synchronization process, this protection mechanism
additionally ensures that the synchronization between Ąles and their models does not
accidentally break. As the content and traces of updated Ąles are (Ąrst) only stored in local
repositories, the GitHub proxy service provides means to push locally committed changes to
a remote repository. Possible conĆicts with the remote repository are automatically resolved
by using the Git Theirs merging strategy. This strategy ensures that in case of merging
conĆicts, changes of the branch that is merged are used for resolving the conĆicts.

6 Evaluation

We performed a usability study with student developers to assess how our collaborative
MDWE method is received in practice. We carried out eight user evaluation sessions, each
consisting of two participants. After receiving a short introduction into the CAE and Ąlling
out a pre-survey to asses their experiences in Web development, the participants were
seated in the same room and asked to extend an existing application, which consisted of two
frontend components and two corresponding microservices. Each evaluation session took
about half an hour of development time. At the end of each session, we let the participants
Ąll out a Ąve Likert scale questionnaire containing questions about their Web development
experience and gathered their feedback regarding the cyclic development process and the
live code editor.

Results and Observations. As expected, the (pre-survey) rating of the familiarity with Web
technologies (4.00) and RESTful Web services (4.07) was rather high. However, only a
minority of our participants were familiar with MDWE (2.67) or had used collaborative
coding for creating Web applications before (2.40). Fig. 5 shows the main results regarding
our development paradigm. As it can be observed, the participants rated connections between
our two collaborative phases, namely the access to the code editor from the model (4.67)
and the reverse process with the synchronization enabled (4.40) very high. The same also
holds for the awareness introduced into the live code editor, as the participants could easily
see where other developers were working (4.33). They were able to successfully collaborate
on a shared part of the application by using the live code editor (4.47). These two rather high
ratings show that the developed live code editor fulĄlls the requirements for live collaborative
code editing of model-based applications. Compared to the other ratings, the general idea of
a collaborative code editor for development and the need for collaboration during the code
reĄnements phase were rated lower (both 3.47). One explanation for this is that developers
are familiar with using version control systems and therefore do not see a high demand for a
live collaborative code editor when working together with other developers. Even though
the chosen application was, due to the time constraints of a live evaluation setting, quite
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Fig. 5: Results of the user evaluation

simple, the evaluation participants mostly saw cyclic development in general as relevant
(4.13) and also rated the beneĄts of a cyclic MDWE process high (4.00). Moreover, all
participants could identify the advantages of code and model synchronization (4.33). All in
all, the perception of participants towards our approach was very positive and we consider it
as a successful step towards evaluating our prototype using a more complex application in a
real-world development scenario.

In order to evaluate the inĆuence of trace generation on performance and space requirements
over time, we measured the code generation time during the complete evaluation and
analyzed one frontend component Git repository of the Ąnal resulting application. Here, we
consider that even though it is isolated, due to our template-based approach, this case gives a
good approximation about the behavior of our prototype in various scenarios. Since we used
one repository for performing all sessions, we were able to consider data from 490 commits.
The exemplary frontend component had a Ąnal total size of 634 KB, which contained 9
KB of generated and reĄned code. The static JavaScript libraries, images and other Ąles
added up to 173 KB. The Ąnal trace information occupied 42 KB. This leaves 410 KB of
Git history, of which the trace history occupied 338 KB. All in all, the trace information,
even though it occupies considerably more space than the code output, does not negatively
impact the space requirements in a usual Web development setting. Especially, since it only
scales with source code changes, which usually donŠt make up the larger part of an Web
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application in comparison to media assets and data. Moreover, the time to store, commit,
push and retrieve code with trace information Ű considering our evaluation scenario data and
participantŠs subjective opinion Ű does not introduce observable delays in the development
process.

7 Conclusions and Future Work

This paper presents a concept for synchronizing models and source code, in the context of
an agile MDWE scenario on the Web. A trace model providing linking information between
model elements and source code artifacts, as well as a prototype of a live collaborative
code editor that supports our concept of traceability and model synchronization have been
developed and integrated into an existing MDWE approach. The evaluation of our prototype
showed that our method is relevant and a valuable enhancement for introducing agile
development practices into MDWE.

As future work, we plan to extend our evaluation on larger scale projects, to gain deeper
insights on the effects of using our agile MDWE method. Since the developed prototype is
integrated into a larger framework with which we want to integrate complete professional
communities into the development process, we want to further investigate the impact which
the interplay between live coding, live preview of Web application changes and collaborative
modeling has on the communication between end-users and developers.
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