Towards the Interchange of Configurable EPCs: An
XML-based Approach for Reference Model Configuration

Jan Mendlingl, Jan Recker?, Michael Rosemann?2, Wil van der Aalst?
1Vienna University of Economics and Business Administration
jan.mendling@wu-wien.ac.at
2Queensland University of Technology
{j .recker,m.rosemann}equt .edu.au

3Eindhoven University of Technology
w.m.p.v.d.aalstetm.tue.nl

Abstract: Recent research has led to proposals for the model-driven configuration
of Enterprise Systems (ES) by the help of configurable reference models. While the
proposed Configurable EPCs (C-EPCs) provide adequate conceptual support towards
reference model configuration, the issue of translating the configured models towards
executable process specifications has not been approached yet. A first step in this di-
rection is the definition of a machine-readable format for C-EPCs that can be used
as an interchange format and as an input format for transformations. This paper pro-
poses a C-EPC representation in XML based on the EPC Markup Language (EPML)
format. We take the formal C-EPC syntax definition as a starting point to define the re-
quirements for a respective extension to EPML and introduce a C-EPC representation
in EPML. Furthermore, we introduce the C-EPC Validator, a program that generates
validity reports for C-EPCs represented in EPML. The C-EPC Validator can be used
to validate both configurable and configured C-EPCs. Finally, we highlight future
application areas of the C-EPC schema.

1 Introduction

Enterprise Systems (ES) support and enhance organizations in their business operations if,
and only if, they are well-configured as to the specific organizational requirements. This
configuration process is not only time- and resource-consuming but moreover proven to
result in severe business failure if conducted badly [Da98]. This notion of misalignment
is predominantly visible in the process dimension, i.e. the (mis-) alignment of IT func-
tionality to the actual business processes of an organization [LLO93]. In many cases, it is
observed that the system hampers the normal way of handling processes instead of sup-
porting it. This is surprising given the fact that business process orientation as a concept
has been a major topic in both academia and practice at least since the 1990’s [HC93].

The popularity of business process management is steadily rising, in general terms, lead-
ing to a proliferation of various process modeling approaches. This heterogeneity of pro-
prietary process modeling schemas and formats has been the major motivation for the

definition of EPML (EPC Markup Language) [MNO4, MNO5] in order to facilitate the
communication and interchange between various business process modeling tools. In this
paper, we will foremost consider Event-Driven Process Chains (EPC) [KNS92] due to
their wide-spread use for reference modeling in the context of Enterprise Systems (cf. e.g.
SAP and its reference model that is defined using EPCs [CKL97]).

The fact that most Enterprise Systems are extensively depicted in their reference models
motivates the idea of utilizing such reference models for the task of systems configuration
to allow for a more intuitive, model-driven approach. We have been developing a reference
modeling approach that considers the configurable nature of an Enterprise System. The
representation language of this approach is called a Configurable EPC (C-EPC). While
previous research focused on the theoretical development of the meta model and the no-
tation of C-EPCs [RvdAO5], this paper explores the technical stage of ES configuration
by outlining an approach how to represent C-EPC configuration in a machine-readable
XML syntax. Such a schema may serve as a starting point for transformations towards ex-
ecutable process specifications, forming the basis for systems workflow implementations.

To be more concise, the aim of our paper is the specification of C-EPCs in an XML
schema that builds on the established EPML format. Such EPML representation of C-
EPCs is required in order to support various scenarios of reference model configuration
including (a) the XML schema-based evaluation of the validity of configurations, (b) the
implementation of an EPML tool for the automatic translation of C-EPCs to regular EPCs,
(c) the transformation of C-EPCs to other process specifications, and (d) the facilitation of
modeling C-EPCs in existing tools such as ARIS Toolset or EPC Tools.

Addressing this research objective, the remainder of our paper is structured as follows. In
Section 2 we present the conceptual background of our research by briefly outlining the
basic notions of C-EPCs and EPML. Section 3 discusses the formal specification of the
C-EPC syntax as an extension to the EPML schema. We then report on the evaluation
of C-EPCs as to the validation of lawful configurations. In this context, we introduce a
validation program called C-EPC Validator. After discussing related research efforts in
Section 4 we conclude the paper in Section 5 and give an outlook on future research.

2 Configurable EPCs and EPML
2.1 On the Notion of C-EPCs

Application reference models are frequently used by Enterprise System vendors to high-
light and explain the functionality of their software packages. However, such reference
models are rarely deployed in the process of configuring Enterprise Systems, which is
surprising given that the main objective of reference models is to streamline the design
of particular models. Yet, the transformation (better: configuration) of reference models
to individual models is so far at best scarcely supported through the underlying reference
model languages. The lack of language expressiveness denotes a major issue for refer-
ence model users, as reference models fail to depict configuration alternatives and do not

provide adequate decision support towards the selection of configuration alternatives.

Addressing these issues, this section introduces Configurable EPCs (C-EPCs) as a rep-
resentation form for configurable reference models. In order to embody configuration-
related information in conceptual process models, the traditional EPC [KNS92] had to
be extended, leading to the definition of the C-EPC. Its notion has been introduced and
formalized in [RvdAOQ5], therefore we only discuss the basic notation here.

C-EPCs may be used to depict two statuses of a reference model: (a) as a model depicting
configuration alternatives (such as the one depicted in the left part of Figure 1), and (b) as
a model depicting configuration selections (right part of Figure 1).

configurable function
N
N\
A
N
S
N
S
\
\
A

requirement
\

normal function
/

7/
quideline /
\ /
\ /
\\ /
\ /
/ -
cuoELNE @4
/fD=ON Then E<ON

Figure 1: An example of a C-EPC (configurable and configured).

In a C-EPC functions and connectors can be configured. Notation-wise, these configurable
nodes are denoted by bold line. Configurable functions may be included (ON), excluded
(OFF), or conditionally skipped (OPT). To be more specific, for configurable functions,
a decision has to be made whether to perform this function in every process instance at
run-time, whether to exclude this function permanently, i.e. it will not be executed in
any process instance, or whether to defer this decision to run time, i.e. for each process
instance it has to be decided whether to execute the function or not. Configurable con-
nectors subsume possible build-time connector types that are less or equally expressive.
Hence, a configurable connector can only be configured to a connector type that restricts
its behavior. A configurable OR-connector may be mapped to a regular OR-, XOR-, or

10

Table 1: Constraints for the configuration of connectors

Conf. Connector Maps to OR Maps to XOR Mapsto AND Maps to SEQ,

OR X X X X
XOR X X
AND X

AND-connector. Or, the OR-connector may be mapped to a single sequence of events and
functions (indicated by SEQ),, for some process path starting with node n). A configurable
AND-connector may only be mapped to a regular AND-connector. A configurable XOR-
connector may be mapped to a regular XOR-connector or to a single sequence SEQ,,.
Table 1 illustrates the mapping constraints for configurable connectors.

In order to depict inter-dependencies between configurable EPC nodes, the concept of
configuration requirements has been introduced. Inter-related configuration nodes may be
constrained by such requirements. Consider the example given in the left part of Figure
1. If the configurable function A is excluded, the inter-related configurable OR-connector
must be mapped to an AND-connector. Such configuration requirements are best defined
via logical expressions in the form of If-Then-statements. Moreover, configuration guide-
lines provide input in terms of recommendations and proposed best practices (also in the
form of logical If-Then-expressions) in order to support the configuration process seman-
tically. Consider again the example given in the left part of Figure 1. A recommendation
could be that if function D is included, then so should be function E. Summarizing, re-
quirements and guidelines represent hard (must) respectively soft (should) constraints.

2.2 An Introduction to EPML

The specification of the EPC Markup Language (EPML) has been motivated by the het-
erogeneity of proprietary interchange formats of business process modeling tools [MNO04,
MNOS5]. It has been defined as a tool-neutral interchange format, following the design
principles readability, extensibility, tool orientation, and syntactical correctness. EPML
captures the essential concepts of EPCs. These include function and event type elements,
and, or, and xor join and split connectors, as well as decomposition via hierarchical func-
tions and process interfaces. The control flow is defined by arcs between these elements.
Beyond that, EPML introduces concepts that leverage the interchange between process
repositories. An EPML file can store multiple EPC models. These can be arranged in a
hierarchy of directories that allows for a logical grouping of models. So-called definitions
allow to define a logical model element that is used several times in a graphical model.

The elements of an EPC are grouped into an epc which is identified by a unique epcId.
Each EPC element is represented as a subelement of epc with the element name indi-
cating its EPC element type, i.e. functions are given as function elements, events as
event elements etc. Each EPC element is assigned a unique id of integer type and a

11

name. The arc elements define the control flow via their £1ow child element. Each arc
is pointing from the EPC element whose id is referenced in the source attribute to that
element referenced in the target attribute. All elements of an EPC may include graphi-
cal information about their layout, position, and size in the model. Additional information
can be annotated to process elements via attributes. Each attribute has to reference
an attribute type, which helps to identify attributes of the same kind. Furthermore, rela-
tionships between control flow elements and participant, dataField, as well as
application elements can be defined. Due to space restrictions we abstain from an
in-depth discussion of the EPML here. For details refer to [MNOS].

2.3 Requirements for a C-EPC Representation in EPML

A representation of C-EPCs in EPML demands a formal definition of the C-EPC as a basis
for specifying an interchange format. The definition of the C-EPC syntax is based on the
notion of classical EPCs as defined in [KNS92] and formally specified in [vdA99]. For
more information on formal descriptions of EPCs refer to [MNO5]. For the purpose of this
paper we stick to the C-EPC formalization given in [RvdA05].

Definition 1 (Configurable EPC) A Configurable EPC (C-EPC) is a ten-tuple defined
as (E,F,C,1,A, F¢,C¢ 0% R GY) such that:

— E,F,C,l, and A refer to standard EPC elements events, functions, connectors, a
mapping to define a label AND, OR, or XOR for each connector, and arcs [vdA99].

— FC¢ C F is the set of configurable functions.
— C¢ C C'is the set of configurable connectors.

- 0% C (FCuUCY) x (FC U CY) is a partial order over the configuration nodes
defining the suggested order in which these nodes are mapped to concrete values.

— RY is the set of configuration requirements.

— G is the set of configuration guidelines.

Both R® and G contain statements about binding configurable nodes to concrete values.
Consider the example of a requirement like “if c € C¢ = XOR then f € F¢ = ON”.
This represents a logical predicate about a configuration that must hold true. In contrast to
that, a guideline represents an advise that may or may not be fulfilled by a configuration.
Accordingly, the latter also represent predicates, but these do not necessarily hold true.
Nevertheless, a logic-based representation of guidelines provides for formal evaluation in
how far a configuration complies with industry best practices given in the guideline.

Concerning configurable connectors, we formalize the constraints given in Table 1 by a
partial order. This partial order <€ specifies which concrete connector type may be used
for a given configurable connector type.

12

Definition 2 (Partial Order) The partial order <% is defined on CT = {AND, OR,
XOR}IUICTS where CT is the set of connector types and the sequence operator is referred
toas CTS = {SEQu,|n € EUFUCH}.

According to Table 1 the partial order is defined as <= {(AND, AN D), (XOR, XOR),
(OR,0OR), (XOR,0R), (AND,OR)} U {(n,XOR)|n € CTS} U {(n,OR)In €
CTS}U{(n,n)ln € CTS}.

For example, XOR <® OR and SEQ,, < XOR imply that the second configurable
connector can be mapped to the first connector or a sequence, respectively.

Before specifying a configuration, we need to define the notation for sets of predecessor
and successor nodes.

Notation 1 (Predecessor and Successor Nodes) Let NV be a set of nodes and A C
N x N abinary relation over N defining the arcs. For each node n € N, we define the set
of predecessor nodes en = {x € N|(z,n) € A}, and the set of successor nodes ne =

{z € N|(n,z) € A}.

Then, a configuration maps all configurable nodes to concrete values.

Definition 3 (Configuration /) Let C-EPC = (E, F,C,1, A, F°,C% 0° R® G°)
be a C-EPC. The mapping [¢ € (F¢ — {ON,OFF,OPT})U (C® — CT) is called a
configuration of C-EPC if for each ¢ € C°:

- 19c) <% I(c).
— IfI%(c) € CTS and ¢ € Cj, then there exists an n € ec such that 9 (¢) = SEQ,,.

— IfI°(c) € CTS and ¢ € Cg, then there exists an n € ce such that [(c) = SEQ,,.

The function /¢ maps configurable functions onto concrete values. Configurable connec-
tors are mapped onto the set CI'. Clearly this mapping should be consistent with the
constraints depicted in Table 1 and the partial order <%, Moreover, if lc(c) = SEQ,,
then n should be in the pre-set (for a join connector, i.e. ¢ € C) or post-set (for a split
connector, i.e. ¢ € Cyg) of c.

The right part of Figure 1 shows an example for a configured C-EPC model where the con-
figurable OR-connector has been mapped to a regular AND-connector and where function
A and D have been excluded. What, however, hasn’t been ensured at that point is that the
configured C-EPC is depicted as a traditional lawful EPC. As outlined in [RRvdAMO5],
this translation process bears in itself semantic and syntactical complications, which result
in a need for tool support based on a rigorous formal specification. Hence, in the follow-
ing, we take the formal syntax of C-EPCs presented here as a starting point to specify
a schema for C-EPCs via an extension to EPML. This may then be used to validate the
syntactical correctness of both C-EPCs and configurations of C-EPCs, respectively.

13

3 Towards an EPML Schema for C-EPCs
3.1 The C-EPML Schema

Forthcoming from our preceding elaborations on the two statuses of C-EPCs (see Section
2.1), we must seek a specification that allows for a representation of C-EPCs both before
configuration, i.e. configurable C-EPCs, and after configuration, i.e. configured C-EPCs,
in accordance to the definitions specified in the previous section.

New EPML elements need to be defined. These elements have to capture the C-EPC
extensions to EPCs, i.e. configurable functions, configurable connectors, a partial order
of configuration nodes representing a suggested order of configuration, configuration re-
quirements, and configuration guidelines. We base our C-EPC extension of EPML on the
principle of EPML compatibility: on the one hand, standard EPC models represented in
EPML should still be valid against the C-EPC extended EPML schema. On the other hand,
EPML tools that are not aware of configuration aspects should still be able to process a
C-EPC as a standard EPC, simply by ignoring additional configuration information. This
implies that we do not introduce additional EPML elements for configurable functions
and connectors but instead define attribute elements to annotate epc, function, and
connector elements with configuration information in a structured manner. Also, we
need to distinguish between configurable and configured C-EPCs. We thus introduce fur-
ther configuration attributes annotated to configurable functions and connectors that
optionally capture the desired configuration values.

Configurable Functions: Configurable functions f € F ¢ are specified in EPML as
function elements having a respective configurableFunction child element.
Those functions not having this child element are standard EPC functions that cannot
be configured. In order to depict that the function has been configured, the configuration
value has to be given in a further nested configuration element and its value at-
tribute. This attribute is restricted to the values on, of £, and opt. The XML syntax is as
follows (question marks indicate that an element is optional):

<function id = ’'xs:integer’>
<configurableFunction> ?
<configuration value = ‘on|off|opt’/> ?
</configurableFunction>
</function>

Configurable Connectors: Configurable connectors ¢ € C¢ are specified as EPML
and, or, or xor elements having a respective configurableConnector child element.
Those connector elements not having this child element are standard EPC connectors that
cannot be configured. In order to depict that the connector has been configured, the con-
figuration value has to be given in a further nested configuration element and its
value attribute. According to Table 1, this attribute is restricted to the values and for

14

and connectors; seq, and, xor, and or for or connectors; and seq and xor for xor
connectors. The XML syntax is as follows, e.g. for an or connector:

<or id = ’'xs:integer’s>
<configurableConnectors> ?
<configuration value = ’seq|and|xor|or’
goto = ’‘xs:integer’ ? /> ?
</configurableFunction>
</or>

Note that for configurable connectors that may be mapped to a single sequence, a con-
ditional goto attribute is specified that serves as a pointer to a successor node of the
sequence that is selected. Using XML schema, it is not possible to check the correctness
of such sequence configuration. We will address this problem in Section 3.2.

Partial Order of Configuration Nodes: The order of configuration o € O is specified
using standard EPML relation elements. The type of a relation has to be specified
as a definition in the header of an EPML file. The partial order of configuration
must be defined with a defId set to ConfOrder. In an epc element the from and
to attributes of a relation define a “first from, then to” order relationship between the
referenced elements. The XML syntax is as follows:

<definition defId = ’'ConfOrder’/>

<relation id = ’'xs:integer’

from = 'epml:refFromId’
to = 'epml:refToId’' />

Note that this partial order merely specifies a suggested order of configuration, hence it de-
notes a predicate for configuration that may or may not hold true. Indeed, it is an optional
element that may be used to streamline and guide the process of model configuration.

Configuration Requirements: The configuration requirements r € R are represented
by child elements of the respective epc process container element. The 1dRefs attribute
holds a list of references to those elements that are related to the requirement. The require-
ment is composed of a 1 £ and a then part. Both contain xpath attributes holding XPath
statements (for further details on XPath refer to [CD99]). These statements are evaluated
either relative to the epc node or absolute against the EPML document. Using absolute
statements, constraints can be defined across several C-EPC models. If the i f part of the
requirement is true, the then part must be true, too. The XML syntax is as follows:

<configurationRequirement idRefs = ’‘list of xs:integer’s>
<if xpath = ’'xpath-statement’/>
<then xpath = ’'xpath-statement’/>
</configurationRequirement>

15

Configuration Guidelines: Configuration guidelines g € G ¢ are captured by the same
XML structure as requirements. Still, there is the semantic difference that requirements
must be met, and guidelines should be met. The XML syntax is as follows:

<configurationGuideline idRefs = ’‘list of xs:integer’s>
<if xpath = ’'xpath-statement’/>
<then xpath = ’‘xpath-statement’/>
</configurationGuideline>

As a summary of the EPML extension for C-EPCs, we pick up the example from Figure
1. Figure 2 gives the same C-EPC model with its EPML representation. The configurable
functions, configurable connectors and the configuration order are easy to identify. Note
that the 1d attributes hold arbitrary integer values. We will now briefly explain the XPath
statements of the configuration requirement. The if statement of the requirement iden-
tifies a function element. As defined above, a relative statement is evaluated in the
context of the current epc element. This means here that function elements of other
epc elements of the EPML file are not considered. The square brackets define a constraint
in XPath. Accordingly, the requirement defines that if a function with ¢d = 7 and config-
uration mapped to of £ is part of the EPC, then an OR connector with id = 9 and which
is configured to AND must exist in the model, too. The configuration guideline works
similarly.

configurable function
N

<epml>
N P
AN 1 -
N <definitions>

\, <definition defId='ConfOrder'/>
N, </defintions>

<epc epcId ='l' name='example'>
<configurationRequirement idRefs'7 9's>
<if xpath='function[@id='7"'][//@value='off']"'/>
<then xpath='or[@id='9'] [//@value="and']"'/>
</configurationRequirement>
<configurationGuideline idRefs'17 19'>
<if xpath='function[@id='17'] [//@value='on']"'/>
<then xpath='function[@id='19'] [//@value='on']"'/>
</configurationGuideline

requirement
\

\

\
\
\
REQUIREMENT 3
IfA = OFF ThenOR = AND \
N\,

<function id ='7' name='A'>
<configurableFunction>
<configuration value='off'/>
</configurableFunctions
</function>

<or id ='9'>

<configurableConnectors
<configuration value='and'/>

</configurableConnectors

</or>

<relation id ='12"'
defRef='confOrder'
from='7' to='9"'/>

y e
\ /)
\ I

\ </epml>

\ /- s
GUIDELINE 7
IfD=ON Then E=ON

Figure 2: An example of a C-EPC and parts of its EPML representation.

16

3.2 On the Automatic Validation of C-EPCs

Building on the EPML-based interchange format for C-EPCs, various tools can be de-
veloped for the support of reference model configuration. As a first step towards com-
prehensive tool support for C-EPCs, we have implemented an C-EPC validation program
called C-EPC Validator*. The C-EPC Validator dynamically evaluates the XPath state-
ments given in configuration requirements and guidelines to assess the validity of selected
model configurations. As XML schema languages do not support complex constraints as
defined by C-EPC’s configuration requirements and guidelines (for more information on
the limitations of XML schema languages in the context on EPCs refer to [MNO3]), we
chose an XSLT-based implementation. Furthermore, to allow for dynamic evaluation of

XPath statements we use EXSLT extensions.

The C-EPC Validator takes an EPML document as input and generates a report as an
HTML document. Basically, three kinds of properties are validated. First, the C-EPC Val-
idator checks the syntactical correctness of the C-EPC. This is partially redundant to the
validation that can be done using the EPML schema. Yet, on the schema level it is not
possible to check whether connectors are correctly configured to sequences. A configu-
ration value of seq requires the optional goto attribute to be included. Furthermore,
this attribute must point to a successor node of the connector. This constraint is specified
using XSLT. Second, the C-EPC Validator checks the compliance of the configured model
to the requirements. Conditions and implications are highlighted with green and red font
color to easily identify violations. As an example consider Figure 3. The left part shows
a possible configuration of the C-EPC presented in the left part of Figure 1. As can be
seen, the configuration requirement is violated as the configurable OR-connector has been
mapped to an XOR-connector although the configurable function A has been mapped to
off£. Third, the same mechanism as for requirements is used to validate the guidelines.
Violations are given in orange font color.

4 Related Work
4.1 Configurable Reference Models

Research on configurable reference models can be divided into requirements engineering
for the development of Enterprise Systems, e.g. [Br99], and requirements engineering for
the configuration of Enterprise Systems. The latter is the focus of this paper.

Related work on configurative reference modeling includes the perspectives-based config-
urative reference process modeling approach by Becker et al. [BDD104]. This approach
proposes several mechanisms for automatically transforming a reference model into an

4The C-EPC Validator and the EPML Schema that supports C-EPCs can be downloaded from http://wi.wu-
wien.ac.at/"mendling/EPML

SThe program can be run using XSLT processors that understand EXSLT extensions, e.g. the XALAN proces-
sor (see http://xml.apache.org/xalan-j). For EXSLT extensions to XSLT see http://www.exslt.org.

17

= | C-EPC Validator - Microsoft Internet Explorer

File Edit Wiew Favories ools Help
K] "“l 5 search Faw
= pl Tk

= @j [:\report.html
Google - v | [C] search ~ g2 |E

C-EPC Validator

Configuration Nodes

function A {id=51) off
ar {id=80) xor
function £ {id=54) on
function £ {id=55) off

Configuration Requirements
1. Requir ement involing the EPC elements:

function 4 {ig=51}
or (=80

Condition:

function[i@id="81][@Ewvalue="0fl] tiue

Implication:
orf@id="801\@Evalue="and] false

Configuration Guidelines

1. Guideline iivohving the EPC
function D {id=54)

function £ ({id=55)

Condition:
function[@id="54[@Ewalue="on] true
Implication:
function[@id="95"[F@wvalue="on

&) Done

Figure 3: A configured C-EPC, and the validation report of the C-EPC Validator.

individual model. While the work of Becker et al. focuses on generic adaptation mecha-
nisms, our research pursues a reference model-driven approach towards ES configuration
and moreover considers the technical stage of model translation as well. Soffer et al.’s
suggestions on ERP modeling [SGDO03] can also be regarded as close to our proposed
ideas. Following the concept of scenario-based requirements engineering, they evaluate
the Object-Process Modeling Methodology in order to determine a most appropriate ERP
system representation language. The so-called argumentation facet, related to the ability
of a modeling language to express optionality-related information, is one of their many
criteria. Their work does not comprehensively analyze requirements related to modeling
ERP configurability and focuses on technique evaluation rather than on the development
of a more appropriate technique. Brehm et al. discuss alternative ways of configuring En-
terprise Systems [BHMO1]. Their taxonomy for ERP configuration and customizing is
widely cited. However, they do not demonstrate how this work can be linked to reference
models of Enterprise Systems.

18

4.2 Business Process Modeling Interchange Formats

Various interchange formats and schemas have been proposed for business process mod-
eling. For an overview refer to [MNNO4]. Among the design criteria for interchange for-
mats, the criterion of extensibility (cf. e.g. [K092]) is of special importance to our work.
As we extend EPML with C-EPC concepts, it has to be granted that documents complying
with old versions of the schema remain valid. Our approach is to add optional elements
nested in epc, function, and connector elements.

Among interchange formats that have been proposed for business process modeling, none
captures configuration directly. In terms of flexible generation of process models, the idea
behind OWL-Services (OWL-S) [APST03] is closest to our approach. OWL-S is a ser-
vice meta model represented in OWL building on an (input-output-preconditions-effects)
quadruple to describe services. OWL-S is aimed at languages to enable dynamic compo-
sition of processes. Yet, such a dynamically composed process is generated via automatic
reasoning on service descriptions stored in a repository, and not by manual configuration
as in the case of C-EPCs. Furthermore, dynamically built service compositions are not
explicitly meant for reuse as a process model, but rather for one-time instantiation. Other
languages like Business Process Execution Language for Web Services (BPELAWS, WS-
BPEL, or BPEL) [ACD" 03] provide some flexibility as they permit dynamic identification
of service endpoints. This may also be considered as related to configuration aspects in
general. Yet, these aspects are not standardized in the specification. Furthermore, BPEL
is directed at the definition of executable processes rather than configurable conceptual
process models.

As far as we are aware, C-EPC is the only dedicated Configurable Business Process Mod-
eling language and EPML the only BPM interchange format that support configuration
aspects on a conceptual level.

5 Conclusion and Future Work

This paper presented an XML schema-based specification of the C-EPC using the EPML
format. We reported on the design of the C-EPC compliant schema and outlined a proto-
type called C-EPC Validator for the validation of model configuration using the C-EPC.

Our research has a few limitations. First, our conceptual approach needs to be empirically
validated with business practitioners to prove its feasibility and applicability. This task is
currently being conducted. Second, we have not yet approached the task of translating
C-EPCs to other process specifications. However, as the schema is now available, we are
currently working on transformations and respective tool support. Third, there is not yet
adequate tool support for the modeling of C-EPCs. However, transformations between
EPML and ARIS Markup Language are available. Furthermore, the SemTalk business
process modeling tool and the open-source modeling platform EPCTools support EPML.
Hence, existing modeling solutions can easily be modified and adapted to cater for the
C-EPC extensions of the EPC modeling language. Again, this task will be approached in

19

the near future.

Acknowledgements. The authors would like to express their gratitude towards the con-
tinuous fruitful contributions of Markus Niittgens to the EPML initiative. The research on
the C-EPC has been funded by SAP Research and Queensland University of Technology
with the ARC Linkage project “Modelling Configurable Business Processes”. SAP is a
trademark of SAP AG, Germany.

References

[ACDT03]

[APST03]

[BDD04]

[BHMO1]

[Br99]

[CD99]

[CKL97]

[Da98]
[HC93]

[KNS92]

[Ko92]

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, 1., und Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1. Specification. BEA
Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems. 2003.

Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K., Solanki, M., Lassila, O.,
McGuinness, D., Denker, G., Martin, D., Parsia, B., Sirin, E., Payne, T., Mcllraith,
S., Hobbs, J., Sabou, M., und McDermott, D.: OWL-S: Semantic Markup for Web
Services (Version 1.0). Specification. OWL Services Coalition. 2003.

Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., und Kuropka, D.: Configura-
tive Process Modeling - Outlining an Approach to increased Business Process Model
Usability. In: Khosrow-Pour, M. (Hrsg.), 14th Information Resources Management
Association International Conference. S. 615-619. New Orleans. 2004. IRM Press.

Brehm, L., Heinzl, A., und Markus, M. L.: Tailoring ERP Systems: A Spectrum of
Choices and their Implications. In: Nunamaker Jr, J. F. und Sprague, R. H. J. (Hrsg.),
34th Hawaii International Conference on System Sciences. S. 8017. Maui. 2001.
IEEE.

Brinkkemper, S.: Requirements Engineering for ERP: Requirements Management
for the Development of Packaged Software. In: 4th International Symposium on
Requirements Engineering. S. 159. Limerick, Ireland. 1999.

Clark, J. und DeRose, S.: XML Path Language (XPath) Version 1.0. W3C Recom-
mendation 16 November. World Wide Web Consortium. 1999.

Curran, T., Keller, G., und Ladd, A.: SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Enterprise Resource Planning Series. Prentice
Hall PTR. Upper Saddle River. 1997.

Davenport, T. H.: Putting the Enterprise into the Enterprise System. Harvard Busi-
ness Review. 76(4):121-131. 1998.

Hammer, M. und Champy, J.: Reengineering the Corporation: A Manifesto for
Business Revolution. Harpercollins. New York. 1993.

Keller, G., Niittgens, M., und Scheer, A. W.: Semantische Prozessmodellierung
auf der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report §9.
Institut fiir Wirtschaftsinformatik Saarbriicken. Saarbriicken, Germany. 1992.

Koegel, J. F.: On the Design of Multimedia Interchange Formats. In: Proceedings
of the 3rd International Workshop on Network and Operating System Support for
Digital Audio and Video, 12-13 November 1992, La Jolla, California, United States.
S.262-271. 1992.

20

[LLO93]

[MNO3]

[MN04]

[MNO5]

[MNNO4]

[RRvdAMOS]

[RvdAO5]

[Sc00]
[SGDO03]

[vdA99]

Luftman, J. N., Lewis, P. R., und Oldach, S. H.: Transforming the Enterprise: The
Alignment of Business and Information Technology Strategies. IBM Systems Jour-
nal. 32(1):198-221. 1993.

Mendling, J. und Niittgens, M.: EPC Syntax Validation with XML Schema Lan-
guages. In: M. Niittgens and FE. J. Rump (Hrsg.), Proc. of the 2nd GI-Workshop
on Business Process Management with Event-Driven Process Chains (EPK 2003),
Bamberg, Germany. S. 19-30. 2003.

Mendling, J. und Niittgens, M.: Exchanging EPC Business Process Models with
EPML. In: Niittgens, M. und Mendling, J. (Hrsg.), XML4BPM 2004, Proceed-
ings of the Ist GI Workshop XML4BPM — XML Interchange Formats for Busi-
ness Process Management at 7th GI Conference Modellierung 2004, Marburg Ger-
many. S. 61-80. http://wi.wu-wien.ac.at/"mendling/ XML4BPM/xml4bpm-2004-
proceedings-epml.pdf. March 2004.

Mendling, J. und Niittgens, M.: EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC). Technical Report JM-
2005-03-10. Vienna University of Economics and Business Administration, Austria.
2005.

Mendling, J., Niittgens, M., und Neumann, G.: A Comparison of XML Interchange
Formats for Business Process Modelling. In: Feltz, F., Oberweis, A., und Otjacques,
B. (Hrsg.), Proceedings of EMISA 2004 - Information Systems in E-Business and
E-Government. volume 56 of Lecture Notes in Informatics. 2004.

Recker, J., Rosemann, M., van der Aalst, W., und Mendling, J.: On the Syntax of
Reference Model Configuration - Transforming the C-EPC into Lawful EPC Models.
In: Kindler, E. und Niittgens, M. (Hrsg.), First International Workshop on Business
Process Reference Models (BPRM’05). S. 60-75. Nancy, France. September 2005.

Rosemann, M. und van der Aalst, W.: A Configurable Reference Modelling Lan-
guage. Information Systems. to appear. 2005.

Scheer, A. W.: ARIS business process modelling. Springer Verlag. 2000.

Soffer, P., Golany, B., und Dori, D.: ERP modeling: a comprehensive approach.
Information Systems. 28(6):673—-690. 2003.

van der Aalst, W. M. P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology. 41(10):639-650. 1999.

21

