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Abstract:

Several recent studies have shown that while iris images captured at near infrared are viable
biometrics for verification and identification, similar to other biometrics, its performance drops
when comparing images from imperfect sources (e.g. subject blinking), under imperfect con-
ditions (e.g. out of focus) or non-ideal capture device. The immediate question to ask is what
factors and to what degree are most influential on iris recognition performance. Motivated by
this need, National Institute of Standards and Technology (NIST) initiated Iris Quality Evalu-
ation and Calibration (IQCE). IQCE aims to define and quantify iris image properties that are
influential on performance of iris recognition. This paper gives an overview of the IQCE.

1 Introduction

Automatically and consistently determining the quality of a given biometric sample for identifi-
cation and/or verification is a problem with far-reaching ramifications. If one can identify low-
quality biometric samples, the information can be used to improve the acquisition of new data.
The same quality measure can be used to selectively improve an archival biometric database by
replacing low quality biometric samples with high quality samples. Weights for multimodal bio-
metric fusion can be selected to allow high quality biometric samples to dominate the fusion. All
of these applications require that the quality of the biometric sample be determined prior to iden-
tification or verification. Most of these applications also require that the quality of the biometric
sample be computed in real time during data acquisition.

Current state-of-the-art biometric recognition systems perform at reasonably low error rates. How-
ever, the performance degrades substantially as the quality of the input samples drop. Although
only a small fraction of input data are of poor quality, the bulk of recognition errors can be at-
tributed to poor quality samples. Poor quality samples decrease the likelihood of a correct verifi-
cation and/or identification, while extremely poor-quality samples might be impossible to verify
and/or identify. If quality can be improved, either by sensor design, by user interface design, or
by standards compliance, better performance can be realized. For those aspects of quality that
cannot be designed in, an ability to analyze the quality of a live sample is needed. This is use-
ful primarily in initiating the reacquisition from a user, but also for the real-time selection of the
best sample, the selective invocation of different processing methods, or fusion. Accordingly, bio-
metric quality measurement algorithms are increasingly deployed in operational systems [GT06].
US-VISIT, PIV, EU VIS, and India’s UID each mandate the measurement and reporting of quality
scores of captured images. With the increase in deployment of quality algorithms, the need to
standardize an interoperable way to store and exchange biometric quality scores and methods for
evaluating the effectiveness of quality algorithms, increases.
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2 Iris Quality Evaluation and Calibration

Motivated by this need, National Institute of Standards and Technology (NIST) initiated Iris Qual-
ity Evaluation and Calibration (IQCE). IQCE aims to define and quantify iris image properties that
are influential on performance of iris recognition. Iris is rapidly gaining acceptance and support
as a viable biometric. US-VISIT, PIV and India’s UID are using iris as their secondary or primary
biometric for verification. While there are several academic publications on iris image quality,
IQCE is the first public challenge in iris image quality aiming at identifying iris image quality
components that are algorithm or camera agnostic.

IQCE is the second activity under IREX. NIST’s iris interoperability program, IREX, was initiated
to support an expanded marketplace of iris recognition applications in identity management de-
ployments.

IREX I was conducted to give quantitative support to the recently completed ISO/IEC 19794-6
standard which regulates cross-party interchange of iris imagery. The IREX I test engaged ten iris
recognition vendors in implementing the standard and testing various proposed formats. The test
established safe size limits for storage of iris data on credentials (e.g., PIV), and for transmission
on networks.

While IREX I showed that iris images captured at near infrared are viable biometrics for verifi-
cation and identification, it also confirmed findings in related studies [VDFO05, Dau07, NZSC10,
Z7B09] that similar to other biometrics, its performance drops when comparing images from im-
perfect sources (e.g., subject blinking) or under imperfect conditions (e.g., out of focus). IQCE
is motivated by a need to quantitatively define iris image quality and seeks to identify image
properties that are influential on recognition accuracy.

NIST invited commercial providers, universities, and non-profit research laboratories with capa-
bilities in producing quality score, either overall scalar quality or specific aspects of quality (e.g.,
sharpness) to participate. Furthermore, organizations who implemented biometric verification
softwares using iris images were invited to participate in IQCE. The comparison scores generated
by such submissions were used to quantify the goodness of quality scores. Subsequently, NIST
received fourteen IQAAs from nine organizations. Additionally, six out of the nine participants,
submitted iris verification SDKs (comparators). Comparison scores of these submissions were
used to quantify the predictive power of quality components generated by submitted IQAAs.

This paper gives an overview of IQCE evaluation of the scalar quality scores using only one of the
three IQCE test data sets. Due to space limitation, results on evaluation of the quality components
or other datasets is not included here.

The rest of the paper is organized as follows: Section 3 presents the metrics employed for evalua-
tion of the IQAAS. It is followed by a brief introduction of the imagery used. Section 5 summarizes
IQCE evaluation of the scalar quality scores. Relevance and relation to the development of the in-
ternational iris image quality standard is discussed in section 6.

3 Quantitative evaluation of quality scores

The quality measurement algorithm, whether generating a scalar summary of a biometric sam-
ple’s quality or a measurement of a specific aspect of quality (quality component), is regarded as
a black box that takes an input iris image and outputs a scalar quality and/or a vector of quality
components.

Evaluations are done by quantifying the association between quality scores of each quality com-
ponent and the observed matching results.

IQCE deployed several metrics to assess the predictive power of the quality scores. In this paper,
we overview the two most prominent ones, namely, error (false non-match) vs reject curves and
ranked order DET . Results are presented in section 5.
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3.1 Error vs reject curve

One metric for comparative evaluation of IQAAS is the error versus reject curves that is introduced
in [GT07]. The goal is to demonstate how efficiently rejection of low-quality samples results in
improved performance. This models the operational case in which quality is maintained by reac-
quisition after a low-quality sample is detected. Consider that a pair of samples (from the same
eye), with qualities qgl) and q£2>, are compared to produce a geuine score, and this is repeated for
N such pairs.

We introduce thresholds u and v that define levels of acceptable quality and define the set of
low-quality entries as

R(u,v) = {] : q§1) <u, q§-2> < U} 1)

We compute FNMR as the fraction of genuine scores above threshold computed for those samples
not in this set

FNMR(7) = % 2)
My(T,u,v) = Z H(s—T) 3)
SEGNRC

where R is the complement of R.

If the quality values are perfectly correlated with the genuine comparison scores, setting threshold
T to give an overall FNMR of z and then rejecting = percent with the lowest qualities should result
in FNMR of zero after recomputing FNMR.

For an effective IQAA FNMR should decrease quickly with the fraction rejected. An almost flat
curve suggests that the quality algorithm is not effective in prediction of performance. The IQAA
with the largest negative derivative at the low rejection rate is the most effective, hence the best
performer.

The most operationally relevant part of the error vs. reject curves is usually on the left side where
a small fraction, z, of low-quality rejections would be tolerable from the perspective of forcing
a second enrollment attempt. However, for the ICE2006 data sets, the appropriate fraction is
probably larger because the camera’s own quality measurement apparatus was suppressed.

Error vs reject curve allows for quantifying the generalizability of an IQAA to other comparators
than its mated one. It is a common contention that the efficacy of a quality algorithm is neces-
sarily tied to a particular comparator. We observe that this one-comparator case is commonplace
and useful in a limited fashion and should therefore be subject to evaluation. However, we also
observe that it is possible and perhaps desirable for an IQAA to be capable of generalizing across
all (or a class of) matchers, and this too should be evaluated. Generality to multiple comparators
can be thought of as an interoperability issue: can IQAA As quality measure be used with com-
parator Bs matcher? Such a capability will exist to the extent that pathological samples do present
problems to both A and Bs matching algorithms.

3.2 Ranked-ordered detection error trade-off (DET ) curves

DET characteristic curves are the primary performance metric for offline testing of biometrics
recognition algorithms [MDK"97], [505]. Each point on a DET curve exhibits the false match
and false non-match rates associated with a certain threshold value. The DET curve spans the
whole range of possible threshold values, which is normally the range of the comparison scores.
An IQAA is useful if it can at least give an ordered indication of an eventual performance. For
example, for L distinct quality levels, there should notionally be L DET characteristics that do not
cross.
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Using the geometric mean of the two samples (,/q1 * ¢2) as their pairwise quality, we divide each
comparator’s comparison scores into three groups based on the pairwise quality of the images
being compared. The set of the lowest quality contains comparison scores with pairwise qualities
in the lowest 15 percentile. Comparisons with pairwise quality in the middle 70 percent comprise
the second or medium quality set. Finally, comparison scores of images whose pairwise quality
are in the highest 15 percentile make up the third or best quality set. Three DET characteristic
curves, one for each set above, are generated, as shown in figure 1. Each cell in figure 1 shows
three DET curves where quality scores of the identified IQAA are used to partition the comparison
scores generated by comparator Hz1. To reveal the dependance of FNMR and FMR on quality at a
fixed threshold, 7, the DET curves of each cell are connected at false non-match and false match
rates that are observed at the “same threshold” values.

The proper behavior is to observe lower FNMR and FMR as quality improves. An IQAA is effective
if the DET curves are separated, with the DET curve corresponding to the lowest quality images
appearing at the top (i.e. higher FNMR ), and the DET curve of highest quality images at the bottom
(i.e. lower FNMR ). Overlapping DET curves indicate poor IQAA performance. A higher separation
among these three curves indicates a more effective IQAA .

The ranking and the separation of the DET curves, as explained above, will reveal the effect of
quality on FNMR . Effect of quality on FMR is demonstrated by the lines connecting the DET curves
(the brown lines of figure 1). Assuming the correct ranking, a positive slope is expected meaning
high quality images produce low FMR. A negative slope means that high quality images produce
higher FMR than the low quality images, which is not desired.

Another observation to make is which IQAA is the best predictor of the comparator whose com-
parison score was used to generated the graph, in case of figure 1, comparators Hz1 and E2a. It
is rightly assumed that an IQAA would be the best predictor of its mated comparator, but it is not
always the case. As we can see in figure 1, IQAA F1 provide a better separation of the DET curves
of the comparator E2a than E2a’s mated IQAA.

4 Data

IQCE deployed three different datasets. For the sake of space and time, only results on one of them,
ICE2006 is presented in this paper. Specifically, we used a subset of ICE2006 dataset provided
to NIST by the MBGC program[ea08]. The subset we used contains 56871 images of right and left
irises from 193 subjects collected from a university population over six semesters within 2004 -
2006 time frame. The images were acquired using an LG EOU 2200 iris scanner.

All images are 640 480 pixels with a median iris diameter of 240 pixels. The variation in iris sizes
is mostly due to the subjects iris sizes and their distance from camera at the time of capture.

Because of the collection protocol used for ICE2006 dataset, it contains images of various quality,
per description in [PBF07]:

The images are stored with 8 bits of intensity, but every third intensity level is unused. This
is the result of a contrast stretching automatically applied within the LG EOU 2200 system. In
our acquisitions, the subject was seated in front of the system. The system provides 32 recorded
voice prompts to aid the subject to position their eye at the appropriate distance from the sensor.
The system takes images in “shots” of three, with each image corresponding to illumination of
one of the three infrared (IR) light emitting diodes (LED)s used to illuminate the iris.

For a given subject at a given iris acquisition session, two “shots” of three images each are taken
for each eye, for a total of 12 images. The system provides a feedback sound when an acceptable
shot of images is taken. An acceptable shot has one or more images that pass the LG EOU 2200’s
built-in quality checks, but all three images are saved. If none of the three images pass the built-
in quality checks, then none of the three images are saved. At least one third of the iris images
do pass the Iridian quality control checks, and up to two thirds do not pass.

A manual quality control step at Notre Dame was performed to remove images in which, for
example, the eye was not visible at all due to the subject having turned their head.
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The ICE2006 images are useful for comparative analysis of IQAAS. Its range and diversity of
image impairments makes it suitable for investigating the causes of failure and viability of algo-
rithms on the core iris feature extraction and matching problem.

The test data set was divided into two sets, namely enrollment and verification. IQCE received
ten submissions from six organizations that compare two iris images and generate a dissimilarity
score. These comparators were used to compare all images in the enrollment set with all the
images in the verification set. As a result, using the ICE2006 images, slightly over 4 million
genuine and more than 7 million impostor comparison scores were generated for each of the
comparators.

5 Results

DET curves of two comparators for images with low, medium and high SCALAR QUALITY quality
scores of nine IQAAS are shown in figure 1.

The first observation is that the performance of either comparator is significantly affected by the
quality of the images. High false non-match and false match rates are observed when the quality
of the images being compared are low. In other words, the SCALAR QUALITY scores of IQAAS A2a,
C4x, E2a, F1 and Hx are reasonable predictors of performance.

The second observation is on the dependance of performance evaluation of IQAAS on the com-
parators used for the evaluation.

The DET curves of the mid and high quality images cross for IQAAS B3, C4x, G1 and E2a for
comparator Hz1 but not for E2a.

All the IQAAS give a better performance ranking for comparator E2a than Hzl, suggesting that
comparator E2a is more sensitive to image quality than Hz1. However, the rankings of the IQAAS
remain the same. IQAAS A2a, C4x, E2a, F1 and Hx are the best performers for both comparators.
IQAA I1 gives the worst performance ranking, for both comparators.

Lastly, note that, except for IQAA D3, the DET curves of the high quality images are flat.

The ranked-ordered DET curves are useful for comparative analysis of IQAAS. It demonstrates
the error rates achieved when comparing low quality images, or high quality images. However,
a finer quantification of the effect of quality on performance is not possible at least because suffi-
cient quantity of genuine and impostor comparison scores of certain quality levels are needed to
generate a DET curve.

IQCE employed error vs reject curves to investigate the dependance of false non-match rate on
quality. Specifically, we examined how quickly FNMR is improved when the lowest quality images
are rejected, which is ultimately the most operationally relevant use of quality scores.

Figure 2 shows the error vs reject curves of all fourteen IQCE IQAAS for six different comparators.
IQAAS are identified by different line type and color. The threshold is set to give initial FNMR =
0.1. The gray dotted line shows the ideal case where the rejection of the comparisons with the
lowest ten percent quality results in zero FNMR.

IQAAs E2a, F1, and Hx are generally the best performer for their mated comparators as well as
other comparators (i.e. they are generalizable). E2a slightly outperforms the other two, and per-
forms close to the ideal case (gray dotted line) for its mated comparator. IQAAS A2a and B3 are
the best predictor of performance for their mated comparators, but not for other comparators (i.e.
they are not generalizable).

The least effective IQAAS are I1, and G2.
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Figure 2: FNMR vs reject curves for SCALAR QUALITY scores on datasets and ICE2006 . The threshold is set to
give an initial FNMR = 0.1. The gray dotted line shows the ideal case where the rejection of the comparisons
with the lowest ten percent quality results in zero FNMR. IQAA E2a is the best performer, followed by Hx and
F1, followed by C4x. IQAAs B3 and A2a perform better for their mated comparators than other comparators.
The lowest performance is observed for IQAAs I1 and G2.
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6 Support to standard development process

The IQCE activity supports a new, formal, standard addressing iris quality. The standard, ISO/IEC
29794-6 Iris Image Quality [311], was initiated by the Working Group 3 of the ISO SC 37 committee
in July 2009. The standard will define a vector of quality components each of which is some
quantitative measure of a subject-specific or image-specific covariate. The current working draft
(SC 37 N 4302) defines 19 image acquisition or subject covariates and 17 metrics for assessing the
utility of an iris image. Furthermore, ISO/IEC 29794-6 aims to establish precise statements of how
to compute each of the quality metrics.

A summary of quality components identified in ISO/IEC 29794-6 which IQCE examined, follows.

o scalar quality An overall quality score that is an estimate of the matchability of the image.
Per ISO/IEC 29794-1 [310] Biometric sample quality — Part 1: Framework, the scalar quality
shall an integer between 0 and 100, where 0 indicates the lowest quality and 100 the best
quality. Lower recognition error is expected for images with low scalar quality scores.

o gray level spread shall measure the overall iris image for evidence of a spread of intensity
values in iris data. An “underexposed” image would have too few high intensity pixels,
and conversely for “overexposed”. An image with a high score (good quality) indicates a
properly exposed image, with a wide, well distributed spread of intensity values.

e iris size shall be a measure in the image plane, representing half the distance across the iris
along the horizontal.

e pupil_iris ratio shall represent the degree to which the pupil is dilated or constricted. It is
a dimensionless term, being the ratio or pupil radius to iris radius.

e usable iris is the percent of the iris portion of the image that is not occluded by eyelids,
eyelashes, or saturating specular reflections, expressed as percentage of area of an annulus
modelling the iris without such occlusions.

e iris-sclera contrast shall represent the image characteristics at the boundary between the
iris region and the sclera. Sufficient contrast is needed in many implementations of iris
segmentation algorithms. Low or insufficient contrast may result in a failure to process an
iris image during feature extraction.

e iris-pupil contrast shall represent the image characteristics at the boundary between the iris
region and the pupil. Sufficient iris-pupil contrast is needed in many implementations of
iris segmentation algorithms. Low or insufficient contrast may result in a failure to process
an iris image during feature extraction.

e iris shape should be mathematical expression of the iris-sclera boundary. Note that the
effect of this component on performance depends on the sensitivity of the segmentation
algorithm to the deviation from circularity in iris-sclera and iris-pupil boundary.

e pupil shape should be mathematical expression of iris-pupil boundary. Deviation from cir-
cularity in the iris-pupil boundary can affect segmentation accuracy. The effect of this metric
on performance depends on the sensitivity of the segmentation algorithm to the deviation
from circularity in iris-pupil boundaries.

o margin shall quantify the degree to which the image achieves positioning of the iris portion
of this image relative to the edges of the entire image. The maximum quality value for
this metric shall be achieved when the margin requirements of ISO/IEC 19794-6:2011 are
satisfied.

o sharpness shall measure the degree of defocus present in the image.

o motion blur shall measure the degree of distortion in the image due to motion.

180



e signal to noise ratio

e gaze angle shall be an estimate of the direction of displacement between the optical axis of
the eye and the optical axis of the camera. This measure is inclusive of both head angular
orientation and eye-gaze angle relative to the head.

IQCE examined the effectiveness of these quality components in prediction of performance with
the goal to produce a refined list of image quality components that significantly affect the iris
recognition performance. To ensure that the above list includes all the possible image impair-
ments that could affect performance, IQCE encouraged submission of, and consequently evalu-
ated, other quality components not included above, or any other proprietary component.

The result of the evaluation is not included here due to space limitation, except for comparative
analysis of quality components of one of the IQAAS, which follows.

6.1 Predictive power of quality components

Before proceeding to quantifying the predictive power of the quality components of the IQAAS, it
is important to emphasize the dependance of this analysis on the imagery used for the evaluation.
The effect of a quality component will not be observed if the test data does not represent varying
degree of the impairment. For example, ICE2006 data set lacks severely dilated or constricted
(probably because lighting condition did change during the capture sessions) or compared to
other IQCE data sets, it lacks a wide range of sharpness, as a result sharpness is not a significant
factor for ICE2006 images, but its effect on performance is comparable to usable iris area for the
IQCE data set that contains images with varying level of sharpness.

Figure 3 shows a variant of the error vs reject curve discussed in 3 that compares the predictive
power of different quality components generated by IQAA C4x, and using comparison scores of
its mated comparator. The threshold is set to give initial FNMR = 0.1. The gray dotted line shows
the ideal case where the rejection of the comparisons with the lowest ten percent quality results
in zero FNMR. The most effective IQAA is the one with the biggest negative derivative at the low
rejection rate.

For ICE2006 images, with its existing range of defects, the most effective quality components are
the scalar quality and the proprietary metric gravitas, followed closely by usable iris area and
the proprietary metric auctoritas. Its second most effective tier of quality components consists of
proprietary component dignitas, iris-pupil contrasts, proprietary component pietas and iris-sclera
contrast.

As mentioned, the ranking of the quality components slightly changes for other data set. Scalar
quality, usable iris, iris-pupil contrasts, and iris-sclera contrast, sharpness and gaze angle seem to
have the most influence on performance.

7 Summary

An overview of NIST IQCE was presented along with results on the performance evaluation of
scalar quality scores. We discuss two metrics for comparative analysis of image quality assess-
ment algorithms.

Predictive power of scalar quality scores generated by different IQAAS vary. For the best perform-
ers, the difference between FNMR and FMR of the images in the lowest fifteen percentile and those
in the upper fifteen percentile can be as high as an order of magnitude.
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