
Towards Automated Detection of Mobile Usability Issues

Daniel Bader
Technische Universität München

Munich, Germany
baderd@cs.tum.edu

Dennis Pagano
Technische Universität München

Munich, Germany
pagano@cs.tum.edu

Abstract: While evaluating the usability of mobile applications in the field has proven
to lead to better results than in laboratory settings, in practice it is still not carried out
after deployment – typically due to the required resources. In this paper we demon-
strate a lightweight automated method for revealing specific usability issues of mobile
applications in the field. Based on application usage data, we derive a simple heuristic
which detects low discoverability by analyzing view transitions of mobile applications
at runtime. We show the applicability and feasibility of our approach in a user study
with a real application. Our results are promising and call for further research.

1 Introduction

Usability is a major selling point of today’s software and particularly important for mo-
bile applications which have to deal with relatively small screen estates [Hua09]. As a
consequence, usability evaluation has become a mainstream activity over the last decades
[CWK10]. While typical usability evaluations are carried out with a subset of all users
in laboratory conditions, research has shown that evaluating usability in the field leads to
significantly better results, including the identification of more issues and additional is-
sue types [NOBP+06]. This is especially true for mobile applications, which are used in
changing contexts that are often unknown before their deployment. In addition, applica-
tion distribution platforms make mobile applications available to the general public and
lead to more heterogeneous user audiences with different behavior and mental models.
But even though it provides valuable results, usability evaluation still does not play a sub-
stantial role after deployment in practice [CKW+11], mainly because evaluating usability
in the field is typically more complex and requires more resources [NOBP+06, RRH00].
As a consequence, research started to investigate to which extent usability evaluations can
be automated [IH01], for instance by collecting usability relevant data like user interaction
traces and automatizing its analysis [HR00]. Building on these foundations, we aim at
developing lightweight and cost-effective methods for evaluating the usability of mobile
applications in the field.

In this paper, we provide a proof of concept for automatically detecting low discoverability
issues – a specific usability issue type which occurs whenever a user interface does not
communicate clearly that and how the user can interact with a particular element. As a
result, low discoverable user interface elements are often not found, and might even hinder

341

users to access particular views. Consequently, Nielsen considers low discoverability as
one of the main challenges for user interfaces on touch-based mobile devices [BN].

The contribution of this paper is twofold. First, it describes a simple heuristic to detect
low discoverability issues, which is derived from exploring real application usage data.
Second, it shows the practical applicability of this mobile usability heuristic in the form of
a lightweight framework. The framework can be integrated into mobile applications and
allows for automated usability testing during application runtime.

The remainder of the paper is structured as follows. Section 2 introduces our research
methodology. In the following three sections, we explore mobile application usage data
(Section 3) to derive a heuristic for the detection of low discoverability issues (Section 4),
and evaluate the heuristic in a user study (Section 5). Section 6 discusses the implications
and limitations of our findings, while Section 7 summarizes related work. Finally, Section
8 concludes the paper and sketches our future plans.

2 Research Setting

We first summarize the questions that drive our research. Then we describe the method
we used to collect and analyze application usage data and to evaluate the derived mobile
usability heuristic.

2.1 Research Questions

Our goal is to investigate if low discoverability issues can be identified automatically by
analyzing users’ interactions. With this approach, we aim at providing groundwork to-
wards a lightweight and cost-effective framework for mobile usability testing. Specifically,
we focus on the following three research questions:

• RQ 1: Issue indicators. Does low discoverability appear in user interaction traces?

• RQ 2: Detection heuristic. Are there specific user interaction patterns which indi-
cate the presence of a low discoverability issue?

• RQ 3: Feasibility and applicability. Can low discoverability issues be detected at
runtime by a software framework?

2.2 Research Method

As depicted in Figure 1, our research methods consisted of three phases: a usage data
collection phase, a heuristic construction phase, and an evaluation phase.

342

Implement
tracking library

Instrument
application

Usage Data
Collection Phase

Heuristic
Construction Phase

Data preparation

Collect
usage data

Evaluation
Phase

Sequential
Pattern
Mining

Manual
data

analysis

Develop heuristic

Implement
heuristic

Instrument
application

Evaluate
heuristic

Figure 1: Research method.

In the initial usage data collection phase, we recorded users’ interactions with a test ap-
plication in order to build a corpus for further analysis. To this end, we first developed a
generic tracking library which collects information about user interactions at runtime and
that can be embedded into arbitrary mobile applications running on Apple’s iOS1 platform.
The library records the time at which the user switches to a different view in the applica-
tion together with an identifier for the new view, and logs activation and deactivation of
the application. We then selected an existing mobile application for usage data collection.
Apart from the obvious requirement that the application had to run on the iOS platform,
we also needed access to its source code to embed the tracking library. Moreover, we had
to select an application with a non-trivial navigational path, meaning that it had to con-
tain multiple individual views and that using the application also required visiting them.
Finally, we instrumented the selected application with the tracking library, and performed
the actual data collection study. To this end, we asked subjects with different prior knowl-
edge of the application to perform a sequence of tasks with it, and recorded the emerging
usage data together with the ground truth about occurring low discoverability issues.

The subsequent heuristic construction phase consisted of four steps. After preparing the
collected usage data for further analysis, we examined the obtained user interaction traces
for regularities both manually and by applying a sequential pattern mining algorithm. We
then used our findings to derive a heuristic classifier for low discoverability issues which
works on user interaction traces.

In the evaluation phase we assessed the feasibility of automatically detecting low discov-
erability issues at runtime. As proof of concept, we implemented the detection heuristic
as a software framework that can be integrated into arbitrary iOS applications. The frame-
work constantly analyzes the occurring view transitions. Whenever the included heuristic
detects a low discoverability issue, the framework notifies the user and asks if she agrees.
Finally, we conducted a user study to investigate the quality of the detection heuristic. For

1http://www.apple.com/ios

343

this purpose, we let a different set of test users work with the instrumented test application
and investigated the results in terms of true and false positives and negatives.

3 Usage Data Collection

3.1 Setup

To record how users interact with the test application we developed a tracking library that
can be embedded into arbitrary iOS applications. The tracking library collects informa-
tion about how a user navigates through the views of the application. It writes a view
presentation log that contains a sequence of timestamped view presentation events. View
presentation events are tracked by invoking a method whenever a view is presented to the
user. Likewise, leaving and re-entering the application at runtime are encoded as special
view presentation events. The data logging method requires access to the test applications
source code in order to place logging statements at the relevant positions. It is self con-
tained and works on standalone iOS devices without external connections, what enables
the collection of usability data in real usage situations and locations where it is difficult
to observe users directly. This benefits the results’ validity because users behave more
naturally when the evaluation is conducted in a familiar environment [PRS07].

We used the tracking library to collect usage data in single-participant sessions. In each
session a test user interacted with a test application that was instrumented using the track-
ing library. All test users were asked to complete a sequence of 13 tasks. No further
instructions were given during the session except when a user was stuck for more than
one minute. During the sessions the test users were monitored in two ways: first, by an
observer who took notes about the user’s progress and second, by the integrated usability
tracking library. In addition, all test users filled out a questionnaire after completing the
tasks. The questionnaire contained a section for each of the 26 application views and re-
quired the test users to rate each view in the four dimensions discoverability, accidental
activation, importance, and user confusion on a 5-point Likert scale (Figure 2).

After a session the recorded view presentation logs were drawn from the mobile devices
for further processing. We then transformed the collected view presentation sequence into
a sequence of view visitation events, each of which contained the name of the visited view
and the retention time, indicating the number of seconds a user stayed in the view be-
fore leaving it. We performed this transformation in two steps. First, we corrected all
timestamps by removing any time periods where the application was in the background.
Second, we generated one view visitation event for each of the presented views by com-
puting the retention times.

We used the iPhone application MoID as test application during usage data collection.
MoID is an electronic replacement for business cards available in the iOS App Store [MoI].
The application fit the requirements from Section 2.2 because it runs on the iOS platform
and its source code was accessible to us. Moreover, MoID is a sufficiently complex appli-
cation consisting of 26 individual views.

344

LoginView

-- - o + ++

I had to look for this view for a long time.

-- - o + ++

I opened this view accidentally.

-- - o + ++

This view is important for the application.

-- - o + ++

This view is confusing.

Figure 2: Sample section from data collection questionnaire.

Table 1: Overview of collected usage data.
test users 6
smartphone owners 50%
average session length 18:09 minutes
log file entries 581
time spent in scanning phases 722 s (12.5%)
time spent in working phases 5064 s (87.5%)

3.2 Results

An overview of the collected data is shown in Table 1. We conducted individual testing
sessions with a group of 6 test subjects (3 female, 3 male). Their average previous knowl-
edge of the test application was 2.2 on a subjective scale between 1 to 5 (1 indicating
no previous knowledge, 5 indicating very high knowledge). Half of the test users owned
smart phones, 1 test user owned an iPhone. During the sessions, 581 view presentation
events were recorded by the usability tracking library. Each test user visited at least 16 of
the 26 views of the application (61% minimum coverage) while the combined coverage of
all test users was 23 out of 26 views (88% coverage).

To gain first insight into how the test users navigated through the application we ana-
lyzed the distribution of the retention times. As shown in Figure 3, there are many view
visitations with short retention times and few visitations with long retention times. This
observation suggests that retention times follow a power-law distribution [New05].

Next, we compared the performance of novice users to that of experienced users with pre-
vious experience with the test application. Two differences between their performances
became apparent: First, novice users visited many views in order to complete the given
tasks. Experienced users on the other hand exhibited almost no searching behavior, pre-
sumably since they knew what to do to solve the given tasks. Second, novice users required
much more time in total to complete the given tasks than experienced users.

345

Figure 3: Ordered histogram of users’ retention times.

After an initial analysis of the collected view visitation sequences we noticed that there
was no connection between the observed difficulty a user had with a view and how she
rated that view in the questionnaire. For example, some test users struggled with finding a
view during the session but later indicated that they had no issue with the respective view
in the application. We therefore decided to concentrate more on the collected observer
notes for further analysis.

4 Heuristic Construction

Manual analysis of the view visitation sequences of each user revealed two kinds of behav-
iors that we call scanning and working phases. During working phases users stayed on one
view for a long time – often longer than 10 seconds. These phases coincided with users
working on a particular task, for example, entering information or reading descriptions. In
scanning phases users switched rapidly between views and thus produced retention times
of less than 6 seconds. Such phases appeared most often when users were looking for a
particular view or function in the application in order to continue with their task.

We compared the observer notes with the view visitation sequences and investigated tasks
that were difficult for the test users. We found that whenever a user had problems finding a
particular view or function, the corresponding sequence typically included an overly long
and misguided scanning phase. We called these misguided and unsuccessful scanning
phases problematic scanning phases. Problematic scanning phases are characterized by
three attributes in our data set. First, their view visitation events have retention times of
less than 6 seconds. Second, they consist of sequences of at least 6 view visitations. Third,
they contain loops, i.e., users visited at least one view multiple times during a problematic
scanning phase. Figure 4 depicts how scanning phases and problematic scanning phases
are identified in a user’s view visitation sequence.

346

Ret. time (s) View
5 PersonDetails
5 Settings
10 PersonDetails
2 Contacts
4 PersonDetails
5 Contacts
1 MoIDs
1 Contacts
2 Me
2 Contacts
12 PersonDetails
3 Contacts
1 PersonDetails
1 Contacts
1 PersonDetails
7 Contacts
9 PersonDetails
5 Contacts
1 PersonDetails
1 Contacts
1 PersonDetails
1 Contacts
1 PersonDetails
6 Contacts
8 PersonDetails
5 Settings
37 FAQ

Ret. time (s) View
5 PersonDetails
5 Settings
10 PersonDetails
2 Contacts
4 PersonDetails
5 Contacts
1 MoIDs
1 Contacts
2 Me
2 Contacts
12 PersonDetails
3 Contacts
1 PersonDetails
1 Contacts
1 PersonDetails
7 Contacts
9 PersonDetails
5 Contacts
1 PersonDetails
1 Contacts
1 PersonDetails
1 Contacts
1 PersonDetails
6 Contacts
8 PersonDetails
5 Settings
37 FAQ

Scanning Phases Problematic Scanning Phases

Figure 4: Example of problematic scanning phases in a view visitation sequence.

Our observer notes for each session indicated that problematic scanning phases are cor-
related with the occurrence of low discoverability issues. Several users failed at tasks
because they missed important user interface controls in the application. Whenever a low
discoverability issue occurred, users typically started to switch quickly between the views
of the application. This searching behavior continued until the user could locate the user
interface control or view she was looking for. We therefore hypothesized that problematic
scanning phases are linked to the occurrence of low discoverability issues.

Since manual identification of problematic scanning phases is impractical for analyzing
large data sets with many users in practice, we investigated if we could obtain the same
results using automated techniques. To this end, we replicated the manual identification of
problematic scanning phases using a sequential pattern mining algorithm by Zaki [Zak01].
For each view presentation log we generated all sequential patterns up to a maximum
length of 6 items with a maximum gap value of 5. This step generated 629 patterns but this
figure also includes subsequences, i.e. if the pattern list included the pattern (X,Y, Z) then
it would also contain the subsequences (X,Y) and (X). After removing the superfluous
subsequences we received a list of scanning phases in the input data. To identify prob-
lematic scanning phases we had to filter the resulting list of scanning phases by removing
all sequences which contained no loops. Eventually, we obtained the same problematic
scanning phases which we had identified manually.

We found that working and scanning phases are present in the recorded view visitation
logs, assuming that problematic scanning phases consist of a sequence of view visitations
with low retention times and loops. To facilitate further analysis and allow for practical
use, in the following we describe a heuristic which detects these phases in sequences of
view visitations. We begin by introducing the necessary terminology:

347

• A view visitation is a pair (view , retentionTime).

• The retention time is the time in seconds the user stayed on a view. If a user enters
view A, stays there for 23 seconds, and then navigates to view B, view A’s retention
time adds to 23 seconds. This is expressed as the view transition (A, 23).

• A view visitation sequence is an ordered list (v1, . . . , vn) of view visitations. The
sequence is ordered by the natural order of events, e.g. if the view visitations A, B,
and C occur one after another they are represented as the sequence (A,B,C).

• The view visitation history H = (v1, . . . , vN) is a special view visitation sequence
that contains the last N view visitations. The view visitation history can be seen as
a circular buffer and it is in fact implemented as such in our prototype.

We define the heuristic ld (H) that detects low discoverability issues from a view visitation
history. The occurrence of a low discoverability issue is indicated by low retention times
and one or more loops within the view visitation history:

ld(H) :=

{
true ⇔ lowR (H) ∧ loop (H)

false otherwise
(1)

The heuristic ld (H) takes the view visitation history H as input and outputs a truth value
that indicates if the heuristic was triggered, i.e. if a low discoverability usability issue is
present in the input data. In the definition of ld we used two helper predicates, lowR (H)
and loop (H). The lowR (H) helper predicate indicates if all view visitations in the view
visitation history H have retention times below a threshold value α:

lowR (H) :=

{
true ⇔ (∀aiεH : retentionTime (ai) < α)

false otherwise
(2)

The predicate loop (H) indicates if a view appears more than once in the view visitation
history H , meaning that the user has visited a view at least twice in the last N view
transitions:

loop(H) :=

{
true ⇔ (∃aj , akεH : aj 4= ak ∧ view (aj) = view (ak))

false otherwise
(3)

In our data set a history size of N = 6 view visitations was sufficient to distinguish prob-
lematic scanning phases from non-problematic. Likewise, a low retention time threshold
of α = 6 seconds was the most helpful when determining whether a given sequence of
view visitations was a scanning or a working phase.

348

Figure 5: Screenshot of the automatic feedback survey.

5 Evaluation

We tested the heuristic in a first evaluation study with the same application and the same
tasks as in the initial usage data collection study (Section 3), but carried out by a differ-
ent set of users. As preparation, we implemented the heuristic as a library and included
it in the test application binary. The instrumented test application analyzes the view vis-
itation history after each view transition by the user and checks it for the occurrence of
low discoverability issues. Whenever the heuristic is triggered, the application displays
an automatic feedback survey dialog (shown in Figure 5), asking the user to rate if she
currently struggles with finding a specific application element. To continue working with
the application, the user has to answer the dialog by specifying her level of agreement on
a 5-point Likert scale. Upon agreement, she is additionally asked to briefly specify what
she was looking for. The user’s response along with a timestamp and the view transition
history is logged on the mobile device.

Table 2 shows an overview of the evaluation data. The evaluation study was performed
with 9 test users. The level of previous knowledge with the test application is slightly
lower than in the data analysis study. The average session length decreased by 33% from
18 to 12 minutes.

After each session, we determined the number of true and false positives and negatives by
analyzing the accumulated log file. A true positive occurs when the heuristic is triggered if
a low discoverability issue is present. Likewise, a false positive occurs when the heuristic
is triggered although no low discoverability issue has been observed. In contrast, a true
negative occurs when the heuristic is not triggered but also no low discoverability issue
is present. Similarly, a false negative occurs when the heuristic fails to trigger, although
a low discoverability issue is present. In our setting, at most #view transitions − 6
low discoverability issues may be detected per session, which allowed us to calculate the
number of true negatives. We finally estimated the number of false negatives based on our
observer notes and a paper-based questionnaire after the session.

349

Table 2: Evaluation data overview.
test users 9
smartphone owners 67%
avg. session length 12 minutes
heuristic triggers 13
avg. # heuristic triggers per person 1.4
log file entries 729

Table 3: Confusion matrix of low discover-
ability heuristic.

Ground truth
LD+ LD−

Prediction LD+ 8 5
LD− 3 568

Figure 6 depicts the evaluation results. It shows two bars for each test user, representing the
number of times the heuristic was triggered during the evaluation session (prediction) and
the number of times the test user agreed with the presence of a low discoverability issue in
the automatic feedback survey (ground-truth). We found that the heuristic was triggered at
least once in 6 of the 9 sessions (66%). Out of the 6 corresponding participants, 3 agreed
with all predictions, 2 agreed partially, while 1 participant disagreed completely, leading to
an average precision of 64% for the heuristic. If we additionally include the 3 participants
who never triggered the heuristic, we arrive at a precision of 76%.

The confusion matrix shown in Table 3 illustrates the obtained evaluation results.The
high number of true negatives indicates that the heuristic was typically not triggered er-
roneously. Furthermore, the fact that there are more false positives than false negatives
means that the heuristic is more likely to trigger accidentally than to miss a real issue.

We used the confusion matrix to compute additional performance metrics for the heuristic.
To do so we evaluated the heuristic like a binary classifier that predicts whether or not a low
discoverability issue occurred after each view transition. Using this method we arrive at a
specificity of 0.99, a sensitivity (recall) of 0.73, and a precision (confidence) of 0.61. The
high specificity indicates that positive predictions by the heuristic have a high probability
of being correct. Additionally, we computed the Matthews Correlation Coefficient (MCC)
and Cohen’s Kappa Score for the confusion matrix. Both metrics are frequently used to
judge the performance of binary classifiers. The MCC and Kappa scores are both 0.66,
thus indicating that our approach performs better than a classifier that randomly guesses
its results.

Figure 6: Evaluation results in terms of predicted issues and ground truth.

350

6 Discussion

6.1 Implications

Our findings represent a starting point towards testing and maintaining the usability of
mobile applications in an automated way. We have shown that specific usability issues
can be detected by a lightweight analysis of user interaction traces. By inspecting how
users navigate through a mobile application we were able to identify patterns which might
indicate low discoverability issues.

On the one hand, our findings provide foundational work for further research which should
explore the potential of the proposed approach and exploit its benefits. We see three main
directions. First, the applicability of user interaction trace analysis to other usability issues
should be studied. To this end, researchers have to investigate which information is neces-
sary to identify and classify additional usability issues and their respective causes. Second,
researchers should collect and analyze user interaction traces from multiple users, in order
to explore if specific usability issue patterns can be identified by aggregating this data.
The results might provide means for an individual adjustment of usability issue detection
heuristics or help to identify previously unknown issue patterns. To this end, heuristics
like the one proposed in this paper could be integrated into existing software maintenance
frameworks such as FastFix [PJB+12], or be made available as service working across
multiple applications. Third, an automated detection of usability issues allows for a reac-
tion at runtime. Apart from collecting data to improve usability, researchers may therefore
explore ways to react individually to detected issues. Adaptive user interfaces might, for
instance, increase button sizes if users continuously fail to select them. Moreover, contex-
tual help might appear if and only if users are confused by a specific user interface.

On the other hand, the few requirements of our approach fit well with the restrictions of
mobile devices, such as limited processing capability and power [ZA05], and ensure its
practical feasibility. We have implemented the presented detection heuristic as a light-
weight, application independent library, thus allowing practitioners to collect post-deploy-
ment usability data for real-world applications with little impact on battery life and per-
formance. As a first step, developers may simply collect statistics about the usability of
their applications, try to identify problematic user interfaces, and improve them. In the
long run, usability data gathered from many users has to be visualized and integrated with
other development data and tools.

6.2 Limitations

As with any research methodology, our choice of research methods has limitations. We
therefore discuss the three main factors which might have affected the soundness of our
work, and illustrate how we tried to limit them.

First, the construct validity of our approach might be affected if the described heuristic
does not measure the occurrence of low discoverability issues but rather a related concept

351

such as “user confusion”. To limit this threat, we derived our heuristic from triangulated
data, i.e. we aligned both user interaction traces and qualitative data gathered from users
with questionnaires.

Second, the internal validity of our approach might be affected as study participants might
have provided answers which do not completely reflect the reality, because they knew the
results would be published. While this threat can never be fully eliminated in studies with
real participants, we addressed it by guaranteeing our participants complete anonymity.

Finally, the applicability of our findings has to be established carefully. The main limita-
tion to their external validity results from the fact that we have constructed and evaluated
the proposed heuristic based on only a single application, and from the relatively small
sample of test subjects. As a result, the heuristic may therefore be tied to usability issues
that appear in this specific application. On the one hand, the proposed heuristic includes
two parameters which allow for further adjustment to other applications and user behav-
ior. On the other hand, our study was not designed to be largely generalizable. Rather than
predicting the heuristic’s performance for all possible scenarios, its main idea is to explore
the feasibility of automated usability issue detection by analyzing user interaction traces,
and therefore to provide a proof of concept. Further research is necessary to validate our
findings for the general case. Therefore we make the detection library available to other
researchers to enable the replication of our study2.

7 Related Work

Hilbert and Redmiles [HR00] give a comprehensive overview of techniques to extract
usability-related information from user interface events of conventional desktop applica-
tions. In contrast, research on automated usability evaluation of mobile applications is
still in an early stage. We therefore focus the related work discussion additionally on
web applications, as we found this area to be the most mature. For instance, Vargas et
al. [VWdR10] aim at automatically detecting usability issues in web applications. Similar
to our approach, the authors propose to match user interaction sequences from web server
log files against heuristics which have been specified a priori. Atterer and Schmidt [AS07]
additionally show how to extend user interaction logging to include client side browser
events with an AJAX based HTTP proxy. In general, conventional web applications differ
from mobile applications mainly in two aspects: their user interface design and the user
interaction methods. As a result, Vargas et al. perform their analysis on more data such
as mouse movements, keystrokes, and accessed links. Nevertheless, our findings confirm
that a similar approach is also feasible for mobile applications, and that usability issues
can be detected with less interaction data available.

Most research on usability evaluation of mobile applications is concerned with supporting
early design and prototyping of mobile user interfaces (e.g. [ABWD08, dSC09]). In con-
trast, Patern et al. [PRS07] describe a framework for the remote evaluation of applications

2http://dbader.org/me13-paper

352

on the Microsoft Windows CE3 platform. Their approach is based on a task model, speci-
fied upfront by developers, which defines how users should work with the application. The
framework logs users’ behavior while an external software analyzes the collected data and
identifies deviant user behavior, which may hint at usability issues. While our approach is
conceptually similar, it works in real-time without an external analysis and without setting
up an application dependent task model. As a result, our framework is more lightweight
and requires less setup effort, but on the other hand might provide less flexibility. Google
Analytics for Mobile [Goo11] is an extension of the Google Analytics framework for web
pages, which allows developers to track user interactions within mobile applications for
the Google Android and Apple iOS platforms. To use the framework, developers have
to trigger specific events by calling a function in the Analytics library. A list of the trig-
gered events is then periodically sent to a remote server for further analysis. Moreover,
the framework includes a web application which summarizes and visualizes the collected
data. In contrast to our work, Google Analytics does not automatically detect usability
issues but instead analyzes the overall performance in the context of all users.

8 Conclusions

Evaluating the usability of mobile applications in the field has proven to lead to better re-
sults than in laboratory settings. However, in practice it is typically not carried out after the
software is deployed, because the required resources are higher and such an evaluation has
a higher degree of complexity. The goal of our research is to facilitate post-deployment
usability testing of mobile applications by developing lightweight and cost-effective eval-
uation methods. In this paper we demonstrated how to detect low discoverability issues
by a simple analysis of users’ view transitions at runtime. We showed the applicability
and feasibility of our approach in a user study with a real application. We found that our
lightweight framework for automated usability testing has the potential to be integrated
into other existing mobile applications.

Our results represent a starting point towards an automated evaluation framework of mo-
bile usability in the field. In addition to this proof of concept, future research has to
investigate how to detect and mitigate various different usability issues and how to benefit
from usability data gathered from many users.

References

[ABWD08] F. Au, S. Baker, I. Warren, and G. Dobbie. Automated usability testing framework.
Proceedings of the 9th conference on Australasian user interface, pages 55–64, 2008.

[AS07] R. Atterer and A. Schmidt. Tracking the Interaction of Users with AJAX Applications
for Usability Testing. In Proceedings of CHI ’07, pages 1347–1350, San Jose, CA,
USA, 2007. ACM.

3http://msdn.microsoft.com/en-ph/embedded

353

[BN] R. Budiu and J. Nielsen. Usability of iPad Apps and Websites. http:
//www.nngroup.com/reports/mobile/ipad/ipad-usability_
1st-edition.pdf. Retrieved October 10, 2011.

[CKW+11] P. K. Chilana, A. J. Ko, J. O. Wobbrock, T. Grossman, and G. Fitzmaurice. Post-
Deployment Usability: A Survey of Current Practices. In Proceedings of CHI ’11,
pages 2243–2246, Vancouver, BC, Canada, 2011. ACM.

[CWK10] P. K. Chilana, J. O. Wobbrock, and A. J. Ko. Understanding usability practices in
complex domains. Proceedings of CHI ’10, page 2337, 2010.

[dSC09] M. de Sá and L. Carriço. An Evaluation Framework for Mobile User Interfaces.
Human-Computer Interaction–INTERACT 2009, 2009.

[Goo11] Google Inc. Developer’s Guide - Google Analytics for Mobile. http://code.
google.com/mobile/analytics/docs, February 2011.

[HR00] D. M. Hilbert and D. F. Redmiles. Extracting usability information from user interface
events. ACM Computing Surveys, 32(4):384–421, December 2000.

[Hua09] K. Y. Huang. Challenges in human-computer interaction design for mobile devices.
In Proceedings of the World Congress on Engineering and Computer Science, San
Francisco, CA, USA, 2009.

[IH01] M. Ivory and M. Hearst. The state of the art in automating usability evaluation of user
interfaces. ACM Computing Surveys, 33(4), December 2001.

[MoI] MoID GmbH. Homepage. http://www.moid.de. Retrieved October 10, 2011.

[New05] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics, 46:323–351, 2005.

[NOBP+06] C. M. Nielsen, M. Overgaard, M. Bach Pedersen, J. Stage, and S. Stenild. It’s Worth
the Hassle! The Added Value of Evaluating the Usability of Mobile Systems in the
Field. In Proceedings of NordiCHI’06, pages 14–18. ACM Press, 2006.

[PJB+12] D. Pagano, M. A. Juan, A. Bagnato, T. Roehm, B. Bruegge, and W. Maalej. FastFix:
Monitoring Control for Remote Software Maintenance. In Proceedings of ICSE’12,
pages 1437–1438, Zurich, Switzerland, 2012. IEEE.

[PRS07] F. Paternò, A. Russino, and C. Santoro. Remote Evaluation of Mobile Applications.
In Proceedings of TAMODIA’07, pages 155–169, 2007.

[RRH00] S. Rosenbaum, J. A. Rohn, and J. Humburg. A Toolkit for Strategic Usability: Results
from Workshops, Panels, and Surveys. In CHI’00, pages 337–344. ACM, 2000.

[VWdR10] A. Vargas, H. Weffers, and H. V. da Rocha. A Method for Remote and Semi-Automatic
Usability Evaluation of Web-based Applications Through Users Behavior Analysis.
Measuring Behavior, pages 1–5, August 2010.

[ZA05] D. Zhang and B. Adipat. Challenges, Methodologies, and Issues in the Usability
Testing of Mobile Applications. Human-Computer Interaction, 18(3):293–308, 2005.

[Zak01] M.J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning, 42(1):31–60, 2001.

354

