Taking a Glimpse at Reengineering Challenges in

Evolution Towards Dynamic Software Product Lines

Mahdi Derakhshanmanesh

University of Koblenz-Landau,
Institute for Software Technology

manesh@uni-koblenz.de

Abstract

To tame the complexity of engineering customizable
software, systems are built as families of products that
share a common core. As customers desire the auto-
matic and smart adjusting of their software to various
contexts of operation, runtime reconfiguration capa-
bilities need to be added. In this extended abstract,
we sketch reengineering challenges to be tackled when
evolving classic software product lines into such dy-
namic software product lines.

1 Introduction

To meet the market’s demand for highly customiz-
able software and to achieve systematic reuse of
artifacts (e.g., source code, architectural designs,
documentation) Software Product Line Engineering
(SPLE) [PBvdLO05] includes the explicit modeling of
variability in terms of features — usually in the form
of and/or trees, or similar. A product variant is de-
scribed by a configuration of features. These are
linked to wvariations (e.g., alternate implementations)
at wvariation points in the artifacts. Product deriva-
tion is performed once: as a part of the build process.

The SPLE approach produces unique product vari-
ants. In some application domains, this is not suffi-
cient, e.g., in the entertainment area, users demand
more customization possibilities as their preferences
change, especially after deployment. Reconfiguration
during operation is at the heart of certain products.
For instance, in ambient assisted living, it is crucial
to reconfigure the software that controls the sensors
that are observing a patient. In case of a potential
cerebrovascular accident (stroke), additional sensors
may be enabled, and doors of the apartment may be
unlocked for ambulance men.

There are different approaches to develop such
context-aware, self-adaptive systems. Assuming that
feature models and SPLE processes can guide the de-
velopment of complex software in a systematic way,
there is a trend to leverage related knowledge and
techniques by applying them at runtime. This effort
is discussed under the umbrella of Dynamic Software

Softwaretechnik-Trends 33:2, Mai 2013

Product Lines (DSPLs) [HHPSO08] in literature.
Recent works have especially focused on develop-
ment methodologies for DSPLs. In this extended ab-
stract, we present a preliminary list of challenges that
have to be tackled when moving from an existing Soft-
ware Product Line (SPL) towards a dynamic one.

2 Challenges

We assume that an SPL is given, i.e., variability mod-
els as well as a software platform exist, and that
user needs or marketing decisions require that the
new products must react to environmental changes
autonomously and quickly.

In the following, a preliminary list of potential chal-
lenges (and sub-challenges) is presented in the form
of questions. The list is based on the author’s expe-
rience in the fields of self-adaptive software and the
adoption of SPLE in the automotive industry.

C1l: What features and variations can be
bound when and in which temporal order? In
classic SPLE, variability is encoded in terms of feature
models and the order of choosing features (usually)
does not matter, as the product is generated, once a
stable configuration is given.

For DSPLs, it is important to analyze which choices
of features and depending variations can be made in
which order during reconfiguration to meet the new
requirements related to dynamism at runtime. As-
suming that parts of the product configuration can
change at runtime, it is necessary to define further
constraints on the feature models, especially regard-
ing binding time and the conditions for morphing from
one product variant to another.

In terms of related sub-challenges, one may attempt
to apply configuration changes in groups, instead of
applying each change step by step. The reconfigura-
tion engine (a.k.a. controller) may propose an op-
timized, i.e., a prioritized list of changes to apply,
and an administrator may check and confirm. Ad-
ditionally, severe issues will arise if the implemented
platform cannot support mechanisms for loading and
binding of variations at runtime. These issues must

63



be detected and prevented early.

Understanding the possible application states in
terms of features and the technically possible bind-
ing times for variations in the existing artifacts is an
essential preparative goal.

C2: How to extend the legacy product line
with components for self-adaptation? Most
software products are not shipped with embedded
controller components. DSPLs require a full infras-
tructure with sensors, effectors, and controllers to
achieve reconfiguration at runtime, though.

In order to make existing software adaptive, it is
necessary to identify the needed sensor data and map-
ping it to appropriate effecting mechanisms. These
must be designed and implemented (i.e., integrated
into the legacy platform) in a way that does not break
the existing architecture.

In terms of related sub-challenges, it is non-trivial
to locate the right spots for placing software sensors
as well as effectors in artifacts of an existing SPL.
Given that features can be activated and deactivated,
not every sensor and effector will be needed at all
times and hence, these dependencies must be detected
on appropriate abstractions of the existing SPL plat-
form, too. Furthermore, administrators need to be
supported with a control panel to observe and influ-
ence the software’s changing behavior.

A systematic analysis of the legacy SPL’s platform
and a transformation into an instrumented extended
platform (e.g., guided by evolution patterns) is a pre-
requisite goal when moving towards DSPLs.

C3: How to ensure that the non-adapted prod-
ucts function as before? As the assumed back-
ground in this extended abstract is the evolution of an
existing SPL towards a DSPL, for sure new require-
ments trigger this process. Nevertheless, we believe
that in most cases, it is desirable that the behavior
of existing products shall remain unchanged to en-
sure backwards compatibility, and to avoid the main-
tenance of two branches: one for the old SPL and one
for the new DSPL.

Introducing the possibility to dynamically change a
product configuration at runtime is a challenge, even
when the whole system is developed from scratch. En-
suring that the product variants of the legacy SPL
maintain their behavior in the DSPL (i.e., in the pres-
ence of a controller) is non-trivial. In fact, one may
attempt to limit adaptivity with regard to this re-
quirement in order to minimize risks.

Guaranteeing the exact functionality of legacy
products (non-functional capabilities may change) is
a high-priority goal during forward engineering.

C4: Which additional parts of the infrastruc-
ture need to be deployed? For classical SPLs,
the deployed product is clearly defined. In the case of
DSPLs, a product variant is still scoped, because the

64

major abstraction — i.e., the commonly used feature
models — forms a closed configuration space.

Customers like to pay only for the features they
immediately require. Depending on the target plat-
form’s capabilities and capacities, deploying the full
DSPL infrastructure and the source code for all prod-
uct variants may not be a viable option. Nevertheless,
fast reconfiguration requires the presence of additional
(initially inactive) software artifacts.

Based on the legacy SPL’s infrastructure, a given
feature configuration, and a set of adaptation rules,
the goal is to compute the subset of needed artifacts
and their individual setup needed for deployment.

C5: How can we integrate the evolution and
self-adaptation loops? According to Lehman’s
laws, software decays and DSPLs are no exception.
Modernization often follows an approach where the
legacy system is analyzed, an abstraction is derived
such that changes can be applied at an appropriate
level of granularity, and finally, the new software is
constructed, e.g., using generative techniques.

Runtime reconfiguration in the context of DSPLs
aims at providing a means to react to changes in re-
quirements or resources, but this approach is limited
to foreseen features. Maintenance (corrective or adap-
tive) is necessary to face unforeseen situations.

We believe that, in order to successfully move to-
wards an open configuration space, the encoding of
existing reengineering techniques in the form of adap-
tation rules is a goal that can be the basis for a more
immediate form of software evolution [DEAT11].

3 Summary

In this extended abstract, we scratched only the sur-
face of challenges related to the evolution of exist-
ing software product lines towards dynamic software
product lines. Nevertheless, we are sure that it can
serve as a trigger for fruitful discussions that lead to
the extension of this work. Regarding future direc-
tions, we need to further analyze the challenges and we
believe there is a strong potential in applying reengi-
neering techniques for realizing self-adaptation, too.

References
[DEAT11] M. Derakhshanmanesh, J. Ebert,
M. Amoui, and L. Tahvildari. Intro-

ducing Adaptivity to Achieve Longevity
for Software. In SE 2011 Workshopband,
volume P-184, pages 59-70. GI, 2011.

[HHPS08] S. Hallsteinsen, M. Hinchey, S. Park, and
K. Schmid. Dynamic Software Product

Lines. Computer, 41(4):93-95, April 2008.

[PBvdLO05] K. Pohl, G. Béckle, and F. J. van der Lin-
den. Software Product Line Engineering:
Foundations, Principles and Techniques.
Springer, 2005.

Softwaretechnik-Trends 33:2, Mai 2013



	Taking a Glimpse at Reengineering Challenges inEvolution Towards Dynamic Software Product Lines
	Abstract
	1 Introduction
	2 Challenges
	3 Summary
	References




