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Abstract: Networks are a critical factor in the performance of a modern company.
Managing a network is as important as managing any other aspect of a company’s
performance and security. There are many tools and appliances for monitoring the
traffic and analyzing the security aspects of the network flows. They are using different
approaches and they rely on different characteristics of the network flows. The network
researchers are still working on a common approach for security baselining that might
enable early alerts. This paper is focusing on the security baselining based on a simple
flow analysis utilizing the flows measurements and the theory of the Markov models.

1 Introduction

Two major approaches are utilized in the theory of computer network modeling: the queuing
theory [Da05] and the hidden Markov models [Ra89]. The queuing theory addresses
basically the models for the ubiquitous service. The general issue of the contemporary online
services is how we can assure that every customer would be satisfied in fairly short timeline.
This issue is the main objective of the ubiquitous service. Apparently, the queuing theory is
providing an approach for analysis of the quality of service (QoS) issues. QoS was addressed
in the early days of the computer networking and it is still ongoing issue for the modern
telecommunications. The one aspect of the QoS problem is the quality measurement. The
quality assessment might be done in different ways: measuring the delay of the system
access, the time frame for the data access, taking an account the quantity of the lost
information, the voice signal distinction or the data purity. Usually the quantity
measurements are random variables and the results are the average rates of the variable
distributions. The major issue regarding the QoS delivery is the price for the quality that the
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end user would agree to pay. The price generally depends on the resources needed for
providing the service quality level. The QoS analysts are focused on that problem, building
up the optimal share between the quality rate and the price of the service.

For more than three decades there was a trend against ubiquitous service in the packet-
switching networks. The main reason for that was the price decrease with simply increasing
the capacity of the shared resources. On the other hand, there was no mechanism in place
that might provide certain service quality level on a reasonable price. Then the queuing
theory has been adopted as the main approach for solving that problem for building the
optimal rate between the shared resources value and the quality of the service that the end
user achieve. The queuing theory also aided the analysts for discovering those internal
network processes that allocate the significant part of the network resources. Once knowing
the processes, the analysts might be able to decide on the policy of the resources allocation in
order to ensure the target level of the service quality.

The seconds approach utilizes the hidden Markov models (HMM). In fact, the queuing
theory also uses the Markov chains and models but we are addressing the network analysis
based on the Markov models only. The hidden Markov models are stochastic systems that
have two parts: internal hidden part and a visible part that is manifesting the hidden behavior
to the observer. The internal states of the model are hidden for the observer. We call them
also hidden states. The system moves from state to state within the discrete time intervals. In
the context of the computer networks we can think about the hidden states as internal
processes or events occurring in the network environment. Besides the hidden part, the
hidden Markov model has a “visible” part. The observer can “see” the hidden state
manifestation in means of observed symbols emitted by the internal processes. The set of the
observed symbols is the symbols alphabet. When we are talking about hidden Markov model
application for network analysis, we can also call that alphabet of the observed symbols
network alphabet. Should we pick up the hidden Markov model for network analysis
application, we will need to define the set of the hidden states and the network alphabet,
matching them to particular semantics in the context of the network analysis application.

Unlike the queuing theory approaches, the network analysis based on the Markov models are
not addressing the quality of service issues; it rather solves the problem for pattern
recognition onto the network flows. Using the HMM the analysts are building different kind
of network profiles for the different network environments. Those profiles aid the analysts in
abnormal network behavior detection as well as for finding specific trends in the network
environment utilization. The profiles also might be applied in network security management.
When building a set of profiles within certain timeline, the analysts are able to determine the
differences and then detecting potential threads.

In this paper we will focus on the network flow modeling for network behavior pattern

recognition. In order to address this problem we are choosing the HMM approach. Once
having built the model patterns we would be able to recognize if our network is handling a
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legitimate traffic or the traffic flow is offensive and malicious. The reason for choosing the
HMM approach is also based on the following facts:

There are certain internal processes running in the network and they are hidden for the end-
users and even for the monitoring tools. Those processes are affecting the network resources
and are changing the infrastructure behaviour. Due to the internal processes the network is
moving to another state within certain discrete time interval. Every internal state transition
emits external phenomena in means of network traffic attributes like specific header values,
payload content, combination of both, or specific sequence of network packets on the wire.
All those manifestations might be different for the particular infrastructures, environments
and also might vary between the network segments within an autonomous system.

The comprehensive network devices are able to provide some predefined characteristics of
the network flow to the network monitors. That information, of course, cannot be unlimited
by quantity and by property, obviously because this is additional function for the network
devices and it produces additional overhead on the device’s resources. The device vendors
addressed the network monitoring requirement by aggregation and export of the protocol
headers in predefined data structures. Using that information the network monitors are able
to collect traffic data, i.e. the network symbols emitted by the internal processes.

2 The Network Alphabet

Using a network tool for collecting the traffic tokens we can build up a network profile for
certain discrete time intervals. The basic idea of this task is to receive two groups of
observed network words:

- Words that were read in a time of normal network behavior, when there was no anomaly
in the traffic flow or the anomalies were too weak to affect the network assets and
performance.

- Words observed during long running intensive network flow anomaly when the there
might be a Denial-of-Services or similar attack executed against the network resources.

The definition of the network alphabet that we are going to use is based on the relation
between the communication peers from the previous traffic entry and the current one. The
comparison of those two traffic entries depends on the network and transport protocol header
values. As we are focusing on IP network stack analysis, the following values are taking in
account:

- Source IP address
- Source port

- Destination IP address

145



Destination port

Protocol code (e.g. ICMP=1, TCP=6, etc.)

The following table contains the network alphabet semantics.

A

The communication peers are absolutely the same. The previous traffic flow entry and
the current entry are absolutely the same, i.e. those are the same connection flows.

B

The previous and the current traffic flow entry have one different port, either source or
destination, for example:

TCP/10.10.167.154:2311 — 10.10.10.5:80

TCP/10.10.167.154:2314 — 10.10.10.5:80

The traffic flow entries have one different IP address, either source or destination, for
example:

UDP/10.10.10.8:53 — 10.10.16.4:53

UDP/10.10.10.8:53 — 10.10.16.5:53

The traffic flow entries vary by the ports and the IP addresses are still the same, for
instance:

TCP/10.10.10.3:162 — 10.10.10.8:53

TCP/10.10.10.8:543 — 10.10.10.3:53

The traffic flow entries holds the same IP address and port pair for one of the peer,
either source or destination, but the other peer IP address and port does not match. The
most common reason for this kind of consequence could be that the matching peer is
actually a service that was requested from different client as you can see in the flow
entries example:

TCP/10.10.167.154:2311 - 10.10.10.5:80

TCP/10.10.10.5:80 - 10.8.130.35:45319

The traffic flow entries, the previous and the current, hold the same IP address, either
source or destination, but all other peer properties are different:
TCP/10.10.167.154:2311 — 10.10.10.5:443

TCP /10.10.10.5:80 - 10.8.130.35:45319

The current and the previous traffic flows match only by one port, either source or
destination:

UDP/10.11.101.230:21439 — 10.10.10.5:161

UDP/10.16.116.159:19012 - 10.10.10.4:161

The traffic flow entries have absolutely nothing to deal each other.

Table 2.1: The network alphabet semantics

It is important to note that all the symbols except the symbol ‘H’ require the same transport
protocol code. When the parameters source IP address, destination IP address, source port,
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and destination port, do not match between the traffic flows, the emitted symbol will be ‘H’
no matter the protocol is the same or not.

The obvious purpose of this network alphabet semantics is to find out the following events
and processes occurring in the network environment:

A long sequence of ‘A’ symbols would match to a communication between two network
nodes over the same communication channel. The common scenario is when the
communicating pairs are connected over TCP channel and they are exchanging data
sporadically. In this case the network device would aggregate the traffic flows in individual
entries as the flow cache at the network device memory would expire before the TCP
channel is closed.

A long sequence of ‘B’-s then would be long running communication between a client and a
server similar to that described for the symbol ‘A’ but with the difference that the client is
using several communication channels to the server. As every channel might be able to finish
its lifecycle within the traffic flow cache expiration at the network device, the
communication data might be fully aggregated and exported as a single traffic flow entry.

If we find out a sequence of many ‘C’-s it would mean a service that is used by many
different clients. However, the service itself requires the clients to use a specific port number
rather than an arbitrary number. Examples for this kind of services are Domain Name
Service (DNS) and Hot Stand-by Routing Protocol (HSRP).

Too many occurrences of ‘D’-s might be caused by an excessive communications between
two nodes over different kind of protocols and services. The common case is when the peers
are connecting each other on ad-hoc application ports.

Similarly to the symbol ‘C’, the occurrences of ‘E’ match a service used by different clients.
However, unlike ‘C’, the service does not require the clients to connect from specific port
and they can use arbitrary values. This is the most common scenario of service utilization.

If we observe many ‘F’ symbols, it might mean that different clients are accessing different
services from the same server host.

Similarly to ‘F* observations, if we see many ‘G’-s then it might be the case when different
clients are accessing same kind of service running on a different host, for example when the
service is provided in a high-availability mode by a server farm.

The occurrences of ‘H’ symbols match fully heterogeneous traffic flow. For the normal

network behavior this is expected t be the most common symbol in the observed network
words.
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3 Collecting the Network Symbols

In order to collect the network symbols from the traffic flow data, we will need a software
system that interfaces the data and translates the flow entries into network words. The tool
implements the following functions:

- Collects the traffic flow data from the network devices utilizing the standard NetFlow
data format [C104].

- Translates the traffic flow data into network symbols according to the network alphabet
semantics. The results (the network words) then are exported into a file or set of files
onto the file system.

Due to performance considerations and in order to make a flexible design we separated those
two tasks in two different processes communicating via shared memory segment. The first
process collects the data from the devices via UDP port. Then the collected NetFlow traffic
data is preprocessed and put into an IPC message queue for handling by the other process.
The second process takes the data from the message queue and compares the traffic entries.
Depending on the relation between the neighbor traffic flow entries, the process decides on
what network symbol is emitted. The decision to use a shared segment and two processes
rather than a single process that reads and handles the data is based on the consideration that
the single process might fail to read all data when it is busy with processing it. For example,
if too many devices are forwarding the NetFlow data to the tool, the buffer could be quickly
filled up as the process is spending more time in emitting the network symbols. In this
situation the next traffic flow data might be missed and the output would not be relevant.
Using a shared memory we are able to overwhelm and process promptly the input data. The
second process can also continue emitting the symbols even if the first one was stopped if
there are still data in the message queue.

The tool was developed and deployed into a real network environment for making the field
tests. The adjacent devices were configured for traffic data export to the tool. In order to
avoid the data duplicates the data was captured by the ingress routers only. The tool collected
and translated the data into network symbols replacing the symbol ‘H’ with dot (“.”) just for
easy-to-read purpose as we expected to see much more ‘H’-s for the normal traffic behavior.
The network symbols were collected in fairly long period of time making sure different
network states were captured. The results are shown in the following figures.

Figure 3.1 shows mostly dots that in fact are ‘H’ symbols as we replaced them with dots.
According to the network alphabet definition, as many ‘H’-s occur in the network words as
heterogeneous the traffic is. The heterogeneous traffic normally stands for normal network
behavior. Some researchers are focusing exactly on the homogeneity flow measurements in
order to detect network threads. According to the conclusions done, the homogeneous traffic
is most likely produced by machine rather than by normal human interactions. That’s why

148



the homogeneous (machine-generated) traffic might be an alert for an offensive traffic flow
running on the wire.
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Figure 3.1: Networks words captured during a normal network behavior

The next figure 3.2 comprises of parts with fairly heterogeneous symbols, however, there are
some parts with mostly ‘C’-s in a long sequences. According to the alphabet semantics, there
adjacent traffic flow data contain the same peer host and port, either source or destination,
while the peer is different between the flow entries. This might be the common case of using
the same service from different clients. The service does not require specific client port
number. Depending on the length of the ‘C’ sequences and depending on the real time
interval (note that the symbols are matching a discrete time interval), this could be either
legitimate traffic flow (legitimate clients are excessively using the service) or it could be a
flooding targeted to the service provider host (a denial-of-service attack). We consider the
example on figure 3.2 as quasi-homogeneous flow.
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Figure 3.2: Network words emitted during suspicious traffic flows

The example on figure 3.2 refers to a suspicious traffic flows to some specific service. This
is the case when the ‘C’ symbol occurs in long sequences. The same traffic model would be
observed when the server ports are scanned or when the service is excessively flooded with
useless messages. Both cases are denial-of-services attacks with different goals: scanning
and flooding. However, we have to take in consideration that the excessive packet flows to a
particular service does not necessarily means the traffic flows are malicious. It is absolutely
true that the offensive port scanners and flooders are generating those kinds of network
words. However, the same words would be emitted even by the legitimate clients if in that
particular moment the clients are connecting to the service. Usually this might be the typical
case when in the morning business hours the employees are authenticating onto the Intranet
and starting to access their common services. The other situation would be when a scheduled
task runs and it produces a big bulk of packet flow onto the wire. Another example that
comes in mind is the FTP protocol uploads and downloads. When huge files are transferred,
the connection stays open a long time. Then the network monitors would observe long ‘A’-s
and ‘B’-s, although it is absolutely legitimate network usage. Due to those reasons, when
talking about a malicious traffic actually we are talking about a network behavior that might
be exposed when a malicious traffic is going on. In order to be more precise we will call
those traffic flows mostly suspicious rather then malicious. The suspicious traffic is a general
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definition that includes the real malicious and offensive traffic as well as the legitimate
traffic that behaves the same way as the malicious does.

What would be then if too many long sequences of ‘A’-s and ‘B’-s were observed in the
network words? As we already clarified, the occurrences of A, B, and C, stands for
suspicious flows. The difference would be the target. In case of long A-sequences the target
could be either source or destination but as we said it might be excessive legitimate traffic.
The B-sequences are likely to target a service flooded from the same source host. Also, the
same sequence matches to the case when an attacker is scanning the destination ports in a
long sequential order. Then the source side is using same port for packets generation. The C-
sequence is excessive using of a service by multiple clients (legitimate case) or a denial-of-
service flooding (malicious case).

4 Result Analysis

After the network words are collected by the tool and stored into files, we are going to make
a post-mortem analysis on the observed flows. Before proceeding to the task, we need to
make few definitions used later in the paper.

Let the observed symbols set be V = {V}, V; ..., V\y}. The set V is the network alphabet as
previously defined in table 2.1. As per the definitions the network alphabet size is 8§, i.e.
M=8. There are two major characteristics that we would be interested during the pre-
modeling analysis. The first question to answer is how long the longest sequence of same
symbols is, no matter the symbol itself. The next problem is what is the symbol share overall
the whole observation discrete period of time. For those purposes we are introducing two
definitions over the network alphabet set V.

Definition 1: The longest sequence p;(T) of same symbols V; in the observed word O for the
discrete period of time T, is called density of the symbol V; for the observed period T. The set
of all densities py(T) for the corresponding symbols Vi, p(T) = {p1(T), ..., pm(T)}, is called
density of the network alphabet V for the observation period T.

Definition 2: The relation ¢; (T) of the number of the occurrences of symbol V; for the
discrete period of time T and the length of the observed word O for the same period T is
called frequency of the symbol V; for the observed period T.

According to the second definition, the following relation immediately implies X ¢ ; (T) = 1,
ie[0;M]

Once collected, the network words are calculated against the density and the frequency

values. If the words are observed during the normal behavior then we would get p and ¢
parameters for the normal traffic model. Using a test program we simulated flowing attack
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and collected the network symbol. The overall field tests were made over 24-hours period of
time. The results were collected in series of files and then we proceeded with the flow
analysis.

The next figures 4.1, 4.2, 4.3, and 4.4 summarize the analysis result. We have processed the
network words as follow. The overall period of time was separated in series of time intervals.
As the tests ran for 24 hours, we divided the results in 24 output words, one for every day
hour. Then we picked up the words and for each of them we calculated the density and
frequency for every of the network symbols. Finally, we have had 24 values of the arrays
pi(t) m ¢i(t) for each time interval 1< t < T. The output results were generated as double
arrays p(T) and ¢(T) and the values were translated in a graphical format.

The four figures are presenting the values of p(T) and ¢(T) during the normal flows and
during the suspicious flows.

IPF HHH 38/11/87

plot length

a i i I i h I i 1 i i
68:88 B2:08 B4:80 661688 B3:88 18:88 12:88 14:08 16188 18:68 268188 22:80 88168

tine
Figure 4.1: Density of the network symbols during the normal network behavior.
Based on the results on figure 4.1 we can make the following conclusions:
- During the normal behavior the highest density belongs to the ‘H’ symbol. This means
fairly high flow heterogeneity.

- The densities of ‘B’ and ‘C’ might also be relatively high compare to the other symbols’
densities. As we can see ‘C’ was burst in some of the discrete time intervals, while the
‘B’ was keeping a plateau rates. As we discussed earlier, the bursts on ‘B’ and ‘C’ are
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acceptable during the normal traffic flows due to an excessive usage of a specific service
by one and more clients.

The graphic on figure 4.2 shows the values of ¢; (T) captured for 24h period. The values are
percentage of the symbol occurrences over the word length. The ‘H’ symbol again has the
highest share rate. It is over 50% which means it has higher share even than the sum of the
other symbols shares. The next share rates are those of the A-s and B-s. The occurrences of
A-s might be a long running connection between two particular nodes. Similarly, ‘B’
symbols mean short term usage of a connection and then opening a new one by the same
client but using different client port. That’s the way some of the application protocols work.
For example, the old HTTP/1.0 does not support keep-alive TCP connections. The client
opens a channel, sends the request, retrieves the reply, and finally closes the channel. For
each individual request-reply transaction, the protocol requires different TCP channel.
Another example could be the DNS queries. Every individual query is provided in a different
UDP datagram. Then an individual host might produce too many ‘A’-s in a short time if the
host is resolving too many names. The common case is the network monitoring software. It
scans the network on regular basis in order to build up-to-date topology.
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Figure 4.2: Frequency of the network symbols during the normal traffic flow.

During the network symbols collection we simulated an offensive traffic flow. The figures
4.3 and 4.4 show how that traffic emerges in the network words parameters. The figures
present graphically the results within the observed time interval 12:00 — 14:00. They are
respectively addressing the density and the frequency. Note that the suspicious traffic flows
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are running for relatively short time period and usually with fluctuating frequency. That’s
why in order to get the clear picture of the network symbols emission we need to narrow
down the observed period within few hours. The results then are made in a shorter time slots
aggregation. In this example on the figures 4.3 and 4.4 the observed period of 120 minutes is
broken down in 12 timeslots each of 10 minutes. Thus, for the interval 12:30-12:40 we
calculated density index 192 for the symbol ‘B’, which means there was a sequence of 192
‘B’-s in the network words for that particular 10 minutes interval.

IPF HHH 20/81/88

plot length

B B .
12:88 12:15 12:38 12:45 13:88 13:15 13:38 13:45 14:88
tine

Figure 4.3: Network symbol density during a suspicious flows.

The network alphabet was defined in way to semantically represent the homogeneity grade
of the network flows. As many top alphabet symbols (A, B, C) we observe, as more
homogeneous the traffic flows are. The opposite is also true. As many symbols from the end
of the alphabet we see, as more heterogeneous the traffic is. As we already emphasized, the
homogeneous traffic is likely to be machine-generated. Hence, the first alphabet symbols are
tokens for suspicious traffic, while the last alphabet symbols are tokens for normal network
behavior.

The fairly high density values for the symbol ‘B’ at figure 4.3 are warnings for suspicious
traffic running on the wire. Comparing the values against those captured during the normal
traffic flows at figure 4.1 we can see that the densities are fluctuating in some of the time
intervals for the symbol ‘B’. However, the symbol ‘H’ again has also high density values,
even though the traffic flows were fairly homogeneous. The frequency graphic on figure 4.4
addresses the symbol share rates during the suspicious traffic. The interesting fact is that the
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‘B’-s went beyond 20%; however, again the ‘H’ is still the top symbol with frequency rates
over 70%. Again, comparing to the corresponding graphic for the normal behavior at figure
4.2 we can easily notice that all the frequencies are below the 20% threshold expect the one
of ‘H’. Nevertheless in some of the discrete time intervals the frequencies of ‘A’ and ‘B’ are
fluctuating most probably due to the application level protocol specifics, we could be quite
convenient that the critical frequency threshold between the machine generated and the
regular traffic flow is around 20% share rate. Saying more simple, if we observe some of the
first symbols in the network alphabet (say, ‘A’, ‘B’, or ‘C’) having 20% frequency, the
traffic is likely to be machine-generated.

IPF HHH 20/81/88
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Figure 4.4: Network symbol frequency during a suspicious flows.

To what extend might be helpful the values of the density p and the frequency ¢ for the
purposes of the traffic analysis? First, those parameters are presenting the entropy grade in a
measurable way. The average values for the density of 100 counts for the symbols ‘A’, ‘B’,
and ‘C’ together with the frequency rates over 20% will be a token for machine-generated
flows and correspondingly for potential malicious network traffic. Table 4.5 summarizes the
critical threshold values for the density and the frequency. Those values might be considered
when deciding on the traffic flow characteristics.

Symbol density P 100
Symbol frequency ) 20%

Table 4.5: Critical values for p and ¢ of the symbols A, B, and C
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Once we build and utilize the traffic flow collector together with the analytic engine, we can
make network security probes on short time interval basis. Using those probes the tool would
be able to generate early alerts for the ongoing suspicious flows. Even though we already
defined the critical threshold values for the symbol density and the symbol frequency, it
would be even better if the values are tuned up according to the specific network
environment.

5 Conclusion

The contemporary network appliance is providing network flow export to the network
monitoring systems. The vendors have already implemented the standards for the exported
data. Besides the basic network measurements and flow baselines we can utilize that data in
a way to build also security analysis. In this paper we have discovered a simple approach
how to “extract” the security characteristics of the network flows. We used a Markov model
definition for creating a flow model. The model was based on the relation between the
previous and the current flow entry exported by the network device. Once the observed
symbol definition was made we developed a tool for collecting the data and emitting the
network symbols according to the alphabet definitions. The collected network words were
analyzed against two characteristics: the symbol density and the symbol frequency
previously defined. The results we receive clearly emerged the thresholds between the
normal flows and the machine generated flows.

There are two major benefits of that simple flow analysis. First, the network security analyst
might be able to easily apply early alerts on the network segments. After the analysis tool is
deployed in the critical network segments it can be used for notifying the administrators or
the network monitor stations for a suspicious network behavior. The second benefit is the
security profiling of the corporate network. The network words could be collected over
longer time period and stored for further profile analysis. If we span the observation time
over a week, we will be able to profile the flows against the business hours. Respectively,
running the observation over a month, quarter, or even a year would build not only the flow
profile but also will establish trends measurements for a longer period.
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