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Abstract: Array-based analysis of chromatin immunoprecipitation data (ChIP-chip)
is a powerful technique for identifying DNA target regions of individual transcrip-
tion factors. Here, we present three approaches, a standard log-fold-change analy-
sis (LFC), a basic method based on a Hidden Markov Model (HMM), and an ex-
tension of the HMM approach to an HMM with scaled transition matrices (SHMM)
to incorporate different promoter pair orientations. We compare the prediction of
ABI3 target genes for the three methods and evaluate these genes using Geneves-
tigator expression profiles and transient assays. We find that the application of the
SHMM leads to a superior identification of ABI3 target genes. The software and
the ChIP-chip data set used in our case study can be downloaded from http://dig.ipk-
gatersleben.de/SHMMs/ChIPchip/ChIPchip.html.

1 Introduction

In recent years, array-based analysis of chromatin immunoprecipitation data (ChIP-chip)
has become a powerful technique to identify DNA target regions of individual transcrip-
tion factors. ChIP-chip was firstly applied to yeast by [RRWT00] and [THST01] based
on promoter arrays. Nowadays, with the availability of sequenced genomes, ChIP-chip is
mostly based on tiling arrays [JLG1T08]. The analysis of ChIP-chip data is challenging
because of the huge data sets containing thousands of hybridization signals. Most of the
available methods focus on the analysis of ChIP-chip tiling array data. Examples include
a moving average method by [KvdLDCO04], a Hidden Markov Model (HMM) approach by
[LMLOS], or TileMap by [JWO05] including both approaches.

Regarding A. thaliana, ChIP-chip is still far from being used routinely. In the trilateral
project ARABIDOSEED, ChIP-chip based on promoter arrays was established for the
seed-specific transcription factor ABI3. ABI3 is one of the fundamental regulators of seed
development that is involved in controlling chlorophyll degradation, storage product accu-
mulation, and desiccation tolerance [VCCO5].

Here, we describe and compare three methods for the detection of transcription factor
target genes from ChIP-chip data. The first method, which we abbreviate by LFC, is a
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standard log-fold change analysis in which the genes belonging to the promoters with the
highest log-fold changes in the intersection of repeated experiments are considered to be
putative target genes. The second method is based on a two-state (target promoter state
and non-target promoter state) HMM. The principle architecture of the HMM follows the
proposed two-state architecture by [LMLOS]. Our approach is extended in that way that
all HMM parameters are directly learned from the ChIP-chip data. The HMM scores all
promoters by the probability of being in the target promoter state, and we consider all
genes belonging to promoters with the highest scores in the intersection of repeated ex-
periments as putative target genes. The HMM allows statistical dependencies between
ChIP-chip measurements of adjacent promoters along the chromosomes. The existence
of such dependencies is clearly shown for ChIP-chip data of ABI3 in Fig. 1. We find
that adjacent promoters in head-head orientation show significantly greater correlations
than promoter pairs in head-tail, tail-head, or tail-tail orientation. The high correlations
in ChIP-chip measurements of head-head promoter pairs can be explained by the array
design: since proximal promoters but not complete intergenic regions are spotted. Thus,
high positive correlations of measurements for head-head promoter pairs result from DNA
segments of the intergenic region that bind to both promoter spots, or fragments of these
segments where some of them bind to the one spot while the others bind to the other spot.
The observation of correlations between ChIP-chip measurements of adjacent promoters
motivates the extension of the HMM approach to an HMM with scaled transition matrices
(SHMM). The general concept of SHMMs was developed by [Sei06] and applied to the
analysis of tumor expression data by exploiting chromosomal distances of adjacent genes
yielding to an improved detection of over-expressed and under-expressed genes. Here,
we use this concept for discriminating head-head promoter pairs from other promoter pair
orientations. The key assumption is that it is more likely for promoters in head-head ori-
entation that both promoters are either target promoters or non-target promoters compared
to other promoter orientations.

We use an ABI3 ChIP-chip data set for comparing the prediction of ABI3 target genes by
the LFC, the HMM, and the SHMM method. We evaluate putative ABI3 target genes using
(i) publicly available expression data from Genevestigator [ZHHHGO04] and (ii) transient
assays to test whether a putative target promoter is controlled by ABI3.

In general, good introductions to HMMs are given by [Rab89] or [DEKM98], extensions
of standard HMMs to HMMs with transition matrices are described in [KSSWO03], and
some more details to SHMMs can be found in [Sei06]. A concept similar to SHMM:s has
been developed by [MDO04] with an application to gene prediction.

2 Methods
2.1 Data acquisition and pre-processing

To determine target genes of the ABI3 transcription factor the ChIP-chip technique by
[RRW00] and [THST01] was applied to A. thaliana wildtype seeds. Isolated DNA frag-
ments bound by ABI3 were amplified, radio-labeled, and hybridized to a macroarray con-
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Figure 1: Pearson’s correlations for the four promoter pair orientations based on log-ratios of
ABI3 ChIP-chip experiments in steps of 250bp within the corresponding gene pair distance inter-
val [3, 10]Kbp. A triangle represents a promoter and the orientation of its tip describes the reading
direction of the gene belonging to this promoter.

taining 11,904 promoters of A. thaliana. The corresponding control sample was obtained
from the input chromatin of the wildtype seeds by fragmentation, amplification, labeling,
and hybridization to another promoter macroarray. In total, each of these two experiments
was repeated five times. In a first normalization step, we center the median of each ex-
periment to zero and perform a quantile normalization [BIAS03] separately for the ABI3
ChIP-chip experiments and the control experiments. In a second step, we combine each
normalized ABI3 ChIP-chip experiment with its corresponding control experiment by cal-
culating the log-ratio o, = Izpr3(t) — Iconmoi(t) for all promoters ¢, where I4p3(t) is
the log,-signal intensity of promoter ¢ in the ABI3 ChIP-chip experiment, and 1,101 (t)
is the log,-signal intensity of promoter ¢ in the control experiment. We map all of the log-
ratios of such an experiment combination to their corresponding positions in the genome
of A. thaliana based on the TAIR7 genome annotation, resulting in one ChIP-chip profile
0 = 01,...,0r per chromosome. As A. thaliana has five chromosomes 25 ChIP-chip
profiles were obtained from the five replicates.

2.2 Standard Log-Fold-Change analysis (LFC) for target gene detection

The log-ratio of a promoter characterizes the potential of the gene belonging to this pro-
moter to be a target gene of the ABI3 transcription factor. Thus, we expect that putative
ABI3 target genes have log-ratios that are significantly greater than zero in repeated ex-
periments. For each of the five replicated experiments, we create a list containing all of
the promoter identifiers of the ChIP-chip profiles of the five chromosomes in decreasing
order of their log-ratios. That is, promoters with log-ratios significantly greater than zero
are at the top of this list. We use these five lists to determine the intersection of the top
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k candidate promoters of each list. This proceeding allows to assess the degree of repro-
ducibility between the five replicates. We interpret all genes belonging to the promoters in
the intersection as putative target genes of ABI3.

2.3 Hidden Markov Model (HMM) for target gene detection

HMM description: We use a two-state HMM A = (S, 7, A, E) with Gaussian emission
densities for the genome-wide detection of putative ABI3 target genes. The basis of this
HMM is the set of states S = {—,+}. State — corresponds to a promoter that is not a
target of ABI3, and state + corresponds to a promoter that is a target of ABI3. We denote
the state of promoter ¢ by ¢; € S, and we assume that a state sequence ¢ = g1, ..., g
belonging to a ChIP-chip profile o is generated by a homogeneous Markov model of order
1 with start distribution 7 = (7_,71) and stochastic transition matrix A = (a;;); jes
where 7_,a__,a4+4 € (0,1), 7y =1 —m_,a_y =1—a__,anday_ =1 —as4.
The state sequence is assumed to be not observable, i.e. hidden, and the log-ratio o, of
promoter ¢ is assumed to be drawn from a Gaussian emission density, whose mean and
standard deviation depend on state ¢,. We denote the vector of emission parameters by
E = (pp—, pby,0_,04) with means p— and p4, and standard deviations o_ and o for
the Gaussian emission density b;(0;) = 1/(v/270;) exp(—0.5(0; — p;)?/c?) of log-ratio
o given state 7 € S.

HMM initialization: In general, an initial HMM has to discriminate ABI3 target pro-
moters from non-target promoters with respect to their log-ratios in the ChIP-chip profile.
Hence, a histogram of log-ratios of all five replicates helps to find good initial HMM pa-
rameters. The choice of initial parameters addresses the presumptions that the proportion
of non-target promoters is much higher than that of target promoters, and that the num-
ber of successive non-target promoters is also much higher than the number of successive
target promoters. In our case study we use 7— = 0.9 resulting in an initial start distri-
bution 7 = (0.9,0.1). Thus, we choose an initial transition matrix A with equilibrium
distribution 7. That is, we set a__ = 1 — s/w_ and a4+ = 1 — s/7 with respect to
the scale parameter s = 0.05 to control the state durations. We characterize the states by
proper means and standard deviations using initial emission parameters p— = 0, p4 = 2,
o_ =1,and o, = 0.5. We refer to the initial HMM by \!.

HMM training: We train the initial HMM based on all ChIP-chip profiles using a
maximum a posteriori (MAP) variant of the standard Baum-Welch algorithm ([Rab89],
[DEKMO98]). This algorithm is part of the class of EM algorithms ([DLR77]), which it-
eratively maximize their optimization function. With respect to the underlying biological
question, the choice of the prior influences the quality of the trained HMM. We include
biological a priori knowledge into the MAP training using a Dirichlet prior with hyper-
parameters Y = ¥, = 2 for start distribution 7, a product of Dirichlet priors with
hyper-parameters ¥, = 1 with a,b € S for transition matrix A, and a product of Normal-
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Gamma priors for emission parameters £ with hyper-parameters 7 = O and 4 = 2 (a
priori means), e_ = e; = 1,000 (scale of a priori means), r_ = 1 and ;. = 100 (shape
of standard deviations), and o = .y = 10~ (scale of standard deviations). The choice
of these prior parameters ensures a good characterization of both HMM states. On that
basis we iteratively maximize the posterior of the HMM A" given all ChIP-chip profiles
resulting in new HMM parameters \"*!. We stop the MAP training if the increase of the
log-posterior of two successive MAP iterations is less than 107,

HMM target gene detection: The state + of the trained HMM A models the potential
of promoters to be targets of ABI3. To quantify this potential we calculate the probability
v(+) = P[Q: = +|O = o, \] for each promoter ¢ within a ChIP-chip profile o to be a
target promoter. This state posterior of state + is computed using the Forward-Backward
procedures of HMMs ([Rab89], [DEKM98]). For each of the five replicated experiments
we create a list containing all of the promoter identifiers of the ChIP-chip profiles of the
five chromosomes in decreasing order of their state posteriors v;(+). We use these five
lists to determine the intersection of the top k candidate promoters of each list. In analog
to the standard LFC approach, we interpret all genes belonging to the promoters in the
intersection as putative target genes of ABI3.

2.4 Hidden Markov Model with scaled transition matrices (SHMM) for target gene
detection

SHMM description: The general concept of SHMMs enables us to analyze ChIP-chip
profiles in the context of orientations of neighboring genes on the DNA. Two directly
neighboring genes on DNA occur either in head-head, tail-tail, tail-head, or head-tail ori-
entation to each other. Among these orientations the head-head orientation is of prime
importance for the analysis of promoter array data. In this orientation the two correspond-
ing genes have the potential to share a common promoter region depending on the distance
between these genes. This fact in combination with the observation that the log-ratios of
promoters for genes in head-head orientation show significantly higher correlations com-
pared to all other orientations is the basis to design a specific SHMM. We assume that it is
more likely for two genes in head-head orientation to show the same promoter status, that
means either ABI3 target or not, in comparison to all other orientations. For that reason
we assign to each pair of successive promoters ¢ and ¢ + 1 of a chromosome one promoter
pair orientation class ¢(d;) depending on the orientation of both promoters to each other
in combination with the chromosomal distance d; of the two genes belonging to these
promoters. The promoter pair orientation class of successive promoters ¢ and ¢ + 1 is

2, tandt -+ 1arehead-head and d; < b
C(dt) = .
1, otherwise

using a pre-defined distance threshold b € N. We incorporate these information into a

—

two-state SHMM A\p = (S, 7, A, f, E) with L = 2 promoter pair orientation classes to
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detect putative ABI3 target genes. The parameters S, 7, A, and E are defined like in the
HMM approach, and f = (f1 == 1, f2) with fo € RT and fo > f; is the vector of
scaling factors. In contrast to the standard HMM approach, we now assume that the state
sequence g of a ChIP-chip profile o is generated by an inhomogeneous Markov model of
order 1 with start distribution 7 and two scaled stochastic transition matrices A7 and A5 for
discriminating head-head orientations from others based on the promoter pair orientation
classes. The transition matrix A; with [ € {1, 2} is defined by

o I e )
fi ay—, ary —1+fi

with respect to the scaling factor f; that scales the expected state duration of state ¢ € S in
Afrom1/(1—ay;)to fi/(1—ay;) in A;. A transition from state g; to state gy 1 is achieved
by using the corresponding transition matrix A.(4,) based on the integrated promoter pair
orientation class ¢(d;). The self-transition probability of each state ¢ € .S increases strictly
from matrix A; to Ao, and thus, for a head-head promoter pair that is modeled by As it
is more likely that both promoters are targets or no targets of ABI3 compared to other
promoter pairs modeled by A;. The log-ratios of promoters are modeled as described in
the HMM approach.

SHMM initialization: The basic initialization of the SHMM is done like for the HMM.
In addition to that, we must choose a distance threshold b for the promoter pair orientation
classes and a scaling factor f5 to specify the degree of differentiation between head-head
orientation modeled by A5 and all others modeled by A;. Motivated by Fig. 1 we always
use b = 9Kbp in our case study because in greater chromosomal distance the correlations
of head-head promoter pairs do not significantly differ from others. Moreover, we consider
all fo from 1.1 to 10 in steps of 0.1.

SHMM training: The SHMM is trained like the HMM using the MAP variant of the
Baum-Welch algorithm with identical prior hyper-parameters. The only difference be-
tween both models occurs during the estimation of their transition matrices. Details of the
parameter estimation are described by [Sei06].

SHMM target gene detection: The putative target genes of ABI3 are determined in ana-
log to the HMM approach. The calculation of the state posterior v;(+) is now done with
respect to the promoter pair orientation classes using the Forward-Backward procedures
of HMMs.
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3 Results and discussion

3.1 Study of differences between HMM and SHMMs

The HMM approach enables us to analyze ChIP-chip data in the context of chromosomal
locations of promoters, and the application of SHMMs extends this analysis by discrim-
inating different types of promoter pair orientations. In a first study, we investigate how
SHMMs behave compared to the standard HMM. For that reason, we use the Viterbi algo-
rithm ([Rab89], [DEKM98]) to compare the most likely state sequence g for a ChIP-chip
profile o under the trained HMM to that of all trained SHMMs with scaling factor fs in-
creasing from 1.1 to 10 in steps of 0.1. Here, the annotation of a promoter ¢ with log-ratio
o is given by ¢; € S, which we interpret as this promoter is either a putative ABI3 target
or not. The scaling factor allows to directly influence the annotation behavior for head-
head promoters. That is, the higher f> the more likely it is that both promoters of such
head-head pairs are either putative ABI3 targets or not, and the closer we choose f, to one
the closer is the annotation behavior of the SHMM to that of the HMM. The results are
illustrated in Fig. 2a. We observe that the number of head-head promoter pairs where both
promoters of such a pair have identical annotations increases for increasing scaling factor
f2, and as consequence the number of head-head promoter pairs where both promoters of
such a pair have different annotations decreases. Obviously, each change in the annotation
of a head-head promoter pair leads either to a change in the annotation of the upstream,
downstream, or both of these promoter pairs. We see that the number of non-head-head
promoter pairs where both promoters of such a pair are annotated as putative ABI3 tar-
gets decreases only slightly for SHMMs with increasing scaling factor fo compared to
the HMM. We clearly see substantially more decrease in the number of non-head-head
promoter pairs where both promoters of such a pair are annotated as putative non-target
promoters for SHMMs with increasing scaling factor f, in relation to the HMM. Conse-
quently, the number of non-head-head promoter pairs where both promoters of such a pair
have different annotations increases with increasing scaling factor f,. This study demon-
strated that the annotation results of SHMMs can differ significantly from that of the HMM
resulting in a more general model for the prediction of putative target genes.

3.2 Comparison of LFC, HMM, and SHMM to predict ABI3 target promoters

We use the LFC method for scoring putative ABI3 target promoters based on the log-ratios
of the promoters neglecting chromosomal locations and promoter pair orientations. For
comparison, we make use of the HMM that models chromosomal locations of promoters
and the SHMM that models chromosomal locations and orientations of promoter pairs
whereas both methods score putative ABI3 target promoters via the state posterior of state
+. In this comparison study we set the threshold for the maximal number of candidates
in a top list to 200 because the mean log-ratio of 1.06 at this level is already relatively
small, and beyond, at a threshold of 300 we did not get new putative ABI3 target genes by
the three methods. Moreover, we use the SHMM with scaling factor fo = 4 in all further
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analyses because this model is already quite different from the standard HMM (Fig. 2a),
and the comparison of this model to SHMMs with scaling factor fo = 6 and fo = 10
yielded identical target promoters. For each approach, we score all five experiments to
determine the intersection of putative ABI3 target promoters for the top 50, 100, 150 and
200 candidates under these experiments. Then, we use Venn diagrams to directly compare
the candidate promoters for these four top lists under all three methods. The results are
shown in Fig. 2b. We observe that the SHMM predicted the greatest number of putative
ABI3 target promoters, whereas the LFC method predicted the smallest number. When
we consider the Venn diagrams from the top 100 list to the top 200 list all candidates that
are predicted by the LFC method are also completely predicted by both the HMM and the
SHMM. In addition to this, the candidates additionally predicted by the HMM from the
top 150 list to the top 200 list are completely predicted by the SHMM. In summary, this
emphasizes that the SHMM approach tends to be more general in the prediction of putative
ABI3 target promoters than the HMM and the LFC approach.
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Figure 2: a): Frequencies of promoter pair annotations of the trained SHMM( f2) with scaling factor
f2 € [1.1,10] in steps of 0.1 in relation to the trained HMM based on Viterbi annotations. The
grey gradient in the upper part expresses the quantity of annotation differences whereas the HMM is
encoded by the grey with value zero. The annotations ++, ——, and + — / — + of promoter pairs
mean that either both promoters are putative targets, non-targets, or only one promoter is a putative
target of ABI3. b): Venn diagrams to compare putative ABI3 target promoters predicted by the LFC
method, the trained HMM, and the trained SHMM(4.0).

3.3 Gene expression analysis of putative ABI3 target genes belonging to predicted
ABI3 target promoters

Next we investigate how putative target genes are regulated by ABI3. Therefore, we use
Genevestigator [ZHHHGO04] as independent source of A. thaliana gene expression data
to analyze putative target genes. In Genevestigator, ABI3 is mainly expressed within the
categories inflorescence, silique, and seed. Based on that, we quantify the expression of all
putative target genes by dividing the sum of expression values within these three categories
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by the sum of expression values in all categories. This provides a quantitative measure,
which we call Genevestigator score, for analyzing how a putative ABI3 target gene fol-
lows the expression profile of ABI3. Additionally, transient assays have been performed
to test whether putative target promoters in fusion with the glucuronidase (GUS) reporter
gene react on ABI3. The results are shown in Tab. 1. Calculating the Genevestigator
score, 16 of 22 putative target genes show significantly high scores at the level of the 95%-
quantile 0.15 based on the distribution of the Genevestigator scores for 1,000 randomly
selected genes. The promoters of these 16 genes have been tested in transient assays, and
we find that 15 of these promoters can activate the GUS expression through ABI3, and the
promoter of gene T21 shows nearly a two-fold repression of the GUS expression. Interest-
ingly, the genes T21 and T22 are in head-head orientation to each other, and so they have
the potential to share a common promoter region. Based on the results of the transient
assays the first gene might be repressed while the second is activated. Hence, it seems
that activation and repression signals can be transmitted by ABI3 to these two target genes
in head-head orientation via a potential common promoter region. Additionally, we point
out that only the SHMM approach was able to predict 3 of these 15 target genes activated
by ABI3 and the one target gene repressed by ABI3. In contrast to these 16 target genes,
the 6 remaining putative target genes do not significantly differ in their Genevestigator
scores at the level of the 5%-95%-quantile range [0.02,0.15] based on the distribution of
the Genevestigator scores for the 1,000 randomly selected genes. Interestingly, 5 of these
6 putative target genes are in head-head orientation to one of the previous target genes ac-
tivated by ABI3, and so the potential common promoter region can already receive signals
from ABI3. Next we address the question if these 6 putative ABI3 target genes are also
under control of ABI3 via the potential common promoter region. To test this hypothesis,
the promoters of 4 of these 6 putative target genes have been tested in transient assays.
The promoters of the genes T2 and T11 show a low activation of the GUS expression,
the promoter of gene T13 shows a two-fold repression of the GUS expression, and the
promoter of gene T9 does not seem to react on ABI3. In addition to this, gene T13 is in
head-head orientation with gene T23 that is not represented by its own proximal promoter
fragment on the promoter arrays. The Genevestigator score of T23 is significantly higher
than those of the 1,000 random genes at the level of the 95%-quantile, and the promoter
of this gene shows activation of the GUS expression in a transient assay. Hence, this gene
pair seems to behave like the gene pair T21 and T22. In summary, independent gene ex-
pression profiles from Genevestigator give first hints which genes might be activated by
ABI3. Additionally, transient assays help to validate this results if the underlying test sys-
tem is capable of simulating the natural situation in seeds. Twenty percent of the ABI3
activated target genes with high Genevestigator scores could only be predicted through the
application of the SHMM approach and would have been missed using the LFC or HMM
approach. Moreover, the SHMM predicted over forty percent more putative ABI3 target
genes compared to the LFC method. For these 9 genes the promoters of 7 have been tested
in transient assays whereas 1 promoter does not react, 1 represses the GUS expression, and
the 5 others activate the GUS expression. This results emphasize the relevance of SHMMs
in the detection of ABI3 target genes.
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ID LFC HMM SHMM(4.0) Genevestigator Transient Assay
T1 1 1 1 0.94 5
T2 1 1 1 0.11 25
T3 1 1 1 0.86 12
T4 0 0 1 0.03 -
TS 0 0 1 0.39 3
T6 1 1 1 0.72 15
T7 1 1 1 0.90 7
T8 0 0 1 0.46 12
T9 0 0 1 0.07 1
T10 0 0 1 0.95 6
Tl1 0 1 1 0.09 2
TI12 1 1 1 0.74 24
TI13 1 1 1 0.09 0.4
T14 1 1 1 0.93 8
T15 0 1 1 0.10 -
Tl6 1 1 1 0.95 27
T17 1 1 1 0.98 27
TI8 0 1 1 0.98 27
T19 1 1 1 0.98 27
T20 1 1 1 0.57 8
T21 0 0 1 0.20 0.6
T22 1 1 1 0.81 30

Table 1: Overview of predicted ABI3 target genes at the level of the top 200 candidates in Fig. 2b.
The ID column contains anonymized target gene identifiers (our biologists prepare a manuscript dis-
cussing target genes). The numbers 1 and 0 in the method columns LFC, HMM, and SHMM(4.0)
encode whether a gene is predicted or missed. Genevestigator quantifies the gene expression of a
target gene within the categories inflorescence, silique, and seed as described in Section 3.3. Tran-
sient Assay contains the measured fold-change for a target gene promoter under ABI3 expression
vs. target gene promoter lacking ABI3 expression.

4 Conclusions and outlook

We introduced the LFC, the HMM, and the SHMM approach for the analysis of ChIP-chip
promoter array data and compared these methods on ABI3 ChIP-chip data. The motivation
for the usage of HMM s is based on the observation of positive correlations between ChIP-
chip measurements of adjacent promoters on the DNA (Fig. 1). Especially, the SHMM
approach is motivated by the fact that ChIP-chip measurements of head-head promoter
pairs show significantly higher correlations than those of other promoter pair orientations.
Based on SHMMs, we demonstrated that discriminating promoters in head-head orien-
tations from other promoter orientations can lead to significantly different predictions of
target and non-target promoters compared to the HMM (Fig. 2a). Regarding all three
methods, the SHMM predicted the highest number of putative ABI3 target promoters and
all target promoters predicted by the LFC or the HMM have been included (Fig. 2b), but
the number of predicted putative ABI3 target promoters is not an optimal criterion to de-
cide which of the methods should be preferred. For this reason, we used publicly available
expression profiles from Genevestigator to analyze how a putative target gene follows the
expression profile of ABI3, and transient assays have been performed to test whether the
promoter of a putative target gene reacts on ABI3 (Tab. 1). We showed that expression
data from Genevestigator can give first hints which genes might be activated by ABI3, and
that the validation can be done by transient assays. Twenty percent of the target genes with
significantly high Genevestigator scores and activation in transient assays could only be
predicted by the SHMM and would have been missed by the LFC or HMM approach. In
total, the SHMM predicted more than forty percent more putative target promoters (9 of
22) compared to the LFC method. Seven of these promoters have been tested in transient
assays whereas one promoter does not react, one represses the GUS expression, and the
five others activate the GUS expression. Taking this together, we conclude that the SHMM
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can be seen as the more general model that should be preferred for the prediction of ABI3
target genes. We conjecture that the proposed SHMM might possibly be useful for the
analysis of other promoter array ChIP-chip data.

In the future, the study of seed development continues. For instance, we are awaiting
ChIP-chip data of the transcription factors LEC1, LEC2, and FUS3. This will provide us
first insights into the transcriptional regulatory network involved in seed development. In
cooperation with us, our biologists prepare a manuscript with details to the ABI3 ChIP-
chip experiments including the discussion of ABI3 target genes.
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