Reptint

Hauptschriftleiter: Dr. P. Schmitz, KéIn
Redaktion: Dipl.-Volkswirt W. Eicken

Wissenschaftlicher Beirat:

Dr. H. Christen, Hamburg

Dr. E. Glowatzki, Darmstadt

Dr.-Ing. F. R. Giintsch, Bonn

Prof. Dr. W. Haack, Berlin

Prof. Dr. H. Herrmann, Braunschweig
Prof. Dr. W. Kémmerer, Jena

Dr. F. J. P. Leitz, Freiburg/Breisgau

Dr. K. Tjaden, Béblingen

Dr. rer. nat. R. Veelken, Miinchen

Prof. Dr. A. van Wijngaarden, Amsterdam

elektronische

datenverarbeitung

electronic data processing

M Friedr. Vieweg + Sohn Braunschweig

Wichtige Themen im Jahr 1969:

Important topics of 1969:

Beister, H.-)., Zur Technik der Segmentierung von Programmen bei
Rechenanlagen mit kleinem Kernspeicher

Berger, B./Seibt, D./Strunz, H., Bibliographie des Betriebswirtschaftlichen
Instituts fiir Organisation und Automation an der Universitat zu
Kéln zum Thema ,Programmiersprachen”

Berr, U./Miiller, H. E.-W., Ein heuristisches Verfahren zur Raumverteilung
in Fabrikanlagen

Christensen, K., Moderne Methode zur Datenerfassung, Die direkte
Belegverarbeitung durch optisches Lesen off-line

Christodoulopoulos, A. F., Die Strukturierung der dezentralen Daten-
erfassung eines Handelsunternehmens mit mehreren Verkaufs-
niederlassungen

Clausert, H./Kahlert-Warmbold, 1., Untersuchung digitaler Schaltungen
mit dem Programmsystem DICAP

Eckmann, J.-P., Gedanken zur rekursiven Programmierung von PERT-
Problemen

Engels, H., Ein modifiziertes vorzeichenrichtiges Graeffe-Verfahren

Fehler, D. W., Die Variationen-Enumeration — ein Naherungsverfahren zur
Planung des optimalen Betriebsmitteleinsatzes bei der Terminierung
von Projekten

Feichtinger, G., Ein Markoffsches Lernmodell fur Zwei-Personen-Spiele
Fialkowski, L., Die Zeichenmaschinensteuerung GEAGRAPH 2000

Gallrein, D., Das Zuordnungsverfahren im automatischen Multi-Radar-
Beobachtungssystem

Grochla, E., Betriebsinformatik und Wirtschaftsinformatik als notwendige
anwendungsbezogene Ergénzung einer allgemeinen Informatik

Giinther, G.! Neuere Fortschritte bei der Fourier-Transformation

Heinrichsdorf, F., Numerische Methoden bei der Berechnung groBer
Netze mit Hilfe elektronischer Rechenanlagen in einfacher Darstellung

Henke, M., Grenzwerte-Approximation dynamischer Optimierungsansatze,
angewandt auf ein sequentielles Investitionsproblem

Hirsch, H.-J., Zur formalen Beschreibung von Automatennetzen |

Holtz, G./Spaniol, O./Stucky, W., Statistische Untersuchungen von
Digitalfiltern :

Jankowski, E., Die Planung van EDV-Organisationeﬁ in der Verwaltung

Klevers, E., Automatische Zeichensysteme in der Datenverarbeitung

Kremeér, H., Praktische Berechnung des Spektrums mit der Schnellen
Fourier-Transformation - .

Kupper, H., Computer und musikalische Kompositionen

Kéhler, R., Entwicklung und Situation der Elektronischen Daten-
verarbeitung in der DDR

Lang, B., Wie arbeitet ein computergesteuertes Warenverteilungszentrum?

Lazak, D., Programmierung und Test einfacher Kollisionsstrategien zum
Stundenplanproblem

Lazak, D., Datenverarbeitung in der Hochenergiephysik Auswertung von
Blasenkammeraufnahmen

Lewandowski, R., Zu einer internationalen Bibliographie der Netzplan-
technik (1962-1967)

Lewandowski, R., Modelle und Methoden der ékonomischen Vorhersage
Lindemann, P./Nagel, K., Literatur zu betrieblichen Informationssystemen

Maravent, l., Anwendungsbereich eines Hybrid-Systems (EAI 690, 7945,
8900)

Marguerat, C./Contestabile, B., TPS Il ein Programmsystem fur die
kapazititsabhangige Feinplanung und Steuerung der Eigenteile-
fabrikation

Mansell, G. H., Lichtschreiber- und Computertechniken fiir den Entwurf
von Bauplénen

Menne, K., Lochkarte oder Magnetband zur Datenerfassung

Miiller-Merbach, H., Sensibilitidtsanalyse von Transportproblemen der
linearen Planungsrechnung (mit ALGOL-Programm)

Miiller, R., Teilnehmer-Rechensysteme
Niedereichholz, J., Some Extensions of the Flow Graph Theory

Olbrich, J./Maciey, S./Loleit, D., Die physische Installation von EDV-
Anlagen

Pape, U., Kiirzeste Wege in asymmetrischen Netzwerken zwischen
einem festen Knoten und beliebigen Knoten

Pape, U., Eine Bibliographie zu ,Kiirzeste Weglédngen und Wege in
Graphen und Netzwerken”

v. Peschke, J., Eine als Metasprache verwendbare héhere Programmier-
sprache

Poths, W., Die Bedeutung problemorientierter SOFT-WARE fur die
Gestaltung betrieblicher Anwendungssysteme

Schmidt, W. P., Grundlagen, Verfahren und Datenorganisation fur die
Teilebedarfsermittiung (Sticklistenauflésung)

Scholz, H./Steinbock, R., Die Untersuchung der Wirtschaftlichkeit einer
automatisierten Datenverarbeitung (ADV)

Schén, B., Ein ALGOL-Programm zur Lésung von EngpaB-Zuordnungs-
problemen

Seed, M. C./Beddoes, R. L., Rapid, Automatic Crystallographic Data
Collection Evolution of the Computer-controlled Fourcircle Diffractometer

Weber, B., Installationsplanung einer EDV-Anlage mit Hilfe der Netz-
plantechnik

Wedekind, H., Die Konstruktion eines optimalen Zugriffsbaumes fur
Datenorganisationen innerhalb einer Datenbank

12. Jahrgang, 1970 - 12 Hefte jahrlich

Abonnementspreise:
1 Jahr DM 126,~ zuzuiglich Versandspesen

2 Jahre DM 226,80 zuziglich Versandspesen
Einzelheft DM 15,—-

Volume 12, 1970 — 12 issues

Subscription rates:

1 year $ 36.00 £ 14.10.0 (plus postage)
2 years $ 65.00 £ 26.0.0 (plus postage)
Single copy $4.20 £1.15.0

Hauptschriftleiter: Dr. P. Schmitz, KoIn
Redaktion: Dipl.-Volkswirt W. Eicken

elektronische

Wissenschaftlicher Beirat:

Dr. H. Christen, Hamburg

Dr. E. Glowatzki, Darmstadt

Dr.-Ing. F. R. Glntsch, Bonn

Prof. Dr. W. Haack, Berlin

Prof.Dr. H. Herrmann, Braunschweig
Prof. Dr. W. Kdmmerer, Jena

Dr.F. J. P. Leitz, Freiburg/Breisgau
Dr.K. Tjaden, Béblingen

Dr. rer. nat. R. Veelken, Mlinchen

datenverarbeitung

Fachberichte liber
programmgesteuerte Maschinen und ihre Anwendung

Heft 10/1970

12. Jahrgang
Prof. Dr. A. van Wijngaarden, Amsterdam

PEARL)

The Concept of a Process- and Experiment-oriented Programming Language

J. Brandes1), S. Eichentopf?), P. Elzer3), L. Frevert4),
V. Haase), H. Mittendorf5), G. Mliller®), P. Rieder5)

Summary: The main features of a programming language for on-line-control of industrial processes and scientific
experiments are described. Mainly discussed are the connections between the program and the process environment,
the management of storage space and parallel activities, the synchronization of tasks, and the non-standard input-
output. The paper describes structure and semantics of the language, but does not yet give an exact and definitive
syntax.

Zusammenfassung: Dieses Konzept beschreibt die wesentlichen Eigenschaften einer Programmiersprache der
Mittelebene flir Anwendungen in der industriellen ProzefBsteuerung und in der Experimentiertechnik. Es werden haupt-
sidchlich die Verkopplung des Programms mit der ProzeBumwelt, die Speicherverwaltung, die Steuerung und Synchroni-
sierung der Parallelarbeit und nicht standardmiBige Ein-/Ausgabemdglichkeiten beschrieben. Der vorliegende Bericht
beschreibt Struktur und Semantik der Sprache, nicht aber eine exakte Syntax, die nochvon der "PEARL" - Arbeitsgruppe
erarbeitet werden wird.

1. Introduction

In recent years it has been realized by many people that
higher level programming languages like those for com-
mercial or scientific applications will be advantageous
and even necessary also in the fields of process and
experiment automation [1, 2, 3]. Some proposals, such

as RTL [4] or an extension of PL/1 [5] also proved the
fundamental possibility of expressing specific charac-
teristics of process and experiment programs by a higher
level programming language.

The possibility of implementation had been doubted for
quite a long time; however, it has been demonstrated
meanwhile by the existence of some solution applicable
to partial fields [6, 7].

elektronische datenverarbeitung 10/70

1.1. Fundamentals of the "PEARL" Concept

"PEARL" is a compilable programming language of the
intermediate level, such as ALGOL or PL/1, since this
type of language offers maximum flexibility in addition
to easy handling and learnability. Since a relatively large

*) Process and experiment automation realtime language

GfK-DVZ, Karlsruhe

AEG-Telefunken, Konstanz

Physikalisches Institut III der Universitidt Erlangen
Hahn-Meitner-Institut fiir Kernforschung, Berlin
Siemens AG, Karlsruhe

Fa. BBC, Mannheim

-

2

W

5

)
)
)
)
)
)

)

429

number of language elements are required in order to

be able to treat also more complex problems, it is
intended to define self-contained, fully upward compatible
subsets for smaller computing systems. A brief sum-
mary is given of both the main features of a program for
process applications, which practically prevent its being
written in a conventional programming language
(FORTRAN, ALGOL 60, COBOL, etc.), and means of so-
lution proposed by the "PEARL" concept.

1.1.1, Machine Dependence

In a computer program for process application also the
entire peripheral equipment must be described and
selected which, in most cases, may be of non-standard
design and more diversified than in commercial or
scientific applications of electronic data processing. Due
to the improbability of standardizing all possible hard-
ware configurations and describing them uniformly at
the level of an advanced programming language, a
"PEARL" program is subdivided in principle into a sy-
stem dependent part, the system division, and the
problem division which is largely independent of
the system. The system division provides the link
between the process peripheral equipment and the pro-
gram, whilst the problem division constitutes the
control or measuring program proper. Thus, only the
system division has to be modified when passing
from one type of computer to another (Chapter 3.).

1.1.2, Parallel Activities

Usually a process program during operation splits up
into a varying number of parallel "tasks" [8] some of
which are performed completely independent of each
other while others are correlated to each other, i.e.,
they have to be synchronized. The "task" is considered
to be dynamical, i.e., it consists in the successive pro-
cessing of one or several pieces of code. The process
program is characterized by the interaction between the
tasks which is made possible by synchronization with
the help of semaphores [9] (Chapter 4.1.-4.4.).

1.1.3. Running Time and Storage Management

In a "normal" computer program, the aggregate compu-
ting time in principle does not matter. It is sufficient
that the program will be terminated within a period of
time reasonable for the user. However, since a process
program, in most cases, must meet preset reaction
times which, in the most extreme cases, may be of the
order of a few cycle periods (e. g., application in nuclear
physics experiments) the programmer must have more
influence on the object code than he has in conventional
programming languages.

A related problem is the management of storage allo-
cation, Since often parts of the program code will be
stored on some backing storage medium, the time for
loading the code must be included into the running time
of a task. The programmer must have the possibility to
act on the time of loading as well as on the size of the
code pieces to be loaded, though the working storage
allocation shall be automated as far as possible
(Chapter 4.5.).

1.1.4. Input/Output

In process programs there must be much more possi-
bilities of input and output than in programs for commer-
cial, scientific, or technical applications.

430

A concept describing input and output was developed
which will allow the handling of nearly all the input and
output operations encountered in process technique under
uniform aspects (Chapter 5.).

1.1.5. Types of Data and Language Features

In this respect, the familiar programming languages
(ALGOL 60 and FORTRAN) prove to be unsufficient.
Therefore it became necessary to include in the language
more complex types of data, such as lists or structures.
It has been attempted to combine all the elements of
modern programming languages which are required for
process purposes (PL/1, ALGOL 68), but to eliminate
too expensive and rarely used types and, if necessary,
replace them by new elements [10,11] (Chapter 2.).

1.1.6. Relations to the Operating System

A programming language allowing interventions into
functions of the operating system necessitates also a
certain standardization of the properties of the opera-
ting system, e. g., uniform treatment of the interrupts.
To obfain efficiency and satisfactory compatibility of
process computing programs in a higher level program-
ming language, the definition of certain minimum
requirements will be needed which must be met by an
operating system for a process computer.

1.2, Mode of Description

It has intentionally been avoided in this concept to pro-
pose an exact syntax of "PEARL'", In exceptional cases
where this is done, however, the usual notation of PL/1
is adopted [12].

2. Basic Language
2.1, Fundamentals
2.1.1. Character Set

The character set consists of approx. 60 characters in-
cluding the latin alphabet, the decimal digits and certain
special characters which are in common use.

2.1.2, Delimiters

Delimiters consist either of sequences of n(n> 1) special
characters (except blanks), or of sequences of m (m = 2)
letters (keywords). How or whether keywords are to be
reserved, i, e, identical identifiers will have to be for-
bidden, depends on the exact definition of the language
structure and, therefore, cannot be decided now.

2.1.3. Comments

A comment may be placed at every location in a pro-
gram where a blank may be written; this comment will
be enclosed by special characters as in PL/I.

2.1.4. Block Structure and Procedures

The language has a block structure similar to that of
ALGOL 60 and PL/I with its consequences, especially
regarding the scope of declarations.

Procedures will be treated similarly to those in ALGOL 60;
to simplify matters, however, certain restrictions must

be observed, e. g. regarding call by name of parameters.
All formal parameters must be specified (as in

ALGOL 60), [13].

elektronische datenverarbeitung 10/70

2.1.5. Identifiers and Declarations

Identifiers are sequences of alphanumeric characters in
which the first character is a letter. Identifiers, in ge-
neral, refer to data (values) of a certain type (variables).

All identifiers used must be declared in the program;

the scope of the declaration is the block in which the
declaration is contained. Identifiers can also be decla-
red, in certain cases, in the system division (see 3.),
where the scope of the declaration is the entire pro-
gram, Initialization of identifiers in declarations is
possible.

Declarations not necessarily stand at the beginning of a

block. If, however, an identifier ig to be initialized in its
declaration, this initialization must be dynamically exe-
cuted before the identifier is used for the first time.

Besides identifier declarations, there are also type de-
clarations (see 2.2.2.2.) and operator declarations
(see 2.3.2.).

2.2, Types

There are certain basic types from which, according to
specific rules, compound types can be formed.

2.2.1. Basic Types

Basic types are INTEGER and REAL of different precision,
BINAL (bit string) of different length, STRING (character
string) of different length, SEMA, FILE and ADDRESS.

A type BOOLEAN or LOGICAL is not required, as it can
be represented with BINAL of length 1.

The declaration symbols and the forms of constants will
be decribed in the following sections.

2.2,1.1, INTEGER and REAL

Declaration symbols : INTEGER (n) and REAL (n) where

n is the minimum number of decimal digits to be compri-
sed within the mantissa. If (n) is missing, an imple-
mentation-dependent stadard length or precision will be
assumend. By writing REAL (n), the next implemented
mantissa length, which is not less than (n), will be taken,

Constants of the type INTEGER will be specified as a
sequence of n(nz> 1) consecutive decimal digits. Con-
stants of the type REAL will be specified, similarly to
PL/I, as decimal constants which are not integer con-
stants. Blanks within one number are not permitted. The
internally used mantissa length is the next implemented
one which is not smaller than the number of digits in the
constant,

2.2.1.2. BINAL

Declaration symbol: BINAL (n) where (n) is the number
of bits, If (n) is missing, an implementation-dependent
standard length will be taken,

In arrays and structures BINALs will be closely packed
within limits of the effective addressability, in order to
save storage capacity. For BINALs not in arrays and
structures, the next implemented bit string length, not
less than (n), will be taken.

Constants of the type BINAL can also be specified in
octal notation with the digits 0 to 7, and in sedecimal
notation with the digits 0 to 9, and the letters A to F,

Example: '110100101011'B binary
'6453'0 octal
'D2B'S sedecimal

elektronische datenverarbeitung 10/70

The notation of the BINAL constants is not as yet
finalized.

2.2.1.3. STRING

Declaration symbol: STRING (n)

where (n) is the maximum number of

characters contained in a string.

STRING constants will be enclosed in apostrophies.
Example: 'ANTON + BERTA'

2.2.1.4. SEMA

Declaration symbol: SEMA
A variable of the type SEMA can only assume integer
values and is used to synchronize tasks (see 4.4.).

2.2.1.5, FILE

Declaration symbol: { SEQUENTIAL|RANDOM} FILE
(unit identifier, pages/file, lines/
page, characters/line)

FILE identifiers occur as parameters in I/0 procedures.
There are two types of FILEs, the SEQUENTIAL FILE
in which only sequential reading and writing is possible
and the randomly addressable RANDOM FILE.

FILE specifies data organized in pages, lines and cha-
racters and stored on external storage [11]. The decla-
ration contains, therefore, the name of the unit (e. g.
drum, disc), the number of pages per file, lines per
page and characters per line.

2.2.1.6. ADDRESS
Declaration symbol: ADDRESS

Variables of the type ADDRESS have as values ADDRESS
constants, i. e. identifiers (also subscripted) of variables
which must not be of the type ADDRESS.

There are three address levels:

Level 2: ADDRESS variable, i. e, identifiers which indi-
cate values of the type ADDRESS;

Level 1 : ADDRESS constants, i, e. identifiers which indi-
cate values excluding those of type ADDRESS;

Level 0: Values which are not of the type ADDRESS.

The following addressing mode is used for assignment:
The left side of an assignment, i.e, the side to which the
right side is assigned, must be on level 1 or 2 of the
address levels mentioned above. The level of the right
side of an assignment, i, e. the side which will be assigned,
must come directly under the level of the left side.

Hence:

Left side | Right side
Level 2 Level 1
Level 1 Level O

Accordingly, the level of the right side will be automati-
cally adjusted to the specified level of the left side, as
far as this is possible.

Example :

REAL A, B;
ADDRESS POINTER 1, POINTER 2;

431

A =57
/* LEFT: LEVEL 1; RIGHT : LEVEL 0; CLEAR. */;

B:=A

/* LEFT: LEVEL 1;
RIGHT : NEXT ALSO LEVEL 1, AFTER ADJUST-
MENT TO LEFT SIDE LEVEL 0, I, E. THE VALUE
(HERE 5.7), INDICATED BY A, WILL BE
ASSIGNED TO B.*/;

POINTER1 := A

/* LEFT: LEVEL 2;
RIGHT : LEVEL 1; !
THE ADDRESS-VARIABLE POINTER 1 ASSUMES
IDENTIFIER A AS VALUE. ¥/;

POINTER 2 := POINTER 1

/* LEFT: LEVEL 2;
RIGHT : NEXT ALSO LEVEL 2, AFTER ADJUST-
MENT TO LEFT SIDE LEVEL 1, I. E. THE VALUE
(HERE A), INDICATED BY THE POINTER 1 WILL
BE ASSIGNED TO POINTER 2, AFTER WHICH
BOTH ADDRESS-VARIABLES INDICATE A.*/;
POINTER1 := 3.9

/* LEFT : LEVEL 2;
RIGHT : LEVEL 0;
FALSE, BECAUSE BOTH SIDES ARE NOT AUTO-
MATICALLY ADJUSTABLE. ¥/;
VALUE POINTER1 := 3.9
/* LEFT: LEVEL 1 BECAUSE OF THE OPERATOR

VALUE APPLICABLE TO THE ADDRESS-VARIA-
BLE; RIGHT : LEVEL 0;

EFFECT: AS FOR A := 3.9, BECAUSE POINTER 1
INDICATES A. ¥/;

Also see example under 2.2.3.

Further details regarding the handling of ADDRESS
variables are not, as yet, finalized.

2.2,2. Compound Types
2.2.2.1. Arrays

Arrays consist of elements of the same type. This type
can be a basic type with the exception of SEMA and
FILE, or a structure.

An example of a declaration for a two-dimensional array
with elements of the type REAL and with the identifier
MATRIX is as follows:

(5:100,1:7) REAL (10) MATRIX

When transposing arrays to storage, the last subscript,
i, e, the subscript at the extreme right-hand location,
will be transposed one at a time ("line" transposition).

An element in an array will be addressed by an array
identifier and a subscript list.

Example : MATRIX (7*J,3) /* E.G. J=4 %/

Furthermore, sections of an array can be addressed,
which consist of more than one element.

432

Examples: 1) Call of the entire second column of the
matrix declared above :

MATRIX (, 2) or MATRIX (¥, 2)

2) Call of a section of the second column of
the matrix declared above:

MATRIX (8:N,2) /*E.G. N=55 %

According to this, the whole matrix could be addressed by
MATRIX (,) or MATRIX (*,%)

the array identifier alone is, however, sufficient for this
purpose.

Examples of array constants:

1) Constant vector with three components :
(6,7,9)

2) A matrix
3 -5
79
will be written as:
((3’ = 5), (7’ 9))

2.2.2.2, Structures

Structures will be formed from elements of (not necessa-
rily) different types. The type of a particular element
can be a basic type with the exception of SEMA and FILE
or a structure or an array.

Structure identifiers will be declared similarly to those
in ALGOL 68, whereby the structure type is used either
directly as the declaration symbol, or by using a decla-
ration symbol which has been explicitely declared in a
type declaration,

Example : Declaration of an identifier (e.g. C) for com-
plex values:

1st possibility : STRUCTURE (REAL RE, REAL
IM) C; or shorter;

STRUCTURE (REAL RE, IM)
C;

2nd possibility : TYPE COMPLEX = STRUC -
TURE (REAL RE, IM)
/* PURE TYPE DECLARA-
TION */;
COMPLEX C
/* (NOT NECESSARILY
DIRECTLY) FOLLOWING
IDENTIFIER DEC LARATION */;

The declaration of a structure type therefore contains

a list of the elements of the structure. The list elements
each contain a declaration symbol (e. g. REAL, INTEGER
etc.) and an identifier which is used to address the struc-
ture element so designated (see below). If the same de-
claration symbol applies to a consecutive sequence of
list elements, it only has to be located with the first list
element (seelst possibility in example above).

A structure element is addressed by an element identi-
fier and a structure identifier.

Example: RE OF C resp. IM OF C
or shorter:

RE.C resp. IM.C

An element of a structure, which is itself an element of
an array, will be addressed by, e. g.

elektronische datenverarbeitung 10/70

ELEMENT 3. ARRAY (I)

An element of an array, which is itself an element of a
structure, will be addressed by, e. g.

ELEMENT 2 (I) . STRUCTURE

Examples of structure constants:
1) (5.7,'101'B, 115,'ABC")

2) Two element structure constant, whose first element
is also a structure:
((5.7,'ABC"), 97)

3) Structure constant, whose second element is an
ADDRESS constant :
(5.7, ANTON)

4) Structure constant, whose second element is a one-
dimensional three element array constant:
(5.7,(1,2,1))

2.2.3. Example of a circular concatenated list

(1:100) STRUCTURE (REAL CONTENTS, ADDRESS
REFERENCE) LIST

/* DECLARATION OF THE IDENTIFIER LIST WHICH
INDICATES AN ARRAY OF STRUCTURE
ELEMENTS. ¥/;

FOR I TO 99 DO REFERENCE. LIST (I) : = LIST (I+1);
REFERENCE . LIST (100) : = LIST (1)

/* OCCUPANCY OF THE STRUCTURE ELEMENT
REFERENCE IN ALL LIST ELEMENTS WITH THE
SUBSCRIPTED IDENTIFIER OF EACH OF THE
NEXT LIST ELEMENTS. */;

ADDRESS POINTER : = LIST (100)
/* DECLARATION OF THE ADDRESS-VARIABLE
POINTER WITH INITIALIZATION. */;

The result is illustrated by figure 1.

An entry into the list, thus prepared, will be effected by
the following two statements:

POINTER := REFERENCE . VALUE POINTER
/* SET POINTER TO NEXT LIST ELEMENT. */;

CONTENTS . VALUE POINTER : = /* CONTENTS TO BE
ENTERED */;

2.2.4, Conversions between data of different types

Type conversions which are required frequently in ex-
pressions, are done automatically. Standard functions
are provided for further conversions. When the compiler
recognizes that a type conversion is to be made in an
expression, a warning message may be output.

LIST) LIST(2)
A A
CONTENTS.REFERENCE CONTENTS.REFERENCE
LIST (1) LIST (D LIST (2) LIST (2) _
undefined LIST (2) undefined LIST (3)

2.3. Operators
2.3.1, Classification

Provision has been made for the monadic operators +
and - for arithmetic operands, NOT for BINAL operands
as well as VALUE for ADDRESS variables and the follo-
wing dyadic operators:

1) for arithmetic operands:

exponentiation

integer division,

remainder of integer division (modulo),
normal division,

multiplication,

addition,

subtraction

and the conventional six comparisons
(<, >,<,2,=, #)

2) for BINAL operands:

conjunction,

disjunction,

equivalence,

antivalence,

shift (direction indicated by the sign of the number of
shift-steps), selection of an individual bit and conca-
tenation,

3) for STRING operands :

concatenation
and comparisons;

4) for ADDRESS operands:

comparisons.

2.3.2. Operator Declarations

Operator declarations are provided with the restriction
that only operator symbols which already exist can be
extended to newly declared types by using such a decla-
ration; the existing operator priorities must not be
altered.

2.4, Executable Statements
The following are provided:

- assignments,

— go to statement,

— repetitive statement similar to ALGOL 68,

— switch statement similar to CASE clause in ALGOL 68,
—~ compound statement,

— conditional statement (IF statement in ALGOL 60),

— interrupt response (ON statement, see 4.3.1.),

— task statements (see 4.2.)

— procedure statement (see 2.1.4.),

— statements for SEMA variables (see 4.4.3.).

]

elektronische datenverarbeitung 10/70

LIST (100)
D\
CONTENTS. REFERENCE
LIST (100) LIST (100)
undefined LIST (D
Fig. 1
Example of a circular
concatenated list
LPo/nl'er

433

2.5. Standard Functions and Standard Procedures

Besides the usual mathematical standard functions,
standard functions and standard procedures for bit handling
are also provided (selection of bit sequences from BINAL
data); string handling (selection of characters and cha-
racter sequences from STRING data), type conversions,
input/output (see 5.) and special functions are likewise
provided for.

3. The System Division
3.1. Purpose

The system division connects the actual process-
program with the environment. It is used to describe the
machine configuration on the language level.

It contains parts of a "job control language", it supplies
information for the generation of that part of the opera-
ting system that is necessary for the special program
and it allows an optimization of resource allocation. It
further connects external devices and process interface
hardware with symbolic names, that are to be used in
the problem part.

An extensive use of symbolic names in the problem
division makes programming easier and improves the
readability of the computer program.

By the computer description the compiler is'in-
formed about e. g. the type, model and memory size of
the machine used.

The configuration description specifies the
extend and the structure of the used peripherals. Each
external device and process-interface is connected with
an identifier. In the same instance the datapath from the
central unit to the terminal device is described. By na-
ming only those peripherals that are used by the pro-
gram, it may be possible to minimize the I/0-package
linked to the program.

In the interrupt description the interrupts gene-
rated by the system are matched with identifiers, that
can be referred to in the problem division. Here
also a certain optimisation of the interrupt decoding
routines may be performed.

In the flag description status information of the
hardware is depicted onto BINAL strings, and can so be
tested in the problem part.

3.2, Syntax of the System Division

3.3. Computer Description

The begin of this part is identified by the keyword
MACHINE, it contains information about :

a) type (keyword: MODEL)

b) features of the processing unit

c) size of working storage (keyword : SIZE)
d) channels (keyword : CHANNEL)

The information to be supplied in a special case will
have to be provided in the corresponding manual,

As one "PEARL" compiler will be written for a whole
computer family, it must be informed about the actual
level and the features of the implementation, to be able
to guarantee an optimal use of the computer by means
of a specially optimized object program.

3.4. Configuration Description
3.4.1. Purpose

a) The operating system is informed about the peripheral
devices to be used by the program. For the specified
environment an optimal version of the operating sy-
stem may be generated.

b) As the actual equipment with peripheral devices is
not specific to the computer but to the whole installa-
tion, and can be changed from time to time, the whole
datapath from the central unit to the terminal device
must be described definitely. This can generally be
done by means of an "address tree", the nodes of
which are represented each by a control unit with
special attributes and interface specifications. (Fig. 2)

c) Identifiers are adjoined to the special datapaths,
which are used in the problem division.

3.4.2, Syntax

EQUIPMENT;

[STANDARD [; TOTAL]

[; identification]... ;]
[SPECIAL [; identification]... ;]

The metavariable identification is expanded as follows:

identification : : = identifier [(index-list) | =
[computer-link] { |} [channel-type
[, attribute] ... [(index-list)]]

{*|=} ... [terminal-type] ;

index-list is a list containing positive integers, similar
to that in a loop-specification; an item of the list can

be a single number (e.g. 2,7,11), a range of numbers
(e.g. 3:10, 17:21), or a range of numbers with an incre-

SYSTEM ; ment (e. g. 4(3) 16 means the series 4,7,10,13,16) .* or =
MACHINE; represent a node in the address tree.
/* COMPUTER DESCRIPTION */ %-——’O
:) 5]
EQUIPM ENT H Multiplexer T—\O
o ?\Q
1 —
) 6
/* CONFIGURATION DESCRIPTION */ / =
. ; 17 |
: Channel 81 processs
INTERRUPT; Computer T terminals
. XKYZ

/¥ INTERRUPT DESCRIPTION */
FLAG;

/* FLAG DESCRIPTION */

.

434

Fig. 2 Scheme of an "address tree"

2
-_ Multiplexer

2

7N

wN[ofu]s]w]n]~

elektronische datenverarbeitung 10/70

= has an additional function: for two consecutive sym-
bols = that part of the previous datapath description that
is enclosed in two symbols = is substituted.

Examples:
1.) DISK =1*KW, 2*ZWW, FLOAT*ST@5A ;

The disk of type ST@5A shall be connected via the
floating data~-channel ZWW and the 2nd exit of the
I/0-processor KW to exit 1 of the computer.

2.) The system of fig. 2 could be described as follows:

TERMINAL (1 :4) =XKYZ, 1*MPX1 (1, 2, 4, 5*CIRCLE;

TERMINAL (5 : 8) =XKYZ, 2*MPX2 (3 : 6)*SQUARE ;

3.) Substitution of parts of the datapath description
shows:

FIRST =10 PROCA = CHAN 1*CONTROL 2 = DEVICE1;
SECOND =10 PROCB == DEVICE 2

/* MEANS : SECOND =10 PROCB = CHAN 1*
CONTROL 2= DEVICE1%/;

3.4.3. Semantic of the Configuration Description

EQUIPMENT introduces the configuration description,
STANDARD that of the standard peripherals, SPECIAL
that of process oriented peripherals. TOTAL means: all
of the standard peripherals connected to the system shall
be used.

Standard peripherals have a fixed datapath. They are
identified by a name that is defined by the implementa-
tion (this "name" may also be an integer); it may be
changed in the system division, Both identifiers
may be used in the problem division. This is use-
ful, if a program is composed of parts of different
origin, or if peripherals are replaced by devices of
another type (but with the same function with respect to
the program),

identification describes the datapath by a series of type
and address items. Details (the keywords and the local
syntax of channel-types and attributes) depend on the
implementation and can be taken from the manual and
the hardware plan of the installation.

The identifier defined in the system division is used in
the problem division as an actual parameter of I/0 and
library procedures and stands for the device address
resp. device number, Further parameters are not supp-
lied by the system division,

If a one dimensional array of identifiers is adjoined to
a set of identical process terminals, this is described
by index-list.

Example ¢

APC (1:12)=CCTR*3*(1,3,5:7, 12:18)x5xKAD5;
Also arrays of names may be redefined:
HEAT (1:50)=TEMP (20:69);

3.5. Interrupt description
3.5.1. Purpose

The operating system is informed about the interrupts
to be used. These are "logical interrupts", which not
necessarily have their origin in the hardware and may
include additional information about the status change
causing the interruption, It shall be possible to generate
or simulate an interrupt by the program (see 4.3.2.).

elektronische datenverarbeitung 10/70

3.5.2. Syntax

INTERRUPT;
[STANDARD|[; TOTAL][; interrupt-identifier] ... ;]
[SPECIAL[; TOTAL] [; interrupt-identifier] ... ;]

The metavariable interrupt-identifier is expanded as
follows :

[identifier=] ... implementation dependent descriptor;

3.5.3. Semantics

The interrupts listed in the interrupt description
can be addressed with the corresponding symbolic names
in the problem division. The interrupts not mentio-
ned in the system division are disarmed, disabled
or handled by dummy routines. The priorities of the
interrupts and the handling routines are prescribed by
the order of the interrupt list, if this is allowed by the
system.

Interrupts of type STANDARD have predefined names, It
is desirable, that interrupts of the same origin should
have identical names. The "PEARL" - committee will
issue proposals for that.

Interrupts of type SPECIAL are handled over from the
operating system to the user program; they are specific
for the particular process.

Double definitions are possible.
Example : HEATALARM = PRESSUREALARM =37;

In many cases the system supplies further information
during an interrupt. It can be accessed by the standard
procedure STATUS (interrupt-identifier).

3.6. Flag-Description

3.6.1, Flags are status messages of the peripherals or
of the computer, that do not cause an interrupt. The ope-
rating system is informed, which of them will be used.

3.6.2. Syntax

FLAG[; TOTAL];
[flag-identifier =] . .. operating system defined name of
the flag;

3.6.3. Semantics

flag-identifiers are used like BINAL strings in the pro-
blem division, e. g. in conditional statements. Further
information may be accessed via a standard procedure
STATUS (flag-identifier) in this case, too.

4. TASK-Management
4.1, Problem

Contrary to a sequentially executed program for off-line
calculation of results from a set of data, loaded once
only, where the chronological order of operations is
necessarily obtained from the program and the data —
programs for on-line control and evaluation of data
from industrial processes and experiments have an
entirely different structure: They consist of many short
sections which are, individually speaking, sequentially
executed, but which are, regarding the entire process,
executed quasi parallel. They are also interrupted by
time intervals in which the computer does not have to
compute for the process.

435

This structure is inevitable, because

(a) the computer must be able to react quickly in re-
sponse to the many external demands which occur
statistically in time,

(b) the urgency of the reactions is differentiated so that
every reaction can be interrupted, replaced and
continued later in favour of another reaction,

The task-management has to enable this quasi-parallel
execution and to control its timing.

4.2, The "Task"
4.2.1. Definition

A user-program is executed in sections which are called
"tasks". The base of such a task is a statement, or a se-
quence of statements combined to form a block. Jumps
out of this block are not permitted.

The dynamic execution of this sequence of statements,
under control of the operating system defines a task., A
task can demand, from the operating system, the execu-
tion of additional self-contained sequences of statements,
whereby new tasks ("subtasks") will be generated.

This generating process may be performed in several
stages. Tasks are simultaneously executed, as far as the
devices (computer and peripheral units) permit.

4.2.2. Priorities

If several tasks simultaneously demand the use of the
same device or unit, the operating system will decide,
according to their priority, to which of the competing
tasks the unit will be allocated. The user assigns the
priorities to the tasks. When not all of the devices re-
quired by a task are allocated to it, then the task is
placed in the "waiting state'. The priority of a task is
a natural number. The lower the number, the higher the
priority, The operating system selects the task which
will be executed first, if two or more have the same
priority.

4,2.3. Task-Generation
A task is generated by the statement

ACTIVATE task-name [WITH PRIORITY priority-
number | : statement ;

where taks-name is the identifier which addresses the
task, priority-number the priority of the task and state-
ment the code to be activated.

If WITH PRIORITY priority-number is missing, the new
task is assigned the priority of the generating task;
task-name must be declared as TASK.

Activation of a task means to connect the task name with
the code, to set the priority and to notify the operating

system of the code to be executed. Tasks having the
same name must not be activated at the same time,

4.2.4. Task Operations
Other operations which have an effect on a task are:

a) TERMINATE task-name;

b) DELAY task-name;

c) CONTINUE task-name [WITH PRIORITY priority-
number] ;

436

TERMINATE ends a task and all its activated sub-tasks
(non-interruptible operations which have already been
started will be finished first).

DELAY transfers a task into the waiting state (but not
its subtasks).

CONTINUE cancels this waiting state (i. e. re-activates
the task).

Furthermore,
CONTINUE task-name WITH PRIORITY priority-number;
is used to change the priority of the addressed task.

If the addressed task does not exist, i. e. either it has not
been activated, or it is already terminated, then the task
operations will be interpreted as dummy operations.

In addition to this there is another standard function
PRIORITY (task-name),

which supplies the priority of the task task-name,
as a result, if the task exists; otherwise the result will
be a negative number.

4.2,5. Time Control of Tasks

In all task operations the time of their execution may be
specified as follows:

[AT timel] [EVERY time-interval [UNTIL time 2]]
task-operation ;

This type of statement results in the execution of the
specified task-operation in intervals of time-interval
from time1l to time 2. If AT time1 is left out, task-ope-
ration will be executed for the first time when this
statement is executed. If EVERY time-interval UNTIL
time 2 is left out, then a "once only" execution of task-
operation follows. In the case that UNTIL time 2 behind
EVERY time-interval is missing, then task-operation
will be repeated, providing that the task still exists
which contains the pertinent statement.

Further activations of a task, caused by a statement
which has already been executed, such as EVERY time-
interval ACTIVATE task-name; can, nevertheless, be
hindered by using another task operation

PREVENT task-name;

PREVENT is ineffective if no further activations are
queued for the addressed task.

4.2,6. Task End

A task ceases

a) when the task and all its subtasks have executed
their last statement

b) if it is ended by TERMINATE.

If the end of a block is reached, during execution of a
task, the execution will be continued only after all acti-
vated subtasks in the block are finished.

4.3. Alarms

4.3.1. Reaction to Alarms

Reactions to alarms are specified by the statement

ON alarm : statement;

where alarm is the identifier of a logical interrupt and
statement is the code to be executed in response to the
interrupt; statement will always be executed with the
highest priority. This execution is non-interruptible.

elektronische datenverarbeitung 10/70

4.3.2. Signal

A logical interrupt interrupt can be generated or simu-
lated in the user program (e. g. for test runs) by the
statement :

SIGNAL interrupt;

4.3.3. Disconnection

If several ON statements refer to the same interrupt,
then the last one to be executed in the block is valid,
When exiting a block, the last valid ON statement in the
next outer block is effective. If it should occur that in
none of the outer blocks an ON statement is executed,
then there is no further response to this interrupt.

An interrupt, at a distance as far as possible from the
central unit permitted by the implementation concerned,
can be switched off by using

DISABLE alarm;
The interrupt can be switched on again by

ENABLE alarm;

4.4, Semaphore
4.4.1, Problem

Since the timing sequence of operations in two tasks
running parallel with each other cannot, in many cases,
be completely arbitrary, means must be provided
whereby the desired sequence of such operations can

be attained. For instance — before the output of an array
by a task, this array has to be filled in by another task.
If this sequence is accidentally reversed then the results
are senseless. For the synchronization of tasks running
parallel with each other, semaphore variables and non-
interruptible semaphore operations which have an effect
on the semaphore variables are used.

4.4.2, Features of the Semaphore Variables

Semaphore variables are initialized at the same time as
their declarations, Further access to a semaphore variable
is only possible via a semaphore operation.

4.4.3. Operations

Semaphore operations are non-interruptible. The follo-
wing operations are available:

REQUEST sema
RELEASE sema

The operation REQUEST decrements the value of the
semaphore variable sema by one, providing that the
result is not negative. If the result were negative, the
task which is trying to decrement the semaphore va-
riable will be placed into the waiting state until the
semaphore variable can be decremented to a non-nega-
tive result.

RELEASE increments the value of the semaphore varia-
ble sema by one and starts the tasks, in order of priority,
which had previously been stopped by REQUEST operations.

The operators RELEASE and REQUEST may operate on
lists of semaphore variables. Consequently,

REQUEST sema [, sema]...;

checks whether all semaphore variables in the list can
be decremented to a non-negative value, If this is im-
possible, then none will be drecremented and the opera-
tion will be stopped until the possibility arises.

elektronische datenverarbeitung 10/70

4.5, Working Storage Allocation
4.5.1, Principle

The entire code of a PEARL-program will, in many
cases be located in backing storage and not in working
storage. Consequently the code needed for a task has
to be loaded, by the operating system, from the backing
storage to the working storage. The operating system
determines from the activation statement for this task,
that additional code is required as well as the identifi-
cation of this code. The activation statement must be
executed early enough so that the loading procedure is
finished in time. Untimely execution of the task can be
prevented by using SEMA variables.

4.5.2. Code of a Task

The code required for a task consists of all instructions
which may be performed and all data which will be for-
mally used therein. In particular, all procedures which
will be called in the task (possibly via several stages)
belong to the code. The requirements of a sub-task, e. g.
its instruction sequence, do not form part of the code of
the task activating it,

As in RTL [4], procedures and data will not be loaded
together with the block containing their declaration, but
together with the instruction sequences in which they
will be (formally) called or used.

4.5.3. Block Residence

It is possible for the PEARL-programmer to load pro-
cedures, i.e. their instructions and data, together with
the code of a task not containing a call for them, This
is attained by the statement

RESIDENT procedure-call [, procedure-call]... ;

The effect as regards loading is the same as that of
calls located in the same position. Hence RESIDENT
applies only the block in question.

4.5.4. Displacement

For loading, the section of working storage which is not
occupied with instructions or data of an existing task
will be used first of all. If this space is no longer avai-
lable, then the code of a sufficient number of tasks which
are either in the waiting state or have a lower priority
than the task to be newly activated, will have to be dis-
placed from the working storage. The data to be displa-
ced must not be overwritten and must, therefore, be
previously transferred into the backing storage. If there
are no tasks with lower priority than the one be newly
activated, then it will be placed in the waiting state.

4.5.5. Reload

Generally speaking, tasks to be newly activated often
require data and procedures which have already been
called or used by tasks which chronologically precede
them, and which are consequently still located in wor-
king storage. This raises the problem for the operating
system of not only determining the additional code re-
quired, but also of linking this code to sections which
are already in the working storage.

Whether this is possible, and how to achieve it, depends
largely on the computer system in use and its operating
system. Since working storage allocation is controlled
by priorities, it may be necessary to restrict the prio-
rities of sub-tasks in order to obtain effective imple-
mentation.

437

5.Input/Output
5.1, Basic Principles

If one attempts to handle all known I/0-facilities from a
uniform point of view, even in commercial or scientific
data-processing-applications difficulties arise; e. g.
external storage devices with either random or sequen-
tial access should be addressed in the same manner.
Apart from that there are functionally very different
I/0-devices (compare a teletypewriter with a CRT) that
shall be handled with procedures that are as similar to
each other as possible.

The additional peripheral devices of a computer that is
used for data acquisition and control of industrial pro-
cesses and scientific experiments enlarge the difficul-
ties of a standardized I/0-description. In this section it
is tried to develop a gyntactically uniform description
of all I/0-facilities.

Primarily the uniformity of the description is achieved
by the formulation of procedures for all 1/0-functions.
In the formal handling this corresponds to the possibi-
lities that are provided in ALGOL 60 and 68.

In FORTRAN and PI./1 I/0-transfers are formulated as
special statements, but also in these languages they are
implemented as subroutines.

In PEARL this procedure concept yields another advan-
tage : we have the possibility to easily activate I/0-ope-
rations in a sequential and in a parallel manner:

ACTIVATE: OUTPUT1 (CA, RAM, BA); describes output
done in parallel with the execution of the following state~
ments,

The procedure call "OUTPUT 2 (TOM, DOOLEY);"
without the prefixed ACTIVATE starts the I/0-procedure

Examples:

OUTPRIMITIVE

identifiers. option describes control information which
is probably necessary for special modes.

Six mode-descriptors seem to be sufficient:

PRIMITIVE
BINARY
CHARACTER
GRAPHIC
CALIBRATED
CONTROL

Suitable abbreviations of these keywords will be defined
later by the PEARL-~committee.

5.2. Syntax, Semantics and Function of the
1/0-Procedures

5.2.1, PRIMITIVE Input/Qutput
Syntax :
INPRIMITIVE

}(external-terminal, internal-terminal
[, control-information]);

control-information is a list of variable identifiers
and/or constants containing control information for the
data transfer.

Semantics:

The procedures INPRIMITIVE and OUTPRIMITIVE are
used to transfer data from a terminal device to working
storage and vice versa; information for datapath- and
device-control must be provided explicitly by the pro-
grammer, This can be done by the control-information
included in the same procedure call or by a previous
output of control information only.

1) INPRIMITIVE (DEVICE1, DATA, '101101101111' B)
/* TRANSFER FROM DEVICE1 TO THE VARIABLE 'DATA'IS
CONTROLLED BY THE BINAL STRING OF PARAMETER 3 */;

2) X :="00000100'B;

AB :='0110'B;

OUTPRIMITIVE (PROCON 3, X, AB)

/* THE FOLLOWING INFORMATION IS TRANSFERRED TO
PROCESSCONTROLUNIT 3 :

AB IS INTERPRETED IN THAT WAY : 01 SELECT THE 2ND OF 4 STEP

MOTORS,
10 TURN CLOCKWISE,

AND X : TRANSFER THE VALUE 4 TO THE MOTOR’S STEP COUNTER */;

as a subroutine. This means: the running task executes
the succeeding-statement after the termination of the
1/0-operation,

The description of I/0 procedures in PEARL is charac-
terized by 5 descriptors:

direction, mode, external-terminal, internal-terminal,
option. Direction (IN or OUT only) and mode are combined
to one word (the name of the procedure). The following
three descriptors are parameters of this procedure.

external-terminal is an identifier for a device or a file.
internal-terminal defines the area in working storage
where data is to be in- or outputted. Syntactically it is
represented by a (if necessary parenthesized) list of

438

Range of application:

PRIMITIVE Input/Output permits the possibility to handle
machine code on language level. Primarily it is necessary
if none or only rudimentary routines for handling an
addressed peripheral and its datapaths exists (e. g. new
built or modified hardware). All other I/0-functions can
be expressed by suitable combinations of PRIMITIVE 1/0.

5.2.2. BINARY Input/Output
Syntax:

INBINARY
OUTBINARY

}(external-terminal, internal-terminal);

elektronische datenverarbeitung 10/70

Semantics:

The procedure OUTBINARY transfers data from working
storage to aterminal device while control of datapath and
device functions is entirely performed by the operating
system. The transferred information is not changed, in
particular it is not translated into any other code.

In the same manner the procedure INBINARY has as its
result an automatic transfer without data transforma-
tion.

Range of application:

The procedures for binary I/0 can e. g. be used for inter-
mediate storage of data on magnetomotoric storage de-
vices (similar to the use of "unformatted I/0" in FOR-
TRAN). Reading from and writing onto process peripherals
is also done with these procedures when there is a stan-
dard mode of transfer and no calibration of data is ne-
cessary.

Example:

INBINARY (TEMP (1:4), KELVIN (5: 8))

5.2.3.1. The PICTURE-procedure

The single parameter of PICTURE is represented by a
character-string that depicts the layout on the external
medium (e. g. page of a line printer) both in length and
structure. String constants are inserted into the string
as they shall be outputted, fields that are to be filled
with variables are reserved by space imprinted with the
wanted layout structure.

Example:

The variables I (integer, value 23), B (real array with
two elements, values 17.1 and 3,1%x10'2) and TXT (string,
value 'PEARL') shall appear on an external device like
teletype-writer or CRT, connected to "RESULT -LIST",
showing this layout:

RESULT
TEST 23

Bl =171 B2 = 3.1E12
THIS WAS A PEARL-PROGRAM-----~-~--------

/*INPUT FROM THE FOUR THERMOCOUPLES 'TEMP (1)' TO 'TEMP (4)'
IS TRANSFERRED UNCHANGED FROM THE ADC TO THE ELEMENTS 5

TO 8 OF ARRAY 'KELVIN' #/;

5.2.3. Input and Output of Characters
Syntax:

{ INCHARACTER
OUTCHARACTER

} (external-terminal, internal-terminal,

{FORMAT (string), PICTURE (string),

The third parameter of the CHARACTER -procedures is
a format-describing procedure, the parameter of which
is a character string.

Semantics :

Together with the data transfer a translation (code-trans-
formation) is performed character by character between
the internal machine representation of the data (which is
defined by the special machine and by the data type) and
the external representation (defined by the device, and
occasionally by the programmer, included in the format
description). Moreover the layout of the data on the ex-
ternal medium is described by the FORMAT-(or PIC -
TURE-) procedure.

It shall be possible to specify special layout procedures
instead of the standard ones (e. g. procedures that inclu-
de interpretation of commands entered on a manual input
device).

The external-terminal is regarded as a book as in
ALGOL 68 [13]; (also refer to the file description in
2.2.1,5.). It is suggested that the parameter-string of
the FORMAT -procedure should be identical or very si-
milar to that of PL/1 [8] (Probably including a code-
definition facility). This features should be supplemen-
ted by a new-defined PICTURE-procedure which corres-
ponds to a layout-description which is very simple to
use,

Yet, it is discussable that, instead of the aforegoing
points, the complete concept of any other programming
language, which has advanced text editing features, may
be utilized.

elektronische datenverarbeitung 10/70

SPECIALLAYOUT (...)});

The output procedure is called in this way:

OUTCHARACTER (RESULTLIST, (I, B, TXT), PICTURE
('RESULT

TEST # # Bl =##8$# B2=#$#$+#
——————————— THIS WAS A eeece -PROGRAM - ~---------='));

The variables I, B, and TXT are inserted into the fields
structured with the symbols =, $ and e . Their special
meaning is:

: replace with a number

$: replace with a special symbol (also E in exponent
notation) :

e : replace with an alphanumerical symbo

If a string-constant contains these symbols, they must
be enclosed in double quotes. Perhaps further special
characters will have to be used for picture specifica-
tions (e. g. for suppression of leading zeroes).

The purpose of this modification of conventional
PICTURE-procedures is to enable the user to describe
the exact layout of the text without any shifting caused
by delimiters.

5.2.3.2, Range of application

CHARACTER I/0 shall be used everywhere where cha-
racter strings (text or numbers) are in-/outputted. The
I/0-devices will in most cases be dedicated to man-
machine communication. This method may also be used
to handle process 1/0 if the peripherals use alphanume-
ric coded data representation.

439

Example :

INCHARACTER (ADC 1, VAR, PICTURE (" ####.,."))

/* THE FIRST FOUR OF THE SIX DECIMAL POSITIONS OF ADC 1

SHALL BE DECODED AND STORED INTO VAR */;

CHARACTER I/0 is also useful for tape- and disk-like
devices if they are e. g. used as buffer storage for slow
peripherals.

5.2.4. Graphic Input/Output

By means of this procedure all I/0 related to graphs and
pictures can be described. It handles the typical graphic
devices like plotters or CRT-displays, but also the
"drawing" of a curve by means of a typewriter with
points represented by some letter (e.g. 'x') will be done
using the GRAPHIC mode.

5.2.4.1. The output Procedure OUTGRAPHIC
Syntax :

OUTGRAPHIC (external-terminal, internal-terminal,
layout-procedure (par,...));

The user of PEARL will be supplied with a number of
standard layout-procedures for graphic editing, He may
as well write his own routines for that purpose.

Standard layout-procedures:

40

304

Fig. 3

Example of a RANDOM
point display o

2) SPECTR:= (40.0, 35.0, 25.0, 15.0, 13.0, 17.5, 25.0,
31.5, 37.0, 39.0, 40.0, 39.5, 37.5, 33.0,
22.5, 10.0, 5.5, 3.0, 2.0);
OUTGRAPHIC (DISPLAY, SPECTR, INCREMENT (2.5));

40

204

i m AT

¢ ‘f 30 w0
X-increment

Fig. 4

Example of an
INCREMENTal display

no.: internal data: procedure parameters: graphic picture:)
- name: 3) STAR:= ((10,10, '0'B),
1) X, ¥ [, intens.] RANDOM intensity, see example 1) (20,20, '1'B),
scale (30,10, '1'B),
2) ¥][, intens.] INCREMENT intensity, see example 2) gg’ gg’ :g:g;;
y-scale, o ’
x-increment gggRﬁigl)c (DISPLAY,
3) X, y, intens. LINE scale see example 3) ’ ’
4) X, ylory] INTERPOL intensity
scale, mode
of interpolatn. see figure 6 404
5) X, ¥, T, ¢,,3, CIRCLE scale, inten-
sity o
s\,
The basic method of graphic layout is the RANDOM point . 2 N\
plot (1), points on the image correspond to pairs of Fig. 5 2 \
values (coordinates) in a data array. The image may be Example of a vector 0 y
modified by specification of scale factors and of the (LINE) mode display /’/
brightness of the points (if possible). With INCREMENT 7 S A S

point plot the facility of many graphic devices to gene-
rate x-coordinates automatically (1, 2,...n) is described
(2). The programmer must provide the y-data only.

With the LINE ("vector") mode two consecutive points
are connected with a (bright or dark) straight line. Only
the specification of the brightness and one terminal point
is needed as the drawing beam starts at the previously
reached position.

Special layout functions for INTERPOLation (4) and for
the drawing of arcs of CIRCLEs (5) may be useful,

Examples:

1) X(1):=10; X(2) :=20; X(3) :=30; Y (1) :=40; Y(2) :

OUTGRAPHIC (DISPLAY, (X,Y), RANDOM);

440

=10; Y (3) : = 20;

Fig. 6

Example of an
INTERPOLated
curve and an
arc of a CIRCLE

LN !

5

X

elektronische datenverarbeitung 10/70

5.2.4.2. The Input Procedure INGRAPHIC
Syntax :

INGRAPHIC (external-terminal, internal-terminal,
function (par,...));

Semantics :

external-terminal is a graphic input device like a lightpen
or a joystick that has been described in the system-di-
vision of the program, Usually internal-terminal is a
pair of variables (x,y), and there is no 3rd parameter.
The input device supplies coordinates which are stored

in x and y. INGRAPHIC allows the identification of cer-
tain points on the image on a graphic output device.
According to that identification further actions can be
taken in the program.

5.2.5. Calibrated Input/Output

These procedures are useful for transferring analog
information supplied by a process input device; during
output the user is able to specify an angle e. g. in units

of degres instead of a number of steps a motor has to
turn,

5.2.5.1. The Input Procedure INCALIBRATED
Syntax

INCALIBRATED (external-terminal, internal-terminal,
calibration-function (par, . ..));

Semantics:

The external device supplies one or more analog test
values that are stored in working storage in a digitalized
and calibrated form (transformed into physical units).
This is accomplished by a calibration-function that is
part of the system library, the parameters of which can
be supplied by the programmer. E. g. one can use a poly-
nomial to calibrate the input values delivered by a ther-
mocouple. When the element is replaced this can be
taken into account merely by changing the coefficients of
the polynomial (= parameters of the calibration-function).

5.2.5.2. Output using OUTCALIBRATED
Syntax :

OUTCALIBRATED (external-terminal, internal-terminal,
calibration-function (par, ...));

Semantics :

internal-terminal contains variables that specify the
amount in physical units by which the position of a ter-
minal device (e. g. a valve using servo motors) has to
be changed.

Example :

Comment : The calibration-procedures must be prede-
fined by the programming system. A linear calibration
function, a polynomial and a nonlinear calibration using
several lists seem to be sufficient for the most appli-
cations.

5.2.6. Input and Output of Control Information
Syntax :

{ OUTCONTROL
INCONTROL

(In the case of OUTCONTROL the internal-terminal may
also be a constant — generally BINAL)

J(external—terminal, internal-terminal);

Semantics :

INCONTROL stores the status information (as far as it
is relevant to the system) of the addressed peripheral
into the named variables, Using OUTCONTROL control
commands can be sent to peripheral devices.

Range of application:

INCONTROL mainly will be used to check functions of
process peripherals; this procedure is a means of ma-
chine-oriented programming. In a similar manner
OUTCONTROL is used if one wants to deal with details
of the I/0-hardware (as it can be done using assembler
language).

The features of CONTROL I/0 are similar to that of
PRIMITIVE I/0; but here only control information — no
data — is exchanged.

Example :

ON INTERRUPT SENSOR 1 BEGIN
INCONTROL (SENSOR1, X);
IF X ='00110010'B THEN GO TO ALARM FI
END;

5.3. Auxiliary Procedures for Input/Output

To accomplish complex control functions in the I/0-ma-
nagement of the system a number of standard procedures
are available.

These are procedures for OPEN-ing and CLOS-ing I/0
which can also act on files, for reserving a device for
exclusive use (LOCK) and for cancelling the reserva-
tion (UNLOCK), for RESET-ting a device and for SET-
ting it to a specified state and for STOP-ping I/0 ab-
ruptedly. Functions to CREATE, to REIDENTIify and to
SCRATCH (i. e. to cancel the reservation) files are also
necessary. There must be also a number of formatcon-
trolling procedures (to be used as subparameters of
FORMAT or layout-procedures or as stand-alone calls),
e.g. BACKSPACE, SKIP, NEWLINE, and NEWPAGE.

OUTCALIBRATED (MOTOR1, FLOW, CALIB1 (AL, A2, A3))

/* THE FLOW THROUGH A PIPELINE IS REDUCED TO A CERTAIN VALUE;
THE RELATION BETWEEN THE POSITION OF THE VALVE AND THE VALUE
OF THE FLOW IS NONLINEAR AND DESCRIBED BY FUNCTION 'CALIB1' */;

elektronische datenverarbeitung 10/70

441

6. Acknowledgements

This proposal of a process- and experiment-oriented
programming language was composed by a working group
which representatives of the following firms and insti-
tutes belong to:

1. Hahn-Meitner-Institut fiir Kernphysik, Berlin
. Physikalisches Institut III der Universitit Erlangen
. Strahlenzentrum der Universitit Gieflen
. Zentralinstitut fiir angewandte Mathematik der Kern-
forschungsanlage Jiilich
. Gesellschaft fiir Kernforschung Karlsruhe
. Siemens AG Karlsruhe
. AEG-Telefunken Konstanz
. BBC Mannheim
9. Physikalisches Institut III der Universitdt Marburg
10. Math. Institut der Technischen Hochschule Miinchen

B W N

o -JO U

Here we want to thank you who have made this work

possible by sending delegates; especially also Mr. Heller

(BASF, Ludwigshafen), the chairman of the VDI sub-
committee "Programmiertechnik" who has maintained
the connection to our working group. We also want to
thank Prof. Dr. N. Fiebiger from the Physics Institute III
of the University of Erlangen for his interest and help-
ful support, the Bundesministerium fiir Bildung und
Wissenschaft and the "Studiengruppe Nuklearelektronik"
for financial support. Last but not least Mr. Kessel and
his co-workers from the Institut fiir Kernphysik der
Universitdt Frankfurt have helped us very much by pro-
viding for rooms and organizing the sessions.

Beside the authors the following participiants have contri-
buted to this paper:

M. Degenhardt (HMI Berlin), H. Homrighausen

(KfA Jiilich),

G. Koch (BBC Mannheim),

K. Kreuter (Siemens AG Karlsruhe),

W. Riib (TH Miinchen),

W. Schéfer (AEG-Telefunken Konstanz),

D. Wiegandt (Univ. Marburg, now at Cern Genf),

K. Wélcken (Universitidt GieBen).

If you want copies, or if you have any comments or
questions, please write to Mr. P. Elzer, Tandemlabor,

Physikalisches Institut, University D-852 Erlangen,
Erwin-Rommel-Str. 1.

7. Literature

[1] Opler: Requirement for Real-Time-Languages;
Comm. ACM 9 (1966), 196

[2] Zemanek: Rolle und Bedeutung formeller
Sprachen; E u. M 83 (1966), 463

442

(8]
[9]

[10]

[11]

(12]
(13]

[14]

[15]

[18]

[19]

(20]

[21]

Frost: Fortran for Process Control; Instrumen-
tation Technology 16 (1969), 4

"RTL" A language for Real-time-systems; The
Computer Bulletin, Dez. 1967, S. 202-212

Boulton, Reid, Pierce: A process control
language ; IEEE Transactions on computers
C-18(1969), 1049

INDAC -8 software : Digital Equipment Corporation;
Maynard, Mass.

G. Miiller: Die Verwendung einer problemorien-
tierten Sprache fiir ProzeBrechner, Aufbau und
Funktionsweise des zugehtrigen Compilers; Vor-
trag auf dem "Jahreskolloquium zur Rechentechnik",
Febr. 1970, TU Braunschweig

PL/1-language-specifications, IBM C28/65-71

Dijkstra: Cooperating Sequential Processes in:
Genuys (Editor); Programming languages, London
1968

Aus: PL/1 — Sprachspezifikationen : IBM Form
79879-1

Wijngarden, Mailloux, Peck, Koster:
Report on the Algorithmic Language ALGOL 68;
Numer. Math. 14 (1969), 79-218

Beech et al.: Concrete Syntax of PL/1; IBM
United-Kingdom-Lab. TN 3001

Naur et al.: Revised Report on the Algorithmic
Language ALGOL 60; Num. Math. 4 (1963),
420-453

V. Haase: EXOS — Entwurf einer experiment-
orientierten Programmiersprache; GfK-Karlsruhe,
externer Bericht, August 1967

P. Elzer: Moglichkeiten zur Entwicklung einer
Programmiersprache fiir kernphysikalische Ex-
perimente; Arbeitspapier Phys. Inst. Erlg.;
Juli 1968

Berger, Seibt, Strunz: Bibliographie...zum
Thema Programmiersprachen, elektron. daten-
verarb, 11 (1969) Heft 5 und 7

IEEE-Transactions: Industrial & electronics &
control instrumentation 15 (1968) No 2 (Sonderheft
iiber ProzeBkontrollsprachen)

Workshop on Standardization of Industrial Com-
puter Languages (Minutes, part 1) Purdue Univer-
sity, Lafayette, Indiana, Febr. 1969

Preliminary Glossary, workshop on standardiza-
tion of Industrial Comp. Lang. (Minutes, part 2)
Purdue University, Oct. 1969

Workshop on Standardization. .. (Minutes, part 3)
Purdue University, March 1970

IFIP Fachworterbuch der Informationsverarbei-
tung : Amsterdam 1968

elektronische datenverarbeitung 10/70

