
Concept based querying of semistructured data

Margret Groß-Hardt

margret@uni-koblenz.de

Abstract: In the last years, semistructured data has played an increasing role within
the database community. Many query languages have been developed for querying
semistructured data and in particular XML data sources. XML data often is described
by means of DTDs and more recently through XML schemas. This paper is about
querying semistructured data by making use of the schema and the types described
therein. Elements of an XML documents are considered as instances of schema con-
cepts. Concept based queries provide a means to retrieve instances based on concept
names and in particular offer a possibility to exploit generalization relationships be-
tween concepts. As a consequence, concept based queries free users from knowing
the details about the structure in XML documents and hence ease querying of semi
structured data.

1 Introduction

In the last years, semistructured data has played an increasing role within the database
community. Many query languages have been developed for querying semistructured data
and in particular XML data sources.

As pointed out in [Abi97], semistructured data often has irregular structure, is implicit,
incomplete and as a consequence results in large schemas. As a consequence, in order to
query semistructured data, queries over the schema are as important as standard queries
over the data because the user is not supposed to know all the details of the schema. In the
case of XML data, a schema either is given as a DTD and more recently by means of XML
Schema [XSc01]. One important restriction of DTDs is, that with DTDs user defined types
are not provided and in terms of conceptual abstractions [BCN92], aggregation and asso-
ciation relationships can be represented but generalization / specialization relationships
are not supported. XML Schema adds user defined types and by means of so called sub-
stitution groups and extension base constructs the possibility to represent generalization /
specialization relationships.

For instance, consider an XML data source that represents information about departments
in a university, their researchers with their publications and the university library with its
books. If we are interested in all publications either listed as articles or monographs of
researchers or listed as books in the library, we need to know the details of the element
names and the nesting level within the complete document to access this information.

This paper is about querying semistructured data by making use of the schema and the

79

types described therein. Elements of an XML documents are considered as instances of
schema types, in this paper also called concepts. Concept based queries provide a means
to retrieve instances of certain concepts. With respect, to the university example, a concept
based query could be: “Show all elements belonging to the concept publication”. Concept
based queries exploit typing knowledge available in the schema. This approach extends
existing query languages and offer a concise mechanism to address “similar” elements
belonging to the same (general) type. Using schema information, additionally, helps in
detecting query errors at compile time, rather than at run time [DFF � 99].

Query languages [DFF � 99, KS01, ML01, XQu01] proposed for semistructured data and in
particular for XML based data sources are defined on the XML instance, sometimes partly
based on DTDs, too; hence they do not support abstraction concepts like generalization.
These query languages make extensive use of path expressions, to navigate through nested
structures.

We propose a query language that may contain schema expressions. Like in object ori-
ented languages [CACS94, Cat96], too, our query language support modeling constructs
like aggregation and generalization. Queries can be written against this schema, refer to
schema concepts, e.g. the type of an element and then are translated automatically into
one or more “classical” path expressions, no longer containing any schema expressions.
These generated path expressions either could be offered to the user, who selects a subset
of these expressions to be executed against the underlying XML data source or they are
evaluated on the data, directly.

The benefit of this approach is, that users only have to have an idea about the concepts
stored in the data source, but they do not have to know the details about element names
and nesting structures.

1.1 Example

Figure 1 shows an extract of an XML document which describes example publication
data available in a university. A university might consists of eventually multiple depart-
ments and a library. A department has members which are researchers and researchers
are described by means of their name and information about their publications. A library
consists of many books which has title and author information. Note, this example illus-
trates the different kinds of publication data represented in the university either as part of
a researcher or as books in the library.

A closer look to the content of a researcher element in this example reveals three dif-
ferent subelements which describe publications of researchers. In particular, there are
subelements publication, monograph and article. All these elements as well as
book and monograph contain title and author data and some additional publication type
specific information.

If someone wants to access the different kinds of publications available in the data, he
needs all relevant element names. XPath, for instance, allows a query like “//publication
$union$ //book $union$ //monograph $union$ //article”. So, even if a user

80

�
university ��
researcher ��
name � Smith � /name ��
publications ��
monograph ��
title � Basics of databases

�
/title ��

author � �
name � Smith � /name ��

/author ��
isbn � 7899 � /isbn ��
subject � DB � /subject ��

/monograph ��
article ��
title � Flexible queries

�
/title ��

author � �
name � Smith � /name ��

/author ��
author � �

name � Miller � /name ��
/author ��
proceeding � VLDB 2000�
/proceeding ��

/article ��
publication ��
title � XML Schema

�
/title �

�
author ��
name � Smith � /name ��

/author ��
/publication ��

/publications ��
/researcher ��
-- more researcher elements -- ��
library ��
books ��
book ��
title � Databases � /title ��
author ��
name � Smith � /name ��

/author ��
isbn � 1234 � /isbn ��

/book ��
book ��
!-- more book elements -- ��
/book ��

/books ��
library ��

/university �
Figure 1: Example XML data

does not have to know the details of the paths from the root to the elements themselves1,
he has to know all names of elements that has “something to do” with publications.

A possible XML schema for the given XML data source is indicated in Figure 2. Note, for
every complex element, a named complex type is defined within the schema and each
complex element is decribed by such a type. For instance, the university element
is described by the type UNIVERSITY and e. g. publication is described by the type
PUBLICATION. We will write element names in a XML data source in small letters and we
will use capital letters for type names in the XML schema. In particular, the set of element
names and the set of type names have to be disjoint.

There are two aspects within an XML schema, that we want to concentrate on here: These
are type derivation and the possibility to build substitution groups [XSc01].

Types are partially ordered by means of so called extension base constructs in the XML
schema. E.g., BOOK and ARTICLE are derived from PUBLICATION and MONOGRAPH from
BOOK. Derived types consist of all elements defined in the more general type and may add
additional elements. E.g. BOOK contains the same elements as PUBLICATION and adds an
element isbn.

The second modeling construct, that is has been used in the given schema is the substitution
group. For instance, in Figure 2, there is a substitution group used within the definition of
a researcher element. The substitution group introduced in the beginning of the schema
specifies, that the head of the substitution group is the element publication and possible
substitutes are book and article elements. For a valid substitution group, the type of a
substitute element has to be derived by the type of the head element [XSc01].

1“//” is an expression that stands for “all descendents of the current node”, see [XPa99].

81

�
schema ... ��
element name="university"

type="UNIVERSITY"/ ��
element name="publication"

type="PUBLICATION"/ ��
element name="monograph"type="MONOGRAPH"

substitutionGroup="publication"/ ��
element name="article"type="ARTICLE"

substitutionGroup="publication"/ ��
complexType name="UNIVERSITY" ��
sequence ��
element name="name"type="string"/ ��
element name="researcher"

type="RESEARCHER"
maxOccurs="unbounded"/ ��

element name="library"
type="LIBRARY"/ ��

/sequence ��
/complexType ��
complexType name="LIBRARY">�
sequence ��
element name="books"

type="BOOKS"/ ��
/sequence>�

/complexType>�
complexType name="BOOKS" ��
sequence ��
element name="book"type="BOOK"
maxOccurs="unbounded"/ ��

sequence ��
/complexType ��
complexType name="RESEARCHER" ��
sequence ��
element name="name"type="string"/ ��
element name="publications"
type="PUBLICATIONS"/ ��

/sequence ��
/complexType �

�
complexType name="PUBLICATION" ��
sequence ��
element name="title"type="string"/ ��
element name="author"type="AUTHOR"
maxOccurs="unbounded"/ ��

/sequence ��
/complexType ��
complexType name="MONOGRAPH" ��
complexContent ��
extension base="BOOK" ��
sequence ��
element name="subject"

type="string"/ ��
/sequence ��

/extension ��
/complexContent ��

/complexType ��
complexType name="ARTICLE" ��
complexContent ��
extension base="PUBLICATION" ��
sequence ��
element name="proceeding"

type="string"/ ��
/sequence ��

/extension ��
/complexContent ��

/complexType ��
complexType name="BOOK" ��
complexContent ��
extension base="PUBLICATION" ��
sequence ��
element name="isbn"
type="string"/ ��

/sequence ��
/extension ��

/complexContent ��
/complexType � �

/schema �

Figure 2: XML schema excerpt related to Figure 1

1.2 Structure of this document

This paper is structured as follows: The next section introduces the data model and de-
scribes databases, schemas and so called schema graphs (see section 2.1). In section 3, the
query language is introduced. Firstly, a strict query language is defined, which basically
reflects the “usual” semantics of queries for semi structured data. On top of strict queries,
concept based queries are presented. We define validity of queries w.r.t. to the schema
graph and describe the processing of concept based queries by transforming them into
strict queries. Section 4 gives an overview about related work and section 5 summarizes
this article and indicates future work.

2 Data model

The data model distinguishes between the instance layer or database layer on the one hand
side and the schema layer for the data on the other side. The database of semistructured
data is described by means of the OEM data model [PGMW95, AQM � 97]. The concepts

82

and their relationship on the schema level are described by means of a schema graph. The
goal of a schema representation by means of this graph is to adequately reflect subtyping
relationships and substitution groups in the XML schema.

The database is represented as a labeled directed graph. Figure 3 illustrates the database

university

name
 publications

title
 author

researcher

library

publication

article
 monograph

proc

another

researcher

subtree

title
 author

name

researcher

name

title

author
 isbn
 subject

books

title
 author

isbn

another book

subtree

book
book

"Smith"

"Flex.Querie
 s"

"Smith"

"XM
L
 ..."
"VLD
B"
 "Basics
 ..."

name

author

name

"Miller"
 "Smith"

"DB"
"7899"

"Databases
 "
"Smith"
 "1234"

"Smith"

1

2

4

3

8

7

6

16

14

13

11

10

22

21
19

18

28

27
25

24

38

37
36

35

34

32
30

42
40

0

Figure 3: University example

related to the example shown in Figure 1. Each node represents an object and has an oid.
There is exactly one root object representing the top level element in the XML document.
Nodes without outgoing edges are called atomic nodes. These nodes also have a value,
shown below these nodes. In this paper, we will restrict our focus to atomic nodes of
type STRING. Nodes with outgoing edges represent complex objects. Every node in the
database is reachable from the root.

In Figure 3, the root node refers to the top level element university. There is a sub tree
of the university node for every researcher element and one sub tree for library.
Analogously, there are sub trees of researcher and library nodes to describe their details,
respectively.

Formally a database D is a 4-tuple �	��

�������� ��� � ����� , where � is a finite set of objects
(i.e. nodes), ���� is a set of labeled edges � of the form ���	
������ ��!"� for objects ����! and
label � ; � � is the root and � is a function that maps each atomic node to a value [KS01].
The set # of labels of ���� is called element names of � .

A path between two objects ����! is a sequence of edges. The label of a path $, label(p), is a
“.” separated list of edge labels on $. The set of objects reachable by a path $ that starts in
node � and has label(p) = % is denoted objects(u, %). For �&�'� � , we also write objects(%)
to denote all objects reachable from the root node via a path with label % .

Example 1 Consider our example in Figure 3. Some path labels for paths starting with
the root node together with the associated objects are:

83

%)(= university.researcher
%+* = university.researcher.publications
%+, = university.researcher.publications.article.title

objects
�%)(-�.�0/21"��3"4
objects
�%+*5�.�0/76"4
objects
�%+,5�.�0/78"4

2.1 Schemagraph

Schemagraphs graphically describe a schema. Figure 4 shows a schema graph related to
the XML schema introduced in Figure 2. Types in the XML schema are represented as

UNIVERSITY
 RESEARCHER

LIBRARY

BOOKS

MONOGRAPH

PUBLICATIONS
 SG
(PUBLICATIONS,

publication)

BOOK

ARTICLE

PUBLICATION
 STRING

STRING

publication
 title

AUTHOR

author
 name

proceeding

subject

isbn

book

books

library

researcher

publications

art
icle

monograph

name

ROOT

university

Figure 4: Schemagraph related to Figure 3

nodes in the graph; types either are atomic types, here STRING only, or they are complex
types. There is a distinct node, representing the type of the root element, called ROOT. This
node does not have any incoming edges and only has one outgoing edge labeled with the
name of the top level element in the XML schema.

Subtype relationships between types are indicated by edges with white arrows. These
edges are called isa-edges. A type may have no more than one supertype and every type
in the schema graph not explicitly associated with its supertype stands in isa relationship
with type ANY (not shown in the figure). Edges with two arrows denote a multi valued
reference between types.

Substitution groups in the XML schema are represented by nodes in the schema graph.
Due to the fact, that substitution groups do not have a name, the corresponding nodes
in the schema graph are labeled with some artificial id not occurring otherwise as a node
name. If the substitution group 9 is defined in type : , there is an edge without label between
them. Also, for every substitute �;(7���<*2�>=>=>=>���<? of 9 , there are edges from 9 to �)@ with the
label of the element name.

A path in the schema graph is a cycle-free sequence of edges. The label of a path, label(p)
is the “.” separated concatenation of edges of $, analogeously to the definition of path
labels in a database. Note, because not every edge has a label, the size of a path label can
be shorter than the number of edges in the path. The set of paths between two nodes ����!
in the schemagraph is denoted by paths(u, v); as a special case, if � is the root node, we
allow the unary function paths(v) as an abbreviation to denote all paths to ! starting with

84

the root node. For a set of paths A , labels(P) denote the set of labels associated with the
paths in A .

A path $B�C
D�E(7���7*E�>=>=>=>���7?"� is called elementary or e-path, if for FHG'IKJML , �2@ is without
label and �7? has a label ��NB# . I. e. a path is an e-path, if only the last edge in the sequence
has a label and all other edges either are isa edges or have a substitution group as target.

The formal representation of a schemagraph OP�	
�QMRSOUTV���VW� RX��W@ZY [��� W � consist of a
set of types Q and substitution groups OUT , edges representing references between types or
substitution groups ��W� , a partial order between types ��W@ZY [, and a root type � W .

We now can define the relationship between an XML database and an XML schema by the
mapping I\L;9>: , which maps a type of a schema to objects in the database. Let O and] be a
schema and a database as defined before, then I\L;9>:_^"Q0`ab� , such that for :cNXQ : inst(t)
�d/7e�Nf�hg i7$jN paths(t) and e�N objects(label(p)) 4 . Also, if e�Nf� is instance of type : ,
we say e has type : , i.e. type(e) �M: .
The instances of a type : therefore can be determined by taking all paths from the schema
root to type : and by traversing the database along these paths.

Proposition 1 Given a schemagraph O as before. For types :k��:�lcNMQ of O and t isa t’:
labels(paths(t)) m labels(paths(t’)).

This yields to an interesting relationship, also known from object oriented data models. If
t isa t’ in the schema graph, then inst(t) m inst(t’). The proof is omitted here; only some
examples are given to illustrate this relationship.

Example 2 inst(BOOK) m inst(PUBLICATION), because:

a. labels(paths(BOOK)) = / university.library.books.book 4 = An(
inst(BOOK) = oqp2rtsvu objects($) = / 36, 37 4

b. labels(paths(PUBLICATION)) =
/ university.researcher.publications.publication,
university.researcher.publications.article,
university.researcher.publications.monograph,
university.library.books.book 4 = AU*

inst(PUBLICATION) = oqp2rtstw objects($) = / 7, 18, 24, 36, 37 4

In many cases, one is interested in knowing if a certain database] is “compliant” with a
schema O . This brings up the notion of validity of a database] with respect to a schema O .
A database] is valid with respect to schema O , if all of the following hold:
�I �yx)e�Nf�z^
type(o) is defined,
�I\I � type
��2{7�h�|� W ,
�I\I\I �}�K
DeE�&N domain(STRING) and
�I\!"� if �E{X�

Dev��� ��e2l~�VNM�H�� , then there is an e-path from type(e) to type(etl) with label � in S. If] is
valid w.r.t. schema O , we say,] is an instance of schema O . The database] from Figure 3
therefore is an instance of the schema in Figure 4.

85

3 Queries

In this section we present the notion of strict and concept based queries to access data in a
database. Strict queries basically represent the well known access to XML data; they are
interpreted under a “rigid matching” semantics as e.g. described in [KS01]. This semantics
is straightforward and used in multiple XML based languages.

On top of strict queries we define concept based queries. Concept based queries allow to
specify type information in a query and in particular restrict the possible matchings for a
variable according to that type.

The semantics of concept based queries is described by means of one or multiple strict
queries. That is, every concept based query can be expressed by a set of strict queries.
Hence, we do not add expressive power to the query language, but we reduce (sometimes
drastically) the structural complexity of queries and the amount of typing a user has to do
in order to write complex queries.

We use a two step process to evaluate concept based queries. In the first step, a concept
based query is “completed” into one or multipe strict queries. In a second step the resulting
strict queries are evaluated. This two step proceeding allows, in a multitier architecture,
client based completion of queries and provides a possibility for a user to select only some
of the possible strict queries. If there is no completion, this can be determined directly at
client side, without access to a database server.

3.1 Strict queries

Queries are represented by means of query graphs [KS01]. However, our definition of
queries differs from the one in [KS01] in that we consider all query variables as typed
ones. Formally, a query is a 3-tuple ����

�.������ ��� � � where � is a finite set of typed
variables, ���� is a set of labeled edges and � � is the root of the query. For a variable ! of
type : , we write :-� !t� . If : equals the most general type ANY, we also simply write ! instead
of ANY � !t� . If all variables in � are of type ANY, � is called any-typed.

Let ����

�.������ ��� � � be a query and]���

����� {� ���7{t����� be a database that is an instance of
a schema O . A matching of � w.r.t.] is a mapping ��^���a�� that satisfies the constraints
imposed by � . We consider the following constraints:

� The root constraint (rc) requires the root of � to be mapped to the root of] .
� The edge constraint (ec), written as �<��! , where �<��! is an edge in � . The ec �<��! is

satisfied by the mapping � if] has an edge labeled with � from �.
��)� to �.
�!"� .
� The concept constraint (cc), written as �E� ��� where �CN�� is satisfied, if �.
��)�BN

I\L;9>:-
D�>� for a type � in O .

A rigid matching for a query � is a matching that satisfies the rc, all the ec’s and all cc’s
of the query. The set of all rigid matchings of � w.r.t.] as instance of O is denoted as

86

�0� :�{-�+
D�E� . For the special case of any-typed queries, we can omit the schema (because
type ANY) belongs to every schema) and write

�0� :�{�
D�E� for the set of all matchings of a
query. Actually,

�0� :�{t
D�E� reflect the usual semantics of queries [KS01].

Example 3 Figure 5 shows three example queries: a) asks for all publication ob-
jects contained in publications of a researcher in a university together with the
researcher name. Query b) is similar, but specifies book objects instead of publication
objects. The query c) is also similar to a) but specifies by means of �v(and �7* that we are
only interested in researchers, that have at least two publication objects. The grey
nodes indicate the root of the query, respectively.

Actually, related to our example database] , only for query a)
�0� :k{�
D�E� is not empty.�0� :�{�
D�E� contains one element which is described by the following binding
����C����!��

Ft������3�������������� 6����M�¡F58�� . Query b) and c) do not have any rigid matchings
because related to b) the publications node with id 6 has no outgoing edge with label
book and related to c) this publications node only has one publication sub node
but not a second one.

university

publications

publication

u

researcher

x

y

z

name

a)

v

w

university

publications

book

u

researcher

x

y

z

name

v

w

university

publications

publication

u

researcher

x

y

z1

name

v

w

z2

b)
 c
)

publication

Figure 5: Some example queries

Evidently, the reasons why
�0� :�{t
D�E�

is empty for queries b) and c) are dif-
ferent. If we assume, that researcher
“Smith” writes another publication
in the future, query c) may be satisfi-
able under this new database. Query
b) however won’t be satisfiable at
any point in time as long as we as-
sume, that the database is an instance
of our example schema. These ob-
servations bring us to the notion of
typing.

3.2 Typing

Type information is useful to determine if queries have a matching at all. By means of type
information, query optimization is possible, that is, variables can be bound to their most
specific types and furthermore, invalidly typed queries can be rejected. Checking query
types can be done without the database only by means of a schema. Type checking usually
is done by means of DTDs or by mechanisms to exploit structure from the semistructured
database [BDFS97, GW97].

In this section we present the notion of typing related to the schemagraph and describe
how subtype relationships are exploited in determining query types.

Let ����

�.���H¢� ��� � � be a query and Of��
�Q�RBOUTV����W� R&��W@ZY [��� W � be a schema graph.

A type assignment of � w.r.t. S is a mapping £X^"�da¡Q that satisfies the type constraints

87

imposed by the query � . We consider the following constraints

� The schema root constraint (src) requires the root node of � to be mapped to the
node ROOT in O .

� The elementary path constraint (epc) written as �h¤_��! . The constraint �h¤_��! holds
w.r.t. £ , if for edge
������ ��!"� in � , an e-path from £y
��)� to £y
�!"� with label � in O exists.

� The concept constraint (cc), written as �E� ��� . The cc c[u] holds w.r.t. £ if £y
��)� isa �
in O .

A query � is called strictly typed (or strict) with respect to O , if there is a type assignment
that satisfies the src, all epc’s and all cc’s for � .

Proposition 2 For a given strict query � , a schema O and a database] , if � has a non-
empty rigid matching related to] , � also has a valid type assignment related to O . Fur-
thermore, if query � does not have a valid type assignment, then � only has empty rigid
matchings.

The semantics of strictly typed queries is the rigid matching of the query. Queries that are
not strictly typed always have an empty rigid matching. That is, the notion of strictness
yields a sufficient criteria for queries with empty matchings.

Example 4 Let us consider again the queries from Figure 5. Queries a) and c) are strictly
typed related to the schema in Figure 4 whereas query b) is not strict w.r.t. to this schema.

3.3 Concept based queries

PUBLICATION[u]

v

title

PUBLICATION[u]

v

isbn

a)
 b)

Figure 6: Concept based queries

Concept based queries are queries that do not
have to satisfy the schema root constraint as re-
quired for strict queries. In particular, a concept
based query is a query, that satisfies the schema
root constraint if � � is defined, the epc’s for all
edges in � and the cc’s for all nodes in � . The
following example illustrates some concept based queries and lists the possible type assig-
ments for these queries.

Example 5 Consider the queries in Figure 6. Query a) asks for all publications objects
with its title information; b) requests publications together with their isbn. The type as-
signments Qy[and Qy¥ for queries a) and b) are given in the following tables:
¦�§ ¨ ©

PUBLICATION STRING
ARTICLE STRING
BOOK STRING
MONOGRAPH STRING

¦�ª ¨ ¨
BOOK STRING
MONOGRAPH STRING

88

Note, in the example before, valid type assignments eventually associate a type with a
variable, that is a subtype of the type specified in the query. E.g. query b) specifies, that
variable � is of type PUBLICATION. All type assignments found, though, associate either
BOOK or MONOGRAPH with � . These assignments reflect pretty much the semantics of type
instances introduced in section 2. The instances of a type : are all those objects in the
databases, which are reachable by some paths that start at the root and ends in : . Actually,
there are only paths going via BOOK and MONOGRAPH which have this property.

The remaining of the paper deals with the transformation of concept based queries into
strict queries.

3.4 Processing of concept based queries

Concept based queries make use of schema information. Basically, a concept based query
represents one or multiple strict queries; in particular, the semantics of a concept based
query is defined in terms of one or multiple strict queries that are so called completions of
a concept based query.

Figure 7 illustrates the processing of concept based queries. A concept based query is
completed first into a set of strict queries. This set of completed strict queries can be
further restricted by a user and then is evaluated against the database. The result of the
concept based query is the union of all strict queries.

Determine

rigid
 matchings
Completion

Q

Concept

based

query
Schema graph

Strict queries

q1
,
q2
, ..
qN

Figure 7: Processing of concept based queries

More formally, given a concept based query �'�«

� � ��� �� ��� � � and a set of valid type
assignments Q for � w.r.t. schema O , the set of t-assigned queries ¬­979>I
®vL.
D�E� is defined as
follows:

Assign(q) � /7�2l\g �2l is concept based query, where every node � in � is replaced
by £y
��)� in �2l for £BN&Q�4 .

For a t-assigned query, every node � in � is assigned with a type : such that : isa : l and : l
is the type of the variable � in query � . For the concept based queries in Figure 6 query b)
will have two t-assigned queries; one where � is assigned type BOOK and one where � is
assigned MONOGRAPH.

Based on t-assigned queries we now can define the root path completion of a query � . The
root path completion for a query � is a query �tl , where every node � with no incoming
edge is replaced by a path from the schema root to the type of u. The set of all root path
completions for a query � is called root-compl(�). That is:

89

PUBLICATION[u]

v

a) Assign(PUBLICATION[u].title[v])

BOOK[u]

v

title

ARTICLE[u]

v

title

MONOGRAPH[u]

v

title

b) Root completions

PUBLICATIONS[_]

RESEARCHER[_]

UNIVERSITY[_]

ROOT[_]

university

researcher

publications

publication

PUBLICATION[u]

v

title

title

BOOK[u]

v

BOOKS[_]

LIBRARY[_]

UNIVERSITY[_]

ROOT[_]

university

library

books

book

title

ARTICLE[u]

v

PUBLICATIONS[_]

RESEARCHER[_]

UNIVERSITY[_]

ROOT[_]

university

researcher

publications

article

title

MONOGRAPH[u]

v

PUBLICATIONS[_]

RESEARCHER[_]

UNIVERSITY[_]

ROOT[_]

university

researcher

publications

monograph

title

Figure 8: Completions of queries in Figure 6

root-compl(�) � /7� l g � l contains � as a subgraph and for all variables :-� ��� in � , if
:-� ��� has no incoming edge, then a path $�Nf$ � :�¯+9�
�:°�7$+�v
��)��� is
added to �2l�4

Then, for a concept based query � , the completion compl(�) is defined as:

comp(�) = /7�2l\g �2lyN root-comp(�2l l) where �2l lyN Assign(�) 4

Example 6 Consider query a) in Figure 6. This query can be express in a linearized form
as a conjunctive query PUBLICATION[u] and [u].title[v], see e.g. [KKS92]. The
completion of this rather concise query is shown in Figure 8. There are four completions
for the query, and the union of all matchings restricted to � and ! is given as follows:

u v ±�² ©t³
18 19 “XML ...”
36 not covered by example
37 38 “Databases ..”

u v �K
�!"�
7 8 “Flex Queries”

24 25 “Basics ...”

By means of a query that requests objects of a certain type, we can formulate rather concise
queries. Actually, users who only have some idea about the concepts represented in a
database are able to query data, even if they do not know how different XML elements are
related.

Furthermore, if a couple of database schemas use common (general) concepts and share at
least part of the isa hierarchy, queries are possible that access different databases. Another
aspect related to concept based queries which exploit subtype / supertype relationships is
that queries which simply ask for objects of a certain type, are more robust against schema
changes that change the relationships between objects.

90

4 Related work

This section covers related work. There are a couple of query languages for semistructured
or XML data. Two kinds of approaches that ease querying can be distinguished: Query
languages, which provide some flexibility in that the user does not have to specify all
details of the database structure, and approaches which direct the user when specifying his
query by means of so called “data guides”.

XPath [XPa99] and XQuery [XQu01] provide some flexibility by means of wild card
characters “*” and “//” which describe all direct subelements or all descendents of the
current node. XPath and XQuery, however, do not allow schema expressions in queries.

[KS01] uses the notion of flexible queries; a flexible query is a query graph; an edge in the
graph is interpreted by (multiple) complete paths in the database. Paths are treated bidi-
rectionally. This approach is quite powerful and releases the user from many details of the
database structure. The focus in [KS01] is on “abbreviation” of aggregation relationships
whereas our focus is on exploiting the specialization relationship available in the schema.

[May01] proposes XPathLog, a query language based on XPath but tailored towards the
use within integration scenarios. XPathLog uses concepts from an ontology within query
expressions but these ontologies are general ones and not directly related to the structure in
the XML data. Also, the completion step of our approach does not rely on the underlying
data source but only needs the schema.

Two data guide approaches are presented in [BDFS97] and [GW97]. Both approaches
start from the XML data and derive structural information. Generalization relationships
are not considered, because these are not explicitly available in the data.

5 Summary

In this article we have proposed concept based queries. This approach can be seen as
an extension to existing strict queries. By using concept names we can formulate quite
complex though rather concise queries. Compared to a wild card operator, using concept
names is more intuitive and the result is easier to understand.

The two step process for evaluating queries, allows a user to explicitly select completed
strict queries derived from concept based ones. This avoids access to objects not relevant
to the user. Furthermore, because only the schema is necessary, the completion can be
done at client side without using the eventually slow connection to the database server.

In particular, we have made use of generalization relationships available in an XML schema.
This allows to access all instances of a concept, no matter, if they are direct instances of a
requested concept or if they are instances of subconcepts.

The formal framework used will allow us more research on the subject. In particular, we
will consider how we could add more flexibility to the query language (e.g. omitting edges
in the query graph).

91

References

[Abi97] S. Abiteboul. Querying Semistructured Data. In ICDT, pages 1–18, 1997.

[AQM ´ 97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Lan-
guage for semistructured data. International Journal on Digital Libraries, 1(1):68–88,
1997.

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design. Benjamin Cum-
mings, 1992.

[BDFS97] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding Structure to Unstruc-
tured Data. In ICDT, pages 336–350, 1997.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Documents
to Novel Query Facilities. In SIGMOD, 1994.

[Cat96] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93, Release 1.2. Mor-
gan Kaufmann, San Francisco, CA, 1996.

[DFF ´ 99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier, and D. Suciu. Querying
XML Data. IEEE Data Engineering Bulletin, 1999.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In Proc. of the 23th VLDB Conference, Athens
(Greece), 1997. Morgan Kaufmann.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In SIGMOD,
1992.

[KS01] Y. Kanza and Y. Sagiv. Flexible Queries over Semistructured Data. In PODS, 2001.

[May01] W. May. A Framework for Generic Integration of XML Data Sources. In Int. Workshop
on Knowledge Representation meets Databases (KRDB 2001), Rome, Italy, 2001.

[ML01] P.J. Marron and G. Lausen. On Processing XML in LDAP. In Proc. of the 27th VLDB
Conference, Roma, Italy, 2001.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across het-
erogeneous information sources. In Proc. 11th Int. Conf. on Data Engineering, pages
251–260, Taipei, 1995.

[XPa99] W3C, XPath Specification, 1999. http://www.w3.org/TR/xpath.

[XQu01] W3C, XQuery 1.0: An XML Query Language, 2001.
http://www.w3.org/TR/xquery/.

[XSc01] W3C, XML Schema - Part 0 to Part 2, 2001.
http://www.w3.org/TR/xmlschema-{0|1|2}/.

92

