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Abstract: The Heartbleed bug in OpenSSL has both be described as one of the worst
security vulnerabilities in the history of the internet and as a simple programming er-
ror. I argue that vulnerabilities like Heartbleed are not a coincidence or inevitable, but
a result of the overall process underlying the design and implementation of current in-
ternet protocols. In order to minimize the probability of similarly catastrophic failures
in the future, many aspects of the protocol engineering culture need to be revisited.
Since the internet has become a fundamental infrastructure for almost every aspect of
our society, it is crucial to address these issues and to (re-)establish trust in its security
and reliability.

1 Introduction

On April 7th 2014, news about the discovery of the Heartbleed bug hit mainstream me-
dia worldwide. A rather trivial missing check in the Heartbeat extension of the popular
OpenSSL library potentially compromised hundreds of thousands of servers worldwide
and might have exposed user data, passwords, and even private encryption keys of mil-
lions of users and websites.

OpenSSL is the most popular open source implementation of the internet transport se-
curity protocols SSL, TLS, and DTLS, and is part of many Linux distributions, network
appliances like home routers, and a large fraction of HTTPS-secured websites. The Se-
cure Socket Layer (SSL) [Hic95] was an attempt to add security to TCP-based applica-
tion protocols like HTTP, SMTP, or FTP. It later evolved into Transport Layer Security
(TLS) [Die08], which currently is available as version 1.2, and turns the application pro-
tocols into their secured counterparts HTTPS, SMTPS, and FTPS. Datagram Transport
Layer Security (DTLS) [RM12] is a version of TLS that provides security for connection-
less application protocols that are based on UDP or similar transport protocols. It is used
by some Virtual Private Network (VPN) software or the WebRTC protocol for browser-to-
browser real-time communication, among others.

It is not the intention of this paper to blame any individual, project, or organization for the
Heartbleed bug or any circumstance that may have promoted it. Anyone who dedicates
time to the design, implementation, and operation of the internet deserves our deepest
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respect, especially if the contributions are made in the form of open standards or free
software. Instead, this discussion is an attempt to highlight potential shortcomings of the
status quo and to make suggestions on how to improve the situation in the common interest.

2 Background

In order to understand the Heartbleed bug and the various mechanisms that may have
promoted it, we first need to understand TLS/DTLS and its heartbeat extension.

The OpenSSL project dates back to 1998 and is based on the earlier SSLeay implementa-
tion. The SSL protocol was first developed by Netscape and publicly released as version
2.0 and 3.0. It was later standardized by the Internet Engineering Task Force (IETF) under
the name TLS. The IETF publishes its standard documents under the name request for
comment (RFC). The current version of TLS is 1.2. The TLS protocol is extendable and
numerous extensions exist, which are also defined in RFCs. DTLS re-uses most of the
TLS structure and only modifies it where necessary to preserve the unreliable datagram
semantics of the underlying transport.

Both protocols use a record structure to encapsulate the application protocol messages and
their own control messages. The header of the record layer consists of a content type
field, a protocol version number, and a length field (see Figure 1). DTLS adds a sequence
number and an epoch field. In the remainder of the paper, TLS record is used to describe
both DTLS and TLS records. The type field is a protocol discriminator, which determines
how the content of the record has to be processed.

2.1 Heartbeat Use-Cases

The heartbeat extension defines one of the currently five TLS record content types and was
defined in RFC 6520 [TSW12]. It has multiple use cases, among them keep-alive, path
MTU discovery, and mobility support.

Keep-alive is a mechanism to detect unresponsive communication partners. A host sends
a keep-alive request to its communication partner, and this receiver replies with a keep-
alive response by echoing the payload of the request. The sender typically sends a counter
value, pointing to a local table entry to keep responses apart.

Path MTU Discovery (PMTUD) is used to determine the maximum transfer unit (MTU)
on the communication path between the two hosts. The MTU is the maximum message
size intermediate routers can forward to the destination. PMTUD sends a series of probe
packets to pinpoint the MTU. Standard-compliant routers unable to forward such a packet
will respond with a “Fragmentation Needed” ICMP message and its MTU. The sender
adjusts the probe packet size accordingly and the process is repeated until the destination
is reached, which will notify the sender of the success. The heartbeat extension uses
a padding field with random data to generate probe packets of the required sizes. The
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payload, which is echoed back upon success, is used to determine the path MTU.

The heartbeat extension was designed to accommodate future uses like mobility support.
In modern internet use cases, hosts may change their public IP address at any time, often
even without being able to detect the change themselves, because an intermediate mid-
dlebox (e.g., a NAT gateway) is responsible for the change. In this case, the connection
breaks, because the packets can no longer be routed to the correct receiver. Heartbeats can
help in two ways. First of all, a client that periodically sends heartbeat messages to the
server, such that the server can detect the changed sender address even if the client sends
no other data. The server then has to check the authenticity of the client. It sends a special
heartbeat message as a challenge to the client. Only if the client is able to decrypt this
message and echo the payload, the server sends future messages to the new address. In
order to avoid resource attacks with fake client heartbeats, the server encodes all necessary
information to process the reply in its heartbeat request. Mobility support in DTLS require
a modified record format to identify the connection despite the address change. Therefore,
it currently is only a theoretical concept.

2.2 Heartbeat Design

Heartbeat requests and replies for all different use-cases share the same message format,
which is a superset of the required functionality for each scenario. The content type of this
message format is 24. The message contains a one byte type field, which distinguishes
between requests and replies (see Figure 1). It also contains a variable length payload field
and a variable length padding field. The length of the payload field is determined by a
two byte payload_length field. The length of the padding field can only be determined by
subtracting the length of the other fields from the length field in the TLS record header.
The formula is padding_length = length — 1 — 2 — payload_length. Additionally, the
RFC requires the padding_length to be at least 16.

record header heartbeat message

ty version length ty | payload

pe pe length payload padding

1 2 2 1 2 variable min. 16

Figure 1: Heartbeat message format

In order to detect malformed heartbeat requests, the receiver must check that the message
has at least the minimum length of 1 + 2 + 16, and that the content of the payload_length
field is consistent with the total length of the record. Thus, payload_length < length —
1 — 2 — 16. If the latter check is missing, a malicious sender may send a payload_length
field much larger than the actual record size. The receiver then not only copies the actual
payload into the heartbeat response, but also the memory content adjacent to it. By sending
a very small heartbeat request containing no payload or padding at all, but a payload_length
of the maximum value of 65535, the attacker can receive almost 64KB of memory content

2509



from the attacked. This is exactly how the Heartbleed attack works.

This is a very severe vulnerability, because it returns memory from more or less random
locations, and repeated attacks can reveal critical content like passwords or private keys
with a high probability. Additionally, the attack does not trigger any error, log message, or
modify the attacked system’s state and therefore leaves no trace at all.

The faulty heartbeat implementation in OpenSSL was accepted by the project maintainer
on December 31st 2012 and has only been detected more than two years later. It is prac-
tically impossible to determine if it has been known to and used by attackers before its
public disclosure.

3 Causes of Heartbleed

Superficially, Heartbleed is caused by the missing of a trivial security check that has been
overlooked by the programmer and the reviewer. On the one hand, this may sound com-
forting, because it implies that there is nothing fundamentally wrong. On the other hand,
because human error is inevitable, we must anticipate future bugs with similar or worse
consequences. In the following, we will investigate a wide range of circumstances that
have facilitated the bug and need to be addressed to reduce the probability of future vul-
nerabilities.

3.1 Programming Methods

The most obvious problem with the programming side is that Hearbleed is a buffer over-
read bug. A buffer over-read is a type of buffer overrun, where data is read beyond the
actual boundaries of the buffer. This is a problem known for more than 40 years [And72]
and has well-known remedies. There is no excuse for buffer overruns in modern security-
critical software, but they are still very frequent, because of the choice of programming
language. C/C++ is probably the only still commonly used language that does not use
automatic bounds checking by default. Unfortunately, C/C++ is especially dominant in
systems programming and communication protocols.

Even with a language like C/C++, memory bugs can be minimized when the proper tools
are used. Plain pointer arithmetic is more prone to buffer overruns than specialized data
structures with internal boundary checks. Debugging tools like Valgrind [NS07] can help
to discover memory bugs. Unfortunately, such tools would not work well with OpenSSL,
because it uses (and abuses) its own custom memory management instead of using stan-
dard memory allocation [Unal4]. OpenSSL also does not use comprehensive unit testing
as a tool for automated quality assurance. In the aftermath of Heartbleed, an initiative was
started to add more unit tests to OpenSSL [Blal4].

The challenge is aggravated by the complexity of the OpenSSL codebase. Currently, it
consists of more than 450,000 lines of code [Ohl14]. That is more than five times the
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size of Google’s QUIC, an experimental protocol that combines transport functionality
with transport security. OpenSSL can only be blamed in part for this complexity, because
SSL/TLS itself is a very complex standard (see next Section), which requires a lot of code
to implement. Nonetheless, the LibReSSL fork [Bec14] managed to remove 150,000 lines
of content from the code base within a few weeks.

With an unsafe programming style and without a proper tool chain for automated tests,
the manual quality assurance becomes the crucial part of the process. The OpenSSL does
manual code reviews of submitted source code contributions. The heartbeat extension did
pass that check. Code reviews are an important tool for quality assurance, but can only
reduce the probability of programming errors slipping through. Eric S. Raymond’s so-
called Linus’s Law states that “given enough eyeballs, all bugs are shallow”, which may
already be debatable, but in the case of OpenSSL there were definitely not enough eyeballs.
Despite being used all over the internet by many companies, governments, and enthusiasts,
the project has been notoriously underfunded and thus only one developer could afford to
work full-time on the project. A few weeks after Heartbleed, the Linux Foundation has
formed a Core Infrastructure Initiative of IT companies providing substantial funding to
OpenSSL and similar projects to improve the situation [Thel4]. Projects like OpenSSL
seem to suffer from the “tragedy of the commons”: Even though the software is used by
millions or billions of users, countless companies, and more than a few governments, only
very few individuals take responsibility and contribute money or time and simply rely on
the work of a few altruistic volunteers.

Given the circumstances, it must be rated as a combination of the effort of these individuals
and pure luck that not more vulnerabilities of this magnitude have surfaced. Without a
change in system programming culture and responsibility culture, the outlook is bleak.

3.2 Design Process

Heartbleed is not simply a programming problem. It roots much deeper into the design
process of TLS and DTLS. First of all and most fundamentally, the whole concept of TLS
vs. DTLS must put into question. As explained earlier, DTLS shares many concepts,
formats, and even implementations with TLS. The goal of this approach was to minimize
the overall effort and the ability to solve problems once instead of twice. Instead, a bug in
the heartbeats, which only make sense for DTLS, affected the much more widespread and
critical TLS. TLS’s underlying transport, TCP, already provides perfectly fine PMTUD and
keep-alive functionality. The mobility mechanism that could be built on top of heartbeats
would not even work with TCP, because TCP connections cannot be redirected to a new
IP address like this.

Even worse, DTLS only needs a heartbeat mechanism because it introduces concepts to
connection-less datagram protocols which are intrinsic to connection-oriented stream pro-
tocols. A stateless UDP-based application protocol does not need a keep-alive, because
there is no connection. But DTLS introduces a handshake to establish symmetric encryp-
tion and has to maintain the associated state. Thus, it needs to know, when this state can be
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thrown away. UDP-based application protocols also need to avoid packet fragmentation,
because fragmented packets negatively impact the loss probability. Either the applica-
tion protocol provides its own PMTUD or it avoids large datagrams altogether. Yet, the
“magic” DTLS layer does introduce large messages itself, e.g., the certificate exchange in
the connection handshake. Trying to make two things look the same, which are fundamen-
tally different, is dangerous over-generalization.

This conceptual problem becomes evident through contradictions in the standards doc-
ument. While RFC 6520 states heartbeats are meant as “a basis for path MTU (PMTU)
discovery for DTLS” [TSW12], the DTLS 1.2 specification [RM12] specifically claims
“DTLS’s philosophy is to leave PMTU discovery to the application”. The publication of
the two RFCs is just one month apart, both have been in the standardization process in
parallel.

4. Heartbeat Request and Response Messages

The Heartbeat protocol messages consist of their type and an
arbitrary payload and padding.

struct {
HeartbeatMessageType type;
uintlé payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding length];
} HeartbeatMessage;

The total length of a HeartbeatMessage MUST NOT exceed 2”14 or
max_fragment_length when negotiated as defined in [RFC6066].

type: The message type, either heartbeat_request or
heartbeat_response.

payload_length: The length of the payload.
payload: The payload consists of arbitrary content.

padding: The padding is random content that MUST be ignored by the
receiver. The length of a HeartbeatMessage is TLSPlaintext.length
for TLS and DTLSPlaintext.length for DTLS. Furthermore, the
length of the type field is 1 byte, and the length of the
payload_length is 2. Therefore, the padding_length is
TLSPlaintext.length - payload length - 3 for TLS and
DTLSPlaintext.length - payload_length - 3 for DTLS. The
padding length MUST be at least 16.

The sender of a HeartbeatMessage MUST use a random padding of at
least 16 bytes. The padding of a received HeartbeatMessage message
MUST be ignored.

If the payload_length of a received HeartbeatMessage is too large,
the received HeartbeatMessage MUST be discarded silently.

Figure 2: The section of RFC 6520 that describes the critical length check

Even without semantic contradictions, RFCs are often ambiguous and a source of misinter-
pretation. RFC 2616, the original HTTP/1.1 specification, has recently been replaced with
six new RFCs (7230-7235), which do not add any new functionality, but simply rephrase
the original standard to minimize the misinterpretation and ambiguity problems. This
process took seven years. Most RFCs do not receive this much attention.
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The information about the critical bounds check that led to Heartbleed is scattered over the
message format specification in RFC 6520 (see Figure 2). The actual formula is hidden
in the description of the padding field and has to be solved for payload_length for the
implementation. In this particular case, the co-author of the RFC and the programmer of
the OpenSSL implementation are the same person, so this is probably not a problem of
text comprehension, but it proves that highlighting potential security problems was not a
priority in the standardization process. The lack of formalism in RFCs culminates in the
absence of standardized tests, which could be used to check the standard conformance of
an implementation.

The biggest problem of DTLS/TLS is probably its feature bloat. Despite its critical nature
as one of the internet’s core security components and the consequential need for concise-
ness, the protocol suite overflows with extensions. Wikipedia currently lists 42 RFCs
covering TLS (see Figure 3). This list is not comprehensive. For example, it does not
include RFC 6520 (heartbeats). A complete implementation of TLS must cover all these
standards, even the outdated ones, because of the need of backwards compatibility with
legacy clients and servers. The enormous complexity of the standard does however hin-
der the widespread adoption of the current version. DTLS/TLS does not adhere to the
Unix philosophy: “Write programs that do one thing and do it well”, which is of special
importance of security critical components, which need to minimize their attack surface.

Finally, the heartbeat extension did introduce unnecessary complexity that neither adds
functionality nor security. The 16 byte minimum padding is not justified anywhere in
the RFC. The PhD thesis of one of the co-authors states that “without additional random
bytes this payload can be guessed easily, thus making it prone to a Known-Plaintext At-
tack (KPA)” [Segl2], because heartbeat implementations may use simple counters as the
request payload. Modern ciphers like AES are specifically designed to be immune to
KPAs, and even if a weakness that makes KPAs realistic would be found, the DTLS heart-
beats would be our least concerns. Countless applications encrypt easy-to-guess plain-
texts with the ciphers available in DTLS/TLS, especially all the standard internet protocols
like HTTP, FTP, and SMTP, which are encapsulated in TLS. If TLS does not add random
padding in general to prevent attacks, there is no point adding them in a rarely-used exten-
sion.

This issue points to a deeper problem: cargo cult security. Computer security and cryp-
tography are highly complex and demanding fields, and any small mistake may jeopar-
dize the overall security. Nonetheless, security-critical components are often designed
and implemented by system programmers with little or no background in security. They
mimic the methods of security experts without fully understanding the underlying princi-
ples, much like the cults of oceanic cultures who tried to mimic the “rituals” of Japanese
and Allied military to attract airplanes dropping valuable cargo. We need to strengthen the
ties between the systems and security communities to improve the mutual understanding.

Overall, one must consider DTLS/TLS as a failed protocol. Its complexity, contradictions,
and legacy support requirements make it impossible to fix. New transport protocols like
CUSP [TLLB10] or QUIC [Ros13] consequently integrate security into their own func-
tionality instead of interfacing with TLS. Any such attempt must minimize the complexity
of the protocol and provide a coherent specification. Formal methods for protocol design,
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Protocol versions from SSL 2.0 to TLS 1.2:
e Hickman, Kipp E.B. "The SSL Protocol”. (Internet Draft)
e RFC 6101: "The Secure Sockets Layer (SSL) Protocol Version 3.0”.
o RFC 2246: "The TLS Protocol Version 1.0”.
o RFC 4346: The Transport Layer Security (TLS) Protocol Version 1.1”.
o RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2”.
Extensions to TLS 1.0 include:
e RFC 2595: ”Using TLS with IMAP, POP3 and ACAP”.
RFC 2712: ”Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)”.
RFC 2817: "Upgrading to TLS Within HTTP/1.1”.
RFC 2818: "HTTP Over TLS”.
RFC 3207: "SMTP Service Extension for Secure SMTP over Transport Layer Security”.
RFC 3268: ”AES Ciphersuites for TLS”.
RFC 3546: "Transport Layer Security (TLS) Extensions”.
RFC 3749: "Transport Layer Security Protocol Compression Methods”.
RFC 3943: "Transport Layer Security (TLS) Protocol Compression Using Lempel-Ziv-Stac (LZS)”.
RFC 4132: ”Addition of Camellia Cipher Suites to Transport Layer Security (TLS)”.
RFC 4162: ”Addition of SEED Cipher Suites to Transport Layer Security (TLS)”.
RFC 4217: ”Securing FTP with TLS”.
o RFC 4279: "Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)”.
Extensions to TLS 1.1 include:
e RFC 4347: "Datagram Transport Layer Security”.
RFC 4366: "Transport Layer Security (TLS) Extensions”.
RFC 4492: “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)”.
RFC 4680: "TLS Handshake Message for Supplemental Data”.
RFC 4681: "TLS User Mapping Extension”.
RFC 4785: "Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for Transport Layer Security (TLS)”.
RFC 5054: ”Using the Secure Remote Password (SRP) Protocol for TLS Authentication”.
RFC 5077: "Transport Layer Security (TLS) Session Resumption without Server-Side State”.
e RFC 5081: ”Using OpenPGP Keys for Transport Layer Security (TLS) Authentication”.
Extensions to TLS 1.2 include:
e RFC 5288: ”"AES Galois Counter Mode (GCM) Cipher Suites for TLS”.
RFC 5289: ”TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)”.
RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension”.
RFC 5878: "Transport Layer Security (TLS) Authorization Extensions”.
RFC 5932: ”Camellia Cipher Suites for TLS”.
RFC 6066: "Transport Layer Security (TLS) Extensions: Extension Definitions”.
RFC 6091: ”Using OpenPGP Keys for Transport Layer Security (TLS) Authentication”.
RFC 6176: “Prohibiting Secure Sockets Layer (SSL) Version 2.0”.
RFC 6209: ”Addition of the ARIA Cipher Suites to Transport Layer Security (TLS)”.
RFC 6347: "Datagram Transport Layer Security Version 1.2”.
RFC 6367: ”Addition of the Camellia Cipher Suites to Transport Layer Security (TLS)”.
RFC 6460: ”Suite B Profile for Transport Layer Security (TLS)”.
RFC 6655: ”AES-CCM Cipher Suites for Transport Layer Security (TLS)”.
e RFC 7027: “Elliptic Curve Cryptography (ECC) Brainpool Curves for Transport Layer Security (TLS)”.
Encapsulations of TLS include:
e RFC 5216: "The EAP-TLS Authentication Protocol”

Figure 3: List of relevant RFC from the Wikipedia article on Transport Layer Security

like language security based approaches [PB11], and a more sophisticated standardization
model than traditional RFCs should be considered in this context.

3.3 Computer Science Culture

The internet may be the most outstanding success of academic computer science research.
Within a single generation, basic research turned into a world-spanning infrastructure that
is ubiquitous to virtually every aspect of modern society. When claiming its success,
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one must also take responsibility for its failures. Like many other internet protocols, the
heartbeat extension is the result of an academic research project. This is no coincidence
and our academic culture actually promotes the problematic practice behind it.

First of all, the publish or perish culture encourages to produce more instead of better
results. A PhD thesis that yielded only a handful or even no paper at all is commonly
considered a failure. On the other hand, the peer review process is not sufficient to ensure
a minimum quality. To put it bluntly, any programming project paper can be published
at some workshop as long as it comes with a few performance figures. Making matters
worse, the practicality of an approach is often “proven” by patching popular open-source
implementations and submitting the patch to the upstream maintainers. Responsible peer
review cannot be outsourced to volunteer code reviewers from the open-source community.

While publishing positive results is too easy, publishing negative results is much harder’.
Papers with a “we did not do X and here is why” approach are rare, especially at pres-
tigious conferences. This is fatal in two ways. First, it encourages researchers to focus
on building systems instead of reflecting on the underlying design principles. Second, it
impedes the distribution of knowledge about fallacies, dead ends, and pitfalls.

Another problem roots in the success of the internet. It is hard to argue against the success
stories of TCP or TLS. Many experts consider the transport layer a “done thing”. Only
minor tweaks seem practical, a paradigm shift in contrast utopian. This conservation
culture slows down innovation in the field.

However, giving up completely on the existing infrastructure and building castles in the
air with clean-slate internet architectures that are not practical does not help the situation
either. Any realistic solution must be incrementally deployable on the current internet
infrastructure. But that is actually less difficult than skeptics make it seem.

4 An Alternative Heartbeat Proposal

While I personally believe that DTLS/TLS is broken beyond repair? and that they should
be abandoned as soon as possible, so that all energy can be focused on the design of a sane
replacement, I will take the time to sketch an alternative design for DTLS heartbeats to
show that it would have been simple to reduce the attack surface. That said, I believe that
there is no place for keep-alive and PMTUD functionality in transport security. Those fea-
tures exclusively belong to the traditional transport layer. If you need them in DTLS/TLS,
it only indicates that you are doing something fundamentally wrong and should start over
with your design.

First of all, the redundant functionality of the type field in the record header and in-
side the individual record type is superfluous. Using the type field in the record header
exclusively as a “protocol discriminator” is completely unnecessary. No security-critical
protocol should need to use more than the 256 different message types that fit in the one

I'This paper being the exception to the rule, of course.
2The same goes for many of the associated technologies like ASN.1 and concepts like certificate authorities.
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byte type field, because many message types imply high complexity. Actually, TLS uses
just 50 message types (which already is a lot), even if all 30 different alerts are counted as
individual types [IAN14].

Secondly, the design should observe the separation of concerns. Requests and responses,
keep-alive and PMTUD messages should not share the same message type and format.
Aside from simplifying the message layout and message handlers, this allows to selectively
turn these features on or off as needed. A bug in an unneeded and thus disabled extension
would neither impact security nor functionality of actually needed extensions.

Finally, variable-length fields should be avoided wherever possible. Without a length
field, there is no possibility of a missing or wrong boundary check. In TLS, we are stuck
with the length field in the record header, but we should not add additional length fields
without need. For keep-alive and PMTUD, a simple fixed-length identifier is sufficient to
map responses to outstanding requests.

record header keep-alive request record header keep-alive response
ty . . e ty . . g
pe version length identifier pe version length identifier
1 2 2 4 1 2 2 4

record header PMTUD request record header PMTUD response
ty . . e N ty . . e
pe version length identifier padding pe version length identifier

1 2 2 4 variable 1 2 2 4

Figure 4: Alternative heartbeat message format

This leaves us with four simple message types (see Figure 4), each of them with a clear
purpose and concise specification. The payloads of a keep-alive request and a keep-alive
response each consist of a 4 byte identifier. A receiver only needs to check if the record
content has a length of four. Even if this check was absent, an attacker could read just four
bytes of random memory from the target (instead of 65,535 bytes).

The path MTU discovery needs minimal extra functionality in the form of a padding field
in the request. The content of this field is irrelevant and only there to test the routers on
the path. The receiver only reads and echoes the identifier. The only change in the handler
is to assert a length of at least four instead of exactly four.

A specific message format for the hypothetical mobility extension seems unnecessary. As
proposed in the original design, the client can use normal keep-alive messages to make
address changes visible to the server. In the case of an unexpected sender address, the
server can simply reply with an alert message notifying the client of the change. The
server does not need to keep any state. The client can then prove its identity by initiating a
TLS session resumption [SZET08]. By going through a connection reestablishment with
the same master secret, the possession of the credentials can be validated by the server. If
the necessary functionality is already in the standard, it is unnecessary to reinvent it.
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S Dealing with Heartbleed Attacks

Heartbleed attacks are especially dangerous because they leave no trace. An intrusion
detection system (IDS) can be taught to detect Heartbleed attacks reliably [Amal4], but
that helps only against future attacks. Therefore, it is practically impossible to decide if
the vulnerability has been abused before its public disclosure.

The only method to know for sure is network forensics on traffic dumps of the complete
timespan that the vulnerability was available. Practically no one keeps comprehensive
traffic dumps for over two years (if at all). At ICSI, we keep one to two months of traffic
dumps for research purposes. The Lawrence Berkeley National Lab (LBNL) keeps up to
three months. With these and the updated IDS scripts, a large number of attacks can be
detected after the public disclosure, but none in the time before (see Figure 5). It has to be
noted that many of the detected attacks are likely to be deliberate self-tests by the system
administrators.

350

300 —]CS|

250

200

150

100 N N«x“
50 A

0

LBNL

S & W WS Fw PP W WP
R R A A A N R NP MR AR

Figure 5: Detected Heartbleed attacks at ICSI and LBNL

The result only shows that the two networks were not attacked within the given timeframe.
An earlier attack may have gone undetected. Also, there might have been specifically tai-
lored attacks against other organizations. Without comprehensive traffic dumps covering
the complete attack window and all possible targets, the only thing we can conclude with
reasonable certainty is that the vulnerability was not used for random ‘carpet bombing’
attacks recently.

Network forensics is a powerful tool in this context, but it is also a dangerous one. In
order to be able to detect and analyze attacks post-mortem, one must keep large amounts
of potentially sensitive communication data over a long period of time. This information
may become a viable target of attacks itself and thus must be secured carefully. Many
users are unable to provide the necessary security and administration locally. Storing
the communication data at a campus level or centrally at an internet service provider does
aggravate the attack potential of the data and increases the risk of unwanted eavesdroppers.

Furthermore, the forensic analysis is only possible, because the attacks are rather simple
and the confidentiality of TLS is limited (record headers are never encrypted). A better
transport security or a more complex vulnerability could make forensic analysis of traffic
dumps impossible. Surrendering encryption in favor of network forensics is certainly not
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the right answer. There currently is no common interface that allows to capture the traffic
before encryption either, and implementing one would create a dangerous new attack sur-
face. Therefore, the ability to detect and analyze such attacks may diminish further in the
future, which emphasizes the importance of a paradigm shift in protocol engineering and
implementation.

6 Conclusion

Heartbleed is not just a programming error. It is a chain reaction of failures in the current
way of designing and building critical internet protocols. A bug as bad as Heartbleed
or even worse can happen again anytime, and it will if we do not change the culture of
researching, designing, and implementing internet protocols. Because the internet has
become a crucial infrastructure of the global society, it would be irresponsible not to take
action.

We need to apply state-of-the-art software engineering methods and tools, need better
written and more concise specifications, and should acknowledge that practical computer
science is not about building everything that is possible but about understanding how to
build good systems. In summary, we need to put security and reliability first and break
with bad habits.
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