Process Flexibility:
A Design View and Specification Schema

Udo Kannengiesser

NICTA, Locked Bag 9013, Alexandria NSW 1435, Australia, and
School of Computer Science and Engineering, University of New South Wales, Sydney,
Australia
udo.kannengiesser@nicta.com.au

Abstract: This paper proposes a framework of process flexibility based on a view
of processes as design objects. It is represented using the function-behaviour-
structure (FBS) ontology of designing. The paper shows how the FBS ontology
allows extending and generalising recent work on flexibility in engineering design,
and how it allows applying this work to processes. The resulting framework
provides a comprehensive account of process flexibility that subsumes existing
approaches. Finally, the paper presents a specification schema for process
flexibility, illustrated using examples of a property valuation process in the
Australian lending industry.

1 Introduction

Flexible modelling of processes is a key issue for the effective use of process-aware
information systems (PAIS) in dynamic business environments [WSRO09]. Factors such
as market or strategy changes, technological innovations and new regulations often
require modifications of a process. Furthermore, unforeseen events in the immediate
environment of the process need to be handled flexibly, such as resource bottlenecks or
effects of unexpected human or system errors. PAIS using process models that are too
rigidly specified are poorly applicable in real-world contexts and are ultimately rejected
by their users.

Research has been concerned with understanding, modelling and implementing the
notion of process flexibility. The taxonomies and methods resulting from these efforts
address a wide range of aspects of flexibility [PV06, RSS06, DN07, Re07]. However,
there is no coherent, comprehensive framework of process flexibility, as most
approaches have been developed independently of each other. An attempt to providing
such a framework has recently been undertaken by [Sc08], proposing a general
taxonomy of process flexibility associated with different realisation approaches.

111

Flexibility in PAIS is often viewed as a balance between the freedom to change and the
need for stability [Re07]. This balance is also an inherent characteristic of designing:
Designers aim to change parts of the world through their designs, balancing the use of
their individual perception and creativity, and the need to comply with requirements and
constraints. A view of process performers as process re-designers has been well
described by [Va07]. This paper explores this design view of flexibility, aiming to
establish broader, interdisciplinary foundations for understanding and specifying process
flexibility. This provides the basis for augmenting rather than replacing existing
frameworks of process flexibility.

Section 2 introduces an ontology of designing, the function-behaviour-structure (FBS)
ontology, that can be applied to any object of designing, no matter whether this object is
a physical product, a software product, or a process. The FBS ontology is then used to
extend and generalise recent work on flexibility in engineering design. This provides the
basis for a mapping between the design view of flexibility and existing frameworks of
process flexibility. Section 3 derives a schema for specifying process flexibility based on
the FBS ontology. Examples from the domain of real estate valuation illustrate the use of
this schema. Section 4 concludes the paper.

2 A Design View of Process Flexibility

2.1 The Function-Behaviour-Structure View of Designing

Design objects can be modelled using the FBS ontology [GK04, GKO07] that has been
applied to various instances of design objects, including physical products [GK04],
software [Kr05] and processes [GKO7].

Structure (S) is defined as a design object’s components and their relationships. It can be
viewed as the final outcome of a design process. In the domain of physical products,
structure comprises the geometry, topology and material of individual components or
assemblies. The structure of software consists of abstract constructs such as classes,
components and pieces of code. In the domain of processes, structure includes three
general classes of components: input, transformation and output [GKO7]. The
transformation often consists of a set of sub-transformations, some of which can be
viewed as “micro-level” mechanisms that represent the “materials” of the
transformation. For example, a sequence of activities concerned with logging into an
online banking system, and filling out and submitting a funds transfer form can be
viewed as a process-centred “material” of a payment transformation [Ka0OS8]. Other
“materials” are object-centred; they refer to the agent performing the transformation.
Process-centred and object-centred “materials” map onto Dietz’ notions of realisation
and implementation of a process, respectively [Di06]. Structure encompasses control-
flow, data, resource, and task views of a process [Ka08].

112

Behaviour (B) is defined as the attributes that can be derived from a design object’s
structure. They provide criteria for comparing and evaluating different design objects.
An example of a physical product’s behaviour is “weight”, which can be derived (or
measured) from the product’s structure properties of material and spatial dimensions.
Behaviour of software (e.g., a text editor) includes its response time for visualising user
input. It can be derived from software structure and its interaction with the operating
environment. Typical behaviours of processes include speed, cost, precision and
accuracy. They can be derived from process structure; for example, speed can be derived
from (time-stamped) input and output.

Function (F) is defined as a design object’s teleology (“what it is for”). This notion is
independent of the common distinction between “functional” and ‘“non-functional”
properties; it comprises both as they describe the design object’s usefulness for a
stakeholder (or “using system” [Di06]). It should not be confused with the concept of
“transfer function”. Function is ascribed to behaviour by establishing a teleological
connection between a human’s goals and measurable effects of the design object. There
is no direct connection between function and structure. The particular functions of a
design object are ontologically independent of whether the design object’s structure is
conceptualised as a physical product, a software product or a process. For example, the
functions “wake people up”, “be reliable” and “be punctual” may be ascribed to relevant
behaviours of a mechanical alarm clock (i.e., a physical product), a virtual alarm clock
(i.e., software), or a sequence of activities (i.e., a process).

From a high-level perspective, designing can be viewed as decision making. This view
implies the existence of choices [Ge94] that can be represented as alternative values for
the variables of the design. The set of all design variables and their ranges of values form
what is called the design state space, i.e. the space of all possible designs. The design
state space is partitioned into three subspaces: function state space, behaviour state
space, and structure state space, as shown in Figure 1. The three subspaces are
interconnected through the designer’s compiled knowledge of qualitative and
quantitative relationships between function, behaviour and structure. These relationships
are the basis for modelling designing as an activity that aims to produce structure that
exhibits suitable behaviour to which desired function can be ascribed.

Si A B a Fn &

» » »
» » Ll

Si Bk Fm

Figure 1: Function, behaviour and structure state spaces, and their interconnections

113

The notion of a design state space allows understanding designing through the use of
spatial metaphors. Selecting values for a set of design variables can be described as a
process of moving through the design state space. This model of designing is often
referred to as search [Ge94]. However, most designing involves more than moving
through a well-defined space of known design alternatives. It also involves generating
the space in terms of design variables and their ranges of values. This can involve
discarding some previously expected variables or ranges of values, leading to a shift of
the design state space. The notion that addresses these changes is called exploration
[Ge94]. Changes may affect all three subspaces, and changes of one subspace may lead
to changes of a subspace connected to it. For example, a change of the structure state
space may lead to changes of the behaviour state space. This, in turn, may lead to
subsequent changes of the function state space and/or the structure state space.

Expectations about the design problem are fundamental in distinguishing exploration
from search. Exploration reflects changed expectations as the designer learns more about
the design problem by interacting with it [Sc83]. In contrast, the notion of search reflects
unchanged expectations of the design (state space). Some of the initial design
expectations are formulated through explicitly stated requirements. Others arise from the
designer’s understanding of the design object’s socio-technical environment across the
life cycle. The possible change of a design state space from its inception to a later point
in time is presented conceptually in Figure 2. The increasing size of the design state
space is to indicate that a great deal of the knowledge required to produce a design is
constructed during designing [LS93].

B ity) Dl

Figure 2: A design state space (9) changes between the initial time t, and a later time t;

The application of the state space concept in PAIS has commonly had a more narrow
focus. It is usually understood only as a representation of the set of possible changes in
the world that may occur during the execution of a process instance, not as a
representation of the set of all possible process designs. Recent work on business rules in
process models [Di08] can be viewed as expanding the scope of state space models of
processes. However, these approaches are limited to the notion of a structure state space,
and do not cover behaviour and function state spaces.

Design state spaces can be represented in many ways. The most common representations
include enumerations of states (e.g., a set of alternative product modules or process
fragments), generative representations (e.g., grammars), constraints, and abstraction
(e.g., using types defined in domain ontologies).

114

2.2 Generalising an Engineering Design Approach to Flexibility

Flexibility has been a popular concept in many areas within engineering design. Similar
to process flexibility, it is understood here as the ability of a product or system to handle
change. However, more precise definitions of this notion are often missing [SHNO3].
One of the most comprehensive approaches to defining and characterising flexibility in
engineering design has recently been proposed by researchers from the MIT Engineering
Systems Division [RRHOS8]. This Section provides an overview of relevant concepts of
this work, and expands and generalises them using the FBS ontology. [RRHO08] propose
two aspects of flexibility of a design object: change effects, and change mechanisms.

Change effects characterise the difference between the states of a design object before
and after its change. States are described in terms of variables and values that may refer
to any aspect of the design object, including function, behaviour and structure. There are
three categories of change effects: robustness, scalability, and modifiability.

Robustness is the ability to maintain the design object’s required functions without
changing its structure, despite the presence of changes affecting the object’s internal or
external environment [RRHO8]. For example, a car may achieve its function of
transportation without changing its design, despite internal changes such as tire abrasion
or external changes such as altered road conditions. Robustness handles change by being
insensitive to it. In fact, it has been understood as a concept that is related but quite
distinct from flexibility [SHNO3].

Scalability is the ability to vary the design object’s state in terms of the values of its
variables [RRHO8]. For example, varying the length, width and height of a mobile phone
is a scalable change of structure. Varying the speed of a central processing unit is a
scalable change of behaviour. And varying the reliability of an alarm clock is a scalable
change of function. Scalability is captured in the state space representation of designing
as either search (if the change remains within state space boundaries) or exploration (if
the change involves crossing a state space boundary in terms of ranges of values).

Modifiability is the ability to vary the design object’s state in terms of its variables
[RRHO8]. For example, the addition of a DVD burning module to a computer is a
modifiable change of structure. Changing a car’s petrol consumption rate to rapeseed oil
consumption rate is a modifiable change of behaviour. And augmenting a mobile phone
with the ability to play MP3 files is a modifiable change of function. Modifiability is
captured in the state space representation of designing as exploration via changing the
set of variables.

Variations of function, behaviour and structure rarely occur in isolation of each other. As
outlined in Section 2.1, a change of one subspace often leads to changes of other
subspaces. The specific ways in which a change propagates across the subspaces
depends not only on given requirements and constraints but also on the individual
expertise and interpretations of the designer. We can view this “design freedom” as an
additional dimension of flexibility, embedded within the notion of change effects.

115

Change mechanisms represent different ways of achieving the desired change effects.
[RRHO8] propose the number of possible change mechanisms, filtered by a subjective
acceptability threshold for their “cost”, as a basis for quantifying flexibility. Here, “cost”
is an aggregated measure for the consumption of various resources including time and
money.

We can expand the notion of change mechanisms by defining three categories, Figure 3:
design goal achievement, design realisation, and design assessment.

intended realised
design changes design changes

Design goal Design
ﬂl:h' it H,iu mmsmsrmrEEEEEEEEn e ----l--lﬂB‘.I e i

EEASEE S0 EE000 000000 EEEE

Design realisation

Figure 3: Three categories of change mechanisms: design goal achievement, design realisation,
and design assessment.

Design goal achievement is the ability to vary the activities and resources required for
transforming intended changes of function (AF;) into intended changes of structure (AS;)
via intended changes of behaviour (AB;). For example, besides generating design
changes from scratch, one may have the option of reusing previous design knowledge
captured in patterns, best practices, rationale, case bases, prototypes or other forms of
representation. Each of these options requires different technologies and user skills.

Design realisation is the ability to vary the activities and resources required for
transforming an intended change of structure (AS;) into a realised change of structure
(AS,). This includes the allocation of agents (machines or people), their coordination and
any setup tasks required (for example, programming, instructing and training). It also
includes strategies for preventing or mitigating issues, such as downtime and obsolete
work items arising from changes in the realisation.

Design assessment is the ability to vary the activities and resources required for
monitoring, analysing and validating the success (for example, the consistency,
correctness and efficiency) of the change. This includes the methods and tools available
for deriving changes of behaviour (AB,) from a realised change of structure (AS,), and
ascribing changes of function (AF,) to these changes of behaviour.

116

2.3 Applying the Design View to Process Flexibility

The three categories of change effects (robustness, scalability, and modifiability) and the
three categories of change mechanisms (design goal achievement, design realisation, and
design assessment) can be mapped onto existing research in flexible PAIS.

Robustness maps onto “flexibility by design” [Sc08] or “flexibility by definition”
[SSOO01] that is the ability to include multiple execution paths in the process model at
design time. They represent different ways of dealing with anticipated variations and
exceptions occurring in the execution environment. The different paths are selected at
runtime for individual process instances.

Scalability maps onto two categories of process flexibility proposed by [Sc08] that imply
the existence of expected choices. One is “flexibility by deviation” [Sc08] that is the
ability of a process instance to deviate from the original process model (type) without
altering it. It encompasses only changes in the execution sequence of tasks, not the tasks
themselves. We conceptualise the ordering relationships that determine the execution
sequence as a set of interrelated “ports” of the tasks [Go08]. Specifically, every task has
variables for their “inflow ports” and “outflow ports”, and the values of these variables
are pointers to other tasks. Changing the relationships can then be viewed as varying the
values of structure variables. The other category of process flexibility corresponding to
scalability is “flexibility by underspecification” [Sc08] or “flexibility by templates”
[SSOO01] via late binding of process fragments to a placeholder. This category of process
flexibility is the ability to execute an incomplete process model by completing it at
runtime, via selection from a pre-defined set of process fragments. The fragments can be
represented as structure variables with Boolean values. A process fragment with the
value “false” means that this fragment is currently not selected. Changing the value to
“true” corresponds to selecting it to instantiate the placeholder. Potential subjects of
scalable change include not only control flow but also other aspects of process structure
[RSS06].

Scalable changes of process function and process behaviour are not included in existing
work on process flexibility. Examples include improving maintainability of a process (a
scalable change of function), and reducing the cost of a process (a scalable change of
behaviour).

Modifiability maps onto two categories of process flexibility proposed by [Sc08] that
imply a shift of expectations. One is “flexibility by underspecification” [Sc08] via late
modelling, which is the ability to construct a new process fragment for a placeholder. It
is best thought of as the generation of a new variable to be introduced in the structure
state space of the process. The other category mapping onto modifiability is “flexibility
by change” [Sc08], which is the ability to modify a process at runtime, in response to
unforeseen circumstances in the execution environment. Here, changes represent new
tasks being introduced and/or removed, affecting process instances and/or process types.
By representing every task as a structure variable, we can model these changes as
modifications of the structure state space. Potential subjects of modifiable change
include not only control flow but also other aspects of process structure [RSS06].

117

Modifiable changes of process function and process behaviour are not included in most
existing work on process flexibility. Examples include considering the waste production
of a manufacturing process in addition to other process attributes (a modifiable change
of behaviour), and changing the goal of a transportation process from “people
transportation” to “cargo transportation” (a modifiable change of function). There is
work on using variations of quality goals to generate different configurations of process
structure [e.g., LYMO7].

Design goal achievement is addressed by the range of methodologies for process design.
Methodologies differ in their notations, their coverage of different process views, their
technological support, and their ease of use. A number of existing technologies,
including ADEPT1, YAWL, FLOWer and Declare, have been evaluated by [Sc08]
regarding their support for the different change effects.

Design realisation subsumes migration strategies for running process instances, and
mechanisms for version, access and concurrency control, which are described in
[WRRO8]. Design realisation also includes methods and technologies for communication
and “setup” (instructing, training, etc.).

Design assessment includes methods and technologies for analysing correctness,
consistency, efficiency, traceability, usability and other process quality attributes, which
are described in [WRRO08].

3 Specifying Process Flexibility

3.1 A Schema for Process Flexibility

The framework presented in Section 2 can be used as the basis for a schema for flexible
process specification, whose central notion is the design state space with its three
subspaces for function, behaviour and structure. We have presented this notion as the set
of all possible designs based on the expectations and experience of the individual
designer. When we adopt a prescriptive stance, a design state space becomes the set of
all “permitted” designs according to specifications given to the process designer. Here,
the boundaries of the design state space, both in terms of the specified set of variables
and their ranges of values, represent requirements that may be socially enforceable. In
fact, the specified design state space represents a “normative restriction of design
freedom” [Di06].

On the other hand, as shown in Figure 2, parts of the initial specification of a design state
space may be relaxed over the course of designing, resulting in a new design state space
with modified boundaries. Therefore, different degrees of “normative strength” of the
state space boundaries should be made explicit to specify what parts of the space may be
changed and what parts must not. This can be realised by associating individual design
variables and their ranges of values with modality attributes such as “mandatory” and
“optional” (or a finer-grained set of attributes such as proposed by [BS06]).

118

Table 1 shows the resulting specification schema. The columns represent FBS level,
state space, and modality. The contents of the white boxes in this Table are suggested
approaches to representing these notions in a way that is easy to comprehend for readers
of this paper. This is the reason why we use abstraction for representing the structure
state space, despite the lack of well-defined, formal domain ontologies for most PAIS.
Abstraction is also likely to be useful in phases of requirements elicitation and process
definition, where domain experts negotiate a common, high-level view of the process.
More formal representations, such as declarative (constraint-based) notations of process
structure, are certainly needed in the later phases of process execution and process
analysis.

Table 1: A specification schema for process flexibility

FBS level State space Modality
F Enumergtion [mandatory, optional]
of functions
B Constraints [mandatory, optional]
S Abstraction [mandatory, optional]

The schema can be used for specifying not only change effects but also change
mechanisms. This is because change mechanisms can themselves be viewed as design
objects that can be described using the FBS ontology. Change effects and change
mechanisms are then represented in two separate sets of specifications but using the
same schema. However, in practice only few aspects of change mechanisms are
specified explicitly. These are typically aspects related to design realisation, rather than
design goal achievement and design assessment. As outlined in Section 2.1, these
aspects can be captured as “materials” of process structure.

3.2 Examples

This Section demonstrates the use of the specification schema for a number of (sub-)
processes in the context of property valuation (short: valuation) in the Australian lending
industry. Figure 4 shows a simplified model of the valuation process in BPMN (Business
Process Modeling Notation; see www.bpmn.org). The process starts when the valuation
company receives a request from a lender (e.g., a bank) to assess the market value of a
specific property. An employee (called the “valuer”) is then assigned to perform the
valuation by inspecting the property and preparing a valuation report that contains the
estimated market value of the property. After that, the valuation report is sent to the
lender, and, concurrently, an invoice is sent. Upon receipt of payment, the valuation
process terminates. This process model is assumed to be fixed; we will specify flexibility
only for some of the sub-processes in this model.

119

D_{ By -"Il BaRgn Ill (2o
'--..ﬂrilu-ij il | =

MW!H‘#P‘ Fay=eeid

Figure 4: Top-level model of a property valuation process

Figure 5 shows the details of the sub-process “Perform Valuation”. It includes multiple
paths that handle cases in which valuation fees need to be renegotiated due to
complicated site conditions, such as irregular building shapes or slopes. This is an
example of robustness, as the designed process structure is insensitive to changes in
(external) site conditions.

e il e
b o
D b{h'! "-"I-:i I{'\-'lulh -|l|l|lrr:l I-Ol‘--l{hrb- Tl r--:nn} li{'h iy I:-l"n-‘l
|
e A
r:.l'f"‘n 1 - Fragrayi my

Figure 5: Sub-process “Perform Valuation”

Flexibility within the valuation process can be specified using annotations that are
structured according to the schema in Table 1. Figure 6 shows three examples.

ﬁ-—.:
eusans "Rand Valorkan §eperT Franssong

O = Jo{ " }

'l-r-lr-lh']-‘{l'lm—'ll'_i

=

Fraas "Ategn Vil nandiond

<[e 4 1 Dutingnd gy randen .

5 I e 1 S0 BB opna T tasue Parf e Wabsaton” fnand s
FTRGraEon B B pies 42 ransaton B namvi = 3 ok s Fransaeny]

B winsbarsd hps o dafaned fong randston]

Figure 6: Examples of specifications of sub-process flexibility within the valuation process

120

Example 1 in Figure 6 is a flexible specification of the sub-process ‘“Perform
Valuation”. Here, scalable changes of process behaviour are allowed within the
mandatory range of values specified for “time”. The set of process structures that can
produce these variations are specified as a mandatory “structural type” referencing
“deferred fixing”, which is an exception-handling pattern proposed by [Le08]. The basic
idea behind this pattern is that an exceptional situation (here, the complicated site
conditions) is identified and recorded, but dealt with (here, by renegotiating fees) later in
the process. This abstract description leaves room for various changes in the execution
sequence, all of which are scalable changes of process structure. One instance of process
structure consistent with this specification was shown in Figure 5. Another instance is
shown in Figure 7; here, the position of the fee renegotiation activity within the sub-
process is altered. The specification in this example does not constrain the change
mechanisms that can be chosen to realise the change effect.

B e e NE U F L]
Lo rimbar il ?

e B | V f f 1
:..-.:lplihh.l-.-'r!ul R —— -p{:r>-__- -p-h-l--l.i.—--Il.l'_.-.l-:-rh.---'-'a-—r.----—l- \"H-\-" = l{?
. i A . | i Rl !)L Py
|
|
|

Figure 7: Sub-process “Perform Valuation”, alternative process structure

Example 2 in Figure 6 is a flexible specification of the sub-process “Assign Valuer”.
Behaviour is again specified as a mandatory range of values for “time”. Structure
includes an optional “structural type” referencing a “top-down selection” procedure such
as shown in Figure 8. Suppose we want to drastically reduce the time behaviour to, say,
1 hour instead of 1 business day. This scalable change of behaviour requires a change of
structure that is likely to exceed the limits defined in the specification of structure. Since
the modality attribute of the structure is “optional” rather than “mandatory”, modifiable
changes can be made resulting in a process structure such as shown in Figure 9. Here,
the “top-down selection”-type is substituted with a “bidding”-type process structure that
can more quickly identify those potential valuers that are currently located near the
property to be valuated. This process is inspired by the way taxi companies dynamically
assign incoming customer requests to specific drivers. This change of process structure
requires further changes such as the development and implementation of appropriate
information and communication technologies (not shown in the BPMN model). The
mechanism for design realisation is specified as a “migration type” that refers to a
mandatory “proceed” strategy [Sc08] for migrating existing process instances.

r N
(el ot Lt o Vnrs Select Vilaar -] oty Selecind Vatar |-ja ree Confrmaton
A \,) e i

Figure 8: Sub-process “Assign Valuer”, using a “top-down selection”-type process structure

121

- -
(:} Dot the Property -] "Ete’fl'l:ll“‘l'll-i.l - 5 Vakier Nestly Sielected Vaiue
Lecmion 1o Al Ve from Vaern |)
- -

%,

O

-

Figure 9: Sub-process “Assign Valuer”, using a “bidding”-type process structure

Example 3 in Figure 6 is a flexible specification of the sub-process “Send Valuation
Report”. Here, only the principal function is specified, leaving a great deal of freedom
for designing the sub-process. Suppose the designer wants to make a modifiable change
of function by including an additional function “provide interoperable data”. This is a
very realistic scenario as the Australian lending industry is moving towards
interoperable, straight-through processing based on the standard Credit Application
Language (CAL) currently being defined by the LIXI consortium (Lending Industry
XML Initiative; see www.lixi.org.au). The additional function may lead to a new
behaviour variable termed “LIXI compliance”, and new structure variables including
“output file type = XML” and “output vocabulary type = CAL”. These are modifiable
changes of behaviour and structure. The example does not specify any constraints on
how these changes are to be realised in terms of change mechanisms.

4 Conclusion

A design view of process flexibility leverages a characteristic that is inherent in the
nature of designing: the capacity to operate within a space of alternatives that is
generated based on not only a set of requirements but also the designer’s individual
understanding of the problem. The framework presented in this paper expands and
generalises a recent approach from engineering design, using a domain-independent
ontology of designing. Current approaches to modelling process flexibility fit in this
framework, but fall short of covering essential aspects including function and behaviour.
These aspects capture “what should be done without specifying how it should be done”
[PV06] in a more comprehensive way than existing declarative approaches that are
limited to process structure. The design view provides a unifying framework that brings
together different research streams in flexible PAIS, most of which can be categorised as
focusing on either change effects or change mechanisms.

The proposed specification schema can be used to define the flexibility of a process at
different design-ontological levels and with different degrees of “normative strength”. It
supports the view of stakeholders as designers or re-designers of the process, while
constraining their design activities using a necessary and sufficient set of specifications.
The examples in this paper demonstrate a range of process designs that can be generated
based on different process specifications. One issue that is not addressed here is the need
to move from one state space representation to another. The light-weight approach we
utilised for representing structure state spaces is useful for high-level communication
among domain experts; however, for process implementation a more formal approach is
needed based on well-defined domain ontologies and executable process notations.
Progress in this area is likely to draw on research in process patterns [Va03],
configurable process models [Go08] and semantic business process management
[We07].

122

There are opportunities to expand the design view of process flexibility, using further
analogies from engineering design. One research direction may focus on the qualitative
relationships between function, behaviour and structure state spaces. Capturing them can
guide process designers realising desired changes of function through appropriate
changes of behaviour and structure. For example, research in product family design
maps different types of product families (that can be modelled as sets of scalable or
modifiable behaviours and structures) onto strategies for targeting different market
segments (that can be modelled as sets of scalable or modifiable functions) and onto
different manufacturing paradigms (that can be modelled as design realisation options)
[MF07]. Research in PAIS is likely to benefit from further investigation of these
analogies, as they allow tapping into well established methodologies of flexibility from
various domains.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

Bibliography

[BS06] Borch, S.E.; Stefansen, C.: On Controlled Flexibility. In (Latour, T.; Petit, M., Eds.):
Proceedings of Workshops and Doctoral Consortium, The 18th International Conference
on Advanced Information Systems Engineering — Trusted Information Systems, Namur
University Press, Namur, 2006, pp. 121-126.

[DNO7] Daoudi, F.; Nurcan, S.: A Benchmarking Framework for Methods to Design Flexible
Business Processes. Software Process: Improvement and Practice, 12(1), 2007, pp. 51-
63.

[Di06] Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology, Springer-Verlag, Berlin,
2006.

[Di08] Dietz, J.L.G.: On the Nature of Business Rules. In (Dietz, J.L.G.; Albani, A.; Barjis, J.,
Eds.): Advances in Enterprise Engineering I, LNBIP 10, Springer-Verlag, Berlin, 2008,
pp- 1-15.

[Ge94] Gero, J.S.: Towards a Model of Exploration in Computer-Aided Design. In (Gero, J.S.;
Tyugu, E., Eds.): Formal Design Methods for CAD, North-Holland, Amsterdam, 1994,
pp. 315-336.

[GKO04] Gero, J.S.; Kannengiesser, U.: The Situated Function-Behaviour-Structure Framework.
Design Studies, 25(4), 2004, pp. 373-391.

[GKO7] Gero, J.S.; Kannengiesser, U.: A Function-Behavior-Structure Ontology of Processes.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 21(4), 2007,
pp. 379-391.

[Go08] Gottschalk, F. et al.: Configurable Workflow Models. International Journal of
Cooperative Information Systems, 17(2), 2008, pp. 177-221.

[Ka08] Kannengiesser, U.: Subsuming the BPM Life Cycle in an Ontological Framework of
Designing. In (Dietz, J.L.G.; Albani, A.; Barjis, J.,, Eds.): Advances in Enterprise
Engineering I, LNBIP 10, Springer-Verlag, Berlin, 2008, pp. 31-45.

123

[Kr05] Kruchten, P.: Casting Software Design in the Function-Behavior-Structure Framework.
IEEE Software, 22(2), 2005, pp. 52-58.

[Le08] Lerner, B.S. et al.: Exception Handling Patterns for Processes. In (Garcia, A. et al., Eds.):
Proceedings of the 4th International Workshop on Exception Handling, Atlanta, GA,
2008, pp. 55-61.

[LS93] Logan, B.; Smithers, T.: Creativity and Design as Exploration. In (Gero, J.S.; Maher,
M.L., Eds.): Modeling Creativity and Knowledge-Based Creative Design, Lawrence
Erlbaum, Hillsdale, 1993, pp. 139-175.

[LYMO7]Lapouchnian, A.; Yu, Y.; Mylopoulos, J.: Requirements-Driven Design and
Configuration Management of Business Processes. In (Alonso, G.; Dadam, P.;
Rosemann, M., Eds.): Business Process Management, LNCS 4714, Springer-Verlag,
Berlin, 2007, pp. 246-261.

[MF07] Maier, J.R.A.; Fadel, G.M.: A Taxonomy and Decision Support for the Design and
Manufacture of Types of Product Families. Journal of Intelligent Manufacturing, 18(1),
2007, pp. 31-45.

[PV06] Pesic, M.; Van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In (Eder, J. et al., Eds.): BPM 2006 Workshops, LNCS 4103,
Springer-Verlag, Berlin, 2006, pp. 169-180.

[Re07] Regev, G.; Bider, I.; Wegmann, A.: Defining Business Process Flexibility with the Help
of Invariants. Software Process: Improvement and Practice, 12(1), 2007, pp. 65-79.

[RRHO8] Ross, A.M.; Rhodes, D.H.; Hastings, D.E.: Defining Changeability: Reconciling
Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining
System Lifecycle Value. Systems Engineering, 11(3), 2008, pp. 246-262.

[RSS06] Regev, G.; Soffer, P.; Schmidt, R.: Taxonomy of Flexibility in Business Processes. In
(Latour, T.; Petit, M., Eds.): Proceedings of Workshops and Doctoral Consortium, The
18th International Conference on Advanced Information Systems Engineering — Trusted
Information Systems, Namur University Press, Namur, 2006, pp. 90-93.

[Sc83] Schon, D.A.: The Reflective Practitioner: How Professionals Think in Action, Harper
Collins, New York, 1983.

[ScO08] Schonenberg, H. et al.: Process Flexibility: A Survey of Contemporary Approaches. In
(Dietz, J.L.G.; Albani, A.; Barjis, J., Eds.): Advances in Enterprise Engineering I,
LNBIP 10, Springer-Verlag, Berlin, 2008, pp. 16-30.

[SHNO3] Saleh, J.H.; Hastings, D.E.; Newman, D.J.: Flexibility in System Design and
Implications for Aerospace Systems. Acta Astronautica, 53(12), 2003, pp. 927-944.

[SSO01] Sadiq, S.; Sadiq, W.; Orlowska, M.: Pockets of Flexibility in Workflow Specification. In
(Kunii, H.S.; Jajodia, S.; Solvberg, A., Eds.): Conceptual Modeling — ER 2001, LNCS
2224, Springer-Verlag, Berlin, 2001, pp. 513-526.

[Va03] Van der Aalst, W.M.P. et al.. Workflow Patterns. Distributed and Parallel Databases,
14(3), 2003, pp. 5-51.

[Va07] Van Aken, J.E.: Design Science and Organization Development Interventions: Aligning
Business and Humanistic Values. Journal of Applied Behavioral Science, 43(1), 2007,
pp. 67-88.

[We07] Wetzstein, B. et al.: Semantic Business Process Management: A Lifecycle Based
Requirements Analysis. In (Hepp, M. et al., Eds.): Semantic Business Process and
Product Lifecycle Management. Proceedings of the Workshop SBPM 2007, Innsbruck,
Austria, 2007, pp. 1-10.

[WRRO8]Weber, B.; Reichert, M.; Rinderle-Ma, S.: Change Patterns and Change Support Features
— Enhancing Flexibility in Process-Aware Information Systems. Data & Knowledge
Engineering, 66(3), 2008, pp. 438-466.

[WSRO09]Weber, B.; Shazia, S.; Reichert, M.: Beyond Rigidity — Dynamic Process Lifecycle
Support. Computer Science — Research and Development, 23(2), 2009, pp. 47-65.

124

