
Customisation of Paillier Homomorphic Encryption for

Efficient Binary Biometric Feature Vector Matching

Georg M. Penn, Gerhard Pötzelsberger, Martin Rohde, Andreas Uhl

University of Salzburg, Department of Computer Sciences

J.-Haringerstr.2, 5020 Salzburg, Austria

andreas.uhl@sbg.ac.at

Abstract: Computing the Hamming weight between binary biometric feature vectors
in a homomorphic encryption domain can be rather inefficient due to the required bit-
wise encryption. A biometric matching technique more efficient than the Goldwasser-
Micali approach is proposed based on exploiting Paillier’s capability of encrypting
messages larger than one bit at a time. The efficiency is documented in an iris identi-
fication context.

1 Introduction

In (distributed) biometric authentication, biometric sample (or template) data is sent from

the acquisition device to the authentication component and can eventually be read by

an eavesdropper on the channel. Also, biometric enrollment template (or even sample)

databases can be compromised and the data misused in fraudulent manner. However, data

corresponding to several biometric modalities has to be assumed to be public, as finger-

prints, for instance, are left on every object a person touches, and pictures of a persons’

facial or even periocular area can easily be taken without notice (or can be taken from

Facebook or Flickr). It is therefore not (only) the biometric data itself that needs protec-

tion, but essentially as well the relationship between the identity and the biometric feature

of an individual. Therefore, there is a strong need for keeping private data confidential dur-

ing biometric authentication [SSW10]. As the relationship between the person’s identity

and her biometric trait must be hidden, comparison of the enrolled template and a newly

captured sample has to take place in an encrypted domain [BCI+07]. This also prevents

misuse of eventually leaked transmitted samples or template databases. However, the sam-

ple differs from the template stored in the database. Hence, using traditional cryptographic

methods such as hash-values is not suitable in this scenario.

To cope with these demands, various flavours of template protection schemes have been

developed, termed biometric cryptosystems and cancelable biometrics [RU11]. While

these techniques provide sufficient computational efficiency for practical employment,

most approaches are restricted to verification and many security concerns have arisen.

As an alternative approach, matching in an homomorphic encrypted domain [AMFF+13]

has been suggested – while providing satisfying security and suited for identification ap-

plications in principle, the low computational efficiency prevents its usage in large-scale

133

identification scenarios.

In this paper, we introduce a more efficient matching process for generic binary tem-

plate vectors by exploiting Paillier’s capability of encrypting messages larger than one bit

at a time. We experimentally evaluate and compare the corresponding key generation,

encryption, and matching mechanisms of the proposed scheme to those of Paillier and

Goldwasser-Micali with respect to computational efficiency. Finally, an iris-based identi-

fication approach is assessed using the proposed technique. Section 2 reviews prior work

on using homomorphic encryption in privacy-preserving biometric matching and defines

the assumed authentication architecture. In Section 3 we discuss how binary (feature)

vectors can be compared in encrypted domains by XORing and computing the Hamming

weight (efficiently). Section 4 presents experimental results and in Section 5 we conclude

the paper.

2 Biometric System Architectures using Homomorphic Encryption

There are basically two different types of architectures described in literature. A simple

client-server architecture, where the client presents the sample to the server, which is then

compared to one or more templates in the database. The second architecture features an

additional matching component (matcher) which separates the matching process from the

general client-server communication.

Both architectures obtain their privacy preserving property by distributing the verifica-

tion/identification process among several independent components and it is essential that

no single component is able to track a user and/or can gain any sensitive relationship in-

formation between a person’s identity and her biometric trait. For the client-server archi-

tecture it is thus necessary that the client is also involved in computing the final matching

result and therefore it is vital that relevant client-side parts of the calculation are kept se-

cret. The client-server-matcher architecture introduces an additional matching component

which reduces the computational workload of the client.

Client-Server Architectures Barni et al. [BBC+10] introduce a generic identification

protocol for privacy preserving Fingercode authentication employing the Paillier and El-

liptic Curve ElGamal encryption schemes. Biometric template matching is done in an

encrypted domain on the server which then sends the encrypted results back to the client

which decrypts these results using the private key of the underlying homomorphic encryp-

tion scheme. Upmanyu et al. [UNSJ10] suggest to utilise the homomorphic properties of

RSA. They build on a basic client-server architecture, but additionally rely on a trusted

third party enrollment server. During enrollment, the client, which also holds the RSA

private key, sends its public key along with its identity and its biometric samples to the

enrollment server. The enrollment server in turn uses the provided samples to calculate a

so called authenticating classifier and an individual threshold. The classifier is then en-

crypted and passed on to the regular server together with the client’s ID and its public

key. The actual authentication takes place over a twofold communication phase between

the client and the server. Sarier [Sar10] designs a biometric verification protocol based on

134

a simple client server architecture, where the secret (private) key is not needed and thus

is not stored anywhere. As Sarier distinguishes between ordered and unordered sets of

biometrics he uses ElGamal for ordered sets and RSA for unordered sets as his underlying

homomorphic encryption schemes. The biometric features are separated into stable and

a non-stable parts [BSW07]. The security of the design is based on the underlying ho-

momorphic encryption scheme, an associated zero knowledge proof (ZKP), and a tamper

proof smart card, which stores the non-stable parts of the user’s biometric template along

with the parameters of the biometric template extraction method. Kuchi et al. [KNON09]

suggest a similar server-client approach using the Fujisaki-Okamoto commitment (which

is additively homomorphic) and a cryptographic protocol for proving that a committed

value lies in a specific interval without revealing the very value [Bou00]. Again, a tamper

proof smart card holds vital information for the matching process, so that there is no need

to store the secret (private) key anywhere in the system.

Client-Server-Matcher Architectures Bringer et al. [BCI+07] introduce an application

of the Goldwasser-Micali cryptosystem to biometric authentication. Their system con-

sists of an authentication server, which stores the user’s identity and deals with a user’s

service requests, a database, which stores the plaintext biometric templates of a user and

a matcher, which holds the Goldwasser-Micali public/private key pair. The matcher aids

the authentication server in making a decision whether a user’s authentication request is

accepted or rejected. No secret information storage is required at the client side and with

the introduction of the matcher, access to the user’s biometric information is effectively

limited. The matcher does not store any biometric information, hence, compromise of

the server does not leak any information to an outside attacker. Although the biometric

templates are stored in plaintext in the database, however, without any relevant identity

information, no sensitive relationship information may be obtained if the database is com-

promised. Lou et al. [LCY09] describe a similar solution for anonymous biometric access

control applying the Paillier encryption scheme. In addition to the client and biometric

server components they utilise a “commodity server” which assists the biometric server

in the matching process. However, no information about the templates and the sample is

leaked to the commodity server and the actual identification is performed with the help

of privately computing the Hamming distance. Although the Hamming distance is com-

puted entirely in the encrypted domain, the enrolled templates are stored in plaintext in the

database. The outcome of matching is a single bit which is passed from the commodity

server to the biometric server indicating if the user is legitimate (this is done in multiple

rounds to prevent attacks). Rane et al. [RSV09] propose another (similar) identifica-

tion protocol employing the Paillier encryption system. Barbosa et al. [BBCS08] present

a secure biometric verification scheme which relies on Support Vector Machine (SVM)

classifiers instead of the Hamming distance. Again the verification server (matcher) owns

the private key of the underlying homomorphic cryptosystem, in this case the Paillier en-

cryption scheme. Privacy is ensured since no user identities are transmitted at any point in

the protocol execution.

135

2.1 The Architecture Considered

Our architecture consists of two parts, the enrollment phase and the identification phase.

For both phases, we require a tamper proof sensor which provides the system with samples

of the target trait. We also presume that a feature vector (template) of each sample is

extracted and is available to the system.

template t
CS(t)

E(cs1, pk)

E(cs2, pk)

E(csn, pk)

. . .
DB

cs1

cs2

csn

Figure 1: Enrollment architecture (see Section 3 for symbol definitions)

For the enrollment phase we capture and store one (or several) templates of each individual

to be recognised by the system. For iris templates (as used in Section 4.2) we additionally

define a function CS which takes a template t as its parameter and performs cyclic shifts

over that template. These cyclic shifts are used to balance possible inconsistencies while

capturing the sample thus fundamentally improving the matching rates [RUW13]. As we

can see from Figure 1, n denotes the number of shifted templates stored in the database.

Each of the resulting reference templates cs1, . . . , csn is then encrypted and stored in

the database. Dependent on the cryptosystem encryption is performed using either the

Goldwasser-Micali or the Paillier public key. Furthermore, if we use the conventional

Paillier encryption scheme (see Section 3.1), also the plaintext template must be stored in

the database (since it is required for the encrypted xor(⊕) operation).

DB

Client AS

M

Step 6
granted: min(hi) ≤ θ

denied: min(hi) > θ

Step 5
hi := HW(D(E(xori), sk))

Step 4
E(xori) := π(E(t, pk)⊕E(t′i, pk))

Step 3
E(t′i, pk)

Step 2
E(t, pk)

Step 1
template t

i = rand(1, . . . , k)

k := No. of stored templates

Figure 2: Identification architecture (see Section 3 for symbol definitions)

In the identification phase (depicted in Figure 2), the authentication request is initiated at

the client side by extracting a template from the sample of the individual requesting au-

thentication. This template t is encrypted with the according public key at the client side

136

and is transfered to the server component. The server component consists of three inde-

pendent parts, the authentication server AS, the database server DB (storing the encrypted

reference templates) and a matcher M .

The authentication server AS deals with the client’s service request and fetches all enrolled

templates t′i, i = 1, . . . , k in random order from the DB, where k denotes the number of

templates stored in the database. Each enrolled template is then xor-ed against the en-

crypted template t provided by the client. Regardless of the underlying xor-algorithm,

the calculation of the Hamming weight cannot be accomplished in the encrypted domain

using partially homomorphic encryption techniques (see Section 3). For this purpose, the

third server component (the matcher M), being honest-but-curious and in possession of

the private key, is employed to compute the Hamming weight from the encrypted binary

strings. It has to be ensured that M cannot learn anything about template relations from the

binary strings, since being eventually able to eavesdrop the template data being transmit-

ted from the client (encrypted with M ’s public key), M would get enough information to

profile and track persons against their will. Thus, these strings (resulting from the xor op-

erations) are permuted. Permutation is done using a permutation function π and bitstrings

are sent to the matcher M . As the permutation does not change the number of zeros and

ones in the binary string, the permutation has no effect on the resulting Hamming weight.

The matcher decrypts the permuted string using the private key and calculates the Ham-

ming weight hi, which is sent back to AS. If the minimum of all Hamming weights

h1, . . . , hk falls within a predefined threshold θ, access to the system is granted, otherwise

access is denied. There are also techniques for secure comparisons without revealing any

of the involved quantities to either AS or M [DGK08, LCY09, BCP13], but these are not

considered in our experiments.

3 XORing Homomorphicly Encrypted Binary Feature Vectors

Homomorphic encryption schemes are special cases of asymmetric cryptosystems. As in

asymmetric systems there is a public key which is used for encryption and a private key

for decryption. Additionally, specific algebraic operations performed on a plaintext are

equivalent to other (possibly different) algebraic operations performed on the ciphertext.

These encryption schemes can be additively and/or multiplicatively homomorphic.

For an additively homomorphic property an algebraic operation on ciphertext values corre-

sponds to an addition of the corresponding plaintext values. Multiplicative homomorphism

generally means that an algebraic operation on ciphertext values relates to a multiplication

of the plaintext values.

If a cryptosystem is either additively or multiplicatively homomorphic (not both) it is

called a partially homomorphic system (e.g. Unpadded RSA, ElGamal, Paillier, Goldwasser-

Micali), whereas schemes which are both additively and multiplicatively homomorphic are

called fully homomorphic (see e.g. [Gen09]).

137

3.1 Paillier and Goldwasser-Micali Encryption

For both probabilistic cryptographic techniques, we briefly discuss the respective algo-

rithms for public and private key generation (KP and KGM), data encryption (EP and

EGM), and decryption (DP and DGM) together with their homomorphic properties. First,

two large prime numbers p and q are generated and the product n = pq is computed.

Paillier: For key generation, λ = lcm(p − 1, q − 1) (lcm = least common multiple) is

computed and a random integer g ∈ Z
∗

n2 is selected. In our implementation we choose

for simplicity g = n + 1, as this ensures that the integer g has the required property, i.e.

n + 1 ∈ Z
∗

n2 [Pai99]. These steps result in the following public/private key pair: pkP :

(n, g) and skP : (λ).

For encryption, we take a message m with m ∈ Zn and select a random integer r ∈ Zn.

The ciphertext c is obtained by computing

c = gm · rn mod n2 .

Note that the ciphertext is modulated by n2 which increases the bit-size of the ciphertext

compared to the plaintext at least by a factor of 2. For decryption, the plaintext message

m is restored by calculating

m =
L(cλ mod n2)

L(gλ mod n2)
mod n,

where L(u) = u−1
n

. In our implementation we use the following equivalence:

m = L(cλ mod n2) · λ−1 mod n

The Paillier encryption scheme allows two operations in the encrypted domain due to its

additively homomorphic property. For any messages m1,m2 ∈ Zn:

DP (EP (m1) · EP (m2) mod n2) = m1 +m2 mod n

DP (EP (m1)
m2 mod n2) = m1 ·m2 mod n

Goldwasser-Micali: For key generation, a quadratic non-residue x is required such that

its Jacobi symbol
(

x
n

)

J
equals +1 [GM82]. If p and q are selected to ensure that n is a

Blum integer then x = n− 1 is guaranteed to have this property. These steps result in the

following public/private key pair: pkGM : (x, n) and skGM : (p, q).

For encryption, a message m is interpreted as a string of bits, i.e. m = (m[1], . . . ,m[k]),
m[1], . . . ,m[k] ∈ {0, 1}, where k represents the number of bits in the message m. The

ciphertext c = (c[1], . . . , c[k]) is computed by

c[i] = y2i x
m[i] mod n, i = 1, . . . , k

where yi ∈ Z
∗

n is picked randomly for each m[i]. Due to the bit by bit encryption, the

encryption algorithm leads to a substantial data expansion of the ciphertext. For decrypting

138

the ciphertext c = (c[1], . . . , c[k]), k = |c| we need to determine if c[i] is a quadratic

residue modn for i = 1, . . . , k : m[i] =

{

0, c[i] is a quadratic residue modn
1, c[i] is a quadratic non-residue modn

For this decision, knowing the values of p and q, the following relation is exploited

[GM82]: Let cp = c[i] mod p and cq = c[i] mod q. Then

(

x

p

)

J

= c
(p−1

2)
p mod p and

(

x

q

)

J

= c
(q−1

2)
q mod q

If c
(p−1

2)
p ≡ 1 mod p and c

(q−1

2)
q ≡ 1 mod q, then c[i] is a quadratic residue mod n.

The additively homomorphic property for any m1,m2 ∈ {0, 1} is (⊕ denoting xor)

DGM (EGM (m1) · EGM (m2)) = m1 ⊕m2

In other words, if c1 and c2 are the encrypted values of m1 and m2, (c1 · c2) mod n will

be an encryption of m1 ⊕m2.

3.2 Customising Paillier Encryption

To compare two binary biometric templates m1 and m2 we usually calculate the Hamming

distance h of the two binary strings by xor-ing m′ = m1 ⊕ m2 and then computing the

Hamming Weight HW of the resulting string (by essentially counting the 1 bits in m′):

h = HW(m′).

Hence, in order to compute h in a privacy preserving way, we first need to find a way of

xor-ing two bit-strings in the encrypted domain. For the Goldwasser-Micali encryption

scheme we can directly exploit its homomorphic property as described above. For the

Paillier cryptosystem however, calculating the xor of two encrypted binary strings is not

as trivial. Thus we will have to look at the process of xor-ing two bit-strings more closely.

Let m1 = (m1[1] . . .m1[k]),m2 = (m2[1] . . .m2[k]) be two binary strings of length k.

Then

m1 ⊕m2 = m1[i] +m2[i]− 2m1[i]m2[i], i = 1, . . . , k .

As a consequence, we have to use bit-by-bit encryption of the Paillier scheme and can

finally perform the encrypted xor as follows:

m̃2[i] = −2m2[i] mod n

EP (m1[i]⊕m2[i]) = EP (m1[i]) · EP (m2[i]) · (EP (m1[i]))
m̃2[i] mod n2

where n is part of the public key for the Paillier cryptosystem and all encryption steps also

use the public key.

However, encrypting only a single bit is very inefficient as the Paillier scheme is designed

to encrypt messages of length m < n. To improve performance we propose a different

139

algorithm for xor-ing two binary m1, m2 in the encrypted domain which exploits Paillier’s

property to encrypt messages of length m < n. For the remainder of this paper we refer

to this algorithm as Paillier Chunkwise.

Corollary 1 Before encrypting m1 and m2, these messages are up-sampled as follows:

mj,up[i] =

{

mj [
i
2], 2 | i
0, otherwise

i = 1 . . . 2 · length(m), j ∈ {1, 2}.

Then the encrypted result of xoring m1 and m2 can be computed as (for i = 1 . . . length(m)):

EP (m1[i]⊕m2[i]) = (EP (m1,up) · EP (m2,up) mod n2)[2i] .

This means that when upsampling the binary data of the mj before encryption, the bi-

nary positions of the result of the multiplication of the decimal numbers corresponding to

upsampled mj are equal to the encrypted result of xor-ing the mj’s binary positions.

Proof: The operation supported by the homomorphic property by the Paillier scheme is

the addition in the non-encrypted domain. Thus, to be able to exploit this, the binary

representation of the result of the addition of two decimal numbers should be related to

the binary result of bitwise xor-ing the binary representation of the two decimal numbers.

Indeed we have to show that, if both mj are up-sampled as described, the even binary

positions of the result of the addition of the two decimal numbers corresponding to the

mj,up are identical to the bits representing the result of the bitwise xor of the original mj :

m1[i]⊕m2[i] = (m1,up +m2,up)[2i]

Now directly exploiting the Paillier additively homomorphic property leads to the desired

result as stated above. QED.

Lemma 1 Let m1[i] and m2[i] be two binary strings, m1,up and m2,up the decimal num-

bers corresponding to the upsampled versions of m1 and m2. Then

m1[i]⊕m2[i] = (m1,up +m2,up)[2i] .

.Proof: The addition of two decimal numbers m1 and m2 in their binary representation

can be accomplished by (m1 + m2)[i] = m1[i] + m2[i] ∀i and adding some carry bit at

the i+1th position if necessary. Due to the definition of the up-sampling process the even

positions of the up-sampled sequences mj,up[2i] contain the original bits of mj [i]. The odd

positions mj,up[2i+1] are zero and thus, the (binary) sum of m1,up[2i+1]+m2,up[2i+1]
is zero as well. Adding the even positions, i.e. m1,up[2i] +m2,up[2i], four cases need to

be considered:

1. m1,up[2i] = 0 ∧ m2,up[2i] = 0 =⇒ m1,up[2i] + m2,up[2i] = 0 = m1,up[2i] ⊗
m2,up[2i]

2. m1,up[2i] = 1 ∧ m2,up[2i] = 0 =⇒ m1,up[2i] + m2,up[2i] = 1 = m1,up[2i] ⊗
m2,up[2i]

140

3. m1,up[2i] = 0 ∧ m2,up[2i] = 1 =⇒ m1,up[2i] + m2,up[2i] = 1 = m1,up[2i] ⊗
m2,up[2i]

4. m1,up[2i] = 1 ∧ m2,up[2i] = 1 =⇒ m1,up[2i] + m2,up[2i] = 0 = m1,up[2i] ⊗
m2,up[2i] and a carry bit has to be set resulting in m1,up[2i+1]+m2,up[2i+1] = 1.

Since originally all odd positions are zero, there is no further carry bit and thus no

further influence on positions [i+2].

Thus all four cases lead to the desired result. QED.

Regardless of the underlying xor-algorithm, the calculation of HW cannot be accom-

plished in the encrypted domain. As described before, this is done on the matcher M ,

using the private key of the employed respective encryption scheme. The bitwise permu-

tation of the binary string m′ to ensure privacy when transfered to the matcher can be con-

duced for Paillier and Goldwasser-Micali encryption in straightforward manner, however,

for Paillier Chunkwise the permutation can only be carried out on the encrypted chunks.

Therefore, the privacy preserving property of the Paillier Chunkwise encryption scheme

declines the smaller the input data and therefore the fewer chunks are available for permu-

tation (thus, this issue needs to be considered when setting up the system, where we face

a tradeoff between efficiency (large chunks) and privacy (small but numerous chunks)).

4 Experiments

4.1 Assessment of Privacy-preserving Components

All algorithms are implemented in C using the GNU MPL. First experiments are executed

on an Intel Core Duo T2050 with 1600MHz. Time for key generation is not considered

since it can be done in a preprocessing stage, the prime numbers used for key generation

have 25 bits each (to limit experimentation effort) and chunk-size is set to 80 bits. We use

random binary mj and repeat each experiment 40 times averaging the results. Message

size is given in bits in the plots. For all three encryption techniques (i.e. Paillier (P),

Goldwasser-Micali (GM), Pallier Chunkwise (PC), denoted as “myMatch” in the plots),

we compare timings of encrypting a feature vector (including up-sampling for PC and

done on the client), timings of matching the binary strings in the encrypted domain (done

on the AS), and timings of decrypting, summing the set bit positions and comparisons to

a threshold (including the extraction of the even bit positions for PC and done on the M).

While encryption is very time consuming (and nearly identical expensive, see Fig. 3.a)

for P and GM due to the required bit-by-bit operation mode, PC is much more efficient.

For matching, P is clearly least efficient as expected due to the computation of the inverse

element and the higher number of required multiplications. GM is less efficient compared

to the proposed PC since more multiplications are required (in PC more bits are tracted

by a single multiplication). Finally, for decryption, GM is the fastest technique since

determining if a number is a quadratic residual can be done very efficiently using the MPL.

On the other hand, the extraction of single bits as required by PC is rather inefficient, thus,

141

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1000 2000 3000 4000 5000 6000 7000 8000

m
il

li
se

co
n
d
s

message size

Encryption

Paillier
GoldMic

myMatch.dat

(a) Encryption

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000 8000

m
il

li
se

co
n
d
s

message size

Matching

Paillier
GoldMic
myMatch

(b) Matching

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000

m
il

li
se

co
n
d
s

message size

Decryption

Paillier
GoldMic
myMatch

(c) Decryption

Figure 3: Timings for different processing stages

PC is ranked second in this stage. The bit-by-bit decryption as done by P is clearly the

least efficient approach.

4.2 Iris Recognition in the Encrypted Domain

In order to experimentally evaluate the overall performance in realistic actual use for

privacy-preserving biometric matching, we set up an iris identification experiment using

data from the CASIA V3 Interval database. For these experiments an Intel Core i7-2600

4x3400MHz PC with 4GB DDR3 RAM is used and key length / chunk-size are set to 1024

/ 31 bits, respectively. For feature extraction and matching, software from the Univer-

sity of Salzburg USIT Toolkit is used (available from www.wavelab.at/sources/

Rathgeb12e/ [RUW13]) implementing a context adaptive Hough Transform for seg-

mentation and the algorithm of Ma et al. [MTWZ04] for extracting binary templates of

length 10240 bits. All the templates of a subject are stored (in pre-encrypted manner) in

the DB using 17 different cyclic shifts. In Table 1 we present timings of identification

attempts including encryption of the template to be identified, matching in the encrypted

domain, and final decryption and comparison of HW result to a threshold.

In the table, we display timing results of single identification attempts in which either

only a single person was enrolled in the DB (thus simulating the computational cost of a

verification procedure) or 30 subjects were enrolled. As already to be expected from the

results of the last subsection, PC significantly outperforms both P and GM: The proposed

142

Table 1: Time performance (seconds): Iris Identification

Scheme verification 30 subjects enrolled

Unencrypted < 0.1 2.5

Goldwasser-Micali (GM) 22.8 682.0

Paillier (P) 5591.9 162000.0

Paillier Chunkwise (PC) 3.0 90.0

scheme is faster by a factor of more than 7 as compared to GM and faster by several orders

of magnitude compared to P. However, inspite of these improvements PC is still slower by

a factor of 36 as compared to unencrypted application.

5 Conclusions

We have proposed a variant of Paillier homomorphic encryption clearly outperforming

the Goldwasser-Micali approach in privacy-preserving biometric matching of binary tem-

plates. While obtaining significant improvements, the increase in computational cost as

compared to the unencrypted case is still too large for large scale deployment.

References

[AMFF+13] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Cogniat, and R. Sirdey. Recent ad-
vances in homomorphic encryption. IEEE Signal Processing Magazine, 2(30):108–
117, 2013.

[BBC+10] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla, D.
Fiore, R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode au-
thentication. In Proceedings of the 12th ACM Workshop on Multimedia and Security,
MM&Sec ’10, pages 231–240, New York, NY, USA, 2010. ACM.

[BBCS08] M. Barbosa, T. Brouard, S. Cauchie, and S. M. Sousa. Secure Biometric Authentica-
tion with Improved Accuracy. In Proceedings of the 13th Australasian Conference on
Information Security and Privacy, ACISP ’08, pages 21–36, Berlin, Heidelberg, 2008.
Springer-Verlag.

[BCI+07] J. Bringer, H. Chabanne, M. Izabachène, D. Pointcheval, Q. Tang, and S. Zimmer.
An application of the Goldwasser-Micali cryptosystem to biometric authentication. In
Proceedings of the 12th Australasian Conference on Information Security and Privacy,
ACISP’07, pages 96–106, 2007. Springer.

[BCP13] J. Bringer, H. Chabanne, and A. Patey. Privacy-preserving biometric identification
using secure multiparty computation. IEEE Signal Processing Magazine, 2(30):42–
52, 2013.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
Proceedings of the 19th International Conference on Theory and Application of Cryp-
tographic Techniques, EUROCRYPT’00, pages 431–444, 2000. Springer.

143

[BSW07] T. E. Boult, W. J. Scheirer, and R. Woodworth. Revocable Fingerprint Biotokens:
Accuracy and Security Analysis. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, pages 1–8, 2007.

[DGK08] Ivan Damgard, Martin Geisler, and Mikkel Kroigard. Homomorphic encryption and
secure comparison. International Journal of Applied Cryptography, 1(1):22–31, 2008.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178,
New York, NY, USA, 2009. ACM.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the fourteenth annual
ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, New York,
NY, USA, 1982. ACM.

[KNON09] H. Kikuchi, K. Nagai, W. Ogata, and M. Nishigaki. Privacy-preserving similarity
evaluation and application to remote biometrics authentication. Soft Comput., 14:529–
536, December 2009.

[LCY09] Y. Luo, S. S. Cheung, and S. Ye. Anonymous biometric access control based on
homomorphic encryption. In Proceedings of the 2009 IEEE International Conference
on Multimedia and Expo, ICME’09, pages 1046–1049, Piscataway, NJ, USA, 2009.
IEEE Press.

[MTWZ04] L. Ma, T. Tan, Y. Wang, and D. Zhang. Efficient iris recognition by characterizing key
local variations. IEEE Transactions on Image Processing, 13:739–750, 2004.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of the 17th International Conference on Theory and Appli-
cation of Cryptographic Techniques, EUROCRYPT’99, pages 223–238, Berlin, Hei-
delberg, 1999. Springer-Verlag.

[RSV09] S. D. Rane, W. Sun, and A. Vetro. Secure distortion computation among untrusting
parties using homomorphic encryption. In Proceedings of the 16th IEEE International
Cnference on Image processing, ICIP’09, pages 1469–1472, Piscataway, USA, 2009.
IEEE Press.

[RU11] Christian Rathgeb and Andreas Uhl. A Survey on Biometric Cryptosystems and Can-
celable Biometrics. EURASIP Journal on Information Security, 2011(3), 2011.

[RUW13] Christian Rathgeb, Andreas Uhl, and Peter Wild. Iris Recognition: From Segmentation
to Template Security, volume 59 of Advances in Information Security. Springer, 2013.

[Sar10] N.D. Sarier. Practical multi-factor biometric remote authentication. In Biometrics:
Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Confer-
ence, BTAS ’10, pages 1–6, September 2010.

[SSW10] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face
recognition. In Proceedings of the International Conference on Information, Security,
and Cryptology (ICISC’09), volume 5984 of Springer LNCS, pages 229–244, 2010.

[UNSJ10] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar. Blind authenti-
cation: a secure crypto-biometric verification protocol. IEEE Trans. Info. For. Sec.,
5:255–268, June 2010.

144

