
106 Engelbertz et al.

[Lu18] Ludwig, K.: Duo Finds SAML Vulnerabilities Affecting Multiple Implementa-
tions, https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-
implementations, Feb. 2018.

[MA05] McIntosh, M.; Austel, P.: XML Signature Element Wrapping Attacks and
Countermeasures. In: SWS ’05: Proceedings of the 2005 workshop on Secure
web services. Pp. 20–27, 2005.

[Ma14] Mainka, C.; Mladenov, V.; Feldmann, F.; Krautwald, J.; Schwenk, J.: Your
Software at My Service: Security Analysis of SaaS Single Sign-On Solutions in
the Cloud. In: Proceedings of the 6th Edition of the ACM Workshop on Cloud
Computing Security. CCSW ’14, Scottsdale, Arizona, USA, 2014.

[ON14] ONsec_Lab: SSRF bible: Cheatsheet, https://docs.google.com/document/d
/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit, 2014.

[Pe15] Pellegrino, G.; Balzarotti, D.; Winter, S.; Suri, N.: In the Compression Hornet’s
Nest: A Security Study of Data Compression in Network Services. In: 24th
USENIX Security Symposium (USENIX Security 15). Pp. 801–816, 2015, isbn:
978-1-931971-232.

[Re18] RedTeam: Truncation of SAML Attributes in Shibboleth 2, https://www.redteam-
pentesting.de/de/advisories/rt-sa-2017-013/-truncation-of-saml-attributes-in-
shibboleth-2, Jan. 2018.

[So11] Somorovsky, J.; Heiderich, M.; Jensen, M.; Schwenk, J.; Gruschka, N.; Ia-
cono, L. L.: All Your Clouds are Belong to us – Security Analysis of Cloud
Management Interfaces. In: The ACM Cloud Computing Security Workshop
(CCSW). Oct. 2011.

[So12] Somorovsky, J.; Mayer, A.; Schwenk, J.; Kampmann, M.; Jensen, M.: On
Breaking SAML: Be Whoever You Want to Be. In: In Proceedings of the 21.
USENIX Security Symposium. Aug. 2012.

[Sp16] Späth, C.; Mainka, C.; Mladenov, V.; Schwenk, J.: SoK: XML parser vulnera-
bilities. In: 10th USENIX Workshop on Offensive Technologies (WOOT 16),
Austin, TX. 2016.

[Su09] Sullivan, B.: Security Briefs - XML Denial of Service Attacks and De-
fenses, https://msdn.microsoft.com/en-us/magazine/ee335713.aspx, Last ac-
cessed: 20.5.2018, Nov. 2009.

[Ti14] Timothy D. Morgan, O. A. I.: XML Schema, DTD, and Entity Attacks, tech. rep.,
VSR, May 2014.

[Ts17] Tsai, O.: A New Era of SSRF - Exploiting URL Parser in Trending Pro-
gramming Languages!, https://www.blackhat.com/docs/us-17/thursday/us-17-
Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-
Languages.pdf, 2017.

106 Engelbertz et al.

[Lu18] Ludwig, K.: Duo Finds SAML Vulnerabilities Affecting Multiple Implementa-
tions, https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-
implementations, Feb. 2018.

[MA05] McIntosh, M.; Austel, P.: XML Signature Element Wrapping Attacks and
Countermeasures. In: SWS ’05: Proceedings of the 2005 workshop on Secure
web services. Pp. 20–27, 2005.

[Ma14] Mainka, C.; Mladenov, V.; Feldmann, F.; Krautwald, J.; Schwenk, J.: Your
Software at My Service: Security Analysis of SaaS Single Sign-On Solutions in
the Cloud. In: Proceedings of the 6th Edition of the ACM Workshop on Cloud
Computing Security. CCSW ’14, Scottsdale, Arizona, USA, 2014.

[ON14] ONsec_Lab: SSRF bible: Cheatsheet, https://docs.google.com/document/d
/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit, 2014.

[Pe15] Pellegrino, G.; Balzarotti, D.; Winter, S.; Suri, N.: In the Compression Hornet’s
Nest: A Security Study of Data Compression in Network Services. In: 24th
USENIX Security Symposium (USENIX Security 15). Pp. 801–816, 2015, isbn:
978-1-931971-232.

[Re18] RedTeam: Truncation of SAML Attributes in Shibboleth 2, https://www.redteam-
pentesting.de/de/advisories/rt-sa-2017-013/-truncation-of-saml-attributes-in-
shibboleth-2, Jan. 2018.

[So11] Somorovsky, J.; Heiderich, M.; Jensen, M.; Schwenk, J.; Gruschka, N.; Ia-
cono, L. L.: All Your Clouds are Belong to us – Security Analysis of Cloud
Management Interfaces. In: The ACM Cloud Computing Security Workshop
(CCSW). Oct. 2011.

[So12] Somorovsky, J.; Mayer, A.; Schwenk, J.; Kampmann, M.; Jensen, M.: On
Breaking SAML: Be Whoever You Want to Be. In: In Proceedings of the 21.
USENIX Security Symposium. Aug. 2012.

[Sp16] Späth, C.; Mainka, C.; Mladenov, V.; Schwenk, J.: SoK: XML parser vulnera-
bilities. In: 10th USENIX Workshop on Offensive Technologies (WOOT 16),
Austin, TX. 2016.

[Su09] Sullivan, B.: Security Briefs - XML Denial of Service Attacks and De-
fenses, https://msdn.microsoft.com/en-us/magazine/ee335713.aspx, Last ac-
cessed: 20.5.2018, Nov. 2009.

[Ti14] Timothy D. Morgan, O. A. I.: XML Schema, DTD, and Entity Attacks, tech. rep.,
VSR, May 2014.

[Ts17] Tsai, O.: A New Era of SSRF - Exploiting URL Parser in Trending Pro-
gramming Languages!, https://www.blackhat.com/docs/us-17/thursday/us-17-
Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-
Languages.pdf, 2017.

cba

H. Roßnagel et al. (Eds.): Open Identity Summit 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 107

GTPL: A Graphical Trust Policy Language

Sebastian Alexander Mödersheim1, Bihang Ni2

Abstract: We present GTPL, a Graphical Trust Policy Language, as an easy-to-use interface for
the Trust Policy Language TPL proposed by the LIGHTest project. GTPL uses a simple graphical
representation where the central graphical metaphor is to consider the input like certificates or
documents as forms and the policy author describes “what to look for” in these forms by putting
constrains on the form’s fields. GTPL closes the gap between languages on a logical-technical level
such as TPL that require expertise to use, and interfaces like the LIGHTest Graphical-Layer that allow
only for very basic patterns.

Keywords: Trust policy; graphical language

1 Introduction

Trust is a quite important element in identity management and electronic transactions: to
be sure about the identity of a partner, one usually relies on some form of certificate; this
in turn is only meaningful if one trusts the issuer of the certificate. There is hence a trust
policy (at least implicitly) as to which entities one accepts as certificate authorities. The
most basic form of a trust policy is simply a list of trusted entities. For instance, most web
browsers ship with a list of certificate authorities (and their public keys) so all certificates
issued by one of these authorities are immediately accepted.

While this may be sufficient for web browsers, for electronic business transactions one may
want to formulate more complex policies, for instance where entities may have different trust
levels. With increased complexity it becomes apparent that one wants a form of language to
formulate such policies. Such a trust policy language is a formal language in the sense that
it has to have a precise syntax (what constitutes a valid specification in the language?) and
semantics (is the policy satisfied for a given problem instance?). Especially this semantic
question, i.e., defining and implementing an automatic policy decision procedure, indicates a
large similarity between trust policies and access control policies [Bl99; He00; Ya03]. Some
access control policy languages like SecPal and DKAL [BFG10; GN08] are based on simple
fragments of first-order or modal logics that both allow for using common logical concepts
1 Technical University of Denmark, Department of Applied Mathematics and Computer Science, Richard Petersens

Plads, Building 324, Room 180 2800 Kgs. Lyngby, Denmark, samo@dtu.dk
2 Technical University of Denmark, Department of Applied Mathematics and Computer Science, Richard Petersens

Plads, Building 324, Room 180 2800 Kgs. Lyngby, Denmark, bnia@dtu.dk

108 Sebastian Alexander Mödersheim, Bihang Ni

(like variables, connectives, or rule matching) and for rather immediate implementations
of the decision procedures. Similarly, both the trust policy languages of [He00] and of the
LIGHTest project [MS18] are based on a logic-programming approach. In fact, both [He00]
and [MS18] call their trust policy language TPL.

While these languages are very declarative to use for logicians and programmers, they are
not so suitable for users without a solid technical background. This is crucial since the trust
policies are most relevant in business settings where the decision makers do not necessarily
have such a background while at the same time they should be able to understand in full
detail the policy they are authoring. For this reason, the LIGHTest project offers a simple
graphical interface, aimed at novice users, where users can select entities that are trusted,
and entities that are not [Th18]. The aim of the graphical trust policy language GTPL that
we present in this paper is to fill the gap between on the one side very simplistic interfaces
for policy languages that lack expressiveness and on the other side very technical languages
that are very expressive (e.g. Turing-complete) but basically require programming skills.
The target user of GTPL has a great knowledge of their business domain, but not necessarily
a technical-logical background.

The central graphical metaphor of GTPL is that of a paper form. For instance, when applying
for admission to a university, one needs to fill out a form provided by the university that has
different fields with a predefined meaning, e.g. name, address, date of birth, and one has to
attach to the form a number of documents such as a high-school diploma. An office clerk
who processes the application will follow a policy for checking the documents, e.g. whether
the attached diplomas indeed qualify the applicant for this study line, whether the grades
are good enough, and whether the information such as name and address in the different
documents indeed matches. One could thus describe this checking process as constraints
on the fields of the forms, e.g., that certain fields match each other and that certain values
are in acceptable range. Hence, one could specify a policy quite formally by putting these
constraints directly into an empty form, essentially specifying what to look for. Such a
policy is not only easy to write, it is also possible to read very quickly, as it literally gives
the “overview” over what matters. Moreover, in contrast to a textual representation, it is less
likely that the policy author accidentally forgets to specify a constraint on some field, since
the entire form is in view.

The contributions of this paper include the definition of GTPL as a graphical language
for trust policies that consists of a small number of language constructs. The language is
parameterized over the concept of a form as a list of fields, and can thus be used with forms
from any business domain. Moreover, we have implemented GTPL as a graphical policy
editor that includes a translator to the LIGHTest TPL. This makes GTPL a formal language
with a precise semantics (through the semantics of TPL) and it immediately makes the
policies usable in LIGHTest and its automated trust verifier [BL16]. While GTPL is closely
related to LIGHTest, the idea of specifying policies by constraints on fields of forms is
general: We see this as a contribution towards language design that abstracts from irrelevant
technical details and allows users to focuses on the business logic.

108 Sebastian Alexander Mödersheim, Bihang Ni

(like variables, connectives, or rule matching) and for rather immediate implementations
of the decision procedures. Similarly, both the trust policy languages of [He00] and of the
LIGHTest project [MS18] are based on a logic-programming approach. In fact, both [He00]
and [MS18] call their trust policy language TPL.

While these languages are very declarative to use for logicians and programmers, they are
not so suitable for users without a solid technical background. This is crucial since the trust
policies are most relevant in business settings where the decision makers do not necessarily
have such a background while at the same time they should be able to understand in full
detail the policy they are authoring. For this reason, the LIGHTest project offers a simple
graphical interface, aimed at novice users, where users can select entities that are trusted,
and entities that are not [Th18]. The aim of the graphical trust policy language GTPL that
we present in this paper is to fill the gap between on the one side very simplistic interfaces
for policy languages that lack expressiveness and on the other side very technical languages
that are very expressive (e.g. Turing-complete) but basically require programming skills.
The target user of GTPL has a great knowledge of their business domain, but not necessarily
a technical-logical background.

The central graphical metaphor of GTPL is that of a paper form. For instance, when applying
for admission to a university, one needs to fill out a form provided by the university that has
different fields with a predefined meaning, e.g. name, address, date of birth, and one has to
attach to the form a number of documents such as a high-school diploma. An office clerk
who processes the application will follow a policy for checking the documents, e.g. whether
the attached diplomas indeed qualify the applicant for this study line, whether the grades
are good enough, and whether the information such as name and address in the different
documents indeed matches. One could thus describe this checking process as constraints
on the fields of the forms, e.g., that certain fields match each other and that certain values
are in acceptable range. Hence, one could specify a policy quite formally by putting these
constraints directly into an empty form, essentially specifying what to look for. Such a
policy is not only easy to write, it is also possible to read very quickly, as it literally gives
the “overview” over what matters. Moreover, in contrast to a textual representation, it is less
likely that the policy author accidentally forgets to specify a constraint on some field, since
the entire form is in view.

The contributions of this paper include the definition of GTPL as a graphical language
for trust policies that consists of a small number of language constructs. The language is
parameterized over the concept of a form as a list of fields, and can thus be used with forms
from any business domain. Moreover, we have implemented GTPL as a graphical policy
editor that includes a translator to the LIGHTest TPL. This makes GTPL a formal language
with a precise semantics (through the semantics of TPL) and it immediately makes the
policies usable in LIGHTest and its automated trust verifier [BL16]. While GTPL is closely
related to LIGHTest, the idea of specifying policies by constraints on fields of forms is
general: We see this as a contribution towards language design that abstracts from irrelevant
technical details and allows users to focuses on the business logic.

GTPL 109

We introduce GTPL in the following by a concrete example of trust policies for an auction
house that wants to allow online bids. This allows us to introduce all constructs of GTPL
step by step as a collection of policy rules, where each rule describes one sufficient condition
for the auction house to accept an online bid. We then summarize the general concepts of
GTPL in a textual syntax. This syntax both describes the data structures of the GTPL editor
and is the basis for the semantics by translation to LIGHTest TPL. Due to lack of space, we
only summarize this translation, the formal details are found in a technical report [MS18].

2 A Running Example

We introduce the Graphical Trust Policy Language GTPL by using an example of a classical
auction house who likes to extend their traditional business to electronic bidding and
formulate trust policies for that matter. This should be based on a trust infrastructure like
LIGHTest [BL16], and we will introduce the relevant concepts of LIGHTest along the way.

The auctions may easily range up to thousands of Euros for a single item, which gives of
course the classical problem of ensuring that the successful bidder indeed pays the sum
they have bid. On the one hand, the auction house does not want to put any entrance barrier
for new customers who just “stumbled” upon an item by an Internet search, on the another
hand they want to avoid that, for instance, somebody practically anonymously bids on an
item just to get the price up and then not paying if that bid was the highest.

This is a classical trust problem. The classical (non-electronic) solutions are that customers
have to bring references from other auction houses or a bank statement, or be present
at the auction in person, proving their identity before the auction starts. The point of
trust infrastructures like LIGHTest is to facilitate these aspects in the digital world so one
can benefit from the large potential of digitalization without losing the security and trust
guarantees of the classical non-digital world. This example allows us to illustrate GTPL
with realistic policies that an auction house may want to choose.

2.1 Bidding Forms

Auction houses typically allow customers to bid via standard (non-digital) mail if they
cannot be physically present at the auction house. The bidder would tell the auction house a
maximum bid for a particular item, and the auction house could accordingly act as if the
bidder was present at the auction and place bids for the customer up to the maximum bid.
For this purpose, each auction house would have their own bidding form: a paper sheet
bearing the name of the auction house and the particular auction, like “The Auction House
2018”. The form contains fields to fill in, such as the personal information of the bidder and
a list of items (the lot numbers and the maximum bid) and finally a field where the bidder
must sign the form. This signed form is then mailed to the auction house.

110 Sebastian Alexander Mödersheim, Bihang Ni

<AUCTIONHOUSEFORMAT
auctionID="AUCTION18">
<bidder>...</bidder>
<address>
<street>...</street>
<city>...</city>
<country>...</country>

</address>
<bid lotno="..."

amount="...">
<signature>
jmj7l5rSw0yVbvlWAYkKYBwk
</signature>
<Certificate>
...
</Certificate>
</AUCTIONHOUSEFORMAT>

Fig. 1: Example form in XML Fig. 2: Graphical representation of the form in GTPL

The first step of digitization for auction houses was providing online auction catalogs, where
customers can click on items and place a bid. This would basically lead to an electronic
version of the classical paper bidding form, and it is sent to the auction house using https
or simply email. Such an electronic bidding form could look like the XML snipped in
Fig. 1—for simplicity we consider bidding only on a single item. We have here already
included a field for the digital signature, which is actually still optional in many of today’s
online bidding solutions. If used, it would be a digital signature on a hash of the document.

We consider the XML-based form in Fig. 1 as concrete syntax, since there are many different
ways to convey the same informations, but the essence, the abstract syntax, is that it is a list
of attribute-value pairs, as shown in Fig. 2, where every value is a blank box to be filled,
and every attribute is an annotation like “Bidder Name” that declares the meaning of the
corresponding value. As a first approximation let us say that the content of the blank boxes
will be a string. Moreover, the form carries a title, identifying the meaning of the form as
an entirety, so that nobody accidentally considers this form, say, as a passport. This title
corresponds in the non-electronic world to having the name of the auction house and the
particular auction printed on the paper bidding form. (This is crucial also to prevent a hacker
to replay a bidding form at the next auction.) Both the signature and the certificate fields are
special fields, while the other fields are generic and carry no built-in meaning for GTPL.

It is thus possible to connect a variety of forms to GTPL: one simply needs to define a parser
for the new form (and connection to signature verification for the used signature scheme),
and add it to the library of GTPL formats. This library of formats shall satisfy the conditions
of [MK14], namely being unambiguous (every concrete input string can be parsed in only
one way) and pairwise disjoint (no string can be parsed for two different formats).

110 Sebastian Alexander Mödersheim, Bihang Ni

<AUCTIONHOUSEFORMAT
auctionID="AUCTION18">
<bidder>...</bidder>
<address>
<street>...</street>
<city>...</city>
<country>...</country>

</address>
<bid lotno="..."

amount="...">
<signature>
jmj7l5rSw0yVbvlWAYkKYBwk
</signature>
<Certificate>
...
</Certificate>
</AUCTIONHOUSEFORMAT>

Fig. 1: Example form in XML Fig. 2: Graphical representation of the form in GTPL

The first step of digitization for auction houses was providing online auction catalogs, where
customers can click on items and place a bid. This would basically lead to an electronic
version of the classical paper bidding form, and it is sent to the auction house using https
or simply email. Such an electronic bidding form could look like the XML snipped in
Fig. 1—for simplicity we consider bidding only on a single item. We have here already
included a field for the digital signature, which is actually still optional in many of today’s
online bidding solutions. If used, it would be a digital signature on a hash of the document.

We consider the XML-based form in Fig. 1 as concrete syntax, since there are many different
ways to convey the same informations, but the essence, the abstract syntax, is that it is a list
of attribute-value pairs, as shown in Fig. 2, where every value is a blank box to be filled,
and every attribute is an annotation like “Bidder Name” that declares the meaning of the
corresponding value. As a first approximation let us say that the content of the blank boxes
will be a string. Moreover, the form carries a title, identifying the meaning of the form as
an entirety, so that nobody accidentally considers this form, say, as a passport. This title
corresponds in the non-electronic world to having the name of the auction house and the
particular auction printed on the paper bidding form. (This is crucial also to prevent a hacker
to replay a bidding form at the next auction.) Both the signature and the certificate fields are
special fields, while the other fields are generic and carry no built-in meaning for GTPL.

It is thus possible to connect a variety of forms to GTPL: one simply needs to define a parser
for the new form (and connection to signature verification for the used signature scheme),
and add it to the library of GTPL formats. This library of formats shall satisfy the conditions
of [MK14], namely being unambiguous (every concrete input string can be parsed in only
one way) and pairwise disjoint (no string can be parsed for two different formats).

110 Sebastian Alexander Mödersheim, Bihang Ni

<AUCTIONHOUSEFORMAT
auctionID="AUCTION18">
<bidder>...</bidder>
<address>
<street>...</street>
<city>...</city>
<country>...</country>

</address>
<bid lotno="..."

amount="...">
<signature>
jmj7l5rSw0yVbvlWAYkKYBwk
</signature>
<Certificate>
...
</Certificate>
</AUCTIONHOUSEFORMAT>

Fig. 1: Example form in XML Fig. 2: Graphical representation of the form in GTPL

The first step of digitization for auction houses was providing online auction catalogs, where
customers can click on items and place a bid. This would basically lead to an electronic
version of the classical paper bidding form, and it is sent to the auction house using https
or simply email. Such an electronic bidding form could look like the XML snipped in
Fig. 1—for simplicity we consider bidding only on a single item. We have here already
included a field for the digital signature, which is actually still optional in many of today’s
online bidding solutions. If used, it would be a digital signature on a hash of the document.

We consider the XML-based form in Fig. 1 as concrete syntax, since there are many different
ways to convey the same informations, but the essence, the abstract syntax, is that it is a list
of attribute-value pairs, as shown in Fig. 2, where every value is a blank box to be filled,
and every attribute is an annotation like “Bidder Name” that declares the meaning of the
corresponding value. As a first approximation let us say that the content of the blank boxes
will be a string. Moreover, the form carries a title, identifying the meaning of the form as
an entirety, so that nobody accidentally considers this form, say, as a passport. This title
corresponds in the non-electronic world to having the name of the auction house and the
particular auction printed on the paper bidding form. (This is crucial also to prevent a hacker
to replay a bidding form at the next auction.) Both the signature and the certificate fields are
special fields, while the other fields are generic and carry no built-in meaning for GTPL.

It is thus possible to connect a variety of forms to GTPL: one simply needs to define a parser
for the new form (and connection to signature verification for the used signature scheme),
and add it to the library of GTPL formats. This library of formats shall satisfy the conditions
of [MK14], namely being unambiguous (every concrete input string can be parsed in only
one way) and pairwise disjoint (no string can be parsed for two different formats).

GTPL 111

Fig. 3: The layout of the GTPL application (the annotations in red are not part of the GUI).

3 The Layout of the GTPL Application

Fig. 3 gives the overview of the GTPL application. The left part (labeled “GTPL”) is the list
of policy rules defined so far, the middle part (labeled “Working space”) is the policy rule
currently under edit, and the right part (labeled “Format Library”) is a palette of formats
and certificates that are currently available. The normal workflow to create a new policy
rule is to select a format or certificate from the library and drag it to the center workspace,
to open a new blank form. The figure shows this for the format “The Auction House 2018”.
One can now make constraints on this form, give it a name (in the “Rule name” field) and
then click the “Add policy” button. Then it will appear in the list of the rules on the left;
from there it can be selected later for editing (or deleting). Finally one can store the rules in
GTPL format or export them to LIGHTest TPL for use in the LIGHTest architecture.

3.1 The Hello World of GTPL

The basic idea is that we can use this simple graphical representation of the ”empty” form
as a basis for describing trust policies. For instance, let us define as a first example policy
rule in Fig. 4 where the auction house wants to accept any bids up to 100 Euro; note that the
currency is implicit in the format (it may explicitly write that in the syntax of the field). The

112 Sebastian Alexander Mödersheim, Bihang Ni

Fig. 4: A first graphical policy rule

policy is specified by entering into the bid field the text <=100 and leaving blank all other
fields. This means that this policy rule has only one requirement, that the bid is a number
up tp 100. In particular we do not require a signature, i.e., for bids below 100 Euro, this
auction house is not worried about trust.

The basic concept of filling a constraint into a field is to either demand a particular value,
e.g. entering Denmark for the country field, or a comparison with a value like <=100. The
latter requires that the corresponding field of that format is defined to have an ordinal type.
Such ordinal types can also be defined as part of the library, e.g., we could have a type
rating with ordered elements standard < gold < premium. Moreover, we allow that a
field could be any value in a list, e.g., the policy author can specify a list of countries CL and
constrain the country field of the form to be any value of the list by writing in CL.

3.2 Checking Signatures

As a second policy rule, the auction house accepts any bid up to 1500 Euro if it is signed
by an eIDAS qualified signature [En18]. To that end, we use that the Signature field has
a distinguished meaning: we specify in this field the public key with respect to which the
signature must verify. It is part of the format definition which part of the document is signed.
The graphical convention is that the signature includes all fields above the signature field,
e.g., in the auction house form the signature comprises all fields except the certificate field.3

In a signature field we practically never want to specify a particular fixed public key, but
specify that it relates to a given certificate. If we use again the metaphor of a paper form,
then a certificate would be an attachment to the main form, i.e., the person submitting the
form provides additional relevant information that itself has some structure. Thus, such

3 This should also include the kind of form it is, i.e., the format name; this is implied by the standard requirements
on the disjointness of formats [MK14].

112 Sebastian Alexander Mödersheim, Bihang Ni

Fig. 4: A first graphical policy rule

policy is specified by entering into the bid field the text <=100 and leaving blank all other
fields. This means that this policy rule has only one requirement, that the bid is a number
up tp 100. In particular we do not require a signature, i.e., for bids below 100 Euro, this
auction house is not worried about trust.

The basic concept of filling a constraint into a field is to either demand a particular value,
e.g. entering Denmark for the country field, or a comparison with a value like <=100. The
latter requires that the corresponding field of that format is defined to have an ordinal type.
Such ordinal types can also be defined as part of the library, e.g., we could have a type
rating with ordered elements standard < gold < premium. Moreover, we allow that a
field could be any value in a list, e.g., the policy author can specify a list of countries CL and
constrain the country field of the form to be any value of the list by writing in CL.

3.2 Checking Signatures

As a second policy rule, the auction house accepts any bid up to 1500 Euro if it is signed
by an eIDAS qualified signature [En18]. To that end, we use that the Signature field has
a distinguished meaning: we specify in this field the public key with respect to which the
signature must verify. It is part of the format definition which part of the document is signed.
The graphical convention is that the signature includes all fields above the signature field,
e.g., in the auction house form the signature comprises all fields except the certificate field.3

In a signature field we practically never want to specify a particular fixed public key, but
specify that it relates to a given certificate. If we use again the metaphor of a paper form,
then a certificate would be an attachment to the main form, i.e., the person submitting the
form provides additional relevant information that itself has some structure. Thus, such

3 This should also include the kind of form it is, i.e., the format name; this is implied by the standard requirements
on the disjointness of formats [MK14].

112 Sebastian Alexander Mödersheim, Bihang Ni

Fig. 4: A first graphical policy rule

policy is specified by entering into the bid field the text <=100 and leaving blank all other
fields. This means that this policy rule has only one requirement, that the bid is a number
up tp 100. In particular we do not require a signature, i.e., for bids below 100 Euro, this
auction house is not worried about trust.

The basic concept of filling a constraint into a field is to either demand a particular value,
e.g. entering Denmark for the country field, or a comparison with a value like <=100. The
latter requires that the corresponding field of that format is defined to have an ordinal type.
Such ordinal types can also be defined as part of the library, e.g., we could have a type
rating with ordered elements standard < gold < premium. Moreover, we allow that a
field could be any value in a list, e.g., the policy author can specify a list of countries CL and
constrain the country field of the form to be any value of the list by writing in CL.

3.2 Checking Signatures

As a second policy rule, the auction house accepts any bid up to 1500 Euro if it is signed
by an eIDAS qualified signature [En18]. To that end, we use that the Signature field has
a distinguished meaning: we specify in this field the public key with respect to which the
signature must verify. It is part of the format definition which part of the document is signed.
The graphical convention is that the signature includes all fields above the signature field,
e.g., in the auction house form the signature comprises all fields except the certificate field.3

In a signature field we practically never want to specify a particular fixed public key, but
specify that it relates to a given certificate. If we use again the metaphor of a paper form,
then a certificate would be an attachment to the main form, i.e., the person submitting the
form provides additional relevant information that itself has some structure. Thus, such

3 This should also include the kind of form it is, i.e., the format name; this is implied by the standard requirements
on the disjointness of formats [MK14].

GTPL 113

Fig. 5: A graphical policy rule with eIDAS qualified signature

attachments can be regarded as forms themselves, e.g., a certificate may be in the X.509-
format. Further, we want to “bind” attachments to the main document in a suitable way; one
could have for this a special container format (like Associated Signature Containers [In16])
or simply directly have another field in the form for such attachments, like the “Certificate”
field in our example. The value of such an attachment field must then also be a format.

To embed this concept into our graphical language, we have adapted the notion of a sub-form,
i.e., a field in a form can host an entire form itself. Fields of this type are highlighted blue in
the GTPL application, indicating that the policy author can drag a form from the library onto
this blue field. Fig. 5 shows the result of dragging a certificate format for eIDAS certificates
to the certificate field, inserting a blank subform for entering constraints. Observe that in
Fig. 5 we have now specified the variable PK both on the signature of the main form and
in the pubKey field of the certificate. This means that the signature of the main form must
verify with the public key we can extract from the eIDAS certificate. The eIDAS certificate
is itself signed with yet another key PkIss—this is also a variable.4 This illustrates the
fact that a certificate is itself a signed document and without verifying the signature of the
certificate it does not mean much. In standard PKIs one may have an arbitrary long sequence

4 Recall that the scope of the signature field of the auction house format spans all fields above it; similarly, the
scope of the signature field of the certificate are all fields of the subform above the signature field (here, all fields).

114 Sebastian Alexander Mödersheim, Bihang Ni

of certificates until one reaches the certificate from an already trusted organization. Here,
instead, we want to formalize that the certificate is part of a particular trust scheme, eIDAS
in this in this example, i.e., the issuer is member of a particular trust list headed by the EU.

There are several possible ways to organize and implement the check of this trust membership
claim; e.g., LIGHTest suggests to include a pointer to the particular entry in the trust list, so
one does not need to download the entire trust list. Essential to the policy author are only
two aspects. First, one identifies the desired trust scheme, here [eIDAS_qualified]. We
require that such trust lists are defined as part of the library of formats and certificates, in
particular which URL is the relevant authority for a particular trust scheme. Second, if the
lookup of the trust list entry is successful (otherwise the policy is not satisfied), one may
specify constraints on the trust list entry that may contain a number attributes like a trust
level. This entry is depicted graphically in GTPL to the right of the trust list—again as a
form. In the example we assume that the entry contains a public key and specify that it has to
be the same variable PkIss that we also have in the field of the eIDAS certificate’s signature.
This means, the eIDAS certificate must verify against the public key from the trust list entry,
i.e., the certificate was indeed issued by a member of the eIDAS qualified trust scheme.

This completely explicit handling of trust list entries allows to specify quite complex policies
when the trust list entry contains more information, while for simple Boolean trust lists (i.e.,
just checking that the entity is on the trust list like in this example), this is a bit overkill.
Therefore we plan to allow here also a simplified notation as syntactic sugar, namely one
could just specify [eIDAs_qualified] in the Certificate field, i.e., keeping the subform
of the eIDAS certificate implicit.

3.3 Allowing Trust Translation

LIGHTest facilitates also the specification of trust translations, e.g. the authority of a trust
scheme can specify that they regard another trust scheme as equivalent, for instance the
European Union may declare that they regard some foreign trust scheme as equivalent
to eIDAS. It is of course the decision of each policy author whether they want to accept
trust translation in the first place. For our auction house example, we could imagine the
following policy: we do accept certificates with foreign trust schemes that eIDAS considers
equivalent, but set a lower limit on the bid in this case. Fig. 6 shows just that: we have
replaced [eIDAS_qualified] with =[eIDAS_qualified], meaning we do allow eIDAS, or
one that eIDAS considers equivalent, and thereby allowed trust translation, but we have
capped the bid to <=1000 in this case. Also in this case the certificate is not an eIDAS
certificate, but a generic certificate.

114 Sebastian Alexander Mödersheim, Bihang Ni

of certificates until one reaches the certificate from an already trusted organization. Here,
instead, we want to formalize that the certificate is part of a particular trust scheme, eIDAS
in this in this example, i.e., the issuer is member of a particular trust list headed by the EU.

There are several possible ways to organize and implement the check of this trust membership
claim; e.g., LIGHTest suggests to include a pointer to the particular entry in the trust list, so
one does not need to download the entire trust list. Essential to the policy author are only
two aspects. First, one identifies the desired trust scheme, here [eIDAS_qualified]. We
require that such trust lists are defined as part of the library of formats and certificates, in
particular which URL is the relevant authority for a particular trust scheme. Second, if the
lookup of the trust list entry is successful (otherwise the policy is not satisfied), one may
specify constraints on the trust list entry that may contain a number attributes like a trust
level. This entry is depicted graphically in GTPL to the right of the trust list—again as a
form. In the example we assume that the entry contains a public key and specify that it has to
be the same variable PkIss that we also have in the field of the eIDAS certificate’s signature.
This means, the eIDAS certificate must verify against the public key from the trust list entry,
i.e., the certificate was indeed issued by a member of the eIDAS qualified trust scheme.

This completely explicit handling of trust list entries allows to specify quite complex policies
when the trust list entry contains more information, while for simple Boolean trust lists (i.e.,
just checking that the entity is on the trust list like in this example), this is a bit overkill.
Therefore we plan to allow here also a simplified notation as syntactic sugar, namely one
could just specify [eIDAs_qualified] in the Certificate field, i.e., keeping the subform
of the eIDAS certificate implicit.

3.3 Allowing Trust Translation

LIGHTest facilitates also the specification of trust translations, e.g. the authority of a trust
scheme can specify that they regard another trust scheme as equivalent, for instance the
European Union may declare that they regard some foreign trust scheme as equivalent
to eIDAS. It is of course the decision of each policy author whether they want to accept
trust translation in the first place. For our auction house example, we could imagine the
following policy: we do accept certificates with foreign trust schemes that eIDAS considers
equivalent, but set a lower limit on the bid in this case. Fig. 6 shows just that: we have
replaced [eIDAS_qualified] with =[eIDAS_qualified], meaning we do allow eIDAS, or
one that eIDAS considers equivalent, and thereby allowed trust translation, but we have
capped the bid to <=1000 in this case. Also in this case the certificate is not an eIDAS
certificate, but a generic certificate.

114 Sebastian Alexander Mödersheim, Bihang Ni

of certificates until one reaches the certificate from an already trusted organization. Here,
instead, we want to formalize that the certificate is part of a particular trust scheme, eIDAS
in this in this example, i.e., the issuer is member of a particular trust list headed by the EU.

There are several possible ways to organize and implement the check of this trust membership
claim; e.g., LIGHTest suggests to include a pointer to the particular entry in the trust list, so
one does not need to download the entire trust list. Essential to the policy author are only
two aspects. First, one identifies the desired trust scheme, here [eIDAS_qualified]. We
require that such trust lists are defined as part of the library of formats and certificates, in
particular which URL is the relevant authority for a particular trust scheme. Second, if the
lookup of the trust list entry is successful (otherwise the policy is not satisfied), one may
specify constraints on the trust list entry that may contain a number attributes like a trust
level. This entry is depicted graphically in GTPL to the right of the trust list—again as a
form. In the example we assume that the entry contains a public key and specify that it has to
be the same variable PkIss that we also have in the field of the eIDAS certificate’s signature.
This means, the eIDAS certificate must verify against the public key from the trust list entry,
i.e., the certificate was indeed issued by a member of the eIDAS qualified trust scheme.

This completely explicit handling of trust list entries allows to specify quite complex policies
when the trust list entry contains more information, while for simple Boolean trust lists (i.e.,
just checking that the entity is on the trust list like in this example), this is a bit overkill.
Therefore we plan to allow here also a simplified notation as syntactic sugar, namely one
could just specify [eIDAs_qualified] in the Certificate field, i.e., keeping the subform
of the eIDAS certificate implicit.

3.3 Allowing Trust Translation

LIGHTest facilitates also the specification of trust translations, e.g. the authority of a trust
scheme can specify that they regard another trust scheme as equivalent, for instance the
European Union may declare that they regard some foreign trust scheme as equivalent
to eIDAS. It is of course the decision of each policy author whether they want to accept
trust translation in the first place. For our auction house example, we could imagine the
following policy: we do accept certificates with foreign trust schemes that eIDAS considers
equivalent, but set a lower limit on the bid in this case. Fig. 6 shows just that: we have
replaced [eIDAS_qualified] with =[eIDAS_qualified], meaning we do allow eIDAS, or
one that eIDAS considers equivalent, and thereby allowed trust translation, but we have
capped the bid to <=1000 in this case. Also in this case the certificate is not an eIDAS
certificate, but a generic certificate.

GTPL 115

Fig. 6: A graphical policy rule with eIDAS equivalent signature

3.4 Putting it all together

We have specified a number of policy rules. They are collected all in the left tab of the
GTPL application (cf. Fig. 3). All these graphical trust policy rules are put together by
disjunction, i.e., in our example, a bid is accepted if any of the rules match. The order of the
rules in the left-hand tab of the interface only determines in which order they are checked,
so it makes sense to put most common cases first, and the rarer cases later.

4 GTPL Syntax and Semantics

While GTPL is a graphical language, it is also formal in the sense that is has a precise
syntax and semantics. This is crucial for trust decisions and thus for all machinery that
works on GTPL specifications. The abstract syntax of GTPL is defined in terms of Java data
structures; for reading convenience, we use an EBNF-style notation in Fig. 7. Let us briefly
review each item with an intuitive semantics. The formal semantics is defined by translation
to the LIGHTest TPL; the formal definitions of TPL and the translation are found in [MS18].

At the top level, GTPL is a list of forms, where each form means one rule of the policy,
like in figures 4–6. The meaning of the full policy is the disjunction of the rules, i.e., the

116 Sebastian Alexander Mödersheim, Bihang Ni

GTPL ::= Form�

Form ::= Formatname(AttVal�)
AttVal ::= (Attributename,Value)
Value ::= BLANK | Constant | Variable | op Constant | op Variable

| in Listname | Form | =? [Trustlist] Form?

op ::= < | > | <= | >=
where Formatname, Attributename, Variable, Trustlist and Listname are alphanumeric
identifiers and Constant is either a sequence of digits or printable ASCII characters in quotes

Fig. 7: Syntax in GTPL in a textual/data structure form; terminal symbols are set in blue.

policy is fulfilled, if at least one rule is. A form consists of a formatname (like “Auction
House 2018”) and a list of attribute-value pairs. The meaning of this policy is that firstly the
given input must be parsable as the given format indicated by formatname, and secondly the
conjunction of the constraints specified by the attribute-value pairs must be satisfied.

An attribute-value pair consists of an attribute name and value, of course. Here, the attribute
name (like “Country”) indicates one of the fields of the form, and the value gives a constraint
on the value of this field. The first possibility is BLANK meaning that the policy author left
the field blank, and thus there is no constraint on this field. Second, it can be a constant
(either numeric or an ASCII string in quotes), meaning the value must be just that. Third, it
can be a variable (like PK in the examples). The meaning of a variable is that the value can
be arbitrary, but all fields where the same variable is specified (in the present rule) must
have the same value. The fourth and fifth possibilities are a comparison operator followed
by a concrete value or a variable. This is can only be used on fields where an ordering is
defined (e.g. numerics, levels, dates). The sixth possibility is to specify membership in a
user-defined list (e.g. the country must be one in a given list of countries). The seventh
possibility is a form itself. This can be only used on fields that are highlighted blue, i.e., that
allow for a subform as a value, e.g. the certificate field in the examples. The meaning is
simply that in this case the condition specified for the subform are checked as expected.

The last possibility of a value has several options, and can only be used for the trustlist field
of certificates. The most basic form is to specify only a trustlist (like [eIDAS_qualified]).
The meaning is that this trustlist field is a URL that points to the entry of a trust list. The
constraints we specify here are (a) that trust list of the URL indeed belongs to the specified
trust list (like eIDAS), (b) that the trust list entry indeed exists and (c) that it contains
a public key that verifies the signature of the given certificate. One option for this trust
list specification is to specify also a form (the fact that this is optional is specified by the
question mark). If specified, the meaning is that the returned trust list entry must meet the
constraints expressed by the given form. This allows for trust schemes where the trust list
entry contains further entries, e.g., a trust level that can then be constrained as part of the
policy. Finally, one can also put an equal sign in front of the trust list specification and
thereby allow trust translation. (See [MS18] for more technical details of trust translation.)

116 Sebastian Alexander Mödersheim, Bihang Ni

GTPL ::= Form�

Form ::= Formatname(AttVal�)
AttVal ::= (Attributename,Value)
Value ::= BLANK | Constant | Variable | op Constant | op Variable

| in Listname | Form | =? [Trustlist] Form?

op ::= < | > | <= | >=
where Formatname, Attributename, Variable, Trustlist and Listname are alphanumeric
identifiers and Constant is either a sequence of digits or printable ASCII characters in quotes

Fig. 7: Syntax in GTPL in a textual/data structure form; terminal symbols are set in blue.

policy is fulfilled, if at least one rule is. A form consists of a formatname (like “Auction
House 2018”) and a list of attribute-value pairs. The meaning of this policy is that firstly the
given input must be parsable as the given format indicated by formatname, and secondly the
conjunction of the constraints specified by the attribute-value pairs must be satisfied.

An attribute-value pair consists of an attribute name and value, of course. Here, the attribute
name (like “Country”) indicates one of the fields of the form, and the value gives a constraint
on the value of this field. The first possibility is BLANK meaning that the policy author left
the field blank, and thus there is no constraint on this field. Second, it can be a constant
(either numeric or an ASCII string in quotes), meaning the value must be just that. Third, it
can be a variable (like PK in the examples). The meaning of a variable is that the value can
be arbitrary, but all fields where the same variable is specified (in the present rule) must
have the same value. The fourth and fifth possibilities are a comparison operator followed
by a concrete value or a variable. This is can only be used on fields where an ordering is
defined (e.g. numerics, levels, dates). The sixth possibility is to specify membership in a
user-defined list (e.g. the country must be one in a given list of countries). The seventh
possibility is a form itself. This can be only used on fields that are highlighted blue, i.e., that
allow for a subform as a value, e.g. the certificate field in the examples. The meaning is
simply that in this case the condition specified for the subform are checked as expected.

The last possibility of a value has several options, and can only be used for the trustlist field
of certificates. The most basic form is to specify only a trustlist (like [eIDAS_qualified]).
The meaning is that this trustlist field is a URL that points to the entry of a trust list. The
constraints we specify here are (a) that trust list of the URL indeed belongs to the specified
trust list (like eIDAS), (b) that the trust list entry indeed exists and (c) that it contains
a public key that verifies the signature of the given certificate. One option for this trust
list specification is to specify also a form (the fact that this is optional is specified by the
question mark). If specified, the meaning is that the returned trust list entry must meet the
constraints expressed by the given form. This allows for trust schemes where the trust list
entry contains further entries, e.g., a trust level that can then be constrained as part of the
policy. Finally, one can also put an equal sign in front of the trust list specification and
thereby allow trust translation. (See [MS18] for more technical details of trust translation.)

116 Sebastian Alexander Mödersheim, Bihang Ni

GTPL ::= Form�

Form ::= Formatname(AttVal�)
AttVal ::= (Attributename,Value)
Value ::= BLANK | Constant | Variable | op Constant | op Variable

| in Listname | Form | =? [Trustlist] Form?

op ::= < | > | <= | >=
where Formatname, Attributename, Variable, Trustlist and Listname are alphanumeric
identifiers and Constant is either a sequence of digits or printable ASCII characters in quotes

Fig. 7: Syntax in GTPL in a textual/data structure form; terminal symbols are set in blue.

policy is fulfilled, if at least one rule is. A form consists of a formatname (like “Auction
House 2018”) and a list of attribute-value pairs. The meaning of this policy is that firstly the
given input must be parsable as the given format indicated by formatname, and secondly the
conjunction of the constraints specified by the attribute-value pairs must be satisfied.

An attribute-value pair consists of an attribute name and value, of course. Here, the attribute
name (like “Country”) indicates one of the fields of the form, and the value gives a constraint
on the value of this field. The first possibility is BLANK meaning that the policy author left
the field blank, and thus there is no constraint on this field. Second, it can be a constant
(either numeric or an ASCII string in quotes), meaning the value must be just that. Third, it
can be a variable (like PK in the examples). The meaning of a variable is that the value can
be arbitrary, but all fields where the same variable is specified (in the present rule) must
have the same value. The fourth and fifth possibilities are a comparison operator followed
by a concrete value or a variable. This is can only be used on fields where an ordering is
defined (e.g. numerics, levels, dates). The sixth possibility is to specify membership in a
user-defined list (e.g. the country must be one in a given list of countries). The seventh
possibility is a form itself. This can be only used on fields that are highlighted blue, i.e., that
allow for a subform as a value, e.g. the certificate field in the examples. The meaning is
simply that in this case the condition specified for the subform are checked as expected.

The last possibility of a value has several options, and can only be used for the trustlist field
of certificates. The most basic form is to specify only a trustlist (like [eIDAS_qualified]).
The meaning is that this trustlist field is a URL that points to the entry of a trust list. The
constraints we specify here are (a) that trust list of the URL indeed belongs to the specified
trust list (like eIDAS), (b) that the trust list entry indeed exists and (c) that it contains
a public key that verifies the signature of the given certificate. One option for this trust
list specification is to specify also a form (the fact that this is optional is specified by the
question mark). If specified, the meaning is that the returned trust list entry must meet the
constraints expressed by the given form. This allows for trust schemes where the trust list
entry contains further entries, e.g., a trust level that can then be constrained as part of the
policy. Finally, one can also put an equal sign in front of the trust list specification and
thereby allow trust translation. (See [MS18] for more technical details of trust translation.)

GTPL 117

5 Conclusion

We have introduced a graphical trust policy language to describe trust schemes. The central
metaphor of this graphical language is to treat all input documents like paper forms that
consist of a number of fields and the policy author can take a blank form and write constraints
onto the fields. We believe this is a quite intuitive way of specifying it, because the policy
authors have a good knowledge of the business domain they work in, e.g., the owner
of an auction house understands the bidding form of the auction house and a university
clerk understands the application form of the university. It is then easy to say what the
requirements are based on the fields of the form, and seeing all the fields together also
minimizes the risk of forgetting something: sweeping with one’s eye over the field of the
form, one typically remembers what conditions must be checked about this field. One may
compare this with instructing a new employee: telling them literally “what to look for” in
order to make the decision to accept or to deny.

In fact, GTPL has started with the question how LIGHTest experts would like to specify
policies, i.e., to extract the essential logical elements of the more technical TPL specifications
in a succinct form. This is thus close to typical mathematical efforts to abstract, generalize
and thereby simplify matters. We see in this the key contribution of this paper, to identify a
very simple but expressive set of concepts to specify policies with. We believe, however, that
this language can be further improved and developed, especially with the help of systematic
user testing and participation.

One of the most closely related graphical policy languages is a graphical editor for
XACML [NUG15] that is based on the Scratch approach for teaching programming to
children [Re09]. One of the most interesting ideas of Scratch is the graphical metaphor of
puzzle pieces, so that constructs can only be combined in meaningful ways. Since with
the forms we already have the overall structure of a policy rule, this is was not directly
necessary for GTLP, but indeed this metaphor could be helpful in future versions, namely
for types of credentials and forms as well as for specifying conditions (which is still textual
at present). Indeed within the LIGHTest project, there is also work in progress to define a
natural-language layer for policy specifications [Th18], also based on Scratch, to be close to
natural language. This implies giving the user less boundaries, but also less structure. It
is certainly interesting to see if these two languages could benefit from each others ideas.
For future work we also intend to look at the specification of trust translation schemes
themselves, as well as trust with delegation schemes.

Acknowledgement This work was supported by the EU H2020 project no. 700321
“LIGHTest: Lightweight Infrastructure for Global Heterogeneous Trust management in
support of an open Ecosystem of Trust schemes” (lightest.eu).

118 Sebastian Alexander Mödersheim, Bihang Ni

Bibliography

[BFG10] Becker, M.; Fournet, C.; Gordon, A.: SecPAL: Design and Semantics of a
Decentralized Authorization Language. Journal of Computer Security 18/4,
pp. 619–665, 2010.

[BL16] Bruegger, B. P.; Lipp, P.: LIGHTest–A Lightweight Infrastructure for Global
Heterogeneous Trust Management. In: Open Identity Summit 2016. 2016.

[Bl99] Blaze, M.; Feigenbaum, J.; Ioannidis, J.; Keromytis, A. D.: The KeyNote
Trust-Management System Version 2, IEEE RFC 2704, 1999.

[En18] Engelbertz, N.; Erinola, N.; Herring, D.; Somorovsky, J.; Mladenov, V.;
Schwenk, J.: Security Analysis of eIDAS - The Cross-Country Authentication
Scheme in Europe. In: 12th USENIX Workshop on Offensive Technologies,
WOOT 2018. 2018.

[GN08] Gurevich, Y.; Neeman, I.: DKAL: Distributed-Knowledge Authorization Lan-
guage. In: Proceedings of the 21st IEEE Computer Security Foundations
Symposium, CSF 2008. Pp. 149–162, 2008.

[He00] Herzberg, A.; Mass, Y.; Mihaeli, J.; Naor, D.; Ravid, Y.: Access Control Meets
Public Key Infrastructure, Or: Assigning Roles to Strangers. In: 2000 IEEE
Symposium on Security and Privacy. Pp. 2–14, 2000.

[In16] Institute, E. T. S.: Electronic Signatures and Infrastructures (ESI); Associated
Signature Containers (ASiC), tech. rep. ETSI EN 319 162-1 V1.1.1, 2016.

[MK14] Mödersheim, S.; Katsoris, G.: A Sound Abstraction of the Parsing Problem. In:
IEEE 27th Computer Security Foundations Symposium, CSF 2014. Pp. 259–
273, 2014.

[MS18] Mödersheim, S.; Schlichtkrull, A.: The LIGHTest Foundation, tech. rep. DTU
TR-2018-6, Available at http://orbit.dtu.dk/ws/files/160744642/tr18_
06_Modersheim_A.pdf, 2018.

[NUG15] Nergaard, H.; Ulltveit-Moe, N.; Gjøsæter, T.: A Scratch-based Graphical Policy
Editor for XACML. In: Information Systems Security and Privacy, ESEO.
Pp. 182–190, 2015.

[Re09] Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.; Eastmond, E.;
Brennan, K.; Millner, A.; Rosenbaum, E.; Silver, J. S.; Silverman, B.; Kafai, Y. B.:
Scratch: programming for all. Commun. ACM 52/11, pp. 60–67, 2009.

[Th18] The LIGHTest project: Deliverable D6.2: Requirements and Design of a
Conceptual Framework for Trust Policies, Available at https://www.lightest.
eu/static/deliverables/D6.2.pdf, 2018.

[Ya03] Yao, W.: Fidelis: A Policy-Driven Trust Management Framework. In: First
International Conference on Trust Management, iTrust 2003. Pp. 301–317,
2003.

