Portable Profiling of Memory Allocation in Java

Walter Binder

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

walter.binder@epfl.ch

Abstract: This paper presents a portable framework to profile memory allocation in
standard Java Virtual Machines. We extended our exact profiler JP, which generates
a method call tree (MCT) for each thread in the system, in order to store information
concerning object allocation in the MCT. Our primary design goals were to use
platform-independent metrics for memory allocation and to minimize the extra
overhead caused by memory profiling. For each method invocation context, the
profiler preserves the number of allocated objects of each type. We exploit the
fact that an object allocation is usually followed by a constructor invocation, in
order to compute the number of object allocations from the MCT. A static analysis
of constructor code allows to distinguish between the invocation of an alternate
or superclass constructor and object allocation within the constructor. Arrays are
treated specially, as we instrument array allocation instructions in order to preserve
accumulated information on the type, number, and size of allocated arrays for each
method invocation context. A performance evaluation shows that the extra overhead
due to memory profiling is small.

Keywords: Java, memory profiling, profiling metrics, program transformations, byte-
code instrumentation

1 Introduction

Memory profiling is an essential tool to analyze, characterize, and understand the memory
behaviour of programs. Automatic memory management in Java [GJSBOO] (by means
of garbage collection) eases software development. Memory allocation is ubiquitous in
Java programs, and therefore a big part of the program execution time may be spent in
memory allocation and garbage collection. In order to help developers detect and analyze
such performance issues, profiling tools are needed that compute statistics concerning the
memory allocation behaviour of programs.

There are many profiling tools for the Java Virtual Machine (JVM) [LY99], most of them
are based on the Java Virtual Machine Profiling Interface (JVMPI) [Suna] or on the JVM
Tool Interface (JVMTI) [Sunb]. JVMPI is a set of hooks to the JVM which signals in-
teresting events, such as object allocations. Its successor, the JVMTI, provides additional
facilities for bytecode instrumentation.

However, most prevailing profilers based on the JVMPI or on the JVMTI cause excessive
overhead when they are used to create exact profiles, i.e., tracking each method invocation,
each object allocation, etc. E.g., for some benchmarks we measured a slowdown of more
than factor 4 800 (!) when using the standard ‘hprof” profiling agent (which is based on
the JVMTI in Sun JDK 1.5.0) in its exact profiling mode. Moreover, profiling agents using
the JVMPI or the JVMTI have to be written in native code, contradicting the Java motto
‘write once and run anywhere’.

We implemented an exact profiler for Java, called JP, which relies neither on the JVMPI
nor on the JVMTI, but directly instruments the bytecode of Java programs in order to
generate exact profiles [BHO5]. JP creates a method call tree (MCT) for each thread in
the system, which exposes the number of method invocations with the same call stack,
as well as the number of bytecode instructions executed in each calling context. Using
the number of executed bytecode instructions as platform-independent profiling metric
has several advantages, such as making profiles reproducible (for deterministic programs)
and directly comparable across different machines. JP is written in pure Java and fully
portable, it has been successfully tested on several recent JVMs. Furthermore, JP supports
user-defined profiling agents, which may be written in pure Java as well. The custom
profiling agents are triggered periodically in a deterministic way (based on the number of
executed bytecode instructions), in order to process the generated profiles (e.g., to integrate
the MCT of each thread into a global MCT, to compute continuous metrics [DDHVO03],
etc.).

In this paper we describe an extension of JP to profile memory allocation. As platform-
independence has been a major goal in the design of JP, the memory profiling must not
compromise this feature. Hence, we do not directly profile the number of allocated bytes,
but we keep track of the type and number of object allocations. In order to minimize the
overhead (time and space) due to memory profiling, we compute this information directly
from the MCT. Therefore, profiling object allocation does not require any additional in-
strumentation, and the MCT data structure need not be extended either. However, this
approach works only to profile the allocation of objects that are not arrays. For array al-
locations, extra bytecode instrumentation is needed, in order to preserve the array element
type, the number of allocated arrays, and the total size of the allocated arrays. A perfor-
mance evaluation shows that our JP extension for memory profiling does not cause much
extra overhead.

The main contributions of this paper are the presentation of the MCT using abstract
datatypes, the introduction of platform-independent profiling metrics, a technique to com-
pute the number of object allocations from the MCT, and an algorithm to instrument array
allocations. Moreover, we examine the limitations of our approach in detail.

This paper is structured as follows: Section 2 presents the MCT data structure created
by JP. In Section 3 we introduce our platform-independent metrics to profile memory al-
location. Section 4 explains how to compute the number of object allocations from the
information already present in the MCT. In Section 5 we detail the instrumentation of ar-
ray allocations. Section 6 discusses issues regarding the accuracy of the generated profiles
and limitations of our approach. In Section 7 we evaluate the overhead of our profiling
scheme and show that the extra overhead due to memory profiling is small. Section 8 dis-

111

cusses related work, while Section 9 summarizes the benefits of our profiling approach.
Finally, the appendix at the end of this paper shows how hand-crafted bytecode may cir-
cumvent certain restrictions usually enforced by the JVM or violate assumptions that hold
for compiled Java code.

2 Method Call Tree (MCT)

JP rewrites JVM bytecode so that each thread in the system creates a method call tree
(MCT), where each node represents all invocations of a particular method with the same
call stack. The parent node in the MCT corresponds to the caller, the children nodes
correspond to the callees. The root of the MCT represents the caller of the main method.
With the exception of the root node, each node in the MCT stores profiling information for
all invocations of the corresponding method with the same call stack. Concretely, JP stores
the number of method invocations as well as the number of bytecode instructions executed
by the corresponding method, excluding the number of bytecode instructions executed by
callee methods (each callee has its own node in the MCT). In this paper we extend the
MCT with memory allocation statistics.

The MCT is similar to the Calling Context Tree (CCT) [ABL97]. However, in contrast
to the CCT, the depth of the MCT is unbounded. Therefore, the MCT may consume a
significant amount of memory in the case of very deep recursions. Nonetheless, for most
programs this is not a problem: According to Ball and Larus [BL96], path profiling (i.e.,
preserving exact execution history) is feasible for a large portion of programs.

A detailed presentation of the MCT implementation is not in the scope of this paper. An
abstract description of certain operations supported by the MCT is sufficient for the dis-
cussion in the following sections. For instance, we leave out all the details on bytecode
instruction counting. We define two abstract datatypes to represent a MCT, the method
identifier MID and the method invocation context IC. A method invocation context is
a node in the MCT. In the following description, we assume the existence of the types
INTEGER, STRING, and THREAD, as well as the possibility to create aggregate types
(SET OF).

The method identifier MID offers the following operations:

e createMID(STRING class, STRING name, STRING sig): MID
Creates a new method identifier, consisting of class name, method name, and method
signature.

e getClass(MID mid): STRING
Returns the class name of mad.
getClass(createMID(class, x, y)) =class.

e getName (MID mid): STRING
Returns the method name of mid.
getName (createMID(x, name, Yy)) =name.

112

getSignature(MID mid): STRING
Returns the method signature of mid.
getSignature(createMID(x, Yy, Sig)) = Ssig.

The method invocation context IC supports the following operations:

getOrCreateRoot (THREAD t): IC
Returns the root node of a thread’s MCT. If it does not yet exist, it is created.

profileCall(IC caller, MID callee): IC
Registers a method invocation in the MCT. The returned IC' represents the callee
method, identified by callee. It is a child node of caller in the MCT.

getCaller(IC callee): IC

Returns the caller IC of callee. It is the parent node of callee in the MCT.
getCaller(profileCall(caller, x)) =caller.

This operation is not defined for the root of the MCT.

getMID(IC ¢): MID

Returns the method identifier associated with c.
getMID(profileCall(x, callee)) = callee.
This operation is not defined for the root of the MCT.

getCalls(IC c¢): INTEGER

Returns the number of invocations of the method identified by getMID(c) with
the caller getCaller (c).

getCalls(profileCall(z, y)) > 1.

This operation is not defined for the root of the MCT.

getCallees(IC c¢): SET OF IC
Returns the set of callee ICs of c.

Vr € getCallees(c): getCaller(x) =c.
Vz € getCallees(c): getCalls(z) > 1.

3 Memory Allocation Metrics

The design of our profiler JP focuses on portability and platform-independence. JP does
not rely on any platform-specific features in order to offer a completely portable profiling
system that allows developers to profile their applications in their preferred environment,
generating reproducible and directly comparable profiles. JP exploits the number of exe-
cuted bytecode instructions as platform-independent profiling metric [DDHV03]. When
we extended JP to profile memory allocation, we tried to use platform-independent metrics
for memory allocation, too.

Most profilers use the number of allocated bytes as measurement unit. However, this
metric depends on the particular JVM in use (size of references, alignment, object repre-
sentation in memory, etc.).

113

In contrast, JP tracks the number of allocated objects of each type, for each method
invocation context. lLe., object allocations are described by triples of the form
(meth. invoc. context, object type, number of instances). This metric gives the developer
a detailed, high-level view of object allocation in the profiled program. If desired, an esti-
mation of the number of allocated bytes may be computed from this metric. As explained
in Section 4, it is possible to compute this object allocation metric directly from the MCT
without any additional instrumentation. Consequently, there is no extra overhead in the
creation of the MCT (concerning execution time and the amount of memory required to
store the MCT).

Concerning array allocation, we preserve the element type, the number of al-
located arrays, and the total number of array elements for each method invo-
cation context. Le., array allocations are described by 4-tuples of the form
(meth. invoc. context, element type, number of arrays, number of array elements). The
element type may be one of the 8 basic types in Java (byte, short, int, long, char,
boolean, float, double), or a reference type. This metric may be used to compute
other statistics, such as the average size of allocated arrays. Moreover, if the memory rep-
resentation of arrays in a particular JVM is known, the metric may be used to compute the
number of bytes consumed by allocated arrays.

For deterministic programs, these platform-independent memory allocation metrics yield
reproducible profiles that are directly comparable across different machines. Measurement
perturbation is not an issue, as we measure the number of objects that the unmodified
program (without profiling) would allocate.! However, the instrumentation may change
the thread scheduling of the JVM. Hence, the profiling may affect the progress of the
different threads in a multi-threaded program. IL.e., continuous metrics [DDHVO03] may be
distorted by the profiling.

Our metrics for memory allocation do not expose the life-time of allocated objects. In
general, the life-time of objects is hard to determine in Java, because of the automatic
memory management (garbage collection). L.e., there are no explicit de-allocation sites in
the bytecode.

JP supports the periodic activation of a user-defined profiling agent. The interval between
consecutive activations of the profiling agent is customized by the agent itself. Hence,
the agent may generate continuous statistics on the progress of memory allocation of a
program during its execution. Moreover, the agent may combine the memory allocation
metrics provided by JP with other metrics. E.g., the memory allocation metrics may be put
in relation to the number of executed bytecode instructions in order to derive metrics such
as the allocation density, i.e., the number of object allocations (or the approximate number
of bytes allocated) per 1000 executed bytecode instructions [DDHVO03].

In contrast, a metric such as the total amount of memory in use would be seriously perturbated by the
measurement, since the MCT data structure itself may consume a large amount of memory.

114

4 Profiling Object Allocation

In this section we describe our approach to profile allocations of objects that are not arrays.
Arrays are addressed in Section 5.

At the Java level, objects are allocated and initialized with class instance creation expres-
sions (new), whereas at the bytecode level, object allocation and initialization are sep-
arated. Objects are allocated with the new<class> bytecode instruction, which leaves a
reference to the created object instance (of type class) on the stack. Before the object can
be used, a constructor has to be invoked in order to initialize the object. At the bytecode
level, constructors are special methods with the name <init> that are invoked with the
invokespecial<method-spec> bytecode instruction.” invokespecial receives a
reference to the previously allocated (and still uninitialized) object, as well as the method
arguments on the stack. The method selection is based on the compile time type given in
method-spec. 1.e., we can statically determine which constructor is invoked.

One way to profile object allocation would be to instrument each occurrence of the new
bytecode instruction. However, as object allocation is rather frequent, the extra overhead
due to such an instrumentation may be non-negligible. Therefore, we chose a different
approach, taking advantage of the MCT that is already created by JP. In the MCT, each
method invocation context maintains the set of non-native callee methods and their respec-
tive number of invocations. As constructors must not be native (see [LY99], Section 2.12.1:
‘Constructor Modifiers’), all constructor invocations are present in the MCT. Because the
JVM ensures that objects are initialized at most once and that uninitialized objects cannot
be used? (see [LY99], Section 4.8: ‘Constraints on Java Virtual Machine Code’, and Sec-
tion 4.9: ‘Verification of Class Files’), we assume that constructor invocations correspond
to object allocations. I.e., we do not directly profile object allocations, but we compute the
number of allocated objects from the number of constructor invocations.

While this profiling scheme allows to compute the number of objects allocated by ‘nor-
mal’ methods, tracking the number of objects allocated by constructors requires some ex-
tra analysis, because every constructor, except the constructor of java.lang.Object,
invokes either an alternate or a superclass constructor in the beginning. Le., for all con-
structors but the constructor of java.lang.Object, we cannot assume that each con-
structor invocation corresponds to an object allocation. Even though the invocation of
an alternate or superclass constructor usually happens in the beginning of the constructor
code, it is not necessarily the first invocation of a constructor in the code, since the creation
of the constructor arguments may involve object allocation and initialization.

For instance, consider the example in Figure 1, which shows a class A with two con-
structors. To the right is the constructor bytecode generated by a standard Java compiler.
The first constructor A() invokes the second constructor A(java.lang.Object)
and passes a newly allocated and initialized object instance. In the bytecode of A(),
the invocation of the constructor of java.lang.Object comes before the invoca-

Zinvokespecial is also used for other purposes, such as calling private methods or methods in a super-

class.
3In Appendix A at the end of this paper we show that there are cases where recent JVMs do not prevent
method invocations on uninitialized objects.

115

public class A {

A() {
this(new Object()); aload_0
new java/lang/Object
dup

invokespecial java/lang/Object/<init>()V
invokespecial A/<init>(Ljava/lang/Object;)V

return
}
A(Object o) {
super(); aload 0
invokespecial java/lang/Object/<init>()V
return

Figure 1: Constructor example.

tion of A(Jjava.lang.Object). In the MCT, A() has 2 callees, the constructor of
java.lang.Object as well as the constructor A(java.lang.0Object), but only
one of them corresponds to an object allocation.

In order to correctly profile the number of object allocations in constructors, we statically
analyze the bytecode of each constructor during the rewriting, in order to determine which
alternate or superclass constructor is invoked. We use abstract interpretation in order to
simulate the evolution of the stack and of local variables during execution of the construc-
tor code. We only track the this reference, which is initially passed to the constructor in
the local variable 0, until the first invocation on it (i.e., invocation of the alternate or super-
class constructor). Our simulation is similar to the one performed by the JVM bytecode
verifier [LY99], but it is simpler, because we are only interested in the first invocation on
the this reference, whereas the JVM bytecode verifier has to ensure several properties.

Our rewriting tool produces a map M that associates each constructor (except the
constructor of java.lang.Object) with the corresponding alternate or superclass
constructor it invokes. In the map, the constructors are identified by their fully qualified
name and signature. This map is loaded and accessed by the user-defined profiling
agent in order to compute the correct number of object allocations from the MCT. In the
following we consider M : MID — MID a (partial) function mapping a method identifier
of a constructor to the method identifier of the associated alternate or superclass construc-
tor. In the example in Figure 1, M(createMID("A","<init>","()V")) =
createMID("A","<init>","(java.lang.Object)V"), and
M(createMID("A","<init>"," (java.lang.Object)V")) =
createMID("Jjava.lang.Object", "<init>"," ()V").

Note that the assumption that each constructor (except the constructor of
java.lang.Object) has exactly one associated alternate or superclass constructor
may not hold for hand-crafted bytecode, as illustrated in Appendix B. However, this
assumption is valid for compiled Java code, and the static analyzer is able to detect
situations where the assumption is violated, producing a warning.

Figure 2 explains how to compute the number of object allocations from the information

116

if mid.=getMID(c) A
_ getName (mid.)=<init> A

detCalls(ac) getCalls(c) getClass (mid,) #
;sziag?&eg(e)', java.lang.Object

getAlloc(IC c)= getName(midy)=<init>

E getCalls(x) otherwise
x EgetCallees(c),
midg—gethID(a),
getName(midy) =<init>

(a) Total number of objects allocated by the method invocation context c.

if mid.=getMID(c) A
getName (mid.)=<init> A
Z getCalls(xz) | — getCalls(c) getClass(mid.) #
zEgetCallees(c), java.lang.Object A
midg =getMID(x), getClass (M (mid.)) = class
getAlloc(IC c, getName(w(Lidmi):)<ix;it>,
Class(midyg)=class
STRING class)= ger
Z getCalls(x) otherwise
a EgetCallees(c),
midy =getMID(x),
getName(midg)=<init>,
getClass(midy)=class

(b) Number of objects of type class allocated by the method invocation context c.

Figure 2: Computing the number of allocated objects based on the number of constructor invoca-
tions.

stored in the MCT. getAlloc (IC) (Figure 2 (a)) returns the total number of objects
allocated by a given method invocation context c. If ¢ does not correspond to a constructor
(or corresponds to the constructor of java.lang.Object), getAlloc (IC) returns
the total number of constructor invocations in the context of c. If ¢ corresponds to a
constructor (different from the constructor of java.lang.Object), the sum has to
be reduced by getCalls(c), because each time the constructor corresponding to c is
invoked, it calls its associated alternate or superclass constructor M (getMID(c)) once
without allocating an object. Note that the computation of getAlloc (IC) does not
require the map M. getAlloc(IC, STRING) (Figure 2 (b)) returns the number of
objects of a certain type class allocated by a given method invocation context c. In contrast
togetAlloc(IC),getAlloc(IC, STRING) differentiates between the invocations
of constructors of different classes.

117

5 Profiling Array Allocation

As array allocation does not involve any method/constructor invocation, the approach pre-
sented in Section 4 is not applicable to profile array allocations. Therefore, we instrument
all occurrences of bytecode instructions that allocate arrays in order to preserve statistics
of the type, number, and size of allocated arrays. This also requires an extension of the
MCT. We add the following operations to the method invocation context IC:

e profileArrays(IC ¢, TYPE ¢,
INTEGER arrays, INTEGER elements): IC
Registers array allocations in c. ¢ is the element type of the arrays, it may take one of the
following values:

: Signed byte (byte).

: Unicode character (char).

: Double-precision floating point value (double).
: Single-precision floating point value (float).

: Integer (int).

: Long integer (Long).

: Signed short (short).

: True or false (boolean).

|
0N NN g H H O QW

: Reference.

The first 8 values correspond to the encoding of basic types in the JVM [LY99].
The element type R indicates that the array stores references to objects, which
may be instances of ‘normal’ classes or arrays. arrays represents the number
of allocated arrays, while elements is the total number of elements in all al-
located arrays (i.e., elements is the sum of the sizes of the allocated arrays).
profileArrays(IC, TYPE, INTEGER, INTEGER) returns c, after its ar-
ray allocation statistics have been updated accordingly. This operation is not sup-
ported for the root of the MCT.

e getArrays(IC ¢, TYPE t): INTEGER
Returns the number of arrays of element type ¢ allocated in c.
getArrays(profileArrays(z,t,arrays,y), t) > arrays.
This operation is not supported for the root of the MCT.

e getElements(IC ¢, TYPE ¢): INTEGER
Returns the number of elements in arrays of element type ¢ allocated in c.
getElements (profileArrays(z,t,y,elements), t) > elements.
This operation is not supported for the root of the MCT.

118

The bytecode instructions newarray<type>, anewarray<type>, and
multianewarray<type><allocDim> are used allocate arrays. While newarray
allocates a 1-dimensional array of a basic type (byte, short, int, long, boolean,
char, float, double), anewarray allocates a 1-dimensional array to hold refer-
ences. In Java and in the JVM, multi-dimensional arrays are represented as arrays of
arrays. anewarray may be used to allocate one dimension of a multi-dimensional array.
If several dimensions of a multi-dimensional array are to be allocated at once, it is more
efficient to use multianewarray, which subsumes the functionality of newarray
and of anewarray, and allows to allocate several array dimensions (the parameter
allocDim) with a single bytecode instruction.

newarray and anewarray receive the size s of the array to allocate on the stack; s must
be a non-negative integer value. In order to profile an array allocation newarray<type>,
we insert a bytecode sequence directly before the newarray bytecode instruction, cor-
responding to profileArrays(c, t, 1, s),where crepresents the current method
invocation context and ¢ the corresponding element type of the array (B, C, D, F, I, J,
S, or z). For an array allocation anewarray<type>, we insert a bytecode sequence that
corresponds to profileArrays(c, R, 1, s).

multianewarray<type><allocDim> receives allocDim non-negative integer values
on the stack, which correspond to the sizes of the array dimensions to be allocated. If
allocDim = 1, multianewarray could be replaced either by newarray or by
anewarray. Hence, we can profile the array allocation as described for newarray
resp. anewarray.

If allocDim > 1, the actual number of arrays and of array elements have to computed
by multiplying the sizes of the dimensions. The dimensionality of the array arrayDim
is encoded in the array type descriptor (type) [LY99]; allocDim < arrayDim. We
distinguish two cases:

1. allocDim < arrayDim, or the base type of the array is an object type. In this
case, only arrays that have references as elements (R) are allocated. For instance,
the following array allocation examples fall into this category:

e multianewarray [[[I 2
Allocates the first two dimensions of a 3-dimensional integer array.

e multianewarray [[Ljava/lang/Object; 2
Allocates a 2-dimensional array of objects.

In order to profile the array allocation, we insert a byte-
code sequence that corresponds to one invocation of
profileArrays(IC, TYPE, INTEGER, INTEGER):*

0
4dim (j) refers to the 5t dimension of the array, dim(j) > 0,1 < j < allocDim. H =1
=1

119

allocDim—1 1 allocDim ¢

profileArrays(c,R, Z Hdim(j) , Z Hdim(j))
i=0 j=1 =1

i=1

. allocDim = arrayDim, and the base type of the array is a basic type ¢. In this

case, two types of arrays are allocated: Arrays that have references as elements (R),
as well as arrays that have a basic type as elements (B, C, D, F, I, J, S, or Z). For
instance, the following array allocations fall into this category:

e multianewarray [[[I 3
Allocates a 3-dimensional integer array.

e multianewarray [[Z 2
Allocates a 2-dimensional boolean array.

In order to profile the array allocation, we insert a byte-
code sequence that corresponds to two invocations of
profileArrays(IC, TYPE, INTEGER, INTEGER):

allocDim—2 1 allocDim—1 1
profileArrays(c,R, Z Hdim(j) ' Z Hdim(j))
i=0 j=1 i=1 j=1
allocDim—1 allocDim
profileArrays(c,t, H dim(j) |, H dim(j)|)
Jj=1 Jj=1

Figure 3 illustrates the profiling of the allocation of multi-dimensional arrays with several
examples.

new
new
new

new

new
new
new

new

Object[2][3]1[5]
Object[2][3][0]
Object[2][0][5]
Object[0][3]1[5]

profileArrays(c, R, 9, 38)
profileArrays(c, R, 9, 8)
profileArrays(c, R, 3, 2)

Ll

profileArrays(c, R, 1, 0)

int[2][3][5]
int[2][3](0]
int[2][0][5]
int[0][3][5]

profileArrays(c, R, 3, 8), profileArrays(c, I, 6, 30)
profileArrays(c, R, 3, 8), profileArrays(c, I, 6, 0)
profileArrays(c, R, 3, 2), profileArrays(c, I, 0, 0)

Ll

profileArrays(c, R, 1, 0), profileArrays(c, I, 0, 0)

Figure 3: Examples: Profiling the allocation of multi-dimensional arrays.

At the implementation level, the inserted bytecode sequence to profile the allocation of
a multi-dimensional array is generated according to the algorithm in Figure 4. While the
size of each array dimension is an int, the results of the arithmetic operations may exceed
the range of an int. Hence, the variables prod, arr, and el are of the type long (i.e.,
each of them occupies two local variables).

120

1. Save array dimensions (provided on the stack) in unused local variables. (As an opti-
mization, the first array dimension can remain on the stack.)

2. Allocate unused local variables to hold the current dimensional product prod, the num-
ber of arrays arr, and the number of array elements el.
prod := 1.
arr := 0.
el :=0.

3. For each dimension i (1 < i < allocDim):

(a) If i = allocDim = arrayDim and the base type of the array is a basic type:
i. Invoke profileArrays(c, R, arr, el).

ii. arr :=0.
el :==0.

(b) arr := arr + prod.

(c) Retrieve the size of the i*" array dimension dim (i) from the corresponding local
variable. (The first array dimension may be directly duplicated on the stack.)

(d) prod := prod * dim(i).
(e) el := el + prod.
4. Invoke profileArrays(c, t, arr, el).

If allocDim = arrayDim and the base type of the array is a basic type, ¢ corresponds
to that basic type; otherwise, ¢ = R.

5. Restore the array dimensions from local variables. (The first array dimension may be
still on the stack.)

Figure 4: Algorithm to instrument allocations of multi-dimensional arrays.

6 Accuracy of Profiles

In this section we discuss the accuracy of the profiling scheme presented in Section 4
and in Section 5. We discuss to which extend and under which conditions the generated
memory allocation profiles are accurate.

The most severe limitation of our approach is that it cannot profile the execution of native
code. This is an inherent problem of our profiling scheme, since it relies on the instrumen-
tation of Java code. Therefore, the MCT does not cover any method invocation context that
would correspond to a native method. Consequently, for a program that heavily depends
on native code, the generated MCT is incomplete and may be misleading.

Nonetheless, as constructors cannot be native, the MCT covers all constructor invocations.
IL.e., in general, the information regarding the allocation of objects that are not arrays is
present in the MCT, even though the profiled program may spend a considerable part of
its execution time in native code. A minor limitation of our current implementation is that
the call stack is not preserved when a native method invokes Java code. All Java meth-
ods/constructors invoked by native code appear as children nodes of the root node in the
MCT, i.e., as siblings of the main method. However, in practice this is not a big problem,

121

because these callbacks from native code to instrumented Java code are not frequent.

Concerning the allocation of objects that are not arrays, the approach described in Sec-
tion 4 tracks the allocation of all objects that are correctly initialized (i.e., the constructor
returns normally). If an exception occurs after object allocation but before the invocation
of the constructor (e.g., an exception during the evaluation of the constructor arguments),
the object allocation is not visible in the profile. A rare situation is illustrated in Ap-
pendix A at the end of this paper: An uninitialized object is actually used, even though its
constructor has not been invoked. Also in this case, the object allocation is not tracked.

If an exception is thrown in the constructor, the invocation of the constructor and hence
the object allocation is visible in the profile. Nonetheless, if the exception occurs before
the invocation of an alternate or superclass constructor, the computation of the number of
object allocations within the constructor according to Figure 2 may be incorrect. Note that
the latter problem only concerns the computation of the number of object allocations in
constructors, but not in other Java methods. Summing up, uninitialized objects may distort
the computed object allocation profiles. Fortunately, this is rarely a problem in practice,
because exceptions in constructors are not frequent.

Regarding array allocation, we insert profiling code before the bytecode instruction
that allocates the array. Thus, if the array allocation fails (e.g., the size of the ar-
ray provided on the stack is negative or the JVM runs out of memory), the pro-
file may be inconsistent. We did not consider the case of a negative array size, as
this situation is usually a consequence of a programming error. To address this is-
sue, we could insert conditionals in the profiling code in order to skip the invoca-
tion of profileArrays(IC, TYPE, INTEGER, INTEGER) if a negative array
size was detected. As most applications are not designed to deal with occurrences of
OutOfMemoryError, we did not consider this issue either. I.e., our profiler is intended
to be used on well tested programs, which run successfully without causing such excep-
tions/errors.

It is also possible to defer the invocation(s) of
profileArrays(IC, TYPE, INTEGER, INTEGER) after the array alloca-
tion so that they are skipped in the case of an exception. This requires a slight
modification of the rewriting algorithm presented in Figure 4, as the integer arguments of
profileArrays(IC, TYPE, INTEGER, INTEGER) have to be stored either on
the stack (below the sizes of the array dimensions) or in local variables.

7 Performance Evaluation

To evaluate the overhead caused by our memory profiling scheme, we ran the SPEC
JVMO98 benchmark suite [The] on a Windows XP computer (Intel Pentium 4, 2.4 GHz,
512 MB RAM).’ In order to obtain reproducible results, all benchmarks were run under
the same conditions on a very lightly loaded system. For all settings, the entire JVM98

Note that the results presented in this paper are not directly comparable with previous results in our technical
report [BHO5], as they were collected on a Linux system.

122

o
N
»
o

8 10 12

1 1 1
O JP without memory profiling

compress

B JP with memory profiling

jess

db

javac

mpegaudio

mtrt
jack

geo. mean

Figure 5: Profiling overhead (slowdown factor) for 2 different profiler settings.

benchmark suite (consisting of several sub-tests) was run 10 times, and the final results
were obtained by calculating the geometric mean of the median of each sub-test. Here we
present the measurements made with the Sun JDK 1.5.0_01 platform in its ‘server’ mode.

. . execution time with profiling
Figure 5 shows the profiling overhead (as a slowdown factor of _Z-=—=-"=== "= pmﬁling)

for two settings: JP without memory profiling versus JP with memory profiling. The set-
ting without memory profiling corresponds to the previous version of JP, which computes
a MCT for each thread in the system, including the number of bytecode instructions ex-
ecuted in each method invocation context. In the setting with memory profiling, JP also
preserves statistics concerning array allocations in the MCT.

For both measurements we used a simple profiling agent which periodically integrates the
MCT of each thread into a global MCT, which is written into a file upon program termina-
tion (using a shutdown hook). If memory profiling is enabled, the workload of the profiling
agent increases, since it has to compute the number of object allocations as explained in
Section 4 and to process the collected data concerning array allocations. However, as we
reduced the number of invocations of the custom profiling agent to a minimum in our
evaluation, the extra overhead due to the increased workload of the profiling agent is neg-
ligible. The extra overhead because of memory profiling, as shown in Figure 5, is due to
the instrumentation of array allocations. As we expected, the extra overhead is small for
all benchmarks (4% on average), compared with the overhead caused by the creation of
the MCT and tracking the number of executed bytecode instructions.

While for some programs (e.g., ‘mtrt’) the slowdown due to exact profiling may be as high
as factor 10, the overhead caused by JP is still 1-2 orders of magnitude lower than the

123

overhead caused by the standard ‘hprof” profiling agent in its exact profiling mode (setting
‘cpu=times’), which exceeds factor 4 800 for the ‘mtrt’ benchmark.

8 Related Work

Fine-grained instrumentation of binary code has been used for profiling in prior
work [BL94, LB94]. In contrast, all profilers based on a fixed set of events like the one pro-
vided by JVMPI [Suna] are restricted to traces at the granularity of the method call. This
restriction also exists with JP and is justified by the fact that object-oriented Java programs
tend to have shorter methods, with simpler internal control flows than code implemented
in traditional imperative languages.

Some Java profilers take advantage of bytecode instrumentation to be less obtrusive and to
enable the JVM to function at full speed. The JVMPI, on which many commercial (e.g.,
JProbe®) and academic (e.g., JPMT [HQGvdMO02]) profilers are based, has been replaced
by the JVMTI [Sunb] in JDK 1.5.0. The JVMTI has built-in bytecode instrumentation
facilities in order to let profiling agents implement customized, less disruptive profiler
events. Profiling agents based on the JVMTI still have to be written in native code.

JDK 1.5.0 also provides services that allow Java programming language agents
to instrument programs running on the JVM. Java agents are specified with the
‘~javaagent’ command line option and exploit the instrumentation API (package
java.lang.instrument) to install bytecode transformations. Java agents are in-
voked after the JVM has been initialized, before the real application. They may even re-
define the already loaded system classes. However, JDK 1.5.0 imposes several restrictions
on the redefinition of previously loaded classes.

The NetBeans Profiler’ integrates Sun’s JFluid profiling technology [Dmi04] into the Net-
Beans IDE. JFluid exploits dynamic bytecode instrumentation and code hotswapping in
order to turn profiling on and off dynamically, for the whole application or just a subset of
it. However, this tool needs a customized JVM and is therefore only available for a limited
set of environments.

JRes [CVE9S] is a resource accounting and control system for Java, which takes CPU,
memory, and network resource consumption into account. For its implementation, JRes
does not need any modification of the JVM, but relies on a combination of bytecode rewrit-
ing and native code libraries. For memory accounting, JRes uses bytecode instrumentation,
but still needs the support of a native method to account for memory occupied by array
objects. JRes uses the number of allocated bytes as metric.

J-SEAL2 [BinO1, BHVO01], an extended and improved version of JavaSeal [VBB98] that
is also compatible with the Seal Calculus [VC99], adds resource management features to
Java, too. In contrast to JRes, J-SEAL2 is written in pure Java, it does not rely on native
code. J-SEAL2 tries to keep track of the active memory hold by each component in the

Shttp://www.quest.com/jprobe/
"http://profiler.netbeans.org/index.html

124

system. It uses an estimation of the number of allocated bytes as metric. J-SEAL2 keeps a
weak reference to each allocated object in order to notice when the object is reclaimed by
the garbage collector. Neither JRes nor J-SEAL2 computes a MCT. They maintain only
a single counter of the number of allocated bytes for a component or a group of threads.
Hence, neither of them is suited for call-path-sensitive memory profiling.

9 Conclusion

JP is a novel, exact profiling framework for Java that is completely based on program
transformations at the bytecode level. It is portable and fully compatible with any standard
JVM and allows custom profiling agents to be written in pure Java. JP computes a MCT for
each thread to store call-path-sensitive profiling information, such as the number of method
invocations and the number of executed bytecode instructions for each calling context.
Because JP uses platform-independent metrics, profiles are reproducible (for deterministic
programs). In all our measurements, JP causes 1-2 orders of magnitude less overhead than
prevailing exact profilers for Java.

In this paper we presented an extension of JP to track memory allocation using platform-
independent metrics: For objects that are not arrays, we preserve the type and the number
of allocated instances. For arrays, we store the element type, the number of arrays, and
the total size of the arrays. From the profiling information generated by JP various other
metrics can be derived, such as the average size of allocated objects, the allocation density,
as well as continuous metrics.

In order to reduce the extra overhead due to memory profiling to a minimum, we compute
the number of object allocations directly from the number of constructor invocations in
the MCT. A static analysis of constructor code allows us to correctly calculate the number
of objects allocated by constructors. As this approach works only for objects that are
not arrays, additional bytecode instrumentation is needed to preserve statistics concerning
array allocation in the MCT. A performance evaluation shows that the extra overhead due
to memory profiling is negligible.

References

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. In PLDI '97: Proceedings
of the ACM SIGPLAN 1997 conference on Programming language design and im-
plementation, pages 85-96. ACM Press, 1997.

[BHOS5] Walter Binder and Jarle Hulaas. Exact and Portable Profiling for Java Using Byte-
code Instruction Counting. Technical Report EPFL-IC-2005011, Ecole Polytech-
nique Fédérale de Lausanne (EPFL), School of Computer and Communication Sci-
ences, March 2005.

[BHVO1] Walter Binder, Jarle G. Hulaas, and Alex Villazon. Portable resource control in Java.

125

[BinO1]

[BL94]

[BL96]

[CVE98]

[DDHV03]

[Dmi04]

[GJSBO00]

[HQGvdMO2]

[LB94]

[LY99]

[Suna]

[Sunb]

[The]

[VBB98]

[VC99]

ACM SIGPLAN Notices, 36(11):139-155, November 2001. Proceedings of the 2001
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages
and Applications (OOPSLA’01).

Walter Binder. Design and Implementation of the J-SEAL2 Mobile Agent Kernel. In
The 2001 Symposium on Applications and the Internet (SAINT-2001), pages 35-42,
San Diego, CA, USA, January 2001.

Thomas Ball and James R. Larus. Optimally Profiling and Tracing Programs.
ACM Transactions on Programming Languages and Systems, 16(4):1319-1360, July
1994.

Thomas Ball and James R. Larus. Efficient Path Profiling. In International Sympo-
sium on Microarchitecture, pages 4657, 1996.

Grzegorz Czajkowski and Thorsten von Eicken. JRes: A Resource Accounting In-
terface for Java. In Proceedings of the 13th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA-98), volume 33, 10 of
ACM SIGPLAN Notices, New York, USA, October 1998.

Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic met-
rics for Java. ACM SIGPLAN Notices, 38(11):149-168, November 2003.

Mikhail Dmitriev. Profiling Java Applications Using Code Hotswapping and Dy-
namic Call Graph Revelation. In WOSP ’04: Proceedings of the Fourth International
Workshop on Software and Performance, pages 139—150. ACM Press, 2004.

James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java language spec-
ification. Java series. Addison-Wesley, Reading, MA, USA, second edition, 2000.

M. Harkema, D. Quartel, B. M. M. Gijsen, and Rob van der Mei. Performance
monitoring of Java applications. In Proceedings of the 3rd International Workshop
on Software and Performance (WOSP-02), pages 114-127, New York, July 2002.
ACM Press.

James R. Larus and Thomas Ball. Rewriting Executable Files to Measure Program
Behavior. Software—Practice and Experience, 24(2):197-218, February 1994.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, MA, USA, second edition, 1999.

Sun Microsystems, Inc. Java Virtual Machine Profiler Interface (JVMPI). Web pages
athttp://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/.

Sun Microsystems, Inc. JVM Tool Interface (JVMTI). Web pages at http://
java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
Web pages at http://www.spec.org/osg/jvm98/.

Jan Vitek, Ciaran Bryce, and Walter Binder. Designing JavaSeal or
How to Make Java Safe for Agents. Technical report, University of
Geneva, July 1998. http://cui.unige.ch/0SG/publications/
OO-articles/TechnicalReports/98/javaSeal.pdf.

Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computa-
tions. In Internet Programming Languages, 1999.

126

Appendix A:
Method Invocations on Uninitialized Objects

In Section 4 we argued that the JVM specification [LY99] prevents the use of uninitialized
objects. Trying to invoke a method on an uninitialized object causes a verification error.
However, there is a way to work around this restriction: Even on recent JVMs, finalizers
are executed on uninitialized objects. The code example in Figure 6 allocates an object
but does not invoke its constructor. Nonetheless, the finalizer (the method £inalize())
is executed on the uninitialized object. We tested this code example on Windows XP with
Sun JDK 1.5.0.01 and with IBM JDK 1.4.2, and in both cases the resulting output was
‘value = 0.

This illustrates that there are ‘grey areas’ in the JVM specification, and that statements,
such as ‘the JVM guarantees that uninitialized objects are not used’, may not hold in
certain cases. However, this example has been manually constructed, and we can assume
that such extreme situations are not frequent in practice.

public class UninitializedObject {

public static void main(String[] args) {
allocUninitializedObject();
System.gc();
System.runFinalization();

}

static void allocUninitializedObject() {
// The following is manually crafted bytecode.
// An object is allocated, but not initialized:
new UninitializedObject

pop
return

final int value;
UninitializedObject() { value = 1; }
void print() { System.out.print("value = " + value); }

public void finalize() { print(); }

Figure 6: The finalizer is invoked on an uninitialized object.

127

Appendix B:
Initialization with Different Constructors

The computation of the number of object allocations in a constructor (Sec-
tion 4) is based on the assumption that each constructor (except the constructor of
java.lang.Object) has exactly one associated alternate or superclass constructor.
This assumption is backed by the Java Language Specification [GJSB00]. However, at
the bytecode level, a constructor may invoke a different alternate or superclass constructor
depending on its arguments without causing any verification error [LY99]. The example
in Figure 7 illustrates this. The main method allocates two objects of the same type and
initializes them with the same constructor (but passing different constructor arguments).
However, the alternate constructor, which takes no arguments, is invoked only once. The
output of the program is ‘count = 1’.

Fortunately, this kind of situation only occurs with hand-crafted bytecode. If a standard
Java compiler is used to generate bytecode from Java code, such bytecode is not created.
Nonetheless, the static analyzer that examines constructor code (see Section 4) is able to
detect this situation and produces a warning.

public class DifferentConstructors {
static int count = 0;

public static void main(String[] args) {
new DifferentConstructors(false);
new DifferentConstructors(true);
System.out.print("count = " + count);

}

DifferentConstructors(boolean x) {

// The following is manually crafted bytecode.
// Depending on the argument, the alternate or
// the superclass constructor is called:
aload 0
iload_1
ifeq superclassConstructor

alternateConstructor:
invokespecial DifferentConstructors/<init>()V
return

superclassConstructor:
invokespecial java/lang/Object/<init>()V
return

}

DifferentConstructors() {
super();
++count;

}

Figure 7: Depending on the constructor argument, the alternate or the superclass constructor is
invoked.

128

