Integration of Object Oriented Domain Modeling and
Meta-Modeling

Antoine Schlechter, Guy Simon, Fernand Feltz

Département Informatique, Systemes et Collaboration (ISC)
Centre de Recherche Public Gabriel Lippmann
41, rue du Brill
L-4422 Belvaux
schlecht@lippmann.lu
simon@lippmann.lu
feltz@lippmann.lu

Abstract: Despite a broad agreement on the benefits of model driven approaches
to software engineering, the use of such techniques is still not very widespread.
One of the major reasons is the appearing discouraging difficulty of meta-
modeling. This paper illustrates the relations, dependencies and differences be-
tween a traditional abstract object-oriented domain model and a meta-model for
the same domain. It presents a new approach to model driven engineering of enter-
prise application software that integrates domain modeling and meta-modeling in
order to take full advantage of both traditional and generative software develop-
ment methods.

1 Introduction

Since quite a while, model-driven approaches to software engineering such as Model
Driven Engineering (MDE), Model Driven Software Development (MDSD) or Model
Driven Architecture (MDA) have been advertised to be the solution to the ever-
increasing complexity in software development. These techniques offer an easy way to
domain-specific abstraction and to a high degree of automation in the coding process.
Abstraction and automation lead to higher productivity, easier extensibility and better
quality of the software.

Although there are success stories about MDA, MDSD and MDE, the adoption of such
techniques in industry is not yet very widespread. [AKO3], [Kii06] and [He06] see the
reasons in a still incomplete and not yet fully understood theoretical foundation of MDE.
Other researchers such as [PDOS8], [Sel08], [RR08], and [MFMO08] investigated this issue
from a more practical point of view and identified mainly two kinds of reasons. On the
one hand we find so called technical reasons like bad tool support, missing tool docu-
mentation, insufficient interoperability between tools, lack of user-friendliness, and

27

others. On the other hand, a lot of programmers simply feel comfortable with their
proven methods of software development. They often only see the discomfort, the diffi-
culty, the threats and dangers but not the benefits in new technology. This shortcoming
of awareness, education, and training is often referred to as cultural problems.

Although not all of the tool requirements from [Ke02] are fully achieved, there are tool
chains such as EMF, GMF and oaw [Ecl09] that provide most of the needed functions
for MDE at least for smaller-scale projects. In fact, [TG08] finds in a survey among
several SMEs that the importance of tool support is “surprisingly low” when it comes to

suggest improvements to current practices, whereas “methodology”, “increased aware-
ness” and “training” are all mentioned significantly more often.

We are convinced, that the most important obstacle to the adoption of MDE is the ap-
pearing discouraging difficulty of meta-modeling, that is due to the lack of methods
about how to address the specification of a meta-model or domain specific language
(DSL) at the center of each model-driven approach.

In fact, there are papers that present special meta-models or domain specific languages
[KKO03], (references in [DKVO00]). Besides, [LKTO04], [MHS05], and [DKVO00] identify
several high level possibilities to define a meta-model or a DSL. Unfortunately, it re-
mains unclear how to effectively bridge the gap between the domain analysis and the
explicit definition of the meta-model or DSL.

[RJ96] proposes domain specific languages on top of a framework in order to make this
framework more comfortable to use. [AC06] analyses the possibilities to design Frame-
work Specific Modeling Languages (FSML) with roundtrip engineering. [Sa07] intro-
duces annotations to the implementation of a framework that may be used to generate a
DSL for this framework. These DSLs remain very close to the technical details of a
given framework. They are defined on top of existing finished frameworks.

Since we would like to take the benefits of model driven engineering during the whole
development process, we present an approach that integrates long-established object-
oriented domain modeling and meta-modeling. First we define a traditional abstract
object-oriented domain model. The idea is to generate the concrete subclasses with their
supporting code from a so-called domain specific model. In order to formally describe
such a model, we need to define a meta-model. A first version of this meta-model can be
derived from the abstract domain model. After that, we may choose for each more ad-
vanced feature of the system whether to include it in the object-oriented domain model
or in the meta-model. As experienced object-oriented software developers should feel
comfortable building domain models following for instance the principles of Domain
Driven Design (DDD)[Ev04], meta-modeling, the first, most important, most difficult
and most discouraging step in model driven software development, should become easier
for them just by following the concrete guidance from our method.

To present and illustrate our method, we will use the development of a Manufacturing
Execution System (MES) as an example. First of all we introduce the “ubiquitous lan-
guage” (from DDD) for MES, its representation as an object-oriented domain model and
the software system architecture (section 2). Based on the architectural description we

28

outline a model-driven approach and explain its benefits (section 3). The meta-model at
the center of the approach will be defined based on the object-oriented domain model
(section 4). Both the domain-model and meta-model are an integral part of the proposed
MDE approach and as such, they may be extended separately to take full advantage of
both traditional and generative software development methods (section 5). The proposed
method has been use to develop a concrete manufacturing execution system for a plastics
injection molding company (section 6).

2 Object-Oriented Domain Model

Manufacturing Execution Systems deal with the collection, evaluation, analysis, inter-
pretation and visualization of data from production in order to better control the produc-
tion processes. The central objects of interest in MES are jobs. A job produces a product.
Products have resource requirements used to determine what resources must be assigned
to a job for the production of a given product. Jobs use time on resources, have an inter-
nal state and may contain several sets of values, so called variables, to represent data
from quality control and process monitoring for instance. Input events may change the
state and the variables of jobs. The history of a job’s state is stored in a series of slots. Of
course, all these objects may have attributes. Besides these domain specific objects, there
are simple persistent data entities.

For the sake of simplicity, we will not go into detail for all of these aspects. A first ex-
tract from the abstract domain model for MES containing only entities, jobs, variables
and input events is depicted at the top of Figure 1.

Entity MESCore

+id : long

7N

+processinputEvent(in event : InputEvent)

Variable Job InputEvent
fstate : string +inputDate : Date
+updateState(in signal : string)

7~ +updateVariables(in event : InputEvent)
~TA |7
1
———
PlecesCaunter 1 1 ProductionJob CycleEvent PrintsEvent

+cygles : !nt . +jobNumber : int +cycles : int +activePrints : int
+activePrints : int %+ oducedLots - int
+pieces : int p .

Figure 1: Class diagram with an extract of the abstract framework classes (upper part) and some
concrete example subclasses for a simple MES (lower part).

This UML model represents the static abstract class structure of an MES implementa-
tion. It contains the data structure and some very basic operations and services. The
processInputEvent() service of the MESCore class coordinates the different operations

29

on a job, its state, variables and history involved in the processing of an input event. For
the implementation of a concrete MES, these abstract classes have to be specialized.

As an example, we assume that there is only one kind of job called ProductionJob that
contains exactly one variable PiecesCounter used to count the produced pieces. In order
to calculate the produced pieces, we need to know the number of currently active prints
in a mold (=pieces produced per cycle). Additionally, we need input events to change the
number of active prints (PrintsEvent) and to enter a number of cycles (CycleEvent). The
respective classes are represented at the bottom of Figure 1.

Data

Domain Model
Mapper

Service Layer / Remote Facade

Figure 2: Architecture of the MES-Backend with a ‘Domain Model’ and a ‘Data Mapper’ on the
inner layer and a ‘Service Layer’ implemented as a ‘Remote Fagade’ on the outer layer.
(Patterns from [Fo03])

As manufacturing execution systems are typically installed between already existing IT-
Systems at the customer’s factory, the attributes of these concrete subclasses should be
defined to be compatible with the data from the existing systems.

Productiondob createProductiondob (int jobNumber, int producedLots)
Productiondob getProductionJobByJobNumber (int jobNumber)
Collection<Productiondob> getProductionJobsByState (String state)
void
createPrintsEventForProductiondJobByJobNumber (int jobNumber, int prints)
Collection<PrintsEvent>
getPrintsEventsByProductiondJobJobNumber (int jobNumber)
Collection<PrintsEvent>
getPrintsEventsByProductionJobJobNumber (int jobNumber, Interval p)

Figure 3: Some services offered by the JobManager and the InputEventManager in the remote
facade / service layer.

In order to keep the implementation of the interfaces between the MES and the surround-
ing software as simple as possible, we propose a layered architecture with a service layer
/ remote facade that exposes useful functions to remote and local clients as an outer
layer. The services in the remote facade / service layer coordinate the access to domain
objects in persistent storage via a data mapper with the necessary calls to services and
object methods from the domain model (Figure 2). For a detailed explanation of the
patterns remote facade, service layer, data mapper and domain model, we recommend
[FoO3].

The service layer provides a JobManager and an InputEventManager with services for
the creation and retrieval of jobs and input events respectively. Additionally, the creation

30

services for input events also process the created events by calling the MES-Core proc-
essInputEvent() service. These managers offer among others the services listed in Figure
3.

This short list of services contains quite a lot of redundancy when compared to the class
diagram in Figure 1. Most of these services follow very strict and simple patterns de-
pending on the abstract super-class, the name and attributes of the classes and possible
relations between classes. At every modification we need to keep them consistent with
the data structures. Thus, the implementation and maintenance of these services is a
time-consuming, very repetitive and error-prone task. In fact, most of these services can
completely be generated with a little more information than provided by a standard UML
class diagram.

3 Domain Specific Model

Universal modeling languages like the UML are well suited to describe a given software
solution. Often, the models are simply abstract representations of the code of an applica-
tion, thus usually leaving out functional details or spreading these details over a lot of
different types of models. Domain specific modeling languages are designed to capture
the essence of a domain and the respective models are abstractions of the real world
problem to be solved. From such models, we can generate all the abstract models of a
solution. In addition, it is often possible to generate some functional details or even a
complete application. For illustration, we will now present a possible domain specific
model for our example MES-System.

Cycle ProductionJob
————————————«custom»-update——

cycles: Integer jobNumber: Integer

producedLots: Integer

PiecesCounter
il cycles: Integer
T » .
activePrints: Integer ovenwrite " | activePrints: Integer
pieces: Integer
EnterReject RejectCounter
e ; add >
- | rejectedpieces: Integer] rejectedPieces: Integer
RejectType f
«classify»———p - 4—«classify»—,
name: String

Figure 4: Extract from an MES model. The non-dotted area corresponds to the object model in the
lower part of Figure 1; the dotted area represents the object model in Figure 5.

As seen in the analysis of the services needed in the remote facade, we need a distinction
between the different class hierarchies in Figure 1. Thus, we model the subclasses using
different representations. In Figure 4 subclasses of the InputEvent class are drawn as
green rounded rectangles (left-hand side), direct subclasses of the Entity class are repre-
sented by gray rectangles (bottom), and subclasses of the Job class are modeled as blue

31

rectangles (right-hand side) containing a white rectangle for each owned subclass of the
Variable class. The attributes of the classes are modeled just like in UML within the
class representing shapes.

In addition to Figure 1, we added relationships between input events and variables that
indicate if at all and how a given event updates a variable. In our example, the Cycle
event will update the PiecesCounter variable in a custom way to be further specified
manually in the generated code. The Prints event will overwrite the activePrints attribute
of the PiecesCounter variable with the value of its attribute. Within the dotted area of
Figure 4, we added an EnterReject event and a RejectCounter variable that both use
RejectType to classify their attribute rejectedPieces. The corresponding data structures
are given in Figure 5. In fact, the RejectCounter variable will have a hashtable to map
reject types to the corresponding total number of rejected pieces.

Variable Entity InputEvent
4[>+id : long qiﬂnputDate : Date
[
[\ [|
RejectCounter RejectCounterElement RejectType EnterRejectEvent
+rejectedPieces : int +name : string +rejectedPieces : int
+getRejectedPieces(in type : RejectType) : int
rejectType
1 1 1 L

Figure 5: Class diagram corresponding to the dotted area in the MES model of Figure 4.

For now, Figure 4 is just a picture and we need to define its formal semantics in order to
make it a model [KI07]. We have drawn this new model with clear “translational seman-
tics” in mind. In fact, we constructed its elements directly from the subclasses of our
abstract domain model they represent. It should be clear, that the models in Figure 1 and
Figure 5 as well as the services in Figure 3 can be generated from the model in Figure 4.

In this new model, we left out technical details and added domain specific details like the
update relationships between input events and variables. This additional information can
be used to generate the major part of the updateVariables() method of the ProductionJob
class together with the needed supporting methods within the different input events.
Besides, the new model is more readable and has an intuitive meaning that is easily
understandable by domain experts.

4 From Domain Modeling to Meta-Modeling

After the presentation of a possible domain specific model and its advantages, we need
to formally define the corresponding meta-model. Despite the higher effort for tool
building involved with a real new meta-model, we chose this way because of its other
advantages over an UML profile or an UML extension [WS07].

32

As a first step in the definition of the meta-model, we basically just take the classes of
our abstract object oriented domain model in the upper part of Figure 1 and put them as
meta-classes in the meta-model in Figure 6. After this first step, we find the meta-classes
JobClass, VariableClass, InputEventClass and EntityClass in our meta-model. Instances
of these meta-classes represent subclasses of the domain classes Job, Variable, InputE-
vent and Entity. For instance, the blue rectangle representing the ProductionJob in Figure
4 is an instance of the meta-class JobClass.

PropertyClass

+name : string

+type : PropertyType
+unique : bool
+searchable : bool

AbstractEntityClass

- &

+name : string

ToEntityRelation

+relationType : RelationType
+bidirectional : bool = false
+optional : bool = false

ZF

[I] .
JobClass VariableClass InputEventClass

- 1 - 1T 1 .

VariableUpdateRelation
1 +updateType : UpdateType *
+customTypeName : string

1

EntityClass

MESDescription

>
>

7
1

Figure 6: Extract from the MES meta-model.

All these instances should have a name (‘“ProductionJob”, “RejectCounter”, “PrintsEv-
ent”, “RejectType”, ...). It should be possible, to define attributes for these instances
(jobNumber, rejectedPieces, ...). To capture these commonalities in a central element,
we introduce the common super-(meta-)class AbstractEntityClass in our meta-model. It
has a string-type attribute name to take the names of the instances. AbstractEntityClasses
may have several PropertyClasses to represent the attributes of their instances. For in-
stance, ProductionJob is an instance of JobClass, that is an AbstractEntityClass with
name="ProductionJob”. Its attribute jobNumber with type “Integer” is an instance of
PropertyClass with name="jobNumber” and type=PropertyType::Integer.

The additional attributes unique and searchable of PropertyClass are used to indicate
whether an attribute of a domain object (=instance of PropertyClass) can be used as an
identifier for this domain object and whether it can be used to lookup and retrieve in-
stances of this domain object. They are used to control which accessing services should
be generated. The service getProductionJobByJobNumber() (Figure 3) for instance is
generated because the attribute jobNumber of ProductionJob is marked to be unique and
searchable.

Besides attributes (instances of PropertyClass), we would like to associate simple data
entities to our model elements (instances of JobClass, ...) in order to build normalized

33

data structures. Each such association in a domain specific model is an instance of the
ToEntityRelation meta-class. The attributes of this meta-class are used to control the
type (classifying or not, cardinalities) and other options of the associations.

Variations of this AbstractEntityClass-pattern will be a part of practically every meta-
model that is used to model traditional data structures. Another returning aspect is the
need for models to have one single point of entry. Therefore all top-level elements in a
model (those that are not owned by other model elements) must be owned by one object
of a special type. In our case this is MESDescription.

The only substantial additions to the meta-model are the composition relationship be-
tween JobClass and VariableClass indicating that jobs may contain variables and the
VariableUpdateRelation meta-class to model which input events update which variables
and how.

S Integrated Domain Modeling and Meta-Modeling
Our approach contains two separate development processes: the first one is about the

development of applications; the second one is about the development of tools that are
used in application development (Figure 7).

Tool Development
Model-Editor Meta-Model | Code-Generator
data data
N I T
; model for | model for]
used instanceof used
to edit | to generate
i_ ________________________ Domain Specific i | Concrete Abstract
Model ""| Domain Model Domain Model
Application Development

Figure 7: Overview of the integrated domain modeling and meta-modeling approach.

We start the application development traditionally with an abstract object-oriented do-
main model. Instead of manually extending and specializing this abstract domain model
into a concrete one, we build domain specific tools to do this more efficiently. At the
beginning of the tool development, we lift the classes from the abstract domain model
into a meta-model. This meta-model can be seen as a data-model to store and inter-
change domain specific models [Sei03]. It is used as data-model for a model-editor and a
code-generator. The model editor is used to create and edit domain specific models that
are transformed into a concrete domain model by the code generator. Both these tools
could be developed following traditional software development methods. However, there
exist frameworks like GMF and oaw [Ecl09] that facilitate this development signifi-
cantly.

This being said, we have two separate places where we can model the different aspects
of a software system: the abstract domain model and the meta-model. For every aspect

34

we may decide to either model it in the abstract domain model with a manual implemen-
tation possibly completed by an extension of the code generator, or to model it in the
meta-model with its implementation becoming an integral part of the code generator.
The most significant difference between domain modeling and meta-modeling in our
approach is changeability. An aspect modeled in the meta-model will usually be trans-
formed into static code. Thus, a change here will have us to deploy a new version of the
software. Modeling the same aspect in the abstract domain model usually allows us to
make changes at runtime. To get there, modeling of behavior at this level will force us to
implement complex interpreters.

StateMachine JobClass InputEventClass
* +name : string —

SIeISHEIS+

=

+fromState

State Transition
+toState
1 "

Signal

+name : string +name : string

+condition

1 *

Figure 8: Extension of the meta-model to allow the modeling of state machines for jobs.

As an example for an extension of the meta-model, we present the modeling of the state
of a job. A job can have different states at different points in time. Input events may
cause jobs to change their state. The possible states of a job and the transition between
them with the respective conditions form a state machine. In a production system, we
may not change the state machine for a type of job as this will falsify the history of past
jobs. Change can only be accomplished by adding a new type of job with a new state
machine. Hence we model the state machines in the meta-model and generate static code
for them. Figure 8 contains the corresponding meta-model extension and Figure 9 con-
tains the domain specific model with the state machine for ProductionJobs.

ProductionJobState ‘

productionStarted productionStarte jobFinished

__....f.__ N dY-— d — StartProduction
Lo T p T~ ~ 7 i

l‘\._.sfflf : - F{r?ducflgn 4 \ Halteﬁ, - ~ Tls:e':d/) productionStarted

KproductlonStopped (FinishJob w (StopProduction w

jobFinished AproductionStopped

Figure 9: Model of the different states for ProductionJobs.

On the other hand, the history of a job as a series of slots is modeled in the domain
model (Figure 10). Each Slot stores the state of its job in the period of time before its
startEvent and its endEvent. Besides this data structure for slots, we need a structure to
make some statistics over the usage of time for a given job. The abstract class
BaseTimeDistibution allows to sum up the total time of the slots that are given to it. In
our example we are interested in how long a job spend in its different states. Therefore
we generate the ProductionJobsDistribution for ProductionJobs that contains distribu-

35

tions for each one of the possible job states. When adding slots to this Production-
JobsDistribution, the slots are recursively added to the distributions corresponding to the
job’s state stored in the slot. As all information needed to generate these TimeDistribu-
tions is already contained in our model, there is no need to extend the meta-model.

+startEvent
Job 1 * Slot InputEvent BaseTimeDistribution
#: stri state - stri +endEvent - - —
state : string +state : string B 1 _ |¥inputDate : Date | |+totalTime : long
+executedJob +addSlot(in slot : Slot)
L s
[I I I
HaltedDistribution WaitingDistribution ProductionDistribution ProductionJobsDistribution

Figure 10: Extension of the framework-model to build statistics on the time a job spent in different
states.

If we had modeled the VariableUpdateRelation or the state machine in the domain
model, we would have needed to implement interpreters to execute the stored update
relations or state transitions.

6 Experimental Results

We implemented the whole MDE framework for MES, including meta-model, model-
editor and code-generator using Eclipse Modeling Framework (EMF), Graphical Model-
ing Framework (GMF) and openarchitectureware (oaw) [Ecl09]. As target platform we
chose Java 5 with Enterprise Java Beans (EJB) 3.0. The structure of the code generator
follows the principles of the Model Driven Architecture (MDA) [OMGO3], i.e. it con-
sists of several modules responsible for different architectural elements (CIM to PIM)
and each module generates the needed Java code (PIM to PSM to code).

For the implementation of the GUI we used QT-Jambi and for the generation of reports
we used Crystal Reports. Both tools fit well in our model driven approach with their
good WYSIWYG designers.

The generated system has been tested in a real world environment using the JBoss appli-
cation server at an injection molding company. During the testing phase, several bugs
have been identified that could easily be fixed in the framework and code-generator.
Some feature requests arose that could be implemented quickly by small additions to the
meta-model and code-generator. The most difficult parts have been the GUI-
enhancements to make the new features visible and editable.

The implementation of the backend of our Manufacturing Execution System (Figure 2)
contains 1541 lines of code in 45 classes, the complete MES meta-model contains 22
meta-classes with 151 model elements (=classes, attributes, and associations) and the
code-generator templates contain 4356 lines of code. The complete model of the manu-

36

facturing execution system for the injection molding company is depicted in Figure 11. It
contains 175 model elements. From these we generate 90 classes with a total of 7525
lines of code that are recreated every time the generator is run. Another 37 subclasses
with 594 lines of code are created once at the first generator run. These may be manually
modified to implement some custom functions. In our system, we added a total of 128
lines of code to 21 of these classes. This gives us a fix cost of 151 model elements plus
5897 lines of code and a variable cost of 175 model elements plus 128 lines of code for
this one system.

i

{

i
|[||||l|li i 1§

.-l

L1 S
|3
|

| |
"'|||I“ |

Figure 11: Complete Model of the implemented MES-System.

The overall system architecture would not be different if we had not chosen to use code
generation. Thus, we need to compare the effort to write the 8119 generated lines of
code with the effort to write the 4356 lines of code in the code generator and the 326
model elements. Around half the lines of code in the code generator are final code tem-
plates. This means, that each code template is reproduced around four times in average.
In consequence, only around a quarter of the generated code has to be tested to be sure
that “all” code works correctly whereas the manual code has to be tested completely.
Additionally a change in one implementation pattern due to an error affects around four
code blocks that need to be changed independently but consistently in the manual code.
The renaming of a model element in compliance with all naming conventions might
propagate to even more different places. Even if manually writing these lines seems

attractive, testing them appropriately and keeping them consistent over time will be very
hard.

Besides the slight numerical gain in productivity in the development of this first system,
the MDE approach will speed up the development of further systems due to the small
variable cost per system. Additionally there is a huge increase in maintainability due to
the automatically assured consistence between all code parts involved in the handling of
the same objects. The possibility to systematically add new functionality either in the
manually implemented framework (domain modeling) or in the code generator (meta-
modeling) makes the systems easily extensible. Finally, the validation of the code gen-

37

erator templates by testing a “minimal” system guarantees the quality of a complete
system.

7 Conclusion

We presented an approach to model driven engineering, where the central meta-model is
defined starting from a traditional abstract object-oriented domain model. Using the
differences between modeling at the abstract domain level and modeling at the meta-
level, we may integrate both levels and choose for each function of a software system the
optimal way of modeling and implementation.

The models conforming to a meta-model defined following our method can be used to
generate a concrete specialization of the underlying abstract domain model where all
elements have an assured quality and are guaranteed to be consistent with one another.
Thus, our method achieves the most important goals of model driven software develop-
ment such as higher productivity, easier extensibility and better quality.

As meta-modeling is the most difficult and discouraging step in model driven engineer-
ing, the concrete explanations in our method about how to start the definition of a meta-
model, what to put into the meta-model and what to keep in the abstract domain model,
make the access to MDE easier for experienced object-oriented developers.

References

[AKO3] Atkinson, C., Kiihne, T., 2003. Model-driven development: a metamodeling founda-
tion. In IEEE Software. Vol. 20. No. 5. pp 36-41. September-October 2003.

[ACO06] Antkiewicz, M., Czarnecki, K., 2006. Framework-Specific Modeling Languages with
Round-Trip Engineering. In LNCS Vol. 4199. Springer. Berlin / Heidelberg. 2006.

[Ecl09] Eclipse Modeling Project EMF, GMF, oaw: http://www.eclipse.org/modeling/
http://www.openarchitectureware.org/ (accessed 18th may 2009)

[Ev04] Evans, E., 2004. Domain-Driven Design Tackling Complexity in the Heart of Soft-
ware. Boston. Addison-Wesley.

[Fo03] Fowler, M, 2003. Patterns of Enterprise Application Architecture. Boston. Addison

Wesley.

[He06] Hesse, W., 2006. More matters on (meta-)modeling: remarks on Thomas Kiihne’s
“matters”. In Journal on Software and Systems Modeling, Vol. 5, No. 4. pp. 387-394.
December 2006.

[Ke02] Kent, S., 2002. Model Driven Engineering. In Proceedings of the Third International
Conference on Integrated Formal Methods. LNCS Vol. 2335, pp 286 — 298. 2002.

[K107] Kleppe, A., 2007. A Language Description is More than a Metamodel. In 4th Int.
Workshop on Software Language Engineering. Nashville. USA. October 2007.

[KKO03] Koch, N., Kraus, A., 2003. Towards a Common Meta-model for the Development of
Web Applications. In LNCS Vol. 2722. Springer. Berlin. 2003

[Kii06] Kiihne, T., 2006. Matters of (Meta-)Modeling. In Journal on Software and Systems
Modeling, Vol. 5, No. 4. pp. 369-385. December 2006.

[LKTO4] Luoma, J., Kelly, S., Tolvanen, J-P., 2004. Defining Domain-Specific Modeling Lan-
guages: Collected Experiences. In Proc. of the 4th OOPSLA Workshop on Domain-

38

[MHSO05]

[MFMOS]

[OMGO3]

[PDO8]

[RJ96]

[RROS]

[Sa07]

[Sei03]

[Sel08]

[TGO8]

[DKV00]

[WS07]

Specific Modeling (DSM’04), Technical Reports, TR-33, University of Jyviskyla,
Finland 2004

Mernik, M., Heering, J., Sloane, A. M., 2005. When and How to Develop Domain-
Specific Languages. In ACM Computing Surveys (CSUR). Volume 37. Issue 4. pp.
316-344. December 2005.

Mohagheghi, P., Fernandez, M. A., Martell, J. A., Fritzsche, M., Giliani, W., 2008.
MDE Adoption in Industry: Challenges and Success Criteria. In 1st Int. Workshop on
Challenges in Model Driven Software Engineering. September 28th. Toulouse.
France.

Object Management Group (OMG), 2003. MDA Guide Version 1.0.1, OMG Docu-
ment/03-06.-01. 2003.

Posse, E., Dingel, J., 2008: A Foundation for MDE. In 1st Int. Workshop on Chal-
lenges in Model Driven Software Engineering. September 28th. Toulouse. France.
Roberts, D., Johnson, R., 1996. Evolving Frameworks: A Pattern Language for De-
veloping Object-Oriented Frameworks. In 3rd Conference on Pattern Languages and
Programming. Addison-Wesley. 1996.

Rutle, A., Rossini, A., 2008. A Tentative Analysis of the Factors Affecting the Indus-
trial Adoption of MDE. In Ist Int. Workshop on Challenges in Model Driven Software
Engineering. September 28th. Toulouse. France.

Santos, A. L., 2007. Automatic Support for Model-Driven Specialization of Object-
Oriented Frameworks. In 22nd ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications companion. pp. 923-924. Montreal. Quebec. Can-
ada. 2007

Seidewitz, E., 2003. What Models Mean. In IEEE Software. Vol. 20. No. 5, pp 26 —
32. September 2003.

Selic, B., 2008. Personal Reflections on Automation, Programming Culture, and
Model-based Software Engineering. In Automated Software Engineering. Vol. 15. Is-
sue 3-4. pp 379 — 391. December 2008.

Thorn, C., Gustafsson, T., 2008. Uptake of Modeling Practices in SMEs Initial Results
from an Industrial Survey. In 2008 Int. Workshop on Models in software Engineering.
Leipzig. Germany.

van Deursen, A., Klingt, P., Visser, J., 2000. Domain Specific Languages. In ACM
SIGPLAN Notices. Volume 35. Issue 6. pp. 26-36. June 2000.

Weisemoller, 1., Schiirr, A., 2007. A Comparison of Standard Compliant Ways to
Define Domain Specific Languages. In LNCS Vol. 5002, pp. 47-58. Springer. Berlin /
Heidelberg 2008.

39

