J. Michael, J. Pfeiffer, A. Wortmann (Hrsg.): Software Engineering 2022 Workshops,
174 Digital Library, Gesellschaft fiir Informatik 2022

Build Your Own Training Data -
Synthetic Data for Object Detection in Aerial Images

Lea Laux | Sebastian Schirmer ! Simon Schopferer | Johann C. Dauer !

Abstract: Machine learning has become one of the most widely used techniques in artificial
intelligence, especially for image processing. One of the biggest challenges in developing an accurate
image processing model is to collect large amounts of data that are sufficiently close to the real-world
scenario. Ideally, real-world data is therefore used for model training. Unfortunately, real-world data is
often insufficiently available and expensive to generate. Therefore, models are trained using synthetic
data. However, there is no standardized method of how training data is generated and which properties
determine the data quality. In this paper, we present first steps towards the generation of large amounts
of data for human detection based on aerial images. To create labeled aerial images, we are using
Unreal Engine and A1rS1m. We report on first impressions of the generated labeled aerial images and
identify future challenges — current simulation tools can be used to create realistic and diverse images
including labeling, but native support would be beneficial to ease their usage.

Keywords: Machine Learning; Synthetic Data; Simulation Environment; Unmanned Aircraft; Human
Detection

1 Introduction

Future unmanned aircraft system that operate beyond visual line of sight will need a
trustworthy perception of the environment to carry out their missions without endangering
others. State-of-the-art perception algorithms are based on machine learning (ML) techniques,
where the perception function is learned from data. This learning process is called training
and real-world data as well as synthetic data can be used for it. Training is an essential but
unfortunately error-prone task. Therefore, after training, the function needs to be validated
to understand whether it generalizes and therefore can be used for yet unseen real-world
scenarios. In fact, European Union Aviation Safety Agency (EASA) published its Artificial
Intelligence Roadmap and Concepts of Design Assurance for Neural Networks that entails a
W-shaped development cycle for learning assurance where data management is one of the
first steps [easa]. The objective of the data management is to evaluate the completeness,
correctness, and quality of the data for the respective task. It is clear that real-world data
achieves the highest quality. But, since real-world data is difficult to generate, especially
in case of unmanned flights, it has its downside in terms of completeness. Synthetic
data in contrast to real-world data can be generated automatically and data properties
like photorealism, fidelity, and variability depend on the current state of the tools and
technologies used where improvements are foreseeable.

! German Aerospace Center (DLR), Braunschweig, Germany, <firstname>.<lastname> @dlr.de

@GD Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
mailto:<firstname>.<lastname>@dlr.de

Build Your Own Training Data 175

The use case considered in this paper is
humanitarian aid with an unmanned air-
craft. Figure 1 shows the research helicopter
superARTIS with a drop system for huma-
nitarian needs. The drop system shall only
be activated if there is no human close to
the release area. To detect humans within
the release area, we use a trained YOLOv4

model on board. For training, we are using -
real-world as well as synthetic data. Fig. 1: Unmanned DLR superARTIS research heli-
copter with drop system for humanitarian needs.

In this paper, we present the current state of

our ongoing research regarding synthetic

data generation for human detection on aerial images. To create synthetic data, we report
our experience using Unreal Engine and A1rS1m. Further, we use segmentation images to
automatically create labels for the supervised training. Our current setup requires a user to
manually set up an environment and define parameters such as the desired number of images,
then aerial images showing labeled humans on the ground can be generated automatically.

In the following, we state requirements on our simulation environment, then present the
developed toolchain, and discuss our experience with the generation of a first set of image
data for the use case described above. Furthermore, we disclose current challenges of the
image generation approach and discuss both conceptual and technical issues.

2 Related Work

The mix between synthetic training data and real-world data has shown promising re-
sults for person detection [yu_improving 2010]. Furthermore, synthetic training data
was successfully used to train neural networks for unmanned aerial vehicle applicati-
ons [kamilaris_training 2019] — aerial images were used for fire detection and house
counting. Yet, the authors report that it is unclear whether this success generalizes to
different use cases. In this work, we investigate whether synthetic images can be used to
train neural networks to detect humans in aerial images.

To generate synthetic training data, simulation environments can be used where not only
fidelity is desirable but also the possibility to create diverse scenarios [goodsynthetic;
yu_improving_2010] in an automated manner. In fact, a large variety of simulation
environments exist that range from simulators for controller development like Gazebo?
to photorealistic flight simulators like X-Plane3 for pilot training. Another simulation
environment that can be found in between is AIrRS1M [airsim]. AirRSim is a simulation

2 http://gazebosim.org/
3 https://www.x-plane.com/

http://gazebosim.org/
https://www.x-plane.com/

176 Laux et al.

environment for autonomous vehicles using the game engine Unreal Engine*. The Unreal
Engine marketplace can be used to access a variety of different environments and human
models. Further, AR S1m has already been used for deep learning based classification of
pedestrians [schleusner_deep_2019]. Yet, the purpose of none of the mentioned tools is the
creation of synthetic training data. Therefore, in this paper, we examine how well AIRS1M
can be used to generate a diverse set of aerial images.

Other tools bridge the gap between simulation, machine learning training, and verification.
One example is VERIFALI that can be used for the design and analysis of machine learning
components [dillig_verifai_2019]. The initial version of VERIFAI builds on top of existing
simulators and uses simulation runs to verify deep neural networks for perception tasks.
It incorporates SCENIC [fremont_scenic_nodate] — a modeling language for automatic
scene generation. Currently, to our knowledge, these tools do not support in-air scenarios
that would be an useful future extension. Most similar is the work of [dlr138636] that uses
Unity 3D> and a formal description language to generate desirable aerial scenarios.

With regards to certification, EASA points to risks and mitigation of using synthetic data.
They state that synthetic data should never be used without proper analysis and mitigation
of the domain biases, no matter how realistic it looks. Also, testing using synthesized
data is only supplementing testing using actual data and is not replacing it — otherwise
derived learning assurances would not apply. However, they also acknowledge the benefits of
synthetic data as it helps to find edge cases that almost never happen in the real world or that
would be difficult or very costly to reproduce [easa]. This work represents first steps towards
data generation for a specific aerial operation with a defined concept of operation (ConOps)
specifying operational scenarios and an operation design domain (ODD) representing
operation conditions and limits [easa2]. We present the toolchain that generates images,
efficient ways to achieve ODD coverage requirements are part of future work.

3 Requirements for the Simulation Environment

The use of a simulation environment is a prominent and promising way for generating
training data that satisfies the requirements for quality and scalability. To meet the desirable
requirements of high quality data, it is necessary to define the term of good synthetic training
data. In fact, there are different opinions on how to balance fidelity, i.e., photorealism, on
the one hand and data diversity on the other hand. According to the findings of Mayer
et al, photorealism is often overrated [goodsynthetic]. Whereas others state the lack of
fidelity of simulation environments as one of the major challenges [ChallengesSimulators].
In this work, we decided to prioritize diversity of the generated training data while also
aiming for a high level of photorealism. The HERIDAL data set, which consists of a series
of real-world aerial images, serves as a guide for ideal training data [realimgdata]. The

4 https://www.unrealengine.com/
5Shttps://unity.com/

https://unity.com/

Build Your Own Training Data 177

data set includes aerial images of humans in different environments like mountains, parks,
forests, and other typical middle European landscapes. One example image of HERIDAL is
shown in Figure 2.

Considering the necessary quality of the
training data and the use case for detecting
humans in aerial images, we identified the
following requirements:

Realistic and Plausible Drone Flight
The simulation environment is able
to fit the requirements of a realistic
and plausible drone flight. Hence,
images are taken at a flight level
of approximately 50 meters. Fur-
ther, the camera on board the drone s
should capture different scenarios in Fig. 2: Real-world aerial image from the HERIDAL
different camera positions and angles ~ data set [realimgdata], CC BY 3.0 Unported Li-
during flight. cense.

Ve ’ sy
o Sl

Automation Capability The toolchain
should be automatable. This includes
the setup, choice of environment, placement of objects like humans, configuration of
parameters described in the previous requirement, labeling of detected humans, and
storage of data in a format suitable for further processing. Automation is important
since it promises cost savings and a scalable data generation process.

Time Requirements The simulation envi-
ronment is able to create data in a
reasonable time. A large amount of
data is usually required for the task of
machine learning. Therefore, our de-
finition of a reasonable time to meet
the requirement of scalability suita-
ble for machine learning starts with
at least 1000 images per hour.

Open Source The relevant tools of the si-
mulation environment are available
under an open source license and are
developed by an active community.
It is desirable to have an exchange of
knowledge and support by the com-
munity. Particularly with regard to

178 Laux et al.

the sustainability of the simulation
environment and its usage in the fu-
ture, a highly maintained software is
preferable.

4 Synthetic Data Generation Toolchain

The toolchain is based on Unreal Engine and A1rS1m. Unreal Engine is used to create virtual
worlds and place assets such as humans in them. Then, A1rS1™ is used to interact with this
virtual world. Technically speaking, A1rS1m is a plugin for Unreal Engine. Typically, it is
used to simulate drone flights and car driving. AIRS1M can be also used to create images
during simulation runs. Before these generated images can be used for ML training, we
process the images to augment them with labels. In the following, we present the components
of the toolcain in more detail.

4.1 Unreal Engine

Unreal Engine and its marketplace have a variety of available projects that include large
virtual worlds. In principle, all the worlds and environments of the Unreal Engine and the
given marketplace can be used for the purpose of gathering data. We chose environments
based on photorealism and free availability. In future, it would also be possible to design own
or buy other worlds. Currently, the worlds we are using are: Blocks, City Park Environment
Collection, Megascans Goddess Temple, and A Boy and His Kite. Blocks directly comes
with A1rRS1M and consists of one plain layer with cubes, cones, and balls. The City Park
Environment Collection is a large park that includes playgrounds, green areas, lakes, cafes,
roads, and many more. This world is mainly used in this work. Megascans Goddess Temple
represents a temple in the mountains with large rocks and very bold cliffs. Last, A Boy and
His Kite incorporates large green areas, mountains, lakes, river, and caves.

In the Unreal Engine marketplace, there are also asset packages with different objects that
can be placed in the environment. In this project, we use two different asset packages for
humans: Scanned 3D People Pack® and Twinmotion Posed Humans”. These two packages
alone already include a total of 161 different humans. The number of humans in the world
can be configured at the beginning of the data generation. Currently, we spawn humans
at random positions. The Unreal Engine also provides a list of all available objects in the
current environment like trees. This list of objects can be used to guide the distribution
and placement of humans. Either all objects or a filtered subset of objects are used for
this purpose. To filter the list of objects, a blacklist that entails objects where a humans
should not be placed and a whitelist that contains objects where a human should be placed
at random is used. The blacklist and the whitelist are maintained by the user.

6 https://unrealengine.com/marketplace/en-US/product/9c3fab270dfe468a9a920dadc10fa2ad
7 https://unrealengine.com/marketplace/en-US/product/twinmotion-posed-humans

https://unrealengine.com/marketplace/en-US/product/9c3fab270dfe468a9a920da0c10fa2ad
https://unrealengine.com/marketplace/en-US/product/twinmotion-posed-humans

Build Your Own Training Data 179

Fig. 3: Aerial images by AIRS1M: camera image on the left and its segmentated version on the right.

4.2 AIrSIM

A1rS1M is a plugin for Unreal Engine and allows to access Unreal Engine data. By accessing
virtual cameras, ATRS1M™ is able to generate standard images and segmentation images. An
example is shown in Figure 3. It is possible to use different modes for the car, the unmanned
aerial vehicle, or the environment itself in a computer vision mode. The relevant mode for
our use case is the computer vision mode, simulating a drone flight in bird’s eye perspective
without the overhead of simulating the drone itself.

The position of the humans can be extracted out of the Unreal Engine. Based on this
position, the correct coordinates for generating the images can be derivated and used by
A1rS1M. To increase the randomness and diversity of the images, a random altitude between
30 meters and 60 meters and a random perimeter between 10 meters and 50 meters are
chosen. Concerning the virtual camera, the camera angle and twist randomly vary between
-15° and 15° and between 0° and 360°, respectively. Further, a random change in date
and time ensures different lightning conditions. Also, it is possible to customize weather
and environment conditions like rain, snow, leafes, fog, and dust. The probabilistic nature
ensures to generate a diverse set of training data that also includes corner-cases.

4.3 Segmentation

A1rS1M generates images of the environment and so called segmentation images for ground
truth labeling. The segmentation is configured by AIrS1m itself, so it is possible to assign
different colors to different objects based on their ID in the Unreal Engine. In our setting,
humans are colored white and other objects black as can be seen on the right side of Figure 3.

For the chosen machine learning framework
YOLOv4, a specific format for the training
data is used. The training data needs to
specify a bounding box that captures the

Fig. 4: Generated image of a human by A1rRS1m
labeld by a bounding box.

180 Laux et al.

borders of the desired object. Figure 4 de-
picts such a bounding box.

The bounding box is calculated based on
the segmentation image taken by AIRS1™.
Here, white and black pixels stand for pixels
of humans and other objects, respectively.
Note that visible objects are segmented,
meaning humans hidden behind other ob-
jects are only partially visible. Next, human
pixels are clustered such that one cluster
represents either a single human or a group
of humans. If a cluster covers too small an
area, it will be discarded since the human is not visible enough.

S Discussion of the Results and Current Challenges

In this section, we discuss our experience with A1RS1m and Unreal Engine. Further, we
give first results whether the generated images can be used for neural network training. The
experiments focus on understanding the quality of the generated data — they do not represent
an evaluation of the use case or the detection algorithm. The toolchain has been used in
our experiments to create synthetic images with the described Unreal Engine worlds and
A1rRS1M for drone simulations and humans on the ground. They are processed to a format
readable for the first tests with a machine learning framework. The results indicate that
further improvements of the toolchain are required. Generated images are of high quality
but often show humans hidden in shadows or concealed by obstacles. These data represent
good edge cases, but are too difficult for the initial training.

5.1 AirSim/Unreal Engine Toolchain

An advantage of the presented toolchain is the possibility to partially automate the process
itself. After choosing, deploying, and configuring a virtual world once, the toolchain
generates one to two images per second. Creating and configuring an environment of Unreal
Engine takes around 15-30 minutes, human generation in the world takes one to three
minutes, creating the images itself with A1RS1™ takes two to five minutes for all images,
and post processing takes two to ten minutes. Our hardware setup includes an Intel i7-6700
CPU @3.40GHz (8.4 CPUs) with 16 GB of main memory and an GPU NVIDIA Quadro
K620. Figure 5 shows some of the generated images using the City Park Environment
Collection. Currently, due to the random placement of the humans, a manual review of the
generated images is recommended to assure that humans are visible from the aerial camera
perspective, i.e., they are not hidden in shadows.

Build Your Own Training Data 181

Fig. 5: Sample images generated by the proposed toolchain.

5.2 Experimental Results

This section gives preliminary and inconclusive results for using the generated data
for ML training. We have created 2780 synthetic images in different environments for
human detection in aerial images in roughly half a day using the presented toolchain.
The duration also includes some random manual checks of the generated images. The
manual checks suggested that the captured scenes are often too difficult for training since
the placed humans are often hidden in shadows or concealed by other obstacles. Hence,
we designed an experimental test to validate this presumption. In the test, the results of
a neural network trained exclusively on real-world data were compared with the same
network further trained with the generated images — if the synthetic images are close
to the real-world data, we expect only small deviations in the network performance. As
the neural network, we have used a YOLOv4-tiny neural network trained with default
parameters® and the HERIDAL data set [realimgdata]. The validation was based on
54 synthetic and 27 real-world images. Further, we used the Intersection over Union
(IoU) [DBLP:journals/ijcv/EveringhamEGWWZ15] as metric to compute the similarity
of the predicted bounding boxes. We differentiate between three classes of results: fully
correct, partially correct, and incorrect. A result is correct if the calculated bounding box
achieves an IoU with the ground truth greater than 50%. Otherwise, the calculated bounding
box is considered as partially correct. In case the IoU is zero, the result is considered
incorrect. The results showed that our presumption was correct. Many images were too
difficult and did not help training, but even worsened the network performance — the network
without training on synthetic data performed better. It achieves 30% fully correct, 37%
partially correct, and 33% incorrect. The network further trained with synthetic data achieves
only 24% fully correct, 4% partially correct, and 72% incorrect. When comparing the
synthetic and the real-world data, humans are more visible in the real-world data due to better
positioning, lightning conditions, and better differentiation between their surroundings. In
fact, it is an open question to define the ratio between simple and difficult synthetic data.

8 https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4-tiny.cfg

https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4-tiny.cfg

182 Laux et al.

For training purposes, simpler data may be beneficial, while for testing difficult data that
considers edge cases may be more beneficial. Next, we formalize further challenges that
address these problems.

Challenge of Object Visibility

The approach of using simulations and 3D render engines to generate synthetic training
data holds the promise of delivering an arbitrary amount of high quality training data
sets. However, the setup described in this paper, uncovers some key challenges with this
approach. With random positions of the camera and humans in the scene, it regularly
occurred that humans were partially occluded by trees or other objects as seen from the
camera’s viewpoint. Similary, humans standing in the shadows of trees or other objects
were sometimes barely or not at all visible in the rendered image.

This raises the questions to which degree a detection algorithm should be expected to detect
a partially visible human and how to quantify this degree of visibility in the training data.
As detecting humans with 0% visibility is infeasible, a requirement should be stated to limit
the degree of object visibility the algorithm must reliably cope with. This limit could be
specified with corresponding scenarios in the ConOps and operational constrains in the
ODD. For example, potential release areas for box dropping could be restricted to open
fields without large objects such as trees which would obstruct the view or cast shadows.

However, even if a limit regarding the degree of visibility is specified in the ODD, there is
no straight-forward way to assess the degree of occlusion and visibility when generating
labels based on the segmentation images. To solve this technical issue, an approach was
taken to generate control images alongside the rendered images with the humans removed
from the scene. A comparison of both images would — in theory — allow the decision of
whether or not the human should be classified as visible and hence its label should be
included in the training data or not. However, with the AR S1m render engine used in this
work, it proved to be difficult to generate control images that differed from the original
image only in the existence of certain objects in the scene. Seemingly random differences
in rendering artifacts, such as shadows and moving leafs, made it impossible to reliably
calculate a difference metric for the control images.

6 Conclusion

For machine learning, data from the real-world as well as synthetically generated data can
be used. Synthetic data have the advantage that no cost intensive real-world experiments are
required, for which corner-cases can also be safety-critical. Further, the generation of data
based on simulations offers the flexibility needed to create a variety of scenarios that help
improve the completeness of the data set. In this paper, we presented on-going work on a
toolchain to create synthetic data for detecting humans in aerial images. The Unreal Engine
plugin ATRS1M™ is used as simulation environment: ATrStM offers the flexibility to capture

Build Your Own Training Data 183

different aerial scenarios whereas the Unreal Engine provides a range of worlds and objects.
The generation of synthetic data was mostly automated — only the initial scenario must be
defined manually. The current toolchain can efficiently generate a large amount of synthetic
data, but often the captured scenes are too difficult for the initial learning process, e. g.,
humans are often hidden in shadows, under water, or concealed by obstacles. This work
showed that the use of simulations is promising, but does not simply mean placing humans
in a virtual world. In the future, we plan to no longer place humans randomly but rather to
use operational limits, operational conditions, and scenarios defined in the ConOps to guide
the process. This not only helps to control the level of difficulty, but also to ensure that the
data generation achieves a certain coverage of the requirements. Here, one challenge is that
simulation tools are not designed to support machine learning in the first place. Further,
after updating the human placement algorithm, we plan to conduct more experiments with
more synthetic data to show more conclusive results.

