Jan Jiirjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 71

Characterizing Implicit Communal Components as
Technical Debt in Automotive Software Systems

Andreas Vogelsang!, Henning Femmer?, Maximilian Junker?

1 Introduction

Automotive software systems are often characterized by a set of features that are imple-
mented through a network of communicating components. It is common practice to imple-
ment or adapt features by an ad hoc (re)use of signals that originate from components of
another feature. Thereby, over time some components become so-called implicit commu-
nal components. These components increase the necessary efforts for several development
activities because they introduce feature dependencies. Refactoring implicit communal
components reduces these efforts but also costs refactoring effort. In this paper, we pro-
vide empirical evidence that implicit communal components exist in industrial automotive
systems. For two cases, we show that less than 10% of the components are responsible
for more than 90% of the feature dependencies. Secondly, we propose a refactoring ap-
proach for implicit communal components, which makes them explicit by moving them to
a dedicated platform component layer (PCL). Finally, we characterize implicit communal
components as technical debt, which is a metaphor for suboptimal solutions having short-
term benefits but causing a long-term negative impact. With this metaphor, we describe
the trade-off between accepting the negative effects of implicit communal components
and spending the necessary refactoring costs. The full paper can be found in [VFJ16].
Terms and Definitions: We use this definition of feature dependency [VF13]: A feature
depends on another feature if at least one component associated with the feature reads a
signal that originates from a component associated with the other feature. In recent stud-
ies, we found that not only almost every feature depended on another feature, we have
also seen that there is a 50% chance that a developer is not aware of a specific feature
dependency [VF13, VTG12]. A communal component is a component that exchanges sig-
nals (sending or receiving) with components of features different from the feature of the
communal component. We distinguish between implicit and explicit communal compo-
nents depending on whether a component is associated with a feature or with a dedicated
platform component layer (PCL). The purpose of this dedicated platform layer is to bun-
dle components that implement functionality important for a number of features. This
may include components that provide some general signals (e.g., vehicle speed) but also
components that collect and process signals for one specific actuator (e.g., different brake
demands). An implicit communal component is a communal component associated with a
feature and not with the PCL. This means that the component contributes to a feature de-
pendency by exchanging signals with a component that is associated with another feature.
In contrast, we call a communal component explicit if it is associated with the PCL.

! Technische Universitit Berlin, DCAITI, andreas.vogelsang @tu-berlin.de
2 Technische Universitit Miinchen, Institut fiir Informatik, {femmer,junkerm} @in.tum.de

72 Andreas Vogelsang, Henning Femmer und Maximilian Junker

2 Study and Results

RQ1: How many implicit communal components exist in automotive systems? Tab. 1a
shows that in the examined systems more than a third of all components are implicit com-
munal components. Thus, refactoring all implicit communal components at once is not
realistic and, therefore, it is useful to consider implicit communal components as technical
debt that should be removed if the refactoring pays off.

100%

Characteristics: System 1 System 2 e System 1
§ 0% - = =System 2
Type Small truck SUV k-
Features 57 94 g
g 0%
Components 269 380 s
£ so%
Results for RQ1: g 40%
£
Implicit ~ communal 97 (36%) 175 (46%) £ 20%
components 2 o
Feature dependencies 136 1451 %
0% % 10% 15% 20%
Refactored components
(a) Study objects (b) Feature dependencies after refac-

toring implicit communal components.
RQ2: What is the distribution of feature dependencies over implicit communal com-
ponents? Fig. 1b shows the remaining percentage of feature dependencies within the two
systems after successively refactoring the component that contributes to the largest number
of feature dependencies. For both systems, the number of feature dependencies decreases
strongly after refactoring only a few components. In fact, to remove 90% of the feature
dependencies, we need to refactor less than 10% of the components.
RQ3: What are the interest and refactoring costs for implicit communal components?
From interviews with 3 experts, we extracted a set of cost factors. A cost factor impacts a
development activity either in the role of refactoring costs or in the role of increased costs
in the future. A cost factor may be influenced by contextual parameters that increase or
decrease the severity of the cost factors.
Conclusions: We conclude that implicit communal components constitute technical debt
in automotive systems that is worth to be managed. To implement or adapt features, auto-
motive developers (re)use signals that are produced by components of other features. This
leads to a large number of implicit communal components (36% and 46% of all compo-
nents in our cases). When developers do this, they introduce feature dependencies, which,
according to our interview participants, increase costs for several activities in the future
(e.g., impact analysis, safety cases, testing, deployment). For most of the mentioned ac-
tivities, their costs depend on the number of feature dependencies for which a communal
component is responsible. In the examined systems refactoring some communal compo-
nents has a much higher impact on feature dependencies than refactoring others. Therefore,
for some communal components a refactoring saves more costs compared with others.
References

[VF13] Vogelsang, A.; Fuhrmann, S.: Why Feature Dependencies Challenge the Requirements
Engineering of Automotive Systems: An Empirical Study. In: RE. 2013.

[VEJ16] Vogelsang, A.; Femmer, H.; Junker, M.: Characterizing Implicit Communal Components
as Technical Debt in Automotive Software Systems. In: WICSA. 2016.

[VTGI12] Vogelsang, A.; Teuchert, S.; Girard, J.: Extent and characteristics of dependencies be-
tween vehicle functions in automotive software systems. In: MiSE. 2012.

