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Abstract: Distributed top-k query processing has become an essential functionality
in a large number of emerging application classes like Internet traffic monitoring and
Peer-to-Peer Web search. This work addresses efficient algorithms for distributed top-
k queries in wide-area networks where the index lists for the attribute values (or text
terms) of a query are distributed across a number of data peers.

1 Introduction

The success and growth of the Web and the Internet is spurring the development of
an ever increasing number of interesting application classes, from Internet-scale monito-
ring, to aggregation queries in sensor networks, and to peer-to-peer Web searching. Inter-
net traffic monitoring is crucial for understanding the nature of modern applications’ load
characteristics such as P2P file sharing, news feeds, or Blogs, and uses network instrumen-
tation at different levels and time scales. As the underlying routers and other components
of the observatory infrastructure are highly distributed, analyzing the logged data often
requires distributed aggregation and iceberg queries (i.e., top-k computations over aggre-
gated traffic measures ). Similar requirements arise for detecting traffic anomalies such as
network intrusions or denial-of-service attacks. Sensor networks are gaining great import-
ance for monitoring environmental data such as water quality measures in rivers or other
measurements of the physical world. Here, too, evaluating the data naturally leads to dis-
tributed aggregation queries where one is often interested only in the top-k query results,
e.g., the top water streams with the highest nitrate concentration. P2P Web search is an
emerging alternative to centralized search engines that bear various intriguing potentials:
lower susceptibility to search engine spam and manipulation, exploitation of behavior and
recommendations of users and entire user communities implicit in bookmarks, query logs,
and click streams, and collaborative search for advanced expert queries. In such a setting,
queries would combine page scoring information from several peers that maintain diffe-
rent index lists. As in standard Web search, users often look only at the top-10 results.
From our point of view, the common key feature of all such applications is that the data
are distributed over a number of nodes at large scale and in an ad-hoc manner, and that this
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data must be collected, and some aggregation function be applied, with the desired goal
being the identification of the k£ most relevant/interesting data items. We focus on efficient
top-k query algorithms in distributed environments.

1.1 Problem Statement and Computational Model

We consider a distributed system with N peers, P;, j = 1,..., N, that are connected,
e.g., by a distributed hash table or some overlay network. Data items are either documents
such as Web pages or structured data items such as movie descriptions. Each data item
has associated with it a set of descriptors, text terms or attribute values, and there is a
precomputed score for each pair of data item and descriptor. The inverted index list for
one descriptor is the list of data items in which the descriptor appears sorted in descending
order of scores. These index lists are the distribution granularity of the distributed system.
Each index list is assigned to one peer (or, if we wish to replicate it, to multiple peers).

The overall goal is to efficiently find the top-k items (documents) or, in case of appro-
ximate algorithms, come as close as possible to the true top-k results. We measure the
quality of the approximate result by the fraction of documents in the approximate top-k
result that are also in the true top-k result, i.e. the relative recall.

1.2 Contribution

e We present the KLEE algorithmic framework [MTWO05a] as a fundamental building
block towards efficient top-k query processing in distributed systems.

e We present techniques to model value distributions and show how these models can be
used to reason about parameter values that play an important role in the overall perfor-
mance of KLEE.

e We present the GRASS algorithmic framework. The GRASS algorithms come with
three different kinds of optimization techniques [NBMT08]: we introduce a technique
to efficiently leverage the knowledge of the input data characteristics to tune thresholds
that are of fundamental importance. We show how hierarchical query plans can be gene-
rated using the aforementioned cost model to build optimal query execution plans that
drastically increase the overall performance. We introduce a method to select a sam-
ple of input data sources that still provides reasonably accurate results but can be, at
the same time, more efficiently handled. All these techniques result in a significantly
increased overall performance.

e We present probabilistic guarantees for the aforementioned algorithms.

e Moreover, we address the issue of building a highly scalable search engine. We have
developed Minervaco [MTWO05b], a scalable and efficient Peer-to-Peer Web search en-
gine. The distinguishing feature of Minervaco is the high distribution both in the data
and computational dimensions. The key idea is to give up the nodes’ autonomy and
distribute each index list over multiple peers, as a key step towards a system with un-
limited scalability. We expect that nodes will autonomously crawl the web, discovering
documents and computing scores of documents, with each score reflecting a document’s
importance with respect to ferms of interest.
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2 Related Work

Top-k query processing has received much attention in a variety of settings such as si-
milarity search on multimedia data [CGM04, CGMO04, Fa99, FLNO03, GBK00, BGRS99,
NCST01, dVMNKO02], ranked retrieval on text and semi-structured documents in digi-
tal libraries and on the Web [AdKMO1, TWS04, BJRS03], spatial data analysis [BBKOI,
CP02], network and stream monitoring [BO03, KOT04, CW04] collaborative recommen-
dation and preference queries on e-commerce product catalogs [YPMO03, MBG04, BGMO02,
GBKO1], and ranking of SQL-style query results on structured data sources in general
[ACDGO03, CDHW04, BCGO02]. [BCG02] addresses the mapping of top-k queries into
range queries that can be handles by the query optimizer in a conventional RDBMS.

The first distributed TA-style algorithm has been presented in [BGMO02, MBGO04]. The
emphasis of that work was on top-k queries over Internet data sources for recommendation
services (e.g., restaurant ratings, street finders). Because of functional limitations and spe-
cific costs of data sources, the approach used a hybrid algorithm that allowed both sorted
and random access but tried to avoid random accesses. Scheduling strategies for random
accesses to resolve expensive predicates were addressed also in [CwHO02]. In our widely
distributed setting, none of these scheduling methods are relevant as they still incur an
unbounded number of message rounds. The method in [SMwW*03] addresses P2P-style
distributed top-k queries but considers only the case of two index lists distributed over two
peers. Its key idea is to allow the two cohort peers to directly exchange score and candida-
te information rather than communicating only via the query initiator. Unfortunately, it is
unclear and left as an open issue how to generalize to more than two peers.

In contrast, state-of-the-art algorithms for distributed top-k aggregation use a fixed num-
ber of communication rounds to bound latency and aim to minimize the total network
bandwidth consumption. The first algorithm in this family was the TPUT (Three-Phase
Uniform Threshold) algorithm [CWO04], in which a query coordinator, typically the net-
work node which initiates the query, executes a three-phase distributed threshold algo-
rithm. We will give a more detailed description of the algorithm in the following section.
TPAT [YLW™105] is a modification of TPUT where the threshold, that is the same for all
index lists, is adapted to the specifics of the value distributions; however, the authors state
that their solution may incur infeasible computational cost. We will also consider the issue
of adaptive thresholds and introduce an efficient way to calculate them.

2.1 The Three Phase Uniform Threshold Algorithm (TPUT)

The main idea of TPUT [CWO04] is to transform the top-k query into a range query
where the range is determined via an estimation of the min-k value.

1. min-k estimation phase: The query initiator P;,;; retrieves the top k items from each
of the input index-lists. Subsequently, P;,;; calculates the worstscore for all observed
items and ranks them accordingly. The worstscore is the aggregation of the actually
observed values. Similarly, the bestscore denotes the best possible score an item can
achieve in the future. The worstscore of the item currently at rank k is denoted as min-k.
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2.

Candidate retrieval phase: Based on the min-k estimation, TPUT sends the min-k/m
threshold to all involved peers that send back all (itemId, score)-pairs with score >
min-k/m. This ensures that all candidates (potential members of the final top-k re-
sult) have been found, in at least one of the lists. After the min-k value has been re-
calculated, TPUT throws away all items with bestscore < min-k.

Missing scores lookup phase: For all the remaining candidates, TPUT looks up the
missing scores by sending to each peer P; a list of the candidates that have not been
seen in list L; so far. P;,;; can now calculate the exact score for all candidates, i.e. the
true top-k results have been identified.

Phase 1 Phase 2 Phase 3
(a,12) (b,8) (a,17) | (a,12) (b,8) (a,17)| (a,12) (b,8) (a,17)
(b,10) (¢, 7) (2,13) | (b,10) (c,7) (2,13) | (b,10) (c,7) (2,13)
(c,8)  (e,6) (e,11) | (c,8) (e,6) (e,11) | (c,8) (e,6) (e, 11)
(d,6)  (2,4) (f,10) | (d,6) (2,4) (f,10) | (d,6) (z,4) (f,10)
(e,3) (m,2) (c,6) (e,3) (m,2) (e,6) (e,3) (m,2) (c,6)
(h,3)  (9,2)  (n,5) (h,3)  (g9,2)  (1,5) (h,3)  (9,2)  (1,5)
(f,2)  (o,1)  (b)5) (f,2)  (o,1)  (b,5) (f,2)  (o,1)  (b,5)

Table 1: Sample TPUT execution for a top-2 query: Phase 1 (left): Retrieve the top-2 items from
each list. Phase 2 (middle): Retrieve all items with score above min-k/3 = 6. Phase 3 (right):
Retrieve missing score via random lookups.

3 The KLEE Algorithmic Framework

TPUT ensures a small query response times using a small, fixed number of (only three)
communication phases. We also adopt the requirement for a small number of communica-
tion phases. However, KLEE goes far beyond. The salient features and novel contributions
of KLEE are the following:

e KLEE comes with two flavors, one involving only two and one involving three com-
munication phases. It recognizes that the number of communication phases is only one
aspect of guaranteeing short response times, which, in turn, is only one aspect of overall
efficiency. In particular, as limited network and 10 bandwidth appear to be key contribu-
tors to response times, KLEE ensures that significantly smaller messages are exchanged
and that random IOs at participating peers are avoided, resulting in strong gains in re-
sponse time and network bandwidth and lighter peer loads compared to TPUT.

e KLEE is the first to make a strong case for approximate top-k algorithms for wide-area
networks, showing how significant performance benefits can be enjoyed, at only small
penalties in result quality.

e KLEE provides a flexible framework for top-k algorithms, allowing for trading-off effi-
ciency versus result quality and bandwidth savings versus the number of communication
phases.

e We have implemented KLEE and a number of competing algorithms and conducted
comprehensive experimental performance evaluation using real-world and synthetic da-
ta, which shows the consistent superiority of KLEE over its competitors.
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e KLEE is equipped with various fine-tuning parameters and we provide a discussion of
how these can be automatically adjusted to underlying data and system characteristics.

The proposed approach is based on having a per-query coordinator peer and a set of co-
hort peers. In our setting, the coordinating peer is the peer where the query was initiated,
P;pit- The cohort peers, are the peers storing the index lists, based on which the document
scores will be computed. The algorithm is structured to proceed in a number of phases,
with each phase consisting of a round-trip communication between the coordinator and
the cohorts. In general, in each phase, the coordinator requests and receives from each
peer a portion of the peer’s local index information, which permits the coordinator to run a
top-k algorithm (such as the TA algorithm or variants) based on the collected information
about the peers’ index lists.

3.1 The HistogramBlooms Structure

In KLEE, each peer maintains a set of statistical metadata describing its index list. In
particular, histogram-based information is maintained to describe the distribution of scores
in the index list. The range of possible score values cover the range (0, 1]. For simplici-
ty, we assume that peer histograms are equi-width, consisting of n cells, each cell being
responsible for (1/n)th of the score range. It would be straightforward to employ other
forms of histograms. Associated with each cell ¢, each peer maintains the following infor-
mation

e The lower and upper values, [b[i], ub[i], respectively, defining the range of scores being
covered by this cell,

e The value of fregli], defining the number of document IDs whose scores in the peer’s
index list fall within [b[i] and ubli],

e The average score, avgli], computed over all scores in the cell, and

e A synopsis of the document IDs whose scores fall in this cell, filter[i]. In particular,
this compact representation is constructed using Bloom filters [B170].

In the first phase, at the coordinator’s request, each cohort peer replies with its local
top-k list, and a fraction of its HistogramBlooms data structure. The coordinator then can
address the missing-scores problem as follows: for every peer P; that has not reported a
score for docID, using the Bloom-filter cell summaries of P; and the hash functions, it can
find to which histogram cell of peer P; the docID belongs say ¢, (by simply testing for
membership of docID in the filters of each cell, and stopping when a test is successful).
Then, it can use the average score associated with that histogram cell, avg[c], to replace
the missing score of P; for docID.

With the additional knowledge of the documents’ scores, the query initiator is able to
compute a tighter min-k/m score bound which leads to a decreased network consumption
in the second communication phase as less documents qualify for the range query.

KLEE comes in addition use of an optional filtering phase for the data transmission in
the second phase (cf., [MTWO05a]).
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4 Probabilistic Guarantees

TPUT is exact, i.e. it calculates the true top-k result. KLEE [MTWO05a] is an approxima-
te version of TPUT that does not employ the third phase and, in addition, uses compression
techniques based on Bloom filters and a technique to filter out unpromising candidates.

For now we assume that the compression techniques applied in KLEE are perfect, i.e. do
not cause any false positives. It is straightforward to configure Bloom filters to provide this
error-free behavior with high probability [B170]. So, we actually consider the approximate
version of TPUT (without the third phase) and disregard KLEE’s optimization techniques.

We consider the state of the algorithm after the second phase. All items with bestscore
< min-k have been pruned away. This is the standard pruning technique that does not
introduce errors. The error in the relative recall at this stage of the algorithm is caused by
the ordering of the items since this ordering is based on incomplete information (i.e., not
fully evaluated candidate items). We assume that the item that is currently at rank k + 1
has the highest chance to get into the top-k£ result. In general, an item at rank > k£ + 1 can
have a higher chance to get into the top-k than the item rank &k 4+ 1 if it has been seen in
fewer index lists than the item at rank k& + 1 and thus may achieve a higher final score. In
our scenario it does not make sense to distinguish between the different index lists since
for all of them the algorithm reads down to min-k/m and we do not consider the score
distributions in the tails of the index lists. Since we try to derive a general probabilistic
guarantee, we cannot treat items individually. In this setting, assuming that the item at
rank £ -+ 1 has the highest chance to get into the top-% is a meaningful assumption.

With this assumption we have derived an upper bound for the probability that the item at
rank-k + 1 will get into the final top-k result, hence can derive the expected result accuracy
[MiO7].

5 Optimizing Top-k Queries

We consider the optimization of distributed top-k queries in wide-area networks: We
present GRASS, an algorithmic framework [NBM™08] that consists of three optimization
techniques.

e we introduce a technique to efficiently leverage the knowledge of the input data charac-
teristics to tune score thresholds that are of fundamental importance. The basic KLEE
method and related algorithms transform the top-k retrieval problem into range-queries
where the ranges are determined using uniform score thresholds. We propose the usage
of non-uniform thresholds, and present an efficient optimization algorithm to adapt the
threshold to the index-lists score distribution characteristics.

e we show how hierarchical query plans can be generated using the aforementioned cost
model to build optimal query execution plans that drastically increase the overall per-
formance. Consider, for example, a query with one very large and several small input
lists residing on different peers. It would be better to perform the top-k query at the
peer with the large list, have the small peers ship their items to the large peer, and only
send the final result to the query initiator. We use a dynamic programming approach that
considers all possible query plans and chooses the cheapest plan w.r.t. our cost model.
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e we introduce a sampling method to select a subset of the input data sources that still
provides accurate results but can be, at the same time, more efficiently handled. We ha-
ve performed experiments on real Web data that show the benefits of distributed top-k
query optimization both in network resource consumption and query response time.

6 Minerva Infinity

An architectural alternative to the computational model that underlies our algorithms
is to distribute each index list over multiple peers, as a key step towards a system with
unlimited scalability. We expect that nodes will autonomously crawl the web, discovering
documents and computing scores of documents, with each score reflecting a document’s
importance with respect to terms of interest. This results in index lists, one for each term,
containing relevant documents and their scores for a term. In a succeeding step, each peer
distributes its set of (docld, score, term)-triplets across the participating peers. One way
of doing so is to use a standard order-preserving hash function that assigns each triplet to
a node based on the score’s hash-value plus a term-specific offset. While this obviously
distributes the triplets over the peers it will create a load imbalance because of the skewed
(Zipf-like) score distribution typically observed in real-world index lists. To overcome this
problem, we have developed a more sophisticated hash function that distributes index lists
over the participating peers in a load-balancing and, at the same time, order-preserving
way. But even with such a hash function it is infeasible to distribute a single index list over
all peers, since this would cause a gigantic communication overhead as all peers would
have to be contacted in order to retrieve the required information. To overcome this pro-
blem, we restrict the placement of the (docid, score, term)-triplets for a particular term
to a subset of all peers. These small networks, called term index networks (TIN), help to
limit the number of peers contacted during retrieval. In general, TINs can form separate
overlay networks, but for simplicity we model a TIN simply as a (circular) doubly-linked
list. The top-k query processing proceeds in rounds, in which a coordinator peer retrieves
batches of (docld, score, term)-triplets from the nodes that are part of the query-term spe-
cific TINs. We believe that our design choices are a big step towards a scalable P2P search
engine. The Minervaco [MTWOS5b] architecture has been implemented, and performance
experiments have been conducted.

7 Conclusion

We have considered distributed top-k algorithms, where the index lists for the query
attributes are spread across multiple peers. We have presented the KLEE framework for
distributed top-k query processing. KLLEE’s salient features set it apart from related work
in several ways. First, KLEE makes for the first time a strong case for approximate top-k
algorithms in widely distributed environments. Second, KLEE allows the trading-off of
result quality vs performance. KLEE even allows for trading-off between bandwidth vs
the number of communication phases. KLEE achieves great performance gains in network
bandwidth, query response times, and local peer load, and high quality results. Moreover,
we have considered means to model score distributions and how these score models can
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be used to reason about parameter values that play an important role in the overall perfor-
mance of KLEE. We have presented the family of GRASS algorithms that use these score
models for optimizing the query execution. GRASS shows significant performance gains,
in particular for queries that involve many data sources. We have derived probabilistic
guarantees for the algorithms presented, to show both analytically and by a comprehen-
sive experimental study their suitability for various application classes. Furthermore, we
have presented Minervaoo, a novel architecture for a peer-to-peer web search engine. The
key distinguishing feature of Minervaoo is its high-levels of distribution for both data and
processing.
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